1
|
Wu C, Xie X, Yang X, Du M, Lin H, Huang J. Applications of gene pair methods in clinical research: advancing precision medicine. MOLECULAR BIOMEDICINE 2025; 6:22. [PMID: 40202606 PMCID: PMC11982013 DOI: 10.1186/s43556-025-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
The rapid evolution of high-throughput sequencing technologies has revolutionized biomedical research, producing vast amounts of gene expression data that hold immense potential for biological discovery and clinical applications. Effectively mining these large-scale, high-dimensional data is crucial for facilitating disease detection, subtype differentiation, and understanding the molecular mechanisms underlying disease progression. However, the conventional paradigm of single-gene profiling, measuring absolute expression levels of individual genes, faces critical limitations in clinical implementation. These include vulnerability to batch effects and platform-dependent normalization requirements. In contrast, emerging approaches analyzing relative expression relationships between gene pairs demonstrate unique advantages. By focusing on binary comparisons of two genes' expression magnitudes, these methods inherently normalize experimental variations while capturing biologically stable interaction patterns. In this review, we systematically evaluate gene pair-based analytical frameworks. We classify eleven computational approaches into two fundamental categories: expression value-based methods quantifying differential expression patterns, and rank-based methods exploiting transcriptional ordering relationships. To bridge methodological development with practical implementation, we establish a reproducible analytical pipeline incorporating feature selection, classifier construction, and model evaluation modules using real-world benchmark datasets from pulmonary tuberculosis studies. These findings position gene pair analysis as a transformative paradigm for mining high-dimensional omics data, with direct implications for precision biomarker discovery and mechanistic studies of disease progression.
Collapse
Affiliation(s)
- Changchun Wu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xueqin Xie
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xin Yang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mengze Du
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, 611844, China
| | - Hao Lin
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jian Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Deleuze V, Stephen T, Salma M, Orfeo C, Jorna R, Maas A, Barroca V, Arcangeli ML, Lecellier CH, Andrieu-Soler C, Grosveld F, Soler E. In vivo deletion of a GWAS-identified Myb distal enhancer acts on Myb expression, globin switching, and clinical erythroid parameters in β-thalassemia. Sci Rep 2025; 15:8996. [PMID: 40089598 PMCID: PMC11910609 DOI: 10.1038/s41598-025-94222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous genetic variants linked to human diseases, mostly located in non-coding regions of the genome, particularly in putative enhancers. However, functional assessment of the non-coding GWAS variants has progressed at slow pace, since the functions of the vast majority of genomic enhancers have not been defined, impeding interpretation of disease-susceptibility variants. The HBS1L-MYB intergenic region harbors multiple SNPs associated with clinical erythroid parameters, including fetal hemoglobin levels, a feature impacting disease severity of beta-hemoglobinopathies such as sickle cell anemia and beta-thalassemia. HBS1L-MYB variants cluster in the vicinity of several MYB enhancers, altering MYB expression and globin switching. We and others have highlighted the conserved human MYB - 84kb enhancer, known as the - 81kb enhancer in the mouse, as likely candidate linked to these traits. We report here the generation of a Myb - 81kb enhancer knock-out mouse model, and shed light for the first time on its impact on steady state erythropoiesis and in beta-thalassemia in vivo.
Collapse
Affiliation(s)
| | | | - Mohammad Salma
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Cédric Orfeo
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Ruud Jorna
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Luminex Corporation, s-Hertogenbosch, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France.
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
4
|
Niebora J, Data K, Domagała D, Józkowiak M, Barrett S, Norizadeh Abbariki T, Bryja A, Kulus M, Woźniak S, Ziemak H, Piotrowska-Kempisty H, Antosik P, Bukowska D, Mozdziak P, Dzięgiel P, Kempisty B. Avian Models for Human Carcinogenesis-Recent Findings from Molecular and Clinical Research. Cells 2024; 13:1797. [PMID: 39513904 PMCID: PMC11544849 DOI: 10.3390/cells13211797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Saoirse Barrett
- Human Clinical Embryology & Assisted Conception, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | | | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
5
|
Cha HJ. Erythropoiesis: insights from a genomic perspective. Exp Mol Med 2024; 56:2099-2104. [PMID: 39349824 PMCID: PMC11542026 DOI: 10.1038/s12276-024-01311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 11/08/2024] Open
Abstract
Erythropoiesis, the process underlying the production of red blood cells, which are essential for oxygen transport, involves the development of hematopoietic stem cells into mature red blood cells. This review focuses on the critical roles of transcription factors and epigenetic mechanisms in modulating gene expression critical for erythroid differentiation. It emphasizes the significance of chromatin remodeling in ensuring gene accessibility, a key factor for the orderly progression of erythropoiesis. This review also discusses how dysregulation of these processes can lead to erythroid disorders and examines the promise of genome editing and gene therapy as innovative therapeutic approaches. By shedding light on the genomic regulation of erythropoiesis, this review suggests avenues for novel treatments for hematological conditions, underscoring the need for continued molecular studies to improve human health.
Collapse
Affiliation(s)
- Hye Ji Cha
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, South Korea.
| |
Collapse
|
6
|
Petrović A, Štancl P, Gršković P, Hančić S, Karlić R, Gašparov S, Korać P. Gene Expression Aberrations in Alcohol-Associated Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:10558. [PMID: 39408891 PMCID: PMC11476681 DOI: 10.3390/ijms251910558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer, ranking as the sixth most common cancer worldwide and the fourth leading cause of cancer-related deaths. Most HCC cases originate from cirrhotic livers, typically due to chronic liver diseases, such as hepatitis B (HBV) and hepatitis C (HCV) infections, and alcoholism. HCC cells often harbor numerous somatic mutations that are implicated in HCC development, but epigenetic factors, such as miRNA interference, can also affect HCC initiation and progress. miRNA-221 has been explored as a factor affecting HCC development in HCC of viral etiology, but little is known about its effects on gene expression in alcohol-associated HCC. This study aimed to explore potentially similar gene expression aberrations underlying viral and alcohol-induced HCC. We analyzed available transcriptome data from non-tumor hepatocytes and viral-induced HCC tissues. The most notable differences in gene expression associated with miRNA-221 between non-tumor hepatocytes and viral-induced HCC involved NTF-3 and MYBL1 genes. To assess these data in alcohol-induced HCC, we examined 111 tissue samples: tumor tissue and cirrhotic tissue samples from 37 HCC patients and 37 samples from non-tumor liver tissue using RT-Q PCR. We found no significant difference in NTF-3 expression, but MYBL1 expression was significantly lower in HCC tissue compared to non-tumor hepatocytes and cirrhotic tissue. Our findings highlight the importance of the MYBL1 gene in HCC development and emphasize the need for diverse approaches in evaluating tumor mechanisms.
Collapse
Affiliation(s)
- Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia; (S.H.); (S.G.)
| | - Paula Štancl
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| | - Suzana Hančić
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia; (S.H.); (S.G.)
| | - Rosa Karlić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| | - Slavko Gašparov
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia; (S.H.); (S.G.)
- Department of Pathology, Medical School Zagreb, University of Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (A.P.); (P.Š.); (R.K.)
| |
Collapse
|
7
|
Anand S, Vikramdeo KS, Sudan SK, Sharma A, Acharya S, Khan MA, Singh S, Singh AP. From modulation of cellular plasticity to potentiation of therapeutic resistance: new and emerging roles of MYB transcription factors in human malignancies. Cancer Metastasis Rev 2024; 43:409-421. [PMID: 37950087 PMCID: PMC11015973 DOI: 10.1007/s10555-023-10153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
MYB transcription factors are encoded by a large family of highly conserved genes from plants to vertebrates. There are three members of the MYB gene family in human, namely, MYB, MYBL1, and MYBL2 that encode MYB/c-MYB, MYBL1/A-MYB, and MYBL2/B-MYB, respectively. MYB was the first member to be identified as a cellular homolog of the v-myb oncogene carried by the avian myeloblastosis virus (AMV) causing leukemia in chickens. Under the normal scenario, MYB is predominantly expressed in hematopoietic tissues, colonic crypts, and neural stem cells and plays a role in maintaining the undifferentiated state of the cells. Over the years, aberrant expression of MYB genes has been reported in several malignancies and recent years have witnessed tremendous progress in understanding of their roles in processes associated with cancer development. Here, we review various MYB alterations reported in cancer along with the roles of MYB family proteins in tumor cell plasticity, therapy resistance, and other hallmarks of cancer. We also discuss studies that provide mechanistic insights into the oncogenic functions of MYB transcription factors to identify potential therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Shashi Anand
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kunwar Somesh Vikramdeo
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Amod Sharma
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Srijan Acharya
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Mohammad Aslam Khan
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Seema Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA
| | - Ajay Pratap Singh
- Department of Pathology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36617, USA.
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Biochemistry and Molecular Biology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
8
|
Ferrarotto R, Swiecicki PL, Zandberg DP, Baiocchi RA, Wesolowski R, Rodriguez CP, McKean M, Kang H, Monga V, Nath R, Palmisiano N, Babbar N, Sun W, Hanna GJ. PRT543, a protein arginine methyltransferase 5 inhibitor, in patients with advanced adenoid cystic carcinoma: An open-label, phase I dose-expansion study. Oral Oncol 2024; 149:106634. [PMID: 38118249 DOI: 10.1016/j.oraloncology.2023.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVES Currently, no systemic treatments are approved for patients with recurrent and/or metastatic (R/M) adenoid cystic carcinoma (ACC). PRT543, a protein arginine methyltransferase 5 inhibitor that downregulates NOTCH1 and MYB signalling in tumours, is a potential candidate for R/M ACC treatment. We report the safety, tolerability and preliminary efficacy of PRT543 in a dose-expansion cohort of patients with R/M ACC. MATERIALS AND METHODS This phase I multicentre, open-label, sequential-cohort, dose-escalation and dose-expansion study (NCT03886831) enrolled patients with advanced solid tumours and select haematologic malignancies. Dose-escalation study design and results were reported previously. In the dose expansion, patients with R/M ACC received recommended phase II doses of 35 or 45 mg PRT543 orally on days 1-5 of each week. Primary objectives were to establish the safety and tolerability of PRT543. Secondary objectives included efficacy. RESULTS Between February 2019 and May 2022, 56 patients with ACC were enrolled across 23 US sites and received either 35 mg (n = 28) or 45 mg (n = 28) of PRT543. Overall, 23% of patients experienced a grade 3 treatment-related adverse event, most commonly anaemia (16%) and thrombocytopaenia (9%). No grade 4/5 treatment-emergent adverse events were reported. Median progression-free survival was 5.9 months (95% CI: 3.8-8.3). The clinical benefit rate was 57% (95% CI: 43-70). Overall response rate (per Response Evaluation Criteria in Solid Tumours v1.1) was 2%, with 70% of patients having stable disease. CONCLUSION In this analysis, PRT543 was tolerable, and the observed efficacy was limited in patients with R/M ACC.
Collapse
Affiliation(s)
- Renata Ferrarotto
- Department of Thoracic/Head and Neck Medical, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Paul L Swiecicki
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Dan P Zandberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert A Baiocchi
- Department of Medicine, Division of Hematology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Robert Wesolowski
- Department of Medicine, Division of Medical Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Meredith McKean
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Hyunseok Kang
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Varun Monga
- Department of Medicine, Division of Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Neil Palmisiano
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Naveen Babbar
- Prelude Therapeutics, Research and Development, Wilmington, DE, USA
| | - William Sun
- Prelude Therapeutics, Research and Development, Wilmington, DE, USA
| | - Glenn J Hanna
- Center for Head and Neck Oncology, Center for Salivary and Rare Head and Neck Cancers, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
9
|
Lemma RB, Fuglerud BM, Frampton J, Gabrielsen OS. MYB: A Key Transcription Factor in the Hematopoietic System Subject to Many Levels of Control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:3-29. [PMID: 39017837 DOI: 10.1007/978-3-031-62731-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
MYB is a master regulator and pioneer factor highly expressed in hematopoietic progenitor cells (HPCs) where it contributes to the reprogramming processes operating during hematopoietic development. MYB plays a complex role being involved in several lineages of the hematopoietic system. At the molecular level, the MYB gene is subject to intricate regulation at many levels through several enhancer and promoter elements, through transcriptional elongation control, as well as post-transcriptional regulation. The protein is modulated by post-translational modifications (PTMs) such as SUMOylation restricting the expression of its downstream targets. Together with a range of interaction partners, cooperating transcription factors (TFs) and epigenetic regulators, MYB orchestrates a fine-tuned symphony of genes expressed during various stages of haematopoiesis. At the same time, the complex MYB system is vulnerable, being a target for unbalanced control and cancer development.
Collapse
Affiliation(s)
- Roza Berhanu Lemma
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | - Jon Frampton
- Department of Cancer & Genomic Sciences, College of Medicine & Health, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
10
|
Crosse EI, Binagui-Casas A, Gordon-Keylock S, Rybtsov S, Tamagno S, Olofsson D, Anderson RA, Medvinsky A. An interactive resource of molecular signalling in the developing human haematopoietic stem cell niche. Development 2023; 150:dev201972. [PMID: 37840454 PMCID: PMC10730088 DOI: 10.1242/dev.201972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Edie I. Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
11
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Pan B, Wan T, Zhou Y, Huang S, Yuan L, Jiang Y, Zheng X, Liu P, Xiang H, Ju M, Luo R, Jia W, Lan C, Li J, Zheng M. The MYBL2-CCL2 axis promotes tumor progression and resistance to anti-PD-1 therapy in ovarian cancer by inducing immunosuppressive macrophages. Cancer Cell Int 2023; 23:248. [PMID: 37865750 PMCID: PMC10590509 DOI: 10.1186/s12935-023-03079-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND An immunosuppressive tumor microenvironment in ovarian cancer facilitates tumor progression and resistance to immunotherapy. The function of MYB Proto-Oncogene Like 2 (MYBL2) in the tumor microenvironment remains largely unexplored. METHODS A syngeneic intraovarian mouse model, flow cytometry analysis, and immunohistochemistry were used to explore the biological function of MYBL2 in tumor progression and immune escape. Molecular and biochemical strategies-namely RNA-sequencing, western blotting, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay, multiplex immunofluorescence, chromatic immunoprecipitation assay (CHIP) and luciferase assay-were used to reveal the mechanisms of MYBL2 in the OVC microenvironment. RESULTS We found tumor derived MYBL2 indicated poor prognosis and selectively correlated with tumor associated macrophages (TAMs) in ovarian cancer. Mechanically, C-C motif chemokine ligand 2 (CCL2) transcriptionally activated by MYBL2 induced TAMs recruitment and M2-like polarization in vitro. Using a syngeneic intraovarian mouse model, we identified MYBL2 promoted tumor malignancyand increased tumor-infiltrating immunosuppressive macrophages. Cyclin-dependent kinase 2 (CDK2) was a known upstream kinase to phosphorylate MYBL2 and promote its transcriptional function. The upstream inhibitor of CDK2, CVT-313, reprogrammed the tumor microenvironment and reduced anti-PD-1 resistance. CONCLUSIONS The MYBL2/CCL2 axis contributing to TAMs recruitment and M2-like polarization is crucial to immune evasion and anti-PD-1 resistance in ovarian cancer, which is a potential target to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Ting Wan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yun Zhou
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Shuting Huang
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Linjing Yuan
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yinan Jiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaojing Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Pingping Liu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huiling Xiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mingxiu Ju
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Rongzhen Luo
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Weihua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Biobank of Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - ChunYan Lan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Jundong Li
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Liu H, Ishikawa-Ankerhold H, Winterhalter J, Lorenz M, Vladymyrov M, Massberg S, Schulz C, Orban M. Multiphoton In Vivo Microscopy of Embryonic Thrombopoiesis Reveals the Generation of Platelets through Budding. Cells 2023; 12:2411. [PMID: 37830625 PMCID: PMC10572188 DOI: 10.3390/cells12192411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Platelets are generated by specialized cells called megakaryocytes (MKs). However, MK's origin and platelet release mode have remained incompletely understood. Here, we established direct visualization of embryonic thrombopoiesis in vivo by combining multiphoton intravital microscopy (MP-IVM) with a fluorescence switch reporter mouse model under control of the platelet factor 4 promoter (Pf4CreRosa26mTmG). Using this microscopy tool, we discovered that fetal liver MKs provide higher thrombopoietic activity than yolk sac MKs. Mechanistically, fetal platelets were released from MKs either by membrane buds or the formation of proplatelets, with the former constituting the key process. In E14.5 c-Myb-deficient embryos that lack definitive hematopoiesis, MK and platelet numbers were similar to wild-type embryos, indicating the independence of embryonic thrombopoiesis from definitive hematopoiesis at this stage of development. In summary, our novel MP-IVM protocol allows the characterization of thrombopoiesis with high spatio-temporal resolution in the mouse embryo and has identified membrane budding as the main mechanism of fetal platelet production.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Julia Winterhalter
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Michael Lorenz
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
| | - Mykhailo Vladymyrov
- Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, University of Bern, 3012 Bern, Switzerland;
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
- Data Science Lab, Mathematical Institute, University of Bern, 3012 Bern, Switzerland
| | - Steffen Massberg
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Mathias Orban
- Department of Internal Medicine I, Ludwig Maximilians University, 81377 Munich, Germany; (H.L.); (H.I.-A.); (J.W.); (M.L.); (S.M.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
14
|
Weng J, Yang S, Shen J, Liu H, Xu Y, Hao D, Wang S. Molecular dynamics simulation reveals DNA-specific recognition mechanism via c-Myb in pseudo-palindromic consensus of mim-1 promoter. J Zhejiang Univ Sci B 2023; 24:883-895. [PMID: 37752090 PMCID: PMC10522569 DOI: 10.1631/jzus.b2200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/07/2023] [Indexed: 09/28/2023]
Abstract
This study aims to gain insight into the DNA-specific recognition mechanism of c-Myb transcription factor during the regulation of cell early differentiation and proliferation. Therefore, we chose the chicken myeloid gene, mitochondrial import protein 1 (mim-1), as a target to study the binding specificity between potential dual-Myb-binding sites. The c-Myb-binding site in mim-1 is a pseudo-palindromic sequence AACGGTT, which contains two AACNG consensuses. Simulation studies in different biological scenarios revealed that c-Myb binding with mim-1 in the forward strand (complex F) ismore stable than that inthereverse strand (complex R). The principal component analysis (PCA) dynamics trajectory analyses suggested an opening motion of the recognition helices of R2 and R3 (R2R3), resulting in the dissociation of DNA from c-Myb in complex R at 330 K, triggered by the reduced electrostatic potential on the surface of R2R3. Furthermore, the DNA confirmation and hydrogen-bond interaction analyses indicated that the major groove width of DNA increased in complex R, which affected on the hydrogen-bond formation ability between R2R3 and DNA, and directly resulted in the dissociation of DNA from R2R3. The steered molecular dynamics (SMD) simulation studies also suggested that the electrostatic potential, major groove width, and hydrogen bonds made major contribution to the DNA-specific recognition. In vitro trials confirmed the simulation results that c-Myb specifically bound to mim-1 in the forward strand. This study indicates that the three-dimensional (3D) structure features play an important role in the DNA-specific recognition mechanism by c-Myb besides the AACNG consensuses, which is beneficial to understanding the cell early differentiation and proliferation regulated by c-Myb, as well as the prediction of novel c-Myb-binding motifs in tumorigenesis.
Collapse
Affiliation(s)
- Jinru Weng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130021, China
| | - Jinkang Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yuzi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Dongyun Hao
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS), Changchun 130033, China.
| | - Shan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
15
|
Wang S, Wen B, Yang Y, Long S, Liu J, Li M. Genome-Wide Identification and Expression Analysis of the RADIALIS-like Gene Family in Camellia sinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3039. [PMID: 37687288 PMCID: PMC10490161 DOI: 10.3390/plants12173039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
The RADIALIS-like (RL) proteins are v-myb avian myeloblastosis viral oncogene homolog (MYB)-related transcription factors (TFs), and are involved in many biological processes, including metabolism, development, and response to biotic and abiotic stresses. However, the studies on the RL genes of Camellia sinensis are not comprehensive enough. Therefore, we undertook this study and identified eight CsaRLs based on the typical conserved domain SANT Associated domain (SANT) of RL. These genes have low molecular weights and theoretical pI values ranging from 5.67 to 9.76. Gene structure analysis revealed that six CsaRL genes comprise two exons and one intron, while the other two contain a single exon encompassing motifs 1 and 2, and part of motif 3. The phylogenetic analysis divided one hundred and fifty-eight RL proteins into five primary classes, in which CsaRLs clustered in Group V and were homologous with CssRLs of the Shuchazao variety. In addition, we selected different tissue parts to analyze the expression profile of CsaRLs, and the results show that almost all genes displayed variable expression levels across tissues, with CsaRL1a relatively abundant in all tissues. qRT-PCR (real-time fluorescence quantitative PCR) was used to detect the relative expression levels of the CsaRL genes under various abiotic stimuli, and it was found that CsaRL1a expression levels were substantially higher than other genes, with abscisic acid (ABA) causing the highest expression. The self-activation assay with yeast two-hybrid system showed that CsaRL1a has no transcriptional activity. According to protein functional interaction networks, CsaRL1a was well connected with WIN1-like, lysine histidine transporter-1-like, β-amylase 3 chloroplastic-like, carbonic anhydrase-2-like (CA2), and carbonic anhydrase dnaJC76 (DJC76). This study adds to our understanding of the RL family and lays the groundwork for further research into the function and regulatory mechanisms of the CsaRLs gene family in Camellia sinensis.
Collapse
Affiliation(s)
| | | | | | | | - Jianjun Liu
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| | - Meifeng Li
- College of Tea Sciences, Guizhou University, Guiyang 550025, China; (S.W.); (B.W.); (Y.Y.); (S.L.)
| |
Collapse
|
16
|
Wang BH, Du LF, Zhang MZ, Xia LY, Li C, Lin ZT, Wang N, Gao WY, Ye RZ, Liu JY, Han XY, Shi WQ, Shi XY, Jiang JF, Jia N, Cui XM, Zhao L, Cao WC. Genomic Characterization of Theileria luwenshuni Strain Cheeloo. Microbiol Spectr 2023; 11:e0030123. [PMID: 37260375 PMCID: PMC10434005 DOI: 10.1128/spectrum.00301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.
Collapse
Affiliation(s)
- Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Mo S, Qu K, Huang J, Li Q, Zhang W, Yen K. Cross-species transcriptomics reveals bifurcation point during the arterial-to-hemogenic transition. Commun Biol 2023; 6:827. [PMID: 37558796 PMCID: PMC10412572 DOI: 10.1038/s42003-023-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
Hemogenic endothelium (HE) with hematopoietic stem cell (HSC)-forming potential emerge from specialized arterial endothelial cells (AECs) undergoing the endothelial-to-hematopoietic transition (EHT) in the aorta-gonad-mesonephros (AGM) region. Characterization of this AECs subpopulation and whether this phenomenon is conserved across species remains unclear. Here we introduce HomologySeeker, a cross-species method that leverages refined mouse information to explore under-studied human EHT. Utilizing single-cell transcriptomic ensembles of EHT, HomologySeeker reveals a parallel developmental relationship between these two species, with minimal pre-HSC signals observed in human cells. The pre-HE stage contains a conserved bifurcation point between the two species, where cells progress towards HE or late AECs. By harnessing human spatial transcriptomics, we identify ligand modules that contribute to the bifurcation choice and validate CXCL12 in promoting hemogenic choice using a human in vitro differentiation system. Our findings advance human arterial-to-hemogenic transition understanding and offer valuable insights for manipulating HSC generation using in vitro models.
Collapse
Affiliation(s)
- Shaokang Mo
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Kengyuan Qu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junfeng Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| | - Qiwei Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Kuangyu Yen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
18
|
Odame E, Li L, Nabilla JA, Cai H, Xiao M, Ye J, Chen Y, Kyei B, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Zhang H. miR-145-3p Inhibits MuSCs Proliferation and Mitochondria Mass via Targeting MYBL1 in Jianzhou Big-Eared Goats. Int J Mol Sci 2023; 24:ijms24098341. [PMID: 37176056 PMCID: PMC10179409 DOI: 10.3390/ijms24098341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Joshua Abdulai Nabilla
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - He Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Miao Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
Göbel T, Goebel B, Hyprath M, Lamminger I, Weisser H, Angioni C, Mathes M, Thomas D, Kahnt AS. Three-dimensional growth reveals fine-tuning of 5-lipoxygenase by proliferative pathways in cancer. Life Sci Alliance 2023; 6:e202201804. [PMID: 36849252 PMCID: PMC9971161 DOI: 10.26508/lsa.202201804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
The leukotriene (LT) pathway is positively correlated with the progression of solid malignancies, but the factors that control the expression of 5-lipoxygenase (5-LO), the central enzyme in LT biosynthesis, in tumors are poorly understood. Here, we report that 5-LO along with other members of the LT pathway is up-regulated in multicellular colon tumor spheroids. This up-regulation was inversely correlated with cell proliferation and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways. Furthermore, we found that E2F1 and its target gene MYBL2 were involved in the repression of 5-LO during cell proliferation. Importantly, we found that this PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO is also existent in tumor cells from other origins, suggesting that this mechanism is widely applicable to other tumor entities. Our data show that tumor cells fine-tune 5-LO and LT biosynthesis in response to environmental changes repressing the enzyme during proliferation while making use of the enzyme under cell stress conditions, implying that tumor-derived 5-LO plays a role in the manipulation of the tumor stroma to quickly restore cell proliferation.
Collapse
Affiliation(s)
- Tamara Göbel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Bjarne Goebel
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ira Lamminger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Hannah Weisser
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
| | - Marius Mathes
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, ZAFES, Goethe University, Frankfurt, Germany
- Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Astrid S Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
20
|
Tadi S, Ka-Yan Cheung V, Lee CS, Nguyen K, Luk PP, Low THH, Palme C, Clark J, Gupta R. MYB RNA detection by in situ hybridisation has high sensitivity and specificity for the diagnosis of adenoid cystic carcinoma. Pathology 2023; 55:456-465. [PMID: 37055331 DOI: 10.1016/j.pathol.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
Adenoid cystic carcinoma (ACC) is one of the most common primary salivary gland cancers. ACC has several benign and malignant mimics amongst salivary gland neoplasms. An accurate diagnosis of ACC is essential for optimal management of the patients and their follow-up. Upregulation of MYB has been described in 85-90% of ACC, but not in other salivary gland neoplasms. In ACC, MYB upregulation can occur as a result of a genetic rearrangement t(6;9) (q22-23;p23-24), MYB copy number variation (CNV), or enhancer hijacking of MYB. All mechanisms of MYB upregulation result in increased RNA transcription that can be detected using RNA in situ hybridisation (ISH) methods. In this study, utilising 138 primary salivary gland neoplasms including 78 ACC, we evaluate the diagnostic utility of MYB RNA ISH for distinguishing ACC from other primary salivary gland neoplasms with a prominent cribriform architecture including pleomorphic adenoma, basal cell adenoma, basal cell adenocarcinoma, epithelial myoepithelial carcinoma, and polymorphous adenocarcinoma. Fluorescent in situ hybridisation and next generation sequencing were also performed to evaluate the sensitivity and specificity of RNA ISH for detecting increased MYB RNA when MYB gene alterations were present. Detection of MYB RNA has 92.3% sensitivity and 98.2% specificity for a diagnosis of ACC amongst salivary gland neoplasms. The sensitivity of MYB RNA detection by ISH (92.3%) is significantly higher than that of the FISH MYB break-apart probe (42%) for ACC. Next generation sequencing did not demonstrate MYB alterations in cases that lacked MYB RNA overexpression indicating high sensitivity of MYB RNA ISH for detecting MYB gene alterations. The possibility that the sensitivity may be higher in clinical practice with contemporary samples as compared with older retrospective tissue samples with RNA degradation is not entirely excluded. In addition to the high sensitivity and specificity, MYB RNA testing can be performed using standard IHC platforms and protocols and evaluated using brightfield microscopy making it a time and cost-efficient diagnostic tool in routine clinical practice.
Collapse
Affiliation(s)
- Sahithi Tadi
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Veronica Ka-Yan Cheung
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - C Soon Lee
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia; Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW, Australia; Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; CONCERT Biobank, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia
| | - Kevin Nguyen
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Peter P Luk
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Tsu-Hui Hubert Low
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Department of Otolaryngology - Head and Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Carsten Palme
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jonathan Clark
- Department of Head and Neck Surgery, Chris O'Brien Lifehouse, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress. Int J Mol Sci 2023; 24:ijms24065389. [PMID: 36982459 PMCID: PMC10049292 DOI: 10.3390/ijms24065389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
R2R3-type MYB transcription factors are implicated in drought stress, which is a primary factor limiting the growth and development of woody plants. The identification of R2R3-MYB genes in the Populus trichocarpa genome has been previously reported. Nevertheless, the diversity and complexity of the conserved domain of the MYB gene caused inconsistencies in these identification results. There is still a lack of drought-responsive expression patterns and functional studies of R2R3-MYB transcription factors in Populus species. In this study, we identified a total of 210 R2R3-MYB genes in the P. trichocarpa genome, of which 207 genes were unevenly distributed across all 19 chromosomes. These poplar R2R3-MYB genes were phylogenetically divided into 23 subgroups. Collinear analysis demonstrated that the poplar R2R3-MYB genes underwent rapid expansion and that whole-genome duplication events were a dominant factor in the process of rapid gene expansion. Subcellular localization assays indicated that poplar R2R3-MYB TFs mainly played a transcriptional regulatory role in the nucleus. Ten R2R3-MYB genes were cloned from P. deltoides × P. euramericana cv. Nanlin895, and their expression patterns were tissue-specific. A majority of the genes showed similar drought-responsive expression patterns in two out of three tissues. This study provides a valid cue for further functional characterization of drought-responsive R2R3-MYB genes in poplar and provides support for the development of new poplar genotypes with elevated drought tolerance.
Collapse
|
22
|
Ding Y, Yang Q, Waheed A, Zhao M, Liu X, Kahar G, Haxim Y, Wen X, Zhang D. Genome-wide characterization and functional identification of MYB genes in Malus sieversii infected by Valsa mali. FRONTIERS IN PLANT SCIENCE 2023; 14:1112681. [PMID: 37089647 PMCID: PMC10113540 DOI: 10.3389/fpls.2023.1112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Among the most important transcription factors in plants, the v-myb avian myeloblastosis viral oncogene homolog (MYB) regulates the expression network of response genes under stresses such as fungal infection. In China, the canker disease Valsa mali threatens the survival of Malus sieversii, an ancestor of cultivated apples. Using the M. sieversii genome, we identified 457 MsMYB and 128 R2R3-MsMYB genes that were randomly distributed across 17 chromosomes. Based on protein sequence and structure, the R2R3-MsMYB genes were phylogenetically divided into 29 categories, and 26 conserved motifs were identified. We further predicted cis-elements in the 2000-kb promoter region of R2R3-MsMYBs based on the genome. Transcriptome analysis of M. sieversii under V. mali infection showed that 27 R2R3-MsMYBs were significantly differentially expressed, indicating their key role in the response to V. mali infection. Using transient transformation, MsMYB14, MsMYB24, MsMYB39, MsMYB78, and MsMYB108, which were strongly induced by V. mali infection, were functionally identified. Among the five MsMYBs, MsMYB14 and MsMYB78 were both important in enhancing resistance to diseases, whereas MsMYB24 inhibited resistance. Based on the results of this study, we gained a better understanding of the MsMYB transcription factor family and laid the foundation for a future research program on disease prevention strategies in M. sieversii.
Collapse
Affiliation(s)
- Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qihang Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| |
Collapse
|
23
|
Zhao X, Dong R, Tang Z, Wang J, Wang C, Song Z, Ni B, Zhang L, He X, You Y. Circular RNA circLOC101928570 suppresses systemic lupus erythematosus progression by targeting the miR-150-5p/c-myb axis. J Transl Med 2022; 20:547. [DOI: 10.1186/s12967-022-03748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 11/02/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Accumulating evidence supports the implication of circular RNAs (circRNAs) in systemic lupus erythematosus (SLE). However, little is known about the detailed mechanisms and roles of circRNAs in the pathogenesis of SLE.
Methods
Quantitative real-time PCR was used to determine the levels of circLOC101928570 and miR-150-5p in peripheral blood mononuclear cells of SLE. Overexpression and knockdown experiments were conducted to assess the effects of circLOC101928570. Fluorescence in situ hybridization, RNA immunoprecipitation, luciferase reporter assays, Western blot, flow cytometry analysis and enzyme-linked immunosorbent assay were used to investigate the molecular mechanisms underlying the function of circLOC101928570.
Results
The results showed that the level of circLOC101928570 was significantly downregulated in SLE and correlated with the systemic lupus erythematosus disease activity index. Functionally, circLOC101928570 acted as a miR-150-5p sponge to relieve the repressive effect on its target c-myb, which modulates the activation of immune inflammatory responses. CircLOC101928570 knockdown enhanced apoptosis. Moreover, circLOC101928570 promoted the transcriptional level of IL2RA by directly regulating the miR-150-5p/c-myb axis.
Conclusion
Overall, our findings demonstrated that circLOC101928570 played a critical role in SLE. The downregulation of circLOC101928570 suppressed SLE progression through the miR-150-5p/c-myb/IL2RA axis. Our findings identified that circLOC101928570 serves as a potential biomarker for the diagnosis and therapy of SLE.
Collapse
|
24
|
Fu J, Peng J, Tu G. Knockdown MTDH Inhibits Glioma Proliferation and Migration and Promotes Apoptosis by Downregulating MYBL2. Mediators Inflamm 2022; 2022:1706787. [PMID: 36133745 PMCID: PMC9484958 DOI: 10.1155/2022/1706787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Glioma is a malignant tumor that often occurs in the adult central nervous system. Metadherin/astrocyte-elevated gene-1 (MTDH) is involved in the development of cancer, but its relationship with glioma remains unclear. This study is aimed at clarifying the role of MTDH in glioma. GEPIA was employed to find the difference of the expression level of MTDH and MYB protooncogene-like 2 (MYBL2) in glioma tissues and normal tissues, and real-time quantitative reverse transcription PCR (qRT-PCR) and western blot (WB) were applied to verify the differential gene expression of MTDH and MYBL2 cells. After knocking down of MTDH, the expressions of forkhead box M1 (FoxM1), MTDH, and MYBL2 were detected by WB cells. Cell counting kit 8 (CCK-8) was used to detect cell proliferation, and flow cytometry was applied to measure cell apoptosis. The transwell assay was utilized to investigate the ability of cell migration and invasion. The results showed that MTDH and MYBL2 were overexpressed in glioma cells compared with normal cells. The knockdown of MTDH would inhibit the expression of MYBL2 through decreasing the expression of FoxM1 and further reduce glioma cell proliferation and cell migration and invasion. The present study showed that knockdown of MTDH inhibits glioma proliferation and migration and promotes apoptosis by downregulating MYBL2, which suggests that MTDH is a potential gene in clinical treatment of glioma.
Collapse
Affiliation(s)
- Junqi Fu
- Department of Neurosurgery, Haikou People's Hospital, Haikou, Hainan Province 570208, China
| | - Jun Peng
- Department of Neurosurgery, Haikou People's Hospital, Haikou, Hainan Province 570208, China
| | - Guolong Tu
- Department of Neurosurgery, Haikou People's Hospital, Haikou, Hainan Province 570208, China
| |
Collapse
|
25
|
Wijeratne TU, Guiley KZ, Lee HW, Müller GA, Rubin SM. Cyclin-dependent kinase-mediated phosphorylation and the negative regulatory domain of transcription factor B-Myb modulate its DNA binding. J Biol Chem 2022; 298:102319. [PMID: 35926712 PMCID: PMC9478404 DOI: 10.1016/j.jbc.2022.102319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
B-Myb is a highly conserved member of the vertebrate Myb family of transcription factors that plays a critical role in cell-cycle progression and proliferation. Myb proteins activate Myb-dependent promoters by interacting specifically with Myb-binding site (MBS) sequences using their DNA-binding domain (DBD). Transactivation of MBS promoters by B-Myb is repressed by its negative regulatory domain (NRD), and phosphorylation of the NRD by Cdk2-CyclinA relieves the repression to activate B-Myb–dependent promoters. However, the structural mechanisms underlying autoinhibition and activation of B-Myb–mediated transcription have been poorly characterized. Here, we determined that a region in the B-Myb NRD (residues 510–600) directly associates with the DBD and inhibits binding of the DBD to the MBS DNA sequence. We demonstrate using biophysical assays that phosphorylation of the NRD at T515, T518, and T520 is sufficient to disrupt the interaction between the NRD and the DBD, which results in increased affinity for MBS DNA and increased B-Myb–dependent promoter activation in cell assays. Our biochemical characterization of B-Myb autoregulation and the activating effects of phosphorylation provide insight into how B-Myb functions as a site-specific transcription factor.
Collapse
Affiliation(s)
- Tilini U Wijeratne
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Keelan Z Guiley
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
26
|
Rehman MSU, Mushtaq M, Hassan FU, Zia-ur Rehman, Mushahid M, Shokrollahi B. Comparative Genomic Characterization of Insulin-Like Growth Factor Binding Proteins in Cattle and Buffalo. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5893825. [PMID: 35924270 PMCID: PMC9343199 DOI: 10.1155/2022/5893825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
The somatotropic axis consists of genes associated with economic traits like muscle growth and carcass traits in livestock. Insulin-like growth factor binding proteins (IGFBPs) are the major proteins that play a vital role in the somatotropic axis. The present study performed a genome-wide characterization of IGFBP genes in cattle. Genomic sequences of the IGFBP gene family for different mammals (cattle, buffalo, goat, and sheep) were recovered from the NCBI database. Sequence analyses were performed to investigate cattle's genomic variations in the IGFBP gene family. Phylogenetic analysis, gene structure, motif patterns, and conserved domain analysis (CDA) of the IGFBP family revealed the evolutionarily conserved nature of the IGFBP genes in cattle and other studied species. Physicochemical properties of IGFBP proteins in cattle revealed that most of these proteins are unstable, hydrophilic, thermostable, and acidic. Comparative amino acid analysis revealed variations in all protein sequences with single indels in IGFBP3 and IGFBP6. Mutation analysis revealed only one nonsynonymous mutation D212 > E in the IGFBP6 protein of cattle. A total of 245 nuclear hormone receptor (NHRs) sites were detected, including 139 direct repeats (DR), 65 everted repeats (ER), and 41 inverted repeats (IR). Out of 133 transcription factors (TFs), 10 TFs (AHR, AHRARNT, AP4, CMYB, E47, EGR2, GATA, SP1, and SRF) had differential distribution (P value < 0.05) of putative transcriptional binding sites (TFBS) in cattle compared to buffalo. Synteny analysis revealed the conserved nature of genes between cattle and buffalo. Two gene pairs (IGFBP1/IGFBP3 and IGFBP2/IGFBP5) showed tandem duplication events in cattle and buffalo. This study highlights the functional importance of genomic variation in IGFBP genes and necessitates further investigations better to understand the role and mechanisms of IGFBPs in bovines.
Collapse
Affiliation(s)
- Muhammad Saif-ur Rehman
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muqeet Mushtaq
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Faiz-ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zia-ur Rehman
- University of Agriculture, Faisalabad–Subcampus Toba Tek Singh, Pakistan
| | - Muhammad Mushahid
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Borhan Shokrollahi
- Department of Animal Science, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
27
|
Myb drives B-cell neoplasms and myeloid malignancies in vivo. Blood Adv 2022; 6:2987-2991. [PMID: 35020834 PMCID: PMC9131915 DOI: 10.1182/bloodadvances.2021005955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/29/2021] [Indexed: 12/01/2022] Open
|
28
|
Genome-Wide Gene Expression Profiling Defines the Mechanism of Anticancer Effect of Colorectal Cancer Cell-Derived Conditioned Medium on Acute Myeloid Leukemia. Genes (Basel) 2022; 13:genes13050883. [PMID: 35627268 PMCID: PMC9171579 DOI: 10.3390/genes13050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of leukemia in adults, accounting for 30% of all adult leukemia cases. While there have been recent improvements in the prognosis of the disease, the prognosis remains grim, and further understanding of AML and the development of new therapeutic agents is critical. This study aimed to investigate the potential interaction between colorectal cancer (CRC) cells and AML cells. Unexpectedly, we found that CRC cell-derived conditioned medium (CM) showed anticancer activities in AML cells by inducing apoptosis and differentiation. Mechanistic studies suggest that these phenotypes are closely associated with the suppression of PI3K/AKT/mTOR and MAPK survival signaling, the upregulation of myeloid differentiation-promoting transcription factors c/EBPα and PU.1, and the augmentation of executioner caspases-3/7. Importantly, bioinformatic analyses of our gene expression profiling data, including that derived from principal component analysis (PCA), volcano plots, boxplots, heat maps, kyoto encyclopedia of genes and genomes (KEGG) pathways, and receiver operating characteristic (ROC) curves, which evaluate gene expression profiling data, provided deeper insight into the mechanism in which CRC-CM broadly modulates apoptosis-, cell cycle arrest-, and differentiation-related gene expression, such as BMF, PLSCR3, CDKN1C, and ID2, among others, revealing the genes that exert anticancer effects in AML cells at the genomic level. Collectively, our data suggest that it may be worthwhile to isolate and identify the molecules with tumor-suppressive effects in the CM, which may help to improve the prognosis of patients with AML.
Collapse
|
29
|
Xu Q, Hu L, Miao W, Fu Z, Jin Y. Parental exposure to 3-methylcholanthrene before gestation adversely affected the endocrine system and spermatogenesis in male F1 offspring. Reprod Toxicol 2022; 110:161-171. [PMID: 35487396 DOI: 10.1016/j.reprotox.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The compound 3-methylcholanthrene (3-MC) is an environmental pollutant belonging to the PAHs, which reportedly have the potential to disrupt the endocrine systems of animals. In the present study, 4-week-old male and female mice were given 3-MC through their diet at a dose of 0.5mg/kg of chow for 6 weeks before pregnancy. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 or 10 weeks (F1-5W or F1-10W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the serum and testicular testosterone (T) levels and the genes involved in T synthesis in F0 males and male F1-5W individuals born from female mice exposed to 3-MC were significantly decreased. In addition, histological analysis suggested that exposure to 3-MC significantly disrupted testicular morphology in F0 mice and in the offspring of female mice exposed to 3-MC. Further investigation revealed that genes involved in spermatogenesis, such as Phosphoglycerate kinase 2 (Pgk2), Glial cell derived neurotrophic factor (Gdnf), Myeloblastosis oncogene (Myb), DEAD box helicase 4 (Ddx4) and KIT proto-oncogene receptor tyrosine kinase (Kit), were suppressed in these mice. However, the adverse effects of parental 3-MC exposure on the adolescent mice were mitigated when they grew to adulthood, which was verified by studies on F1-10W mice. Our results suggest that female exposure to 3-MC has the potential to disrupt the endocrine system and spermatogenesis in male offspring; nevertheless, the adverse effects might be mitigated with age.
Collapse
Affiliation(s)
- Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| |
Collapse
|
30
|
c-Myb protects cochlear hair cells from cisplatin-induced damage via the PI3K/Akt signaling pathway. Cell Death Dis 2022; 8:78. [PMID: 35210433 PMCID: PMC8873213 DOI: 10.1038/s41420-022-00879-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
Abstract
The transcription factor c-Myb is vital for cell survival, proliferation, differentiation, and apoptosis. We have previously reported that c-Myb knockdown exacerbates neomycin-induced damage to cochlea cells. However, the function and regulation of c-Myb in the mammalian inner ear remains unclear. Here, we first found that the expression of c-Myb in cochlear HCs was downregulated after cisplatin damage in vivo. Next, to investigate the role of c-Myb in HCs treated with cisplatin, the recombinant virus AAV-ie-CAG-Myb-HA (AAV-c-Myb) that overexpresses c-Myb was constructed and transfected into HCs. The protein expression of c-Myb was effectively up-regulated in cultured cochlear HCs after the virus transfection, which increased cochlear HC viability, decreased HC apoptosis and reduced intracellular reactive oxygen species (ROS) levels after cisplatin injury in vitro. The overexpression of c-Myb in HCs after AAV-c-Myb transfection in vivo also promoted HC survival, improved the hearing function of mice and reduced HC apoptosis after cisplatin injury. Furthermore, c-Myb-HC conditional knockout mice (Prestin; c-Myb-cKO) in which c-Myb expression is downregulated only in cochlear OHCs were generated and the cisplatin-induced HCs loss, apoptosis and hearing deficit were all exacerbated in Prestin; c-Myb-cKO mice treated with cisplatin in vivo. Finally, mechanistic studies showed that upregulation of the PI3K/Akt signaling pathway by c-Myb contributed to the increased HC survival after cisplatin exposure in vitro. The findings from this work suggest that c-Myb might serve as a new target for the prevention of cisplatin-induced HC damage and hearing loss.
Collapse
|
31
|
Desjardins P, Le-Bel G, Ghio SC, Germain L, Guérin SL. The WNK1 kinase regulates the stability of transcription factors during wound healing of human corneal epithelial cells. J Cell Physiol 2022; 237:2434-2450. [PMID: 35150137 DOI: 10.1002/jcp.30698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Due to its superficial anatomical localization, the cornea is continuously subjected to injuries. Damages to the corneal epithelium trigger important changes in the composition of the extracellular matrix to which the basal human corneal epithelial cells (hCECs) attach. These changes are perceived by membrane-bound integrins and ultimately lead to re-epithelialization of the injured epithelium through intracellular signalin. Among the many downstream targets of the integrin-activated signaling pathways, WNK1 is the kinase whose activity is the most strongly increased during corneal wound healing. We previously demonstrated that pharmacological inhibition of WNK1 prevents proper closure of wounded human tissue-engineered cornea in vitro. In the present study, we investigated the molecular mechanisms by which WNK1 contributes to corneal wound healing. By exploiting transcription factors microarrays, electrophoretic mobility-shift assay, and gene profiling analyses, we demonstrated that the DNA binding properties and expression of numerous transcription factors (TFs), including the well-known, ubiquitous TFs specific protein 1 (Sp1) and activator protein 1 (AP1), were reduced in hCECs upon WNK1 inhibition by WNK463. This process appears to be mediated at least in part by alteration in both the ubiquitination and glycosylation status of these TFs. These changes in TFs activity and expression impacted the transcription of several genes, including that encoding the α5 integrin subunit, a well-known target of both Sp1 and AP1. Gene profiling revealed that only a moderate number of genes in hCECs had their level of expression significantly altered in response to WNK463 exposition. Interestingly, analysis of the microarray data for these deregulated genes using the ingenuity pathway analysis software predicted that hCECs would stop migrating and proliferating but differentiate more when they are grown in the presence of the WNK1 inhibitor. These results demonstrate that WNK1 plays a critical function by orienting hCECs into the appropriate biological response during the process of corneal wound healing.
Collapse
Affiliation(s)
- Pascale Desjardins
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Gaëtan Le-Bel
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sergio C Ghio
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Lucie Germain
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie - Recherche (CUO-Recherche) et Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.,Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
32
|
Zhang K, Tarczykowska A, Gupta DK, Pendlebury DF, Zuckerman C, Nandakumar J, Shibuya H. The TERB1 MYB domain suppresses telomere erosion in meiotic prophase I. Cell Rep 2022; 38:110289. [PMID: 35081355 PMCID: PMC8867601 DOI: 10.1016/j.celrep.2021.110289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/08/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The meiosis-specific telomere-binding protein TERB1 anchors telomeres to the nuclear envelope and drives chromosome movements for the pairing of homologous chromosomes. TERB1 has an MYB-like DNA-binding (MYB) domain, which is a hallmark of telomeric DNA-binding proteins. Here, we demonstrate that the TERB1 MYB domain has lost its canonical DNA-binding activity. The analysis of Terb1 point mutant mice expressing TERB1 lacking its MYB domain showed that the MYB domain is dispensable for telomere localization of TERB1 and the downstream TERB2-MAJIN complex, the promotion of homologous pairing, and even fertility. Instead, the TERB1 MYB domain regulates the enrichment of cohesin and promotes the remodeling of axial elements in the early-to-late pachytene transition, which suppresses telomere erosion. Considering its conservation across metazoan phyla, the TERB1 MYB domain is likely to be important for the maintenance of telomeric DNA and thus for genomic integrity by suppressing meiotic telomere erosion over long evolutionary timescales.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Agata Tarczykowska
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Deepesh Kumar Gupta
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cassandra Zuckerman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-41390, Sweden.
| |
Collapse
|
33
|
Rational design of a helical peptide inhibitor targeting c-Myb–KIX interaction. Sci Rep 2022; 12:816. [PMID: 35058484 PMCID: PMC8776815 DOI: 10.1038/s41598-021-04497-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
The transcription factor c-Myb promotes the proliferation of hematopoietic cells by interacting with the KIX domain of CREB-binding protein; however, its aberrant expression causes leukemia. Therefore, inhibitors of the c-Myb–KIX interaction are potentially useful as antitumor drugs. Since the intrinsically disordered transactivation domain (TAD) of c-Myb binds KIX via a conformational selection mechanism where helix formation precedes binding, stabilizing the helical structure of c-Myb TAD is expected to increase the KIX-binding affinity. Here, to develop an inhibitor of the c-Myb–KIX interaction, we designed mutants of the c-Myb TAD peptide fragment where the helical structure is stabilized, based on theoretical predictions using AGADIR. Three of the four initially designed peptides each had a different Lys-to-Arg substitution on the helix surface opposite the KIX-binding interface. Furthermore, the triple mutant with three Lys-to-Arg substitutions, named RRR, showed a high helical propensity and achieved three-fold higher affinity to KIX than the wild-type TAD with a dissociation constant of 80 nM. Moreover, the RRR inhibitor efficiently competed out the c-Myb–KIX interaction. These results suggest that stabilizing the helical structure based on theoretical predictions, especially by conservative Lys-to-Arg substitutions, is a simple and useful strategy for designing helical peptide inhibitors of protein–protein interactions.
Collapse
|
34
|
Ring A, Ismaeel A, Wechsler M, Fletcher E, Papoutsi E, Miserlis D, Koutakis P. MicroRNAs in peripheral artery disease: potential biomarkers and pathophysiological mechanisms. Ther Adv Cardiovasc Dis 2022; 16:17539447221096940. [PMID: 35583375 PMCID: PMC9121511 DOI: 10.1177/17539447221096940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Peripheral artery disease (PAD) is a disease of atherosclerosis in the lower extremities. PAD carries a massive burden worldwide, while diagnosis and treatment options are often lacking. One of the key points of research in recent years is the involvement of microRNAs (miRNAs), which are short 20-25 nucleotide single-stranded RNAs that can act as negative regulators of post-transcriptional gene expression. Many of these miRNAs have been discovered to be misregulated in PAD patients, suggesting a potential utility as biomarkers for PAD diagnosis. miRNAs have also been shown to play an important role in many different pathophysiological aspects involved in the initiation and progression of the disease including angiogenesis, hypoxia, inflammation, as well as other cellular functions like cell proliferation and migration. The research on miRNAs in PAD has the potential to lead to a whole new class of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Andrew Ring
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Marissa Wechsler
- Department of Biomedical Engineering and
Chemical Engineering, The University of Texas at San Antonio, San Antonio,
TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco,
TX, USA
| | | | - Dimitrios Miserlis
- Department of Surgery, The University of Texas
Health Science Center at San Antonio, San Antonio, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207
Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388,
USA
| |
Collapse
|
35
|
Hu D, Shao W, Liu L, Wang Y, Yuan S, Liu Z, Liu J, Zhang J. Intricate crosstalk between MYB and noncoding RNAs in cancer. Cancer Cell Int 2021; 21:653. [PMID: 34876130 PMCID: PMC8650324 DOI: 10.1186/s12935-021-02362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
MYB is often overexpressed in malignant tumors and plays a carcinogenic role in the initiation and development of cancer. Deletion of the MYB regulatory C-terminal domain may be a driving mutation leading to tumorigenesis, therefore, different tumor mechanisms produce similar MYB proteins. As MYB is a transcription factor, priority has been given to identifying the genes that it regulates. All previous attention has been focused on protein-coding genes. However, an increasing number of studies have suggested that MYB can affect the complexity of cancer progression by regulating tumor-associated noncoding RNAs (ncRNAs), such as microRNAs, long-non-coding RNAs and circular RNAs. ncRNAs can regulate the expression of numerous downstream genes at the transcription, RNA processing and translation levels, thereby having various biological functions. Additionally, ncRNAs play important roles in regulating MYB expression. This review focuses on the intricate crosstalk between oncogenic MYB and ncRNAs, which play a pivotal role in tumorigenesis, including proliferation, apoptosis, angiogenesis, metastasis, senescence and drug resistance. In addition, we discuss therapeutic strategies for crosstalk between MYB and ncRNAs to prevent the occurrence and development of cancer.
Collapse
Affiliation(s)
- Dingyu Hu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjun Shao
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yanyan Wang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Shunling Yuan
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhaoping Liu
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jing Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ji Zhang
- The First Affiliated Hospital, Department of Rheumatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China. .,Department of Clinical Laboratory, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, Guangdong, China.
| |
Collapse
|
36
|
Kaewsakulthong W, Pongpaksupasin P, Nualkaew T, Hongeng S, Fucharoen S, Jearawiriyapaisarn N, Sripichai O. Lysine-specific histone demethylase 1 inhibition enhances robust fetal hemoglobin induction in human β 0-thalassemia/hemoglobin E erythroid cells. Hematol Rep 2021; 13:9215. [PMID: 35003571 PMCID: PMC8672213 DOI: 10.4081/hr.2021.9215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) ameliorates the clinical severity of β-thalassemias. Histone methyltransferase LSD1 enzyme removes methyl groups from the activating chromatin mark histone 3 lysine 4 at silenced genes, including the γ-globin genes. LSD1 inhibitor RN-1 induces HbF levels in cultured human erythroid cells. Here, the HbF-inducing activity of RN-1 was investigated in erythroid progenitor cells derived from β0-thalassemia/ hemoglobin E (HbE) patients. The significant and reproducible increases in γ-globin transcript and HbF expression upon RN-1 treatment were demonstrated in erythroid cells with divergent HbF baseline levels, the average of HbF induction was 17.7±0.8%. RN-1 at low concentration did not affect viability and proliferation of erythroid cells, but decreases in cell number were observed in cells treated with RN-1 at high concentration. Delayed terminal erythroid differentiation was revealed in β0-thalassemia/HbE erythroid cells treated with RN-1 as similar to other compounds that target LSD1 activity. Downregulation of repressors of γ- globin expression; NCOR1 and SOX6, was observed in RN-1 treatment. These findings provide proof of the concept that LSD1 epigenetic enzyme is a potential therapeutic target for β0-thalassemia/HbE patients.
Collapse
Affiliation(s)
- Woratree Kaewsakulthong
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok
| | - Phitchapa Pongpaksupasin
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Tiwaporn Nualkaew
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom.,National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
37
|
Chen X, Lu Y, Yu H, Du K, Zhang Y, Nan Y, Huang Q. Pan-cancer analysis indicates that MYBL2 is associated with the prognosis and immunotherapy of multiple cancers as an oncogene. Cell Cycle 2021; 20:2291-2308. [PMID: 34585645 DOI: 10.1080/15384101.2021.1982494] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MYBL2 has been demonstrated to be an oncogene in some cancers, but there is no pan-cancer analysis at the macro level. We used multiple online or offline bioinformatic tools to examine the effects of MYBL2 in human cancers. We first identified that MYBL2 was highly expressed and related to the stage and grade of most cancers. The results of survival analysis from two databases showed that high MYBL2 expression was positively correlated with a poor prognosis for most cancer patients. We observed a significant difference in the promoter methylation level of MYBL2 in cancers such as colon adenocarcinoma and liver hepatocellular carcinoma versus normal controls. We found that MYBL2 can affect the tumor immune microenvironment by influencing the immune infiltration level and expression level of CD4+ T cells, CD8+ T cells, cancer-associated fibroblasts (CAFs) and immune checkpoint-associated cells. Functional enrichment analysis of MYBL2 identified that MYBL2 can play a crucial role in cancers by regulating spliceosomes, DNA replication and the cell cycle. Moreover, we verified the function of MYBL2 in three cancer cells of glioma, breast cancers and liver cancers, and the results showed that MYBL2 can regulate the cell cycle and proliferation ability of cancers.
Collapse
Affiliation(s)
- Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Hao Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Kangjie Du
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China.,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
38
|
Guo H, Li N, Sun Y, Wu C, Deng H, Xu L, Yang X. MYBL2 Gene Polymorphism Is Associated With Acute Lymphoblastic Leukemia Susceptibility in Children. Front Oncol 2021; 11:734588. [PMID: 34568071 PMCID: PMC8456030 DOI: 10.3389/fonc.2021.734588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Although MYBL2 had been validated to participate in multiple cancers including leukemia, the role of MYBL2 polymorphisms in acute lymphoblastic leukemia (ALL) was still not clear. In this study, we aimed to evaluate the association between MYBL2 single nucleotide polymorphisms (SNPs) and ALL risk in children. Methods A total of 687 pediatric ALL cases and 971 cancer-free controls from two hospitals in South China were recruited. A case-control study by genotyping three SNPs in the MYBL2 gene (rs285162 C>T, rs285207 A>C, and rs2070235 A>G) was conducted. The associations were assessed by odds ratios (ORs) with corresponding 95% confidence intervals (CIs). Subgroup and stratification analyses were conducted to explore the association of rs285207 with ALL risk in terms of age, sex, immunophenotype, risk level, and other clinical characteristics. The false-positive report probability (FPRP) analysis was performed to verify each significant finding. Functional analysis in silico was used to evaluate the probability that rs285207 might influence the regulation of MYBL2 . Results Our study demonstrated that rs285207 was related to a decreased ALL risk (adjusted OR = 0.78; 95% CI = 0.63-0.97, P = 0.022) in the dominant model. The associations of rs285207 with ALL risk appeared stronger in patients with pre B ALL (adjusted OR=0.56; 95% CI=0.38-0.84, P=0.004), with normal diploid (adjusted OR=0.73; 95% CI=0.57-0.95, P=0.017), with low risk (adjusted OR=0.68; 95% CI=0.49-0.94, P=0.021), with lower WBC (adjusted OR=0.62; 95% CI=0.43-0.87, P=0.007) or lower platelet level (adjusted OR=0.76; 95% CI=0.59-0.96, P=0.023). With FPRP analysis, the significant association between the rs285207 polymorphism and decreased ALL risk was still noteworthy (FPRP=0.128). Functional analysis showed that IKZF1 bound to DNA motif overlapping rs285207 and had a higher preference for the risk allele A. As for rs285162 C>T and rs2070235 A>G, no significant was found between them and ALL risk. Conclusion In this study, we revealed that rs285207 polymorphism decreased the ALL risk in children, and rs285207 might alter the binding to IKZF1, which indicated that the MYBL2 gene polymorphism might be a potential biomarker of childhood ALL.
Collapse
Affiliation(s)
- Haixia Guo
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Li
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaping Sun
- Institute of Systems Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cuiling Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huixia Deng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Xu
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xu Yang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Sakuma K, Sasaki E, Hosoda W, Komori K, Shimizu Y, Yatabe Y, Aoki M. MYB mediates downregulation of the colorectal cancer metastasis suppressor heterogeneous nuclear ribonucleoprotein L-like during epithelial-mesenchymal transition. Cancer Sci 2021; 112:3846-3855. [PMID: 34286904 PMCID: PMC8409424 DOI: 10.1111/cas.15069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein L-like (HNRNPLL), a suppressor of colorectal cancer (CRC) metastasis, is transcriptionally downregulated when CRC cells undergo epithelial-mesenchymal transition (EMT). Here we show that decrease of MYB mediates the downregulation of HNRNPLL during EMT. The promoter activity was attributed to a region from -273 to -10 base pairs upstream of the transcription start site identified by 5'-RACE analysis, and the region contained potential binding sites for MYB and SP1. Luciferase reporter gene assays and knockdown or knockout experiments for genes encoding the MYB family proteins, MYB, MYBL1, and MYBL2, revealed that MYB was responsible for approximately half of the promoter activity. On the other hand, treatment with mithramycin A, an inhibitor for SP1 and SP3, suppressed the promoter activity and their additive contribution was confirmed by knockout experiments. The expression level of MYB was reduced on EMT while that of SP1 and SP3 was unchanged, suggesting that the downregulation of HNRNPLL during EMT was mediated by the decrease of MYB expression while SP1 and SP3 determine the basal transcription level of HNRNPLL. Histopathological analysis confirmed the accumulation of MYB-downregulated cancer cells at the invasion front of clinical CRC tissues. These results provide an insight into the molecular mechanism underlying CRC progression.
Collapse
Affiliation(s)
- Keiichiro Sakuma
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Eiichi Sasaki
- Department of Pathology and Molecular DiagnosticsAichi Cancer Center HospitalNagoyaJapan
| | - Waki Hosoda
- Department of Pathology and Molecular DiagnosticsAichi Cancer Center HospitalNagoyaJapan
| | - Koji Komori
- Department of Gastroenterological SurgeryAichi Cancer Center HospitalNagoyaJapan
| | - Yasuhiro Shimizu
- Department of Gastroenterological SurgeryAichi Cancer Center HospitalNagoyaJapan
| | - Yasushi Yatabe
- Department of Diagnostic PathologyNational Cancer Center HospitalTokyoJapan
| | - Masahiro Aoki
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
40
|
Lu RJ, Taylor S, Contrepois K, Kim M, Bravo JI, Ellenberger M, Sampathkumar NK, Benayoun BA. Multi-omic profiling of primary mouse neutrophils predicts a pattern of sex and age-related functional regulation. NATURE AGING 2021; 1:715-733. [PMID: 34514433 PMCID: PMC8425468 DOI: 10.1038/s43587-021-00086-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Neutrophils are the most abundant human white blood cell and constitute a first line of defense in the innate immune response. Neutrophils are short-lived cells, and thus the impact of organismal aging on neutrophil biology, especially as a function of biological sex, remains poorly understood. Here, we describe a multi-omic resource of mouse primary bone marrow neutrophils from young and old female and male mice, at the transcriptomic, metabolomic and lipidomic levels. We identify widespread regulation of neutrophil 'omics' landscapes with organismal aging and biological sex. In addition, we leverage our resource to predict functional differences, including changes in neutrophil responses to activation signals. To date, this dataset represents the largest multi-omics resource for neutrophils across sex and ages. This resource identifies neutrophil characteristics which could be targeted to improve immune responses as a function of sex and/or age.
Collapse
Affiliation(s)
- Ryan J. Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Shalina Taylor
- Departments of Pediatrics and of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kévin Contrepois
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Minhoo Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Nirmal K. Sampathkumar
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Present Address: UK-Dementia Research Institute, Institute of Psychiatry, Psychology and Neuroscience, Basic and Clinical Neuroscience Institute, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
41
|
Hanna GJ, ONeill A, Cutler JM, Flynn M, Vijaykumar T, Clark JR, Wirth LJ, Lorch JH, Park JC, Mito JK, Lohr JG, Kaufman J, Burr NS, Zon LI, Haddad RI. A phase II trial of all-trans retinoic acid (ATRA) in advanced adenoid cystic carcinoma. Oral Oncol 2021; 119:105366. [PMID: 34091189 DOI: 10.1016/j.oraloncology.2021.105366] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Effective therapies are lacking for recurrent, metastatic adenoid cystic carcinoma (R/M ACC) and preclinical models suggest retinoic acid agonists inhibit ACC growth. This phase II trial evaluated all-trans retinoic acid (ATRA) as a novel therapy for ACC. METHODS Patients with R/M ACC (any site) with clinical and/or radiographic progression ≤12 months prior to study entry were eligible. Cohort 1 (CH1) received ATRA 45 mg/m2 split oral daily dosing on days 1-14 of a 28-day cycle; Cohort 2 (CH2) received the same dosing continuously. Primary endpoint was best overall response rate (CR + PR) (RECIST v1.1). Secondary endpoints: safety and progression-free survival (PFS). Exploratory analyses: ATRA impact on MYB expression and genomic predictors of response. RESULTS Eighteen patients enrolled. There were no responses, but 61% (11/18) had stable disease (SD) and 28% (5/18) progression as best response; 11% (2/18) unevaluable. Median duration of stability: 3.7 months (95%CI, 1.9-3.9). One patient (CH1) remains on drug with SD approaching 1 year. Half of those who received prior VEGFR therapy achieved SD (4/8). At median follow up of 7.9 months, median PFS was 3.2 months (95%CI, 1.8-3.9). N = 1 required dose adjustment; N = 1 came off drug for toxicity. There were no grade 3-4 adverse events. NOTCH1 and PI3K pathway alterations were most frequent. Low MYB protein expression was associated with longer duration of stability on ATRA (P < 0.01). CONCLUSION(S) While the trial did not meet its prespecified response endpoint, ATRA alone or in combination may be a low toxicity treatment for disease growth stabilization in R/M ACC.
Collapse
Affiliation(s)
- Glenn J Hanna
- Department of Medical Oncology, Center for Head & Neck Oncology, Center for Salivary and Rare Head and Neck Cancers, Dana-Farber Cancer Institute, Boston, USA.
| | - Anne ONeill
- Department of Data Science, Dana-Farber Cancer Institute, Boston, USA
| | - Jennifer M Cutler
- Department of Medical Oncology, Center for Head & Neck Oncology, Center for Salivary and Rare Head and Neck Cancers, Dana-Farber Cancer Institute, Boston, USA
| | - Michelle Flynn
- Department of Medical Oncology, Center for Head & Neck Oncology, Center for Salivary and Rare Head and Neck Cancers, Dana-Farber Cancer Institute, Boston, USA
| | - Tushara Vijaykumar
- Center for Hematologic Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - John R Clark
- Center for Head and Neck Cancers, Massachusetts General Hospital, Boston, USA
| | - Lori J Wirth
- Center for Head and Neck Cancers, Massachusetts General Hospital, Boston, USA
| | - Jochen H Lorch
- Department of Medical Oncology, Center for Head & Neck Oncology, Center for Salivary and Rare Head and Neck Cancers, Dana-Farber Cancer Institute, Boston, USA
| | - Jong C Park
- Center for Head and Neck Cancers, Massachusetts General Hospital, Boston, USA
| | - Jeffrey K Mito
- Department of Pathology, Brigham & Women's Hospital, Boston, USA
| | - Jens G Lohr
- Center for Hematologic Oncology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | - Leonard I Zon
- Department of Stem Cell and Regenerative Biology, Boston Children's Hospital and Harvard Medical School, Boston, USA
| | - Robert I Haddad
- Department of Medical Oncology, Center for Head & Neck Oncology, Center for Salivary and Rare Head and Neck Cancers, Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
42
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology. Int J Mol Sci 2021; 22:3295. [PMID: 33804856 PMCID: PMC8036554 DOI: 10.3390/ijms22073295] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide. Conventional therapies, including surgery, radiation, and chemotherapy have achieved increased survival rates for many types of cancer over the past decades. However, cancer recurrence and/or metastasis to distant organs remain major challenges, resulting in a large, unmet clinical need. Oligonucleotide therapeutics, which include antisense oligonucleotides, small interfering RNAs, and aptamers, show promising clinical outcomes for disease indications such as Duchenne muscular dystrophy, familial amyloid neuropathies, and macular degeneration. While no approved oligonucleotide drug currently exists for any type of cancer, results obtained in preclinical studies and clinical trials are encouraging. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in oncology, review current clinical trials, and discuss associated challenges.
Collapse
Affiliation(s)
- Haoyu Xiong
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth 6150, Australia;
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
44
|
Liu Q, Wang Q, Lv C, Liu Z, Gao H, Chen Y, Zhao G. Brucine inhibits proliferation of glioblastoma cells by targeting the G-quadruplexes in the c-Myb promoter. J Cancer 2021; 12:1990-1999. [PMID: 33753997 PMCID: PMC7974541 DOI: 10.7150/jca.53689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
The proto-oncogene c-Myb plays an important role in cell proliferation, and its upregulation affects the development of glioblastomas. G-quadruplexes are secondary DNA or RNA structures that usually form in the promoter region of oncogenes, including c-Myb, and regulate the expression of these genes. The traditional Chinese medicine, brucine, is a ligand of the G-quadruplexes located in the promoter region of c-Myb. The present study investigated the therapeutic effects and mechanism of action of brucine in U87, LN18, and LN229 cells in vitro and in vivo. Our results showed that brucine suppressed the growth of these cells in vitro by arresting the cell cycle and reducing c-Myb expression. Dual-luciferase reporter assays showed that brucine inhibited c-Myb expression by targeting the guanine-rich sequence that forms G-quadruplexes in the c-Myb promoter. Moreover, U87 tumors were suppressed by brucine in a tumor xenograft nude mouse model. Therefore, brucine is potentially effective for treating glioblastomas.
Collapse
Affiliation(s)
- Qiaochu Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Chuanqi Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Ziqiang Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Haijun Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China.,Clinical College, Jilin University, Changchun, China
| |
Collapse
|
45
|
Association between B- Myb proto-oncogene and the development of malignant tumors. Oncol Lett 2021; 21:166. [PMID: 33552284 PMCID: PMC7798104 DOI: 10.3892/ol.2021.12427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
B-Myb is a critical transcription factor in regulating cell cycle. Dysregulated expression of B-Myb promotes tumor formation and development. B-Myb is a proto-oncogene ubiquitously expressed in proliferating cells, which maintains normal cell cycle progression. It participates in cell apoptosis, tumorigenesis and aging. In addition, B-Myb is overexpressed in several malignant tumors, including breast cancer, lung cancer and hepatocellular carcinoma, and is associated with tumor development. B-Myb expression is also associated with the prognosis of patients with malignant tumors. Both microRNAs and E2F family of transcription factors (E2Fs) contribute to the function of B-Myb. The present review highlights the association between B-Myb and malignant tumors, and offers a theoretical reference for the diagnosis and treatment of malignant tumors.
Collapse
|
46
|
Pantos K, Grigoriadis S, Tomara P, Louka I, Maziotis E, Pantou A, Nitsos N, Vaxevanoglou T, Kokkali G, Agarwal A, Sfakianoudis K, Simopoulou M. Investigating the Role of the microRNA-34/449 Family in Male Infertility: A Critical Analysis and Review of the Literature. Front Endocrinol (Lausanne) 2021; 12:709943. [PMID: 34276570 PMCID: PMC8281345 DOI: 10.3389/fendo.2021.709943] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
There is a great body of evidence suggesting that in both humans and animal models the microRNA-34/449 (miR-34/449) family plays a crucial role for normal testicular functionality as well as for successful spermatogenesis, regulating spermatozoa maturation and functionality. This review and critical analysis aims to summarize the potential mechanisms via which miR-34/449 dysregulation could lead to male infertility. Existing data indicate that miR-34/449 family members regulate ciliogenesis in the efferent ductules epithelium. Upon miR-34/449 dysregulation, ciliogenesis in the efferent ductules is significantly impaired, leading to sperm aggregation and agglutination as well as to defective reabsorption of the seminiferous tubular fluids. These events in turn cause obstruction of the efferent ductules and thus accumulation of the tubular fluids resulting to high hydrostatic pressure into the testis. High hydrostatic pressure progressively leads to testicular dysfunction as well as to spermatogenic failure and finally to male infertility, which could range from severe oligoasthenozoospermia to azoospermia. In addition, miR-34/449 family members act as significant regulators of spermatogenesis with an essential role in controlling expression patterns of several spermatogenesis-related proteins. It is demonstrated that these microRNAs are meiotic specific microRNAs as their expression is relatively higher at the initiation of meiotic divisions during spermatogenesis. Moreover, data indicate that these molecules are essential for proper formation as well as for proper function of spermatozoa per se. MicroRNA-34/449 family seems to exert significant anti-oxidant and anti-apoptotic properties and thus contribute to testicular homeostatic regulation. Considering the clinical significance of these microRNAs, data indicate that the altered expression of the miR-34/449 family members is strongly associated with several aspects of male infertility. Most importantly, miR-34/449 levels in spermatozoa, in testicular tissues as well as in seminal plasma seem to be directly associated with severity of male infertility, indicating that these microRNAs could serve as potential sensitive biomarkers for an accurate individualized differential diagnosis, as well as for the assessment of the severity of male factor infertility. In conclusion, dysregulation of miR-34/449 family detrimentally affects male reproductive potential, impairing both testicular functionality as well as spermatogenesis. Future studies are needed to verify these conclusions.
Collapse
Affiliation(s)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Penelope Tomara
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Louka
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nitsos
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | | | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, Athens, Greece
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, United States
| | | | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Mara Simopoulou,
| |
Collapse
|
47
|
Takanche JS, Kim JE, Kim JS, Yi HK. Guided bone regeneration with a gelatin layer and adenoviral delivery of c-myb enhances bone healing in rat tibia. Regen Med 2020; 15:1877-1890. [PMID: 32893751 DOI: 10.2217/rme-2019-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Bone healing becomes problematic during certain states, such as trauma. This study verifies whether the application of c-myb with gelatin promotes bone healing during bone injuries. Materials & methods: A biodegradable membrane was modified with adenoviral vector c-myb (Ad/c-myb) and gelatin and applied in the bone injury site of rat tibia. Results: c-myb enhanced osteogenic differentiation and mineralization in bone marrow stromal cells after induction with osteogenic media. In vivo examination of rat tibia after application of the biodegradable membrane with Ad/c-myb and a gelatin layer demonstrated increased bone volume, bone mineral density, new bone formation and osteogenic molecules, compared with Ad/LacZ. Conclusion: c-myb has the potential to assist bone healing and may be applicable to the treatment of bone during injury.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ji-Eun Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Jeong-Seok Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ho-Keun Yi
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
48
|
Substitution of Thr572 to Ala in mouse c-Myb attenuates progression of early erythroid differentiation. Sci Rep 2020; 10:14381. [PMID: 32873855 PMCID: PMC7463259 DOI: 10.1038/s41598-020-71267-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 06/02/2020] [Indexed: 11/09/2022] Open
Abstract
The expression level of transcription factor c-Myb oscillates during hematopoiesis. Fbw7 promotes ubiquitin-mediated degradation of c-Myb, which is dependent on phosphorylation of Thr572. To investigate the physiological relevance of Fbw7-mediated c-Myb degradation, we generated mutant mice carrying c-Myb-T572A (TA). Homozygous mutant (TA/TA) mice exhibited a reduction in the number of peripheral red blood cells and diminished erythroblasts in bone marrow, presumably as a result of failure during erythroblast differentiation. We found that c-Myb high-expressing cells converged in the Lin-CD71+ fraction, and the expression of c-Myb was higher in TA/TA mice than in wild-type mice. Moreover, TA/TA mice had an increased proportion of the CD71+ subset in Lin- cells. The c-Myb level in the Lin-CD71+ subset showed three peaks, and the individual c-Myb level was positively correlated with that of c-Kit, a marker of undifferentiated cells. Ultimately, the proportion of c-Mybhi subgroup was significantly increased in TA/TA mice compared with wild-type mice. These results indicate that a delay in reduction of c-Myb protein during an early stage of erythroid differentiation creates its obstacle in TA/TA mice. In this study, we showed the T572-dependent downregulation of c-Myb protein is required for proper differentiation in early-stage erythroblasts, suggesting the in vivo significance of Fbw7-mediated c-Myb degradation.
Collapse
|
49
|
Sucre JMS, Vickers KC, Benjamin JT, Plosa EJ, Jetter CS, Cutrone A, Ransom M, Anderson Z, Sheng Q, Fensterheim BA, Ambalavanan N, Millis B, Lee E, Zijlstra A, Königshoff M, Blackwell TS, Guttentag SH. Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A. Am J Respir Crit Care Med 2020; 201:1249-1262. [PMID: 32023086 DOI: 10.1164/rccm.201908-1513oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Bronchopulmonary dysplasia (BPD) is a leading complication of preterm birth that affects infants born in the saccular stage of lung development at <32 weeks of gestation. Although the mechanisms driving BPD remain uncertain, exposure to hyperoxia is thought to contribute to disease pathogenesis.Objectives: To determine the effects of hyperoxia on epithelial-mesenchymal interactions and to define the mediators of activated Wnt/β-catenin signaling after hyperoxia injury.Methods: Three hyperoxia models were used: A three-dimensional organotypic coculture using primary human lung cells, precision-cut lung slices (PCLS), and a murine in vivo hyperoxia model. Comparisons of normoxia- and hyperoxia-exposed samples were made by real-time quantitative PCR, RNA in situ hybridization, quantitative confocal microscopy, and lung morphometry.Measurements and Main Results: Examination of an array of Wnt ligands in the three-dimensional organotypic coculture revealed increased mesenchymal expression of WNT5A. Inhibition of Wnt5A abrogated the BPD transcriptomic phenotype induced by hyperoxia. In the PCLS model, Wnt5A inhibition improved alveolarization following hyperoxia exposure, and treatment with recombinant Wnt5a reproduced features of the BPD phenotype in PCLS cultured in normoxic conditions. Chemical inhibition of NF-κB with BAY11-7082 reduced Wnt5a expression in the PCLS hyperoxia model and in vivo mouse hyperoxia model, with improved alveolarization in the PCLS model.Conclusions: Increased mesenchymal Wnt5A during saccular-stage hyperoxia injury contributes to the impaired alveolarization and septal thickening observed in BPD. Precise targeting of Wnt5A may represent a potential therapeutic strategy for the treatment of BPD.
Collapse
Affiliation(s)
- Jennifer M S Sucre
- Mildred Stahlman Division of Neonatology, Department of Pediatrics.,Department of Cell and Developmental Biology, and
| | | | - John T Benjamin
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | - Erin J Plosa
- Mildred Stahlman Division of Neonatology, Department of Pediatrics
| | | | - Alissa Cutrone
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | | | | | - Benjamin A Fensterheim
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan Millis
- Department of Cell and Developmental Biology, and.,Cell Imaging Shared Resource, Vanderbilt University, Nashville, Tennessee
| | - Ethan Lee
- Department of Cell and Developmental Biology, and
| | | | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Denver, Colorado; and
| | - Timothy S Blackwell
- Department of Cell and Developmental Biology, and.,Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | | |
Collapse
|
50
|
Du X, Hu N, Yu H, Hong L, Ran F, Huang D, Zhou M, Li C, Li X. miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution. Stem Cell Res Ther 2020; 11:354. [PMID: 32787969 PMCID: PMC7425584 DOI: 10.1186/s13287-020-01871-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
Background Deep venous thrombosis (DVT) constitutes a major global disease burden. Endothelial progenitor cells (EPCs) have been described in association with recanalization of venous thrombus. Furthermore, emerging evidence suggests microRNAs are involved in this progression. The goal of this study was to investigate the influence of miR-150 on the behavior of EPCs and its potential contribution in venous thrombosis resolution. Methods We isolated and cultured EPCs from healthy adults. Next, early EPCs or endothelial colony-forming cells (ECFCs or late EPCs) were transfected with miR-150 agomir and antagomir. Gene expression profiles, proliferation, cytokine secretion, and angiogenic capacity of early EPCs and ECFCs were examined. The effects of miR-150 on c-Myb expression and Akt/FOXO1 signaling were also evaluated. Furthermore, a rat model of venous thrombosis was constructed to determine the in vivo function of EPCs. Results Our results showed that miR-150 overexpression in early EPCs significantly promoted differentiation to ECFCs and contributed to proliferation and tube formation. However, suppression of miR-150 in late EPCs inhibited proliferation and tube formation. Moreover, we identified that this progression is regulated by inhibition of c-Myb and activation of the Akt/FOXO1 pathway. Our findings also showed that miR-150 led to the enhanced resolution ability of EPCs in a rat venous thrombosis model. Conclusions In this study, we present a novel mechanism of miRNA-mediated regulation of EPCs and Akt activation in thrombus resolution.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Hu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huiying Yu
- Department of Vascular Surgery, Jining No. 1 People's Hospital, Jining Medical College, Jining, 272000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital to Soochow University, Soochow University, Suzhou, 215000, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|