1
|
Sethi S. Defining the Molecular Intricacies of Human Papillomavirus-Associated Tonsillar Carcinoma. Cancer Control 2025; 32:10732748241310932. [PMID: 40331509 PMCID: PMC12062609 DOI: 10.1177/10732748241310932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 05/08/2025] Open
Abstract
BackgroundThe past decade has shown a sharp incline in the human papillomavirus (HPV) infection associated oropharyngeal carcinoma cases, especially in men younger than 60 years old. Tonsils are one of the key sites, within the oropharyngeal region, which shows malignant changes due to HPV infection, and there is very limited literature to understand the specific dynamics in the tonsillar areas.ObjectiveThis critical review was undertaken to explore and unravel the bio-molecular interactions and the role of specific proteins associated with HPV infection induced tumorigenesis for the tonsils.DesignA systematic search of the literature was performed utilising keywords and MeSH terms related to HPV and tonsillar carcinoma in PubMed, Scopus, Embase, and Web of Science without restrictions on dates until July 2023. All studies that reported on molecular biomarkers or genes/genetic proteins in the context of HPV associated tonsillar carcinoma were included in the study.ResultsPreliminary searches revealed a total of 2734 studies of which 23 satisfied the final inclusion criteria and were included. More than 25 proteins and biomarkers were identified, and their role in the malignant process was extracted and compiled. This review also presents a short excerpt on each of the molecules identified to provide a better understanding of the pathogenesis.ConclusionGiven the rapidly increasing number of cases, there is an urgent need for more focused research on virally induced tonsillar cancers, to develop a better understanding, and for clarity of management and treatment.
Collapse
Affiliation(s)
- Sneha Sethi
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Neyra K, Desai S, Mathur D. Plugging synthetic DNA nanoparticles into the central dogma of life. Chem Commun (Camb) 2024; 61:220-231. [PMID: 39611736 PMCID: PMC11606385 DOI: 10.1039/d4cc04648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Synthetic DNA nanotechnology has emerged as a powerful tool for creating precise nanoscale structures with diverse applications in biotechnology and materials science. Recently, it has evolved to include gene-encoded DNA nanoparticles, which have potentially unique advantages compared to alternative gene delivery platforms. In exciting new developments, we and others have shown how the long single strand within DNA origami nanoparticles, the scaffold strand, can be customized to encode protein-expressing genes and engineer nanoparticles that interface with the transcription-translation machinery for protein production. Remarkably, therefore, DNA nanoparticles - despite their complex three-dimensional shapes - can function as canonical genes. Characteristics such as potentially unlimited gene packing size and low immunogenicity make DNA-based platforms promising for a variety of gene therapy applications. In this review, we first outline various techniques for the isolation of the gene-encoded scaffold strand, a crucial precursor for building protein-expressing DNA nanoparticles. Next, we highlight how features such as sequence design, staple strand optimization, and overall architecture of gene-encoded DNA nanoparticles play a key role in the enhancement of protein expression. Finally, we discuss potential applications of these DNA origami structures to provide a comprehensive overview of the current state of gene-encoded DNA nanoparticles and motivate future directions.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Sara Desai
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
3
|
Naous R, Hegazy S. Low-Level MDM2 Amplification by FISH: An Institutional Experience With a Diagnostic Dilemma. Int J Surg Pathol 2024:10668969241295353. [PMID: 39563528 DOI: 10.1177/10668969241295353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Background: MD M2 (murine double minute-2) amplification via fluorescence in-situ hybridization (FISH) is the gold standard test used for confirming the diagnosis of atypical lipomatous tumor/well differentiated liposarcoma and dedifferentiated liposarcoma. It is also used as a screening test in high grade spindle cell or pleomorphic neoplasms. MDM2 FISH is considered positive for amplification when the MDM2/CEP12 ratio is greater than 2; however, a ratio between 2 and 3 is considered a "low-level" amplification and raises the possibility of a false positive result; thus, posing a diagnostic dilemma. Another molecular modality, next generation sequencing (NGS) assay, can help in such situations in confirming or excluding the M D M 2 amplification status. Confronted by a number of neoplastic specimens at our institution with "low-level" MDM2 amplification via FISH, we aimed to assess the specificity of fluorescence in situ hybridization (FISH) in such tumors by comparing their NGS assay results and determine an accurate MDM2 amplification status that further aids in diagnosis. Methods: Tumors with "low-level" MDM2 amplification via FISH, defined as MDM2/CEP12 ratio between 2 and 3, and harboring a high grade and/or pleomorphic morphology were retrospectively retrieved from our institutional archives from the last five years. The retrieved specimens were evaluated for concordant retrospective Oncomine v3 analysis. Oncomine v3 is an institutional NGS assay that covers 161 genes and assesses for DNA mutations, RNA fusions, and copy number alterations including MDM2 gene gain or amplification. The tumors with Oncomine v3 results were compared and the FISH specificity was calculated. Results: Twenty-seven high grade and/or pleomorphic tumors with "low-level" MDM2 amplification were retrieved. Eight out of twenty-seven tumors had Oncomine v3 performed on them. The tumors correlated to neoplasms from different lineage types including undifferentiated melanoma, sarcomatoid squamous cell carcinoma, leiomyosarcoma, myxofibrosarcoma, undifferentiated pleomorphic sarcoma, and high-grade poorly differentiated pleomorphic neoplasm. All 8 tumors had a low-level MD M2 amplification ratio ranging between 2.09 and 2.84. Seven out of eight had no MD M2 copy number alteration. One only (leiomyosarcoma) demonstrated MD M2 copy number gain (∼5 copies) that did not qualify as amplification due to the "6 copy number" gain cutoff. TP53, CDKN2A/B, PIKC3, and PTEN alterations were the most common genetic aberrations detected by Oncomine v3. Conclusion: We demonstrated the absence of MDM2 amplification via Oncomine in all our 8 "low-level" MDM2 FISH amplification specimens confirming the FISH results as "false positive" with a corresponding FISH specificity rate of 0%. Laboratory measures and utilizing NGS assay when needed, could be implemented when encountering such problematic "low-level" MDM2 amplification specimens to avoid misdiagnosis and misuse of targeted therapy. Future studies are needed to better characterize and investigate such findings.
Collapse
Affiliation(s)
- Rana Naous
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shaymaa Hegazy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Kang JH, Hong SW. Is autoimmunity associated with the development of premalignant oral conditions and the progression to oral squamous cell carcinoma?: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102139. [PMID: 39561876 DOI: 10.1016/j.jormas.2024.102139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE Oral potentially malignant disorders (OPMDs) are oral mucosal conditions that may progress to oral squamous cell carcinoma (OSCC). Although autoimmunity has linked to the malignant transformation potential of various precancerous conditions, its role in OPMD remains unclear. This review aimed to identify the role of systemic autoimmunity on OPMD development and their progression to OSCC. METHODS A comprehensive literature search was conducted using PubMed, Cochrane CENTRAL, and SCOPUS database for articles published up to January 2024. The key questions addressed by this review were "Is autoimmunity associated with the development of OPMD" and "How does systemic autoimmunity influence the potential for malignant transformation of OPMD?". This review followed the PRISMA guidelines for scoping reviews (PRISMA-ScR). RESULTS Of the 1265 articles initially identified, 21 fulfilled the search criteria. Three themes were emerged; 1) the prevalence and prognosis of oral cancers in patients with systemic autoimmune diseases, 2) circulating autoantibodies in OPMD patients, and 3) autoimmune-related markers linked to malignant transformation in OPMD patients. This review indicated that systemic autoimmunity may contribute to chronic inflammatory conditions, disruption of oral mucosal integrity, and interference with the DNA damage repair process, thus influencing malignant transformation in the oral epithelium of patients with OPMD. CONCLUSION The co-occurrence of OPMD with circulating autoantibodies or systemic autoimmune diseases underscores the importance of understanding these interactions for improved management of OPMD and early detection of OSCC.
Collapse
Affiliation(s)
- Jeong-Hyun Kang
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul, 06355, Korea (ROK); Clinic of Oral Medicine and Orofacial Pain, Institute of Oral Health Science, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Korea (ROK).
| | - Seok Woo Hong
- Department of Orthopedic Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29, Saemunan-ro, Jongno-gu, Seoul, 03181, Korea (ROK)
| |
Collapse
|
5
|
Cui J, Makita Y, Okamura T, Ikeda C, Fujiwara SI, Tominaga K. Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells. J Funct Biomater 2024; 15:333. [PMID: 39590537 PMCID: PMC11595556 DOI: 10.3390/jfb15110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF4:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (p < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (p < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (p < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.
Collapse
Affiliation(s)
- Jinhao Cui
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Tomoharu Okamura
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Chihoko Ikeda
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Shin-ichi Fujiwara
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Kazuya Tominaga
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| |
Collapse
|
6
|
Tyagi A, Karapurkar JK, Colaco JC, Sarodaya N, Antao AM, Kaushal K, Haq S, Chandrasekaran AP, Das S, Singh V, Hong SH, Suresh B, Kim KS, Ramakrishna S. USP19 Negatively Regulates p53 and Promotes Cervical Cancer Progression. Mol Biotechnol 2024; 66:2032-2045. [PMID: 37572221 DOI: 10.1007/s12033-023-00814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/29/2023] [Indexed: 08/14/2023]
Abstract
p53 is a tumor suppressor gene activated in response to cellular stressors that inhibits cell cycle progression and induces pro-apoptotic signaling. The protein level of p53 is well balanced by the action of several E3 ligases and deubiquitinating enzymes (DUBs). Several DUBs have been reported to negatively regulate and promote p53 degradation in tumors. In this study, we identified USP19 as a negative regulator of p53 protein level. We demonstrate a direct interaction between USP19 and p53 by pull down assay. The overexpression of USP19 promoted ubiquitination of p53 and reduced its protein half-life. We also demonstrate that CRISPR/Cas9-mediated knockout of USP19 in cervical cancer cells elevates p53 protein levels, resulting in reduced colony formation, cell migration, and cell invasion. Overall, our results indicate that USP19 negatively regulates p53 protein levels in cervical cancer progression.
Collapse
Affiliation(s)
- Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | | | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Saba Haq
- Department of Life Science, College of Natural Sciences, Hanyang University, 04763, Seoul, South Korea
| | | | - Soumyadip Das
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Rajpur, Indrashil University, 382715, Mehsana, Gujarat, India
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea.
- College of Medicine, Hanyang University, 04763, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, 04763, Seoul, South Korea
- College of Medicine, Hanyang University, 04763, Seoul, South Korea
| |
Collapse
|
7
|
Preston WA, Drill E, Boerner T, Gelfer R, Harding J, O’Reilly EM, Cercek A, Abou-Alfa G, Park W, Balachandran VP, Drebin J, Soares KC, Wei A, Kingham TP, D’Angelica MI, Jarnagin WR. Extrahepatic Cholangiocarcinoma: Genomic Variables Associated With Anatomic Location and Outcome. JCO Precis Oncol 2024; 8:e2400206. [PMID: 38986041 PMCID: PMC11239138 DOI: 10.1200/po.24.00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE This study aimed to define genomic differences between perihilar cholangiocarcinoma (PCA) and distal cholangiocarcinoma (DCA) and identify genomic determinants of survival. MATERIALS AND METHODS Consecutive patients with ECA with tissue for targeted next-generation sequencing were analyzed, stratified by anatomic site (PCA/DCA), disease extent, and treatment. Associations between genomic alterations, clinicopathologic features, and outcomes were analyzed using Cox proportional hazards regression to compare survival. RESULTS In total, 224 patients diagnosed between 2004 and 2022 (n = 127 PCA; n = 97 DCA) met inclusion criteria. The median survival was 29 months (43 after resection and 17 from diagnosis for unresectable disease). Compared with PCA, DCA was enriched in TP53alt (alterations; 69% v 33%; Q < 0.01), epigenetic pathway alterations (45% v 29%; Q = 0.041), and had more total altered pathways (median 3 v 2; Q < 0.01). KRASalt frequency was similar between PCA (36%) and DCA (37%); however, DCA was enriched in KRAS G12D (19% v 9%; P = .002). No other clinicopathologic or genomic variables distinguished subtypes. In resected patients, no genomic alterations were associated with outcome. However, in unresectable patients, CDKN2Aalt (hazard ratio [HR], 2.59 [1.48 to 4.52]) and APCalt (HR, 5.11 [1.96 to 13.3]) were associated with reduced survival. For the entire cohort, irresectability (HR, 3.13 [2.25 to 4.36]), CDKN2Aalt (HR, 1.80 [1.80 to 2.68]), and APCalt (HR, 2.00 [1.04 to 3.87]) were associated with poor survival. CONCLUSION CDKN2Aalt and APCalt were associated with poor survival in ECA, primarily in advanced disease. As PCA and DCA were genetically similar, coanalysis of PCA and DCA in future genomic studies is reasonable.
Collapse
Affiliation(s)
- William A. Preston
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Esther Drill
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Thomas Boerner
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rebecca Gelfer
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - James Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Trinity College Dublin, Dublin, Ireland
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrea Cercek
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ghassan Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Trinity College Dublin, Dublin, Ireland
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vinod P. Balachandran
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey Drebin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin C. Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alice Wei
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
- The David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY
| | - T. Peter Kingham
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael I. D’Angelica
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William R. Jarnagin
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Seaf Elnasr TA, Ibrahim OM, Alhumaimess MS, Alsohaimi IH, El-Ossaily YA, Hussein MF, Rafea MA, Hassan HMA, Sobhy SE, Hafez EE, El-Aassar MR. Olive leaf extract-derived chitosan-metal nanocomposite: Green synthesis and dual antimicrobial-anticancer action. Int J Biol Macromol 2024; 270:132252. [PMID: 38729503 DOI: 10.1016/j.ijbiomac.2024.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In this study, we developed a novel nanocomposite by synthesizing zinc (ZnNPs), copper (CuNPs), and silver (AgNPs) nanoparticles using olive leaf extract and incorporating them into a chitosan polymer. This approach combines the biocompatibility of chitosan with the antimicrobial and anticancer properties of metal nanoparticles, enhanced by the phytochemical richness of olive leaf extract. The significance of our research lies in its potential to offer a biodegradable and stable alternative to conventional antibiotics and cancer treatments, particularly in combating multidrug-resistant bacteria and various cancer types. Comprehensive characterization through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), and Transmission Electron Microscopy (TEM) confirmed the successful synthesis of the nanocomposites, with an average size of ~22.6 nm. Phytochemical analysis highlighted the antioxidant-rich composition of both the olive leaf extract and the nanoparticles themselves. Functionally, the synthesized nanoparticles exhibited potent antimicrobial activity against multidrug-resistant bacterial strains, outperforming traditional antibiotics by inhibiting key resistance genes (ermC, tetX3-q, blaZ, and Ery-msrA). In anticancer assessments, the nanoparticles showed selective cytotoxicity towards cancer cells in a concentration-dependent manner, with CuNPs and AgNPs showing particularly strong anticancer effects, while demonstrating minimal toxicity towards normal cells. ZnNPs were noted for their low cytotoxicity, highlighting the safety profile of these nanoparticles. Further, the nanoparticles induced apoptosis in cancer cells, as evidenced by the modulation of oncogenes (P21, P53, and BCL2), suggesting their therapeutic potential. The findings of our study underscore the versatile applications of these biogenic nanoparticles in developing safer and more effective antimicrobial and anticancer therapies.
Collapse
Affiliation(s)
- Tarek A Seaf Elnasr
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| | - Omar M Ibrahim
- Department of Medicine and McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mosaed S Alhumaimess
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Ibrahim Hotan Alsohaimi
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Yasser A El-Ossaily
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Modather F Hussein
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Mohamed Abdel Rafea
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Sherien E Sobhy
- Department of Plant Protection and bimolecular diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), P.O. 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Elsayed E Hafez
- Department of Plant Protection and bimolecular diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA City), P.O. 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Mohamed R El-Aassar
- Department of Chemistry, College of Science, Jouf University, PO Box 2014, Sakaka, Aljouf, Saudi Arabia.
| |
Collapse
|
9
|
Karadayian AG, Czerniczyniec A, Lores-Arnaiz S. Apoptosis Due to After-effects of Acute Ethanol Exposure in Brain Cortex: Intrinsic and Extrinsic Signaling Pathways. Neuroscience 2024; 544:39-49. [PMID: 38423164 DOI: 10.1016/j.neuroscience.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Alcohol hangover is the combination of negative mental and physical symptoms which can be experienced after a single episode of alcohol consumption, starting when blood alcohol concentration approaches zero. We previously demonstrated that hangover provokes mitochondrial dysfunction, oxidative stress, imbalance in antioxidant defenses, and impairment in cellular bioenergetics. Chronic and acute ethanol intake induces neuroapoptosis but there are no studies which evaluated apoptosis at alcohol hangover. The aim of the present work was to study alcohol residual effects on intrinsic and extrinsic apoptotic signaling pathways in mice brain cortex. Male Swiss mice received i.p. injection of ethanol (3.8 g/kg) or saline. Six hours after injection, at alcohol hangover onset, mitochondria and tissue lysates were obtained from brain cortex. Results indicated that during alcohol hangover a loss of granularity of mitochondria and a strong increment in mitochondrial permeability were observed, indicating the occurrence of swelling. Alcohol-treated mice showed a significant 35% increase in Bax/Bcl-2 ratio and a 5-fold increase in the ratio level of cytochrome c between mitochondria and cytosol. Caspase 3, 8 and 9 protein expressions were 32%, 33% and 20% respectively enhanced and the activity of caspase 3 and 6 was 30% and 20% increased also due to the hangover condition. Moreover, 38% and 32% increments were found in PARP1 and p53 protein expression respectively and on the contrary, SIRT-1 was almost 50% lower than controls due to the hangover condition. The present work demonstrates that alcohol after-effects could result in the activation of mitochondrial and non-mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Analía G Karadayian
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL) Buenos Aires, Argentina
| | - Analia Czerniczyniec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL) Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL) Buenos Aires, Argentina.
| |
Collapse
|
10
|
Kandhavelu J, Subramanian K, Naidoo V, Sebastianelli G, Doan P, Konda Mani S, Yapislar H, Haciosmanoglu E, Arslan L, Ozer S, Thiyagarajan R, Candeias NR, Penny C, Kandhavelu M, Murugesan A. A novel EGFR inhibitor, HNPMI, regulates apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in colon cancer. Br J Pharmacol 2024; 181:107-124. [PMID: 37183661 PMCID: PMC10952184 DOI: 10.1111/bph.16141] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is the second most lethal disease, with high mortality due to its heterogeneity and chemo-resistance. Here, we have focused on the epidermal growth factor receptor (EGFR) as an effective therapeutic target in CRC and studied the effects of polyphenols known to modulate several key signalling mechanisms including EGFR signalling, associated with anti-proliferative and anti-metastatic properties. EXPERIMENTAL APPROACH Using ligand- and structure-based cheminformatics, we developed three potent, selective alkylaminophenols, 2-[(3,4-dihydroquinolin-1(2H)-yl)(p-tolyl)methyl]phenol (THTMP), 2-[(1,2,3,4-tetrahydroquinolin-1-yl)(4-methoxyphenyl)methyl]phenol (THMPP) and N-[2-hydroxy-5-nitrophenyl(4'-methylphenyl)methyl]indoline (HNPMI). These alkylaminophenols were assessed for EGFR interaction, EGFR-pathway modulation, cytotoxic and apoptosis induction, caspase activation and transcriptional and translational regulation. The lead compound HNPMI was evaluated in mice bearing xenografts of CRC cells. KEY RESULTS Of the three alkylaminophenols tested, HNPMI exhibited the lowest IC50 in CRC cells and potential cytotoxic effects on other tumour cells. Modulation of EGFR pathway down-regulated protein levels of osteopontin, survivin and cathepsin S, leading to apoptosis. Cell cycle analysis revealed that HNPMI induced G0/G1 phase arrest in CRC cells. HNPMI altered the mRNA for and protein levels of several apoptosis-related proteins including caspase 3, BCL-2 and p53. HNPMI down-regulated the proteins crucial to oncogenesis in CRC cells. Assays in mice bearing CRC xenografts showed that HNPMI reduced the relative tumour volume. CONCLUSIONS AND IMPLICATIONS HNPMI is a promising EGFR inhibitor for clinical translation. HNPMI regulated apoptosis and oncogenesis by modulating BCL-2/BAX and p53 in CRC cell lines, showing potential as a therapeutic agent in the treatment of CRC.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Kumar Subramanian
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Vivash Naidoo
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Giulia Sebastianelli
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
| | - Phuong Doan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Saravanan Konda Mani
- Research and Publication WingBharath Institute of Higher Education and ResearchChennaiTamil NaduIndia
| | - Hande Yapislar
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ebru Haciosmanoglu
- Department of BiophysicsBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Leman Arslan
- Department of PhysiologyBezmialem Vakıf University School of MedicineFatih, IstanbulTurkey
| | - Samed Ozer
- Department of PhysiologyAcibadem University School of MedicineAtasehir, IstanbulTurkey
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of MedicinePrince Sattam Bin Abdulaziz UniversityAl‐KharjKingdom of Saudi Arabia
| | - Nuno R. Candeias
- LAQV‐REQUIMTE, Department of ChemistryUniversity of AveiroAveiroPortugal
- Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
| | - Clement Penny
- Division of Oncology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Meenakshisundaram Kandhavelu
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- BioMediTech Institute and Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
- Science CenterTampere University HospitalTampereFinland
| | - Akshaya Murugesan
- Molecular Signalling Lab, Faculty of Medicine and Health Technology, BioMediTechTampere University and Tays Cancer CentreTampereFinland
- Department of BiotechnologyLady Doak CollegeThallakulam, MaduraiIndia
| |
Collapse
|
11
|
Anvarbatcha R, Kunnathodi F, Islam M. Induction of G0/G1 phase cell cycle arrest and apoptosis by thymol through ROS generation and caspase-9/-3 activation in breast and colorectal cancer cell lines. J Cancer Res Ther 2023; 19:1915-1924. [PMID: 38376297 DOI: 10.4103/jcrt.jcrt_308_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cancer is a major malignancy and one of the leading causes of death; it calls for a proactive strategy for the cure. Herbs are reservoirs of novel chemical entities and their phytochemical exploration has contributed considerably to the discovery of new anticancer drugs. Thymol, a natural phenolic monoterpenoid, has been implicated with many medicinal properties, including anticancer ones. However, the anti-proliferative and apoptosis-inducing ability of thymol on MDA-MB-231 and HCT-8 cell lines has not been studied yet in detail, and hence this study was conceived. MATERIALS AND METHODS We studied the cytotoxicity, morphological alterations of the cell, oxidative stress, cell cycle modulation, apoptosis and expression of apoptosis-related proteins that ensued due to thymol treatment in these cancer cells. RESULTS Thymol inhibited the cell proliferation, altered the morphology of the cells, increased the intracellular ROS level, arrested the cells in G0/G1 phase, induced apoptosis, upregulated pro-apoptotic protein p53 expression, downregulated anti-apoptotic protein Bcl-xL expression, and activated caspase-9 and -3. CONCLUSION These findings elucidate that thymol induces apoptosis through the intrinsic pathway, in MDA-MB-231 breast and HCT-8 colorectal cancer cells through ROS generation and G0/G1 phase cell cycle arrest. This reiterates the broad-spectrum anti-tumor potential of thymol and provides an insight to study further to be developed into an anticancer drug.
Collapse
Affiliation(s)
- Riyasdeen Anvarbatcha
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh-11159, Kingdom of Saudi Arabia
| | | | | |
Collapse
|
12
|
Sibony-Benyamini H, Aamar E, Enshell-Seijffers D. Hdac1 and Hdac2 regulate the quiescent state and survival of hair-follicle mesenchymal niche. Nat Commun 2023; 14:4820. [PMID: 37563109 PMCID: PMC10415406 DOI: 10.1038/s41467-023-40573-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
While cell division is essential for self-renewal and differentiation of stem cells and progenitors, dormancy is required to maintain the structure and function of the stem-cell niche. Here we use the hair follicle to show that during growth, the mesenchymal niche of the hair follicle, the dermal papilla (DP), is maintained quiescent by the activity of Hdac1 and Hdac2 in the DP that suppresses the expression of cell-cycle genes. Furthermore, Hdac1 and Hdac2 in the DP promote the survival of DP cells throughout the hair cycle. While during growth and regression this includes downregulation of p53 activity and the control of p53-independent programs, during quiescence, this predominantly involves p53-independent mechanisms. Remarkably, Hdac1 and Hdac2 in the DP during the growth phase also participate in orchestrating the hair cycle clock by maintaining physiological levels of Wnt signaling in the vicinity of the DP. Our findings not only provide insight into the molecular mechanism that sustains the function of the stem-cell niche in a persistently changing microenvironment, but also unveil that the same mechanism provides a molecular toolbox allowing the DP to affect and fine tune the microenvironment.
Collapse
Affiliation(s)
- Hadas Sibony-Benyamini
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel
| | - Emil Aamar
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel
| | - David Enshell-Seijffers
- The Laboratory of Developmental Biology, The Azrieli Faculty of Medicine, Bar Ilan University, 8 Henrietta Szold, Safed, Israel.
| |
Collapse
|
13
|
Napolitano G, Fasciolo G, Muscari Tomajoli MT, Venditti P. Changes in the Mitochondria in the Aging Process-Can α-Tocopherol Affect Them? Int J Mol Sci 2023; 24:12453. [PMID: 37569829 PMCID: PMC10419829 DOI: 10.3390/ijms241512453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Aerobic organisms use molecular oxygen in several reactions, including those in which the oxidation of substrate molecules is coupled to oxygen reduction to produce large amounts of metabolic energy. The utilization of oxygen is associated with the production of ROS, which can damage biological macromolecules but also act as signaling molecules, regulating numerous cellular processes. Mitochondria are the cellular sites where most of the metabolic energy is produced and perform numerous physiological functions by acting as regulatory hubs of cellular metabolism. They retain the remnants of their bacterial ancestors, including an independent genome that encodes part of their protein equipment; they have an accurate quality control system; and control of cellular functions also depends on communication with the nucleus. During aging, mitochondria can undergo dysfunctions, some of which are mediated by ROS. In this review, after a description of how aging affects the mitochondrial quality and quality control system and the involvement of mitochondria in inflammation, we report information on how vitamin E, the main fat-soluble antioxidant, can protect mitochondria from age-related changes. The information in this regard is scarce and limited to some tissues and some aspects of mitochondrial alterations in aging. Improving knowledge of the effects of vitamin E on aging is essential to defining an optimal strategy for healthy aging.
Collapse
Affiliation(s)
- Gaetana Napolitano
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Gianluca Fasciolo
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| | - Maria Teresa Muscari Tomajoli
- Department of Science and Technology, University of Naples Parthenope, Via Acton n. 38, I-80133 Naples, Italy; (G.N.); (M.T.M.T.)
| | - Paola Venditti
- Department of Biology, University of Naples ‘Napoli Federico II’, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, I-80126 Naples, Italy;
| |
Collapse
|
14
|
Li Y, Li S, Shi X, Xin Z, Yang Y, Zhao B, Li Y, Lv L, Ren P, Wu H. KLF12 promotes the proliferation of breast cancer cells by reducing the transcription of p21 in a p53-dependent and p53-independent manner. Cell Death Dis 2023; 14:313. [PMID: 37156774 PMCID: PMC10167366 DOI: 10.1038/s41419-023-05824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is the most common cancer affecting women worldwide. Many genes are involved in the development of breast cancer, including the Kruppel Like Factor 12 (KLF12) gene, which has been implicated in the development and progression of several cancers. However, the comprehensive regulatory network of KLF12 in breast cancer has not yet been fully elucidated. This study examined the role of KLF12 in breast cancer and its associated molecular mechanisms. KLF12 was found to promote the proliferation of breast cancer and inhibit apoptosis in response to genotoxic stress. Subsequent mechanistic studies showed that KLF12 inhibits the activity of the p53/p21 axis, specifically by interacting with p53 and affecting its protein stability via influencing the acetylation and ubiquitination of lysine370/372/373 at the C-terminus of p53. Furthermore, KLF12 disrupted the interaction between p53 and p300, thereby reducing the acetylation of p53 and stability. Meanwhile, KLF12 also inhibited the transcription of p21 independently of p53. These results suggest that KLF12 might have an important role in breast cancer and serve as a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Yanan Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Xiaoxia Shi
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Zhiqiang Xin
- The Second Hospital of Dalian Medical University, 116000, Dalian, China
| | - Yuxi Yang
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Binggong Zhao
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Yvlin Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Linlin Lv
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China
| | - Ping Ren
- The Second Hospital of Dalian Medical University, 116000, Dalian, China.
| | - Huijian Wu
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, 116024, Dalian, China.
| |
Collapse
|
15
|
Uehara R, Yamada E, Okada S, Bastie CC, Maeshima A, Ikeuchi H, Horiguchi K, Yamada M. Fyn Phosphorylates Transglutaminase 2 (Tgm2) and Modulates Autophagy and p53 Expression in the Development of Diabetic Kidney Disease. Cells 2023; 12:cells12081197. [PMID: 37190106 DOI: 10.3390/cells12081197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is involved in the development of diabetic kidney disease (DKD), the leading cause of end-stage renal disease. The Fyn tyrosine kinase (Fyn) suppresses autophagy in the muscle. However, its role in kidney autophagic processes is unclear. Here, we examined the role of Fyn kinase in autophagy in proximal renal tubules both in vivo and in vitro. Phospho-proteomic analysis revealed that transglutaminase 2 (Tgm2), a protein involved in the degradation of p53 in the autophagosome, is phosphorylated on tyrosine 369 (Y369) by Fyn. Interestingly, we found that Fyn-dependent phosphorylation of Tgm2 regulates autophagy in proximal renal tubules in vitro, and that p53 expression is decreased upon autophagy in Tgm2-knockdown proximal renal tubule cell models. Using streptozocin (STZ)-induced hyperglycemic mice, we confirmed that Fyn regulated autophagy and mediated p53 expression via Tgm2. Taken together, these data provide a molecular basis for the role of the Fyn-Tgm2-p53 axis in the development of DKD.
Collapse
Affiliation(s)
- Ryota Uehara
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Eijiro Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Shuichi Okada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Claire C Bastie
- Division of Biomedical Sciences, Warwick Medical School, Coventry CV4 7AL, UK
| | - Akito Maeshima
- Department of Nephrology and Hypertension, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe 350-1298, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kazuhiko Horiguchi
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| | - Masanobu Yamada
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Gunma University Graduate School of Medicine, 3-39-15, Showa, Maebashi 371-8511, Japan
| |
Collapse
|
16
|
Yusupova M, Fuchs Y. To not love thy neighbor: mechanisms of cell competition in stem cells and beyond. Cell Death Differ 2023; 30:979-991. [PMID: 36813919 PMCID: PMC10070350 DOI: 10.1038/s41418-023-01114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cell competition describes the process in which cells of greater fitness are capable of sensing and instructing elimination of lesser fit mutant cells. Since its discovery in Drosophila, cell competition has been established as a critical regulator of organismal development, homeostasis, and disease progression. It is therefore unsurprising that stem cells (SCs), which are central to these processes, harness cell competition to remove aberrant cells and preserve tissue integrity. Here, we describe pioneering studies of cell competition across a variety of cellular contexts and organisms, with the ultimate goal of better understanding competition in mammalian SCs. Furthermore, we explore the modes through which SC competition takes place and how this facilitates normal cellular function or contributes to pathological states. Finally, we discuss how understanding of this critical phenomenon will enable targeting of SC-driven processes, including regeneration and tumor progression.
Collapse
Affiliation(s)
- Marianna Yusupova
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel.
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel.
- Augmanity, Rehovot, Israel.
| |
Collapse
|
17
|
Han H, Yang Y, Han Z, Wang L, Dong L, Qi H, Liu B, Tian J, Vanhaesebroeck B, Kazlauskas A, Zhang G, Zhang S, Lei H. NFκB-Mediated Expression of Phosphoinositide 3-Kinase δ Is Critical for Mesenchymal Transition in Retinal Pigment Epithelial Cells. Cells 2023; 12:207. [PMID: 36672142 PMCID: PMC9857235 DOI: 10.3390/cells12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-β2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-β2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-β2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-β2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-β2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-β2-induced EMT, uncovering hindrance of TGF-β2-induced expression of p110δ as a novel approach to inhibit PVR.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, The School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750101, China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Bing Liu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA 02114, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510180, China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 100864, China
| | | | - Andrius Kazlauskas
- Department of Ophthalmology and Visual Sciences, Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guoming Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, China
| |
Collapse
|
18
|
Patil S, Yadalam PK, Hosmani J, Khan ZA, Shankar VG, Shaukat L, Khan SS, Awan KH. Modulation of oral cancer and periodontitis using chemotherapeutic agents - A narrative review. Dis Mon 2023; 69:101348. [PMID: 35341589 DOI: 10.1016/j.disamonth.2022.101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periodontitis, an inflammatory condition, is linked to a higher risk of developing oral cancer. Periodontitis may be a precipitating factor for tumorigenesis and the aggressiveness of specific cancer variants. Although genetics is considered the primary etiologic factor for the development of most cancers, many factors have come to be recognized in the initiation and progression of oral cancer. Consecutively, it is suggestive that periodontitis and oral cancer are distinct disease entities but share common pathogenic mechanisms. Oxidative stress and epigenetic mechanisms are among the most researched mechanisms responsible for initiating apoptotic mechanisms implicated in periodontitis and oral cancer. Current research aims to formulate therapeutic agents to intercede in these mechanisms via host modulation therapy and epigenetic therapy. These advances can revolutionize the treatment of periodontitis and oral cancer. This review aims to shed light on the common pathogenic mechanisms of these diseases and the various host modulation agents that could be beneficial in their treatment.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600 077, India
| | - Jagadish Hosmani
- Oral Pathology Division, Department of Dental Sciences, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Zafar Ali Khan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | | - Lubna Shaukat
- Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Samar Saeed Khan
- Department of Maxillofacial Surgery & Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, United States.
| |
Collapse
|
19
|
Gong J, Wang J, Zong X, Ma Z, Xu D. Prediction of protein stability changes upon single-point variant using 3D structure profile. Comput Struct Biotechnol J 2022; 21:354-364. [PMID: 36582438 PMCID: PMC9791599 DOI: 10.1016/j.csbj.2022.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Identifying protein thermodynamic stability changes upon single-point variants is crucial for studying mutation-induced alterations in protein biophysics, genomic variants, and mutation-related diseases. In the last decade, various computational methods have been developed to predict the effects of single-point variants, but the prediction accuracy is still far from satisfactory for practical applications. Herein, we review approaches and tools for predicting stability changes upon the single-point variant. Most of these methods require tertiary protein structure as input to achieve reliable predictions. However, the availability of protein structures limits the immediate application of these tools. To improve the performance of a computational prediction from a protein sequence without experimental structural information, we introduce a new computational framework: MU3DSP. This method assesses the effects of single-point variants on protein thermodynamic stability based on point mutated protein 3D structure profile. Given a protein sequence with a single variant as input, MU3DSP integrates both sequence-level features and averaged features of 3D structures obtained from sequence alignment to PDB to assess the change of thermodynamic stability induced by the substitution. MU3DSP outperforms existing methods on various benchmarks, making it a reliable tool to assess both somatic and germline substitution variants and assist in protein design. MU3DSP is available as an open-source tool at https://github.com/hurraygong/MU3DSP.
Collapse
Affiliation(s)
- Jianting Gong
- School of Information Science and Technology, and Institution of Computational Biology, Northeast Normal University, Changchun 130117, China
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Xizeng Zong
- School of Computer Science and Engineering, Changchun University of Technology, Changchun 130117, China
| | - Zhiqiang Ma
- School of Information Science and Technology, and Institution of Computational Biology, Northeast Normal University, Changchun 130117, China
- Department of Computer Science, College of Humanities & Sciences of Northeast Normal University, Changchun 130117, China
- Corresponding authors.
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Corresponding authors.
| |
Collapse
|
20
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
21
|
Manturthi S, Bhattacharya D, Sakhare KR, Narayan KP, Patri SV. Cimetidine-Based Cationic Amphiphiles for In Vitro Gene Delivery Targetable to Colon Cancer. ACS OMEGA 2022; 7:31388-31402. [PMID: 36092589 PMCID: PMC9453813 DOI: 10.1021/acsomega.2c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Cimetidine, a histamine-2 (H2) receptor antagonist, has been found to have anticancer properties against a number of cancer-type cells. In this report, we have demonstrated that cimetidine can acts as a hydrophilic domain in cationic lipids and targetable to the gastric system by carrying reporter genes and therapeutic genes through in vitro transfection. Two lipids, namely, Toc-Cim and Chol-Cim consisting cimetidine as the main head group and hydrophobic moieties as alpha-tocopherol or cholesterol, respectively, were designed and synthesized. 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) is a well-known co-lipid employed to produce liposomes as uniform vesicles. The liposomes and lipoplexes were structurally and functionally evaluated for global surface charges and hydrodynamic diameters, and results found that both liposome and lipoplex size and surface charges are optimal to screen the transfection potentials. DNA-binding studies were analyzed as complete binding at all formulated N/P ratios. The liposomes and lipoplexes of both the lipids Toc-Cim and Chol-Cim show minimal cytotoxicity even though at higher concentrations. The results of the transfection experiments revealed that tocopherol-based cationic lipids (Toc-Cim) show finer transfection efficacy with optimized N/P ratios (2:1 and 4:1) in the colon cancer cell line. Toc-Cim lipoplexes show higher cellular uptake compare to Chol-Cim in the colon cancer cell line at 2:1 and 4:1 N/P ratios. Toc-Cim and Chol-Cim lipids showed highly compatible serum, examined up to 50% of the serum concentration. To evaluate the apoptotic cell death in CT-26 cells, exposed to Toc-Cim:p53 and Chol-Cim:p53 lipoplexes at 2:1 N/P ratios, superior results showed with Toc-Cim:p53. An effect of TP53 protein expression in CT-26 cell lines assayed by western blot, transfected with Toc-Cim:p53 and Chol-Cim:p53 lipoplexes, demonstrated the superior efficacy of Toc-Cim. All of the findings suggest that Toc-Cim lipid is relatively secure and is an effective transfection agent to colon cancer gene delivery.
Collapse
Affiliation(s)
- Shireesha Manturthi
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| | - Dwaipayan Bhattacharya
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kalyani Rajesh Sakhare
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Kumar Pranav Narayan
- Department
of Biological Science, Bits Pilani-Hyderabad, Hyderabad, Telangana 500078, India
| | - Srilakshmi V. Patri
- Department
of Chemistry, National Institute of Technology
Warangal, Hanamkonda, Telangana 506004, India
| |
Collapse
|
22
|
Capuozzo M, Santorsola M, Bocchetti M, Perri F, Cascella M, Granata V, Celotto V, Gualillo O, Cossu AM, Nasti G, Caraglia M, Ottaiano A. p53: From Fundamental Biology to Clinical Applications in Cancer. BIOLOGY 2022; 11:1325. [PMID: 36138802 PMCID: PMC9495382 DOI: 10.3390/biology11091325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
p53 tumour suppressor gene is our major barrier against neoplastic transformation. It is involved in many cellular functions, including cell cycle arrest, senescence, DNA repair, apoptosis, autophagy, cell metabolism, ferroptosis, immune system regulation, generation of reactive oxygen species, mitochondrial function, global regulation of gene expression, miRNAs, etc. Its crucial importance is denounced by the high percentage of amino acid sequence identity between very different species (Homo sapiens, Drosophila melanogaster, Rattus norvegicus, Danio rerio, Canis lupus familiaris, Gekko japonicus). Many of its activities allowed life on Earth (e.g., repair from radiation-induced DNA damage) and directly contribute to its tumour suppressor function. In this review, we provide paramount information on p53, from its discovery, which is an interesting paradigm of science evolution, to potential clinical applications in anti-cancer treatment. The description of the fundamental biology of p53 is enriched by specific information on the structure and function of the protein as well by tumour/host evolutionistic perspectives of its role.
Collapse
Affiliation(s)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Venere Celotto
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, Santiago University Clinical Hospital, 15706 Santiago de Compostela, Spain
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
23
|
Gupta A, Breedon SA, Storey KB. Activation of p53 in anoxic freshwater crayfish, Faxonius virilis. J Exp Biol 2022; 225:275712. [DOI: 10.1242/jeb.244145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Tumor suppressing transcription factor p53 regulates multiple pathways including DNA repair, cell survival, apoptosis, and autophagy. The current work studies stress-induced activation of p53 in anoxic crayfish (Faxonius virilis). Relative levels of target proteins and mRNAs involved in the DNA damage response was measured in normoxic control and anoxic hepatopancreas and tail muscle. Phosphorylation levels of p53 was assessed using immunoblotting at sites known to be phosphorylated (Serine 15 and 37) in response to DNA damage or reduced oxygen signaling. The capacity for DNA binding by phospho-p53 was also measured, followed by transcript analysis of a potentially pro-apoptotic downstream target, the etoposide induced (ei24) gene. Following this, both inhibitor (MDM2) and activator (p19-ARF) protein levels in response to low oxygen stress were studied. The results showed an increase in p53 levels during anoxia in both hepatopancreases and tail muscle. Increased transcript levels of ei24, a downstream target of p53, support the activation of p53 under anoxic stress. Cytoplasmic accumulation of Ser-15 p-p53 was observed during anoxia when proteins from cytoplasmic and nuclear fractions were measured. Increased cytoplasmic concentration is known to initiate an apoptotic response, which can be assumed as a preparatory step to prevent autophagy. The results suggest that p53 might play a protective role in crayfish defense against low oxygen stress. Understanding how anoxia-tolerant organisms are able to protect against DNA damage could provide important clues towards survival under metabolic rate depression and preparation for recovery to minimize damage.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | - Sarah A. Breedon
- Department of Biology, Carleton University, Ottawa, K1S 5B6, Canada
| | | |
Collapse
|
24
|
Cho HC, Huang Y, Hung JT, Hung TH, Cheng KC, Liu YH, Kuo MW, Wang SH, Yu AL, Yu J. Puf-A promotes cancer progression by interacting with nucleophosmin in nucleolus. Oncogene 2022; 41:1155-1165. [PMID: 34999733 PMCID: PMC8856959 DOI: 10.1038/s41388-021-02138-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/11/2021] [Accepted: 11/25/2021] [Indexed: 01/02/2023]
Abstract
Previously, we identified Puf-A as a novel member of Puf-family RNA-binding proteins; however, its biological functions remain obscure. Analysis of tumor samples of non-small cell lung cancer (NSCLC) showed that high Puf-A expression correlated with high histology grade and abnormal p53 status. Kaplan-Meier curve for overall survival revealed high expression of Puf-A to predict poor prognosis in stage I NSCLC. Among patients with colorectal cancer, high Puf-A expression also showed an adverse impact on overall survival. In lung cancer cell lines, downregulation of p53 increased Puf-A expression, and upregulation of p53 dampened its expression. However, luciferase reporter assays indicated that PUF-A locus harbored the p53-response element, but regulated Puf-A transcription indirectly. In vivo suppression of p53 in CCSP-rtTA/TetO-Cre/LSL-KrasG12D/p53flox/flox conditional mutant mice accelerated the progression of the KrasG12D-driven lung cancer, along with enhanced expression of Puf-A. Importantly, intranasal delivery of shPuf-A to the inducible KrasG12D/p53flox/flox mice suppressed tumor progression. Puf-A silencing led to marked decreases in the 80S ribosomes, along with decrease in S6 and L5 in the cytoplasm and accumulation in the nucleolus. Based on immunofluorescence staining and immunoprecipitation studies, Puf-A interacted with NPM1 in nucleolus. Puf-A silencing resulted in NPM1 translocation from nucleolus to nucleoplasm and this disruption of NPM1 localization was reversed by a rescue experiment. Mechanistically, Puf-A silencing altered NPM1 localization, leading to the retention of ribosomal proteins in nucleolus and diminished ribosome biogenesis, followed by cell-cycle arrest/cell death. Puf-A is a potential theranostic target for cancer therapy and an important player in cancer progression.
Collapse
Affiliation(s)
- Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenlin Huang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Chun Cheng
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Department of Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Wei Kuo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sheng-Hung Wang
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, University of California San Diego Medical Center, San Diego, CA, USA
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
25
|
microRNA-Mediated Encoding and Decoding of Time-Dependent Signals in Tumorigenesis. Biomolecules 2022; 12:biom12020213. [PMID: 35204714 PMCID: PMC8961662 DOI: 10.3390/biom12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs, pivotal post-transcriptional regulators of gene expression, in the past decades have caught the attention of researchers for their involvement in different biological processes, ranging from cell development to cancer. Although lots of effort has been devoted to elucidate the topological features and the equilibrium properties of microRNA-mediated motifs, little is known about how the information encoded in frequency, amplitude, duration, and other features of their regulatory signals can affect the resulting gene expression patterns. Here, we review the current knowledge about microRNA-mediated gene regulatory networks characterized by time-dependent input signals, such as pulses, transient inputs, and oscillations. First, we identify the general characteristic of the main motifs underlying temporal patterns. Then, we analyze their impact on two commonly studied oncogenic networks, showing how their dysfunction can lead to tumorigenesis.
Collapse
|
26
|
Çomaklı S, Kandemir FM, Küçükler S, Özdemir S. Morin mitigates ifosfamide induced nephrotoxicity by regulation of NF-kappaB/p53 and Bcl-2 expression. Biotech Histochem 2022; 97:423-432. [PMID: 35037524 DOI: 10.1080/10520295.2021.2021449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ifosfamide (IFO) is used for treating childhood solid tumors, but its use is limited by its adverse effects on kidneys. Morin may be used to prevent nephrotoxic and other side effects. We investigated the underlying mechanisms of the protective effects of morin on IFO induced nephrotoxicity. We used 35 male rats divided into five groups of seven: control group, morin group, IFO group, 100 mg/kg morin + IFO group and 200 mg/kg morin + IFO group. We measured kidney tissue oxidant, antioxidant and inflammatory parameters using ELISA, and apoptosis was evaluated using immunohistochemistry and real time PCR. Serum urea, creatinine and kidney injury molecule-1 (KIM-1) levels were increased by IFO treatment; elevated levels were decreased significantly by treatment with both 100 and 200 mg/kg morin. Morin treatment also decreased oxidative stress and lipid oxidation in IFO treated rats. The ameliorative effect of morin on inflammatory response was due to reduced levels of NF-κB and TNF-α. Morin also reduced NF-κB/p53 levels by increasing Bcl-2 expression in IFO treated kidneys. Morin may prevent IFO induced nephrotoxicity via the NF-κB/p53 and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
27
|
Tian W, Sun Y, Cheng Y, Ma X, Du W, Shi W, Guo Q. Arsenic sulfide reverses cisplatin resistance in non-small cell lung cancer in vitro and in vivo through targeting PD-L1. Thorac Cancer 2021; 12:2551-2563. [PMID: 34469060 PMCID: PMC8487818 DOI: 10.1111/1759-7714.14136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recent studies have found that programmed death ligand 1 (PD-L1) might be involved in chemotherapy resistance in non-small cell lung cancer (NSCLC). Arsenic sulfide (As4 S4 ) has been recognized to have antitumor activities and enhance the cytotoxic effect of chemotherapy drugs. In this study, we aimed to verify the relationship between PD-L1 and cisplatin (DDP) resistance and identify whether As4 S4 could reverse DDP resistance through targeting PD-L1 in NSCLC. METHODS The effect of As4 S4 and DDP on cell proliferation and apoptosis was investigated in NSCLC cell lines. The expression of p53 and PD-L1 proteins was measured by western blotting analysis. The levels of miR-34a-5p, miR-34a-3p and PD-L1 in cells were measured by real-time qPCR analysis. Mouse xenograft models were established by inoculation with A549/DDP (DDP-resistant) cells. RESULTS Depletion of PD-L1 inhibited DDP resistance in A549/DDP and H1299/DDP cells. As4 S4 was capable of sensitizing A549/DDP cells to DDP by enhancing apoptosis. As4 S4 upregulated p53 expression and downregulated PD-L1 expression in A549/DDP cells. As4 S4 increased miR-34a-5p level in A549/DDP cells. Inhibition of p53 by PFT-α partially restored the levels of PD-L1 and miR-34a-5p. Pretreatment with PFT-α suppressed the apoptosis rate induced by cotreatment of As4 S4 and DDP in A549/DDP cells. Cotreatment of DDP and As4 S4 notably reduced the tumor size when compared with DDP treatment alone in vivo. CONCLUSIONS Upregulation of PD-L1 was correlated with DDP resistance in NSCLC cells. Mechanistic analyses indicated that As4 S4 might sensitize NSCLC cells to DDP through targeting p53/miR-34a-5p/PD-L1 axis.
Collapse
Affiliation(s)
- Wei Tian
- Department of Respiratory Medicine Oncology Ward I, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Oncology III, Zibo Central Hospital, Zibo, China
| | - Yinping Sun
- Department of Oncology III, Zibo Central Hospital, Zibo, China
| | - Yuping Cheng
- Department of Oncology III, Zibo Central Hospital, Zibo, China
| | - Xiao Ma
- Department of Internal Medicine, Zhangqiu People's Hospital, Zhangqiu, China
| | - Weina Du
- Department of Critical Medicine, Huantai People's Hospital, Zibo, China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qisen Guo
- Department of Respiratory Medicine Oncology Ward I, Shandong Cancer Hospital and Institute, Cheeloo College of Medicine, Shandong University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
28
|
Surien O, Ghazali AR, Masre SF. Chemopreventive effects of pterostilbene through p53 and cell cycle in mouse lung of squamous cell carcinoma model. Sci Rep 2021; 11:14862. [PMID: 34290382 PMCID: PMC8295275 DOI: 10.1038/s41598-021-94508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p < 0.05). There was a significant decrease in cyclin D1 and cyclin E2 protein expression in PS10 and PS50 when compared to the NTCU (p < 0.05). PS50 significantly increased p53, p21, and p27 protein expression when compared to NTCU (p < 0.05). Pterostilbene is a potential chemoprevention agent for lung SCC as it has the ability to upregulate the p53/p21 pathway, causing cell cycle arrest.
Collapse
Affiliation(s)
- Omchit Surien
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fathiah Masre
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Chatterjee M, Viswanathan P. Long noncoding RNAs in the regulation of p53-mediated apoptosis in human cancers. Cell Biol Int 2021; 45:1364-1382. [PMID: 33760332 DOI: 10.1002/cbin.11597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely known for their regulatory function in transcriptional and posttranscriptional processes. The involvement of such non-protein-coding RNAs in nuclear organization and chromatin remodeling is often associated with an increased risk of human malignancies. In cancer, lncRNAs either promote cell survival or may act as a growth suppressor, thus conferring a key regulatory function other than their established role in fundamental cellular processes. Interestingly, lncRNAs interfere with the stages of apoptosis and related pathways involving p53. Many of these molecules either regulate or are regulated by p53 while mounting oncogenic events. Consequently, they may confer both prosurvival or proapoptotic functions depending upon the tissue type. Since the mechanism of cell death is bypassed in many human cancers, it has emerged that the lncRNAs are either overexpressed or knocked down to sensitize cells to apoptotic stimuli. Nonetheless, the abundant expression of lncRNAs in tumor cells renders them suitable targets for anticancer therapies. Although the role of lncRNAs in the p53 network and apoptosis has been independently defined, their interplay in activating p53-target genes during cell cycle arrest remains unexplored. Thus, we have specifically reviewed the possible involvement of lncRNAs in the p53-mediated apoptosis of human cancer cells. In particular, we summarize the growing evidence from individual studies and analyze whether lncRNAs are essential to facilitate apoptosis in a p53-dependent manner. This may lead to the identification of p53-associated lncRNAs that are suitable therapeutic targets or diagnostic/prognostic markers.
Collapse
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
30
|
Ranasinghe KNK, Premarathna AD, Mahakapuge TAN, Wijesundera KK, Ambagaspitiya AT, Jayasooriya AP, Kularatne SAM, Rajapakse RPVJ. In vivo anticancer effects of Momordica charantia seed fat on hepatocellular carcinoma in a rat model. J Ayurveda Integr Med 2021; 12:435-442. [PMID: 34275705 PMCID: PMC8377176 DOI: 10.1016/j.jaim.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Momordica charantia or bitter melon is a well-known vegetable with a number of therapeutic actions in Ayurvedic medicine. Alpha-eleostearic acid, a conjugated trienoic fatty acid present in bitter melon is proven to have anticancer properties. Crude seed oil from local bitter melon varieties could be an effective and economical anticancer therapy. OBJECTIVE(S) The study was conducted to evaluate the anticancer effect of the crude oil from the seeds of Matale green variety of bitter melon on a hepatocellular carcinoma-induced rat model. MATERIALS AND METHODS Hepatocellular carcinoma (HCC) was experimentally induced in Wistar rats. Crude seed oil of Matale green bitter melon (MGBM) was supplemented to one treatment group in concurrence with carcinoma induction and to another treatment group after the development of carcinoma. After 168 days, gross morphological, histopathological, biochemical, hematological and gene-expression analysis of treated and control groups were performed. RESULTS Oral supplementation of MGBM seed oil showed a statistically significant reduction (p < 0.05) in the average number, diameter and area of hepatic dysplastic nodules and a reduction in the size of histopathological neoplastic lesions in both treatment groups compared to the non-treated control group. The expression of tumor suppressor gene p53 and anti-apoptotic gene Bcl-2 were significantly increased while the expression of apoptotic gene caspase 3 was significantly reduced in the treatment group when MGBM supplementation was in concurrence with carcinogenesis (p < 0.05). CONCLUSION Crude seed oil from the MGBM has anticancer effects against experimentally induced HCC in Wistar rats, specially when supplemented in concurrence with carcinoma induction.
Collapse
Affiliation(s)
- K N K Ranasinghe
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - A D Premarathna
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - T A N Mahakapuge
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - K K Wijesundera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - A T Ambagaspitiya
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - A P Jayasooriya
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S A M Kularatne
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - R P V J Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
31
|
Yan K, Rawle DJ, Le TT, Suhrbier A. Simple rapid in vitro screening method for SARS-CoV-2 anti-virals that identifies potential cytomorbidity-associated false positives. Virol J 2021; 18:123. [PMID: 34107996 PMCID: PMC8188739 DOI: 10.1186/s12985-021-01587-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or “cytomorbidity”, as distinct from cytotoxicity or loss of viability. Methods A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. Results The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. Conclusions We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01587-z.
Collapse
Affiliation(s)
- Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Daniel J Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4029, Australia. .,Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD, 4029 and 4072, Australia.
| |
Collapse
|
32
|
Wang X, Yamamoto Y, Imanishi M, Zhang X, Sato M, Sugaya A, Hirose M, Endo S, Natori Y, Moriwaki T, Yamato K, Hyodo I. Enhanced G1 arrest and apoptosis via MDM4/MDM2 double knockdown and MEK inhibition in wild-type TP53 colon and gastric cancer cells with aberrant KRAS signaling. Oncol Lett 2021; 22:558. [PMID: 34084225 PMCID: PMC8161467 DOI: 10.3892/ol.2021.12819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Murine double minute homolog 2 (MDM2) is an oncoprotein that induces p53 degradation via ubiquitin-ligase activity. MDM4 cooperates with MDM2-mediated p53 degradation, directly inhibiting p53 transcription by binding to its transactivation domain. Our previous study reported that the simultaneous inhibition of MDM2 and MDM4 using nutlin-3 (an inhibitor of the MDM2-p53 interaction) and chimeric small interfering RNA with DNA-substituted seed arms (named chiMDM2 and chiMDM4) more potently activated p53 than the MDM2 or MDM4 inhibitor alone and synergistically augmented antitumor effects in various types of cancer cells with the wild-type (wt) TP53. Recently, the synergism of MDM2 and mitogen-activated protein kinase kinase (MEK) inhibitors has been demonstrated in wt TP53 colorectal and non-small cell lung cancer cells harboring mutant-type (mt) KRAS. The current study examined whether chiMDM4 augmented the synergistic antitumor effects of MDM2 and MEK inhibition using chiMDM2 or nutlin-3 and trametinib, respectively. ChiMDM2 and trametinib used in combination demonstrated a synergistic antitumor activity in HCT116 and LoVo colon cancer cells, and SNU-1 gastric cancer cells harboring wt TP53 and mt KRAS. Furthermore, chiMDM4 synergistically enhanced this combinational effect. Similar results were observed when nutlin-3 was used instead of chiMDM2. MDM4/MDM2 double knockdown combined with trametinib treatment enhanced G1 arrest and apoptosis induction. This was associated with the accumulation of p53, suppression of phosphorylated-extracellular signal-regulated kinase 2, inhibition of retinoblastoma phosphorylation, suppression of E2F1-activated proteins, and potent activation of pro-apoptotic proteins, such as Fas and p53 upregulated modulator of apoptosis. The results inidcated that the triple inhibition of MDM4, MDM2 and MEK exerted a potent antitumor effect in wt TP53 colon and gastric cancer cells with mt KRAS. Simultaneous activation of p53 and inhibition of aberrant KRAS signaling may be a rational treatment strategy for gastrointestinal tumors.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshiyuki Yamamoto
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mamiko Imanishi
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Xiaochen Zhang
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Sato
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akinori Sugaya
- Division of Gastroenterology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki 309-1793, Japan
| | - Mitsuaki Hirose
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Gastroenterology, Tsuchiura Clinical Education and Training Center, University of Tsukuba Hospital, Tsuchiura, Ibaraki 300-8585, Japan
| | - Shinji Endo
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Matsudo, Chiba 270-0034, Japan
| | | | - Toshikazu Moriwaki
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kenji Yamato
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology, Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.,Department of Gastrointestinal Medical Oncology, NHO Shikoku Cancer Center, Matsuyama, Ehime 791-0280, Japan
| |
Collapse
|
33
|
Chatterjee M, Viswanathan P. Long noncoding RNAs in the regulation of p53‐mediated apoptosis in human cancers. Cell Biol Int 2021. [DOI: https://doi.org/10.1002/cbin.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
34
|
Zhang T, Hu L, Tang JF, Xu H, Tian K, Wu MN, Huang SY, Du YM, Zhou P, Lu RJ, He S, Xu JM, Si JJ, Li J, Chen DL, Ran JH. Metformin Inhibits the Urea Cycle and Reduces Putrescine Generation in Colorectal Cancer Cell Lines. Molecules 2021; 26:molecules26071990. [PMID: 33915902 PMCID: PMC8038129 DOI: 10.3390/molecules26071990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/20/2022] Open
Abstract
The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Ling Hu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Jia-Feng Tang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Hang Xu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Kuan Tian
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Meng-Na Wu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Shi-Ying Huang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Yu-Mei Du
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Peng Zhou
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Rui-Jin Lu
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Shuang He
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Jia-Mei Xu
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Jian-Jun Si
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
| | - Di-Long Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Chongqing Three Gorges Medical College, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing 404120, China
| | - Jian-Hua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China; (T.Z.); (L.H.); (H.X.); (K.T.); (M.-N.W.); (J.-M.X.); (J.-J.S.)
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China; (J.-F.T.); (S.-Y.H.); (Y.-M.D.); (P.Z.); (R.-J.L.); (S.H.); (J.L.); (D.-L.C.)
- Correspondence: ; Tel.: +86-150-8681-4824
| |
Collapse
|
35
|
Sekaran TSG, Kedilaya VR, Kumari SN, Shetty P, Gollapalli P. Exploring the differentially expressed genes in human lymphocytes upon response to ionizing radiation: a network biology approach. Radiat Oncol J 2021; 39:48-60. [PMID: 33794574 PMCID: PMC8024183 DOI: 10.3857/roj.2021.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/27/2023] Open
Abstract
PURPOSE The integration of large-scale gene data and their functional analysis needs the effective application of various computational tools. Here we attempted to unravel the biological processes and cellular pathways in response to ionizing radiation using a systems biology approach. MATERIALS AND METHODS Analysis of gene ontology shows that 80, 42, 25, and 35 genes have roles in the biological process, molecular function, the cellular process, and immune system pathways, respectively. Therefore, our study emphasizes gene/protein network analysis on various differentially expressed genes (DEGs) to reveal the interactions between those proteins and their functional contribution upon radiation exposure. RESULTS A gene/protein interaction network was constructed, which comprises 79 interactors with 718 interactions and TP53, MAPK8, MAPK1, CASP3, MAPK14, ATM, NOTCH1, VEGFA, SIRT1, and PRKDC are the top 10 proteins in the network with high betweenness centrality values. Further, molecular complex detection was used to cluster these associated partners in the network, which produced three effective clusters based on the Molecular Complex Detection (MCODE) score. Interestingly, we found a high functional similarity from the associated genes/proteins in the network with known radiation response genes. CONCLUSION This network-based approach on DEGs of human lymphocytes upon response to ionizing radiation provides clues for an opportunity to improve therapeutic efficacy.
Collapse
Affiliation(s)
| | - Vishakh R. Kedilaya
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Suchetha N. Kumari
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | - Pavan Gollapalli
- Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| |
Collapse
|
36
|
To Breathe or Not to Breathe: The Role of Oxygen in Bone Marrow-Derived Mesenchymal Stromal Cell Senescence. Stem Cells Int 2021; 2021:8899756. [PMID: 33519938 PMCID: PMC7817290 DOI: 10.1155/2021/8899756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based cellular therapy is a promising tool for the treatment of pathological conditions with underlying severe tissue damage or malfunction like in chronic cardiovascular, musculoskeletal, or inflammatory conditions. One of the biggest technical challenges of the use of natural stem cells, however, is the prevention of their premature senescence during therapeutical manipulations. Culturing stem cells under hypoxic conditions is believed to be a possible route to fulfill this goal. Here, we review current literature data on the effects of hypoxia on bone marrow-derived mesenchymal stromal cells, one of the most popular tools of practical cellular therapy, in the context of their senescence.
Collapse
|
37
|
miR-10a as a therapeutic target and predictive biomarker for MDM2 inhibition in acute myeloid leukemia. Leukemia 2021; 35:1933-1948. [PMID: 33262524 PMCID: PMC8257503 DOI: 10.1038/s41375-020-01095-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
Pharmacological inhibition of MDM2/4, which activates the critical tumor suppressor p53, has been gaining increasing interest as a strategy for the treatment of acute myeloid leukemia (AML). While clinical trials of MDM2 inhibitors have shown promise, responses have been confined to largely molecularly undefined patients, indicating that new biomarkers and optimized treatment strategies are needed. We previously reported that the microRNA miR-10a is strongly overexpressed in some AML, and demonstrate here that it modulates several key members of the p53/Rb network, including p53 regulator MDM4, Rb regulator RB1CC1, p21 regulator TFAP2C, and p53 itself. The expression of both miR-10a and its downstream targets were strongly predictive of MDM2 inhibitor sensitivity in cell lines, primary AML specimens, and correlated to response in patients treated with both MDM2 inhibitors and cytarabine. Furthermore, miR-10a inhibition induced synergy between MDM2 inhibitor Nutlin-3a and cytarabine in both in vitro and in vivo AML models. Mechanistically this synergism primarily occurs via the p53-mediated activation of cytotoxic apoptosis at the expense of cytoprotective autophagy. Together these findings demonstrate that miR-10a may be useful as both a biomarker to identify patients most likely to respond to cytarabine+MDM2 inhibition and also a druggable target to increase their efficacy.
Collapse
|
38
|
Role of Bcl-2 Family Proteins in Photodynamic Therapy Mediated Cell Survival and Regulation. Molecules 2020; 25:molecules25225308. [PMID: 33203053 PMCID: PMC7696921 DOI: 10.3390/molecules25225308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment modality that involves three components: combination of a photosensitizer, light and molecular oxygen that leads to localized formation of reactive oxygen species (ROS). The ROS generated from this promising therapeutic modality can be lethal to the cell and leads to consequential destruction of tumor cells. However, sometimes the ROS trigger a stress response survival mechanism that helps the cells to cope with PDT-induced damage, resulting in resistance to the treatment. One preferred mechanism of cell death induced by PDT is apoptosis, and B-cell lymphoma 2 (Bcl-2) family proteins have been described as a major determinant of life or death decision of the death pathways. Apoptosis is a cellular self-destruction mechanism to remove old cells through the biological event of tissue homeostasis. The Bcl-2 family proteins act as a critical mediator of a life–death decision of cells in maintaining tissue homeostasis. There are several reports that show cancer cells developing resistance due to the increased interaction of the pro-survival Bcl-2 family proteins. However, the key mechanisms leading to apoptosis evasion and drug resistance have not been adequately understood. Therefore, it is critical to understand the mechanisms of PDT resistance, as well as the Bcl-2 family proteins, to give more insight into the treatment outcomes. In this review, we describe the role of Bcl-2 gene family proteins’ interaction in response to disease progression and PDT-induced resistance mechanisms.
Collapse
|
39
|
Park JJ, Kim JE, Jeon Y, Lee MR, Choi JY, Song BR, Park JW, Kang MJ, Choi HJ, Bae SJ, Lee H, Kang BC, Hwang DY. Deletion of NKX3.1 via CRISPR/Cas9 Induces Prostatic Intraepithelial Neoplasia in C57BL/6 Mice. Technol Cancer Res Treat 2020; 19:1533033820964425. [PMID: 33094683 PMCID: PMC7586030 DOI: 10.1177/1533033820964425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several techniques have been employed for deletion of the NKX3.1 gene, resulting in developmental defects of the prostate, including alterations in ductal branching morphogenesis and prostatic secretions as well as epithelial hyperplasia and dysplasia. To investigate whether the CRISPR/Cas9-mediated technique can be applied to study prostate carcinogenesis through exon I deletion of NKX3.1 gene, alterations in the prostatic intraepithelial neoplasia (PIN) and their regulatory mechanism were observed in the prostate of NKX3.1 knockout (KO) mice produced by the CRISPR/Cas9-mediated NKX3.1 mutant gene, at the ages of 16 and 24 weeks. The weight of dorsal-lateral prostate (DLP) and anterior prostate (AP) were observed to be increased in only the 24 weeks KO mice, although morphogenesis was constant in all groups. Obvious PIN 1 and 2 lesions were frequently detected in prostate of the 24 weeks KO mice, as compared with the same age wild type (WT) mice. Ki67, a key indicator for PIN, was densely stained in the epithelium of prostate in the 24 weeks KO mice, while the expression of p53 protein was suppressed in the same group. Also, both the 16 and 24 weeks KO mice reveal inhibition of the PI3K/AKT/mTOR pathway in the prostate. However, prostate specific antigen (PSA) levels and Bax/Bcl-2 expressions were decreased in the prostate of 16 weeks KO mice, and were increased in only the 24 weeks KO mice. Taken together, the results of the present study provide additional evidence that CRISPR/Cas9-mediated exon 1 deletion of the NKX3.1 gene successfully induces PIN lesions, along with significant alterations of Ki67 expression, EGFR signaling pathway, and cancer-regulated proteins.
Collapse
Affiliation(s)
- Jin Ju Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Eun Kim
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Yoon Jeon
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Mi Rim Lee
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Jun Young Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Bo Ram Song
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ji Won Park
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Mi Ju Kang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Hyeon Jun Choi
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Su Ji Bae
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, Research Institute, National Cancer Center, Goyang-si, Korea
| | - Byeong Cheol Kang
- Graduate School of Translational Medicine, Seoul National University, College of Medicine/Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources & Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Korea
| |
Collapse
|
40
|
Calabrese C, Panuzzo C, Stanga S, Andreani G, Ravera S, Maglione A, Pironi L, Petiti J, Shahzad Ali M, Scaravaglio P, Napoli F, Fava C, De Gobbi M, Frassoni F, Saglio G, Bracco E, Pergolizzi B, Cilloni D. Deferasirox-Dependent Iron Chelation Enhances Mitochondrial Dysfunction and Restores p53 Signaling by Stabilization of p53 Family Members in Leukemic Cells. Int J Mol Sci 2020; 21:ijms21207674. [PMID: 33081324 PMCID: PMC7589297 DOI: 10.3390/ijms21207674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022] Open
Abstract
Iron is crucial to satisfy several mitochondrial functions including energy metabolism and oxidative phosphorylation. Patients affected by Myelodysplastic Syndromes (MDS) and acute myeloid leukemia (AML) are frequently characterized by iron overload (IOL), due to continuous red blood cell (RBC) transfusions. This event impacts the overall survival (OS) and it is associated with increased mortality in lower-risk MDS patients. Accordingly, the oral iron chelator Deferasirox (DFX) has been reported to improve the OS and delay leukemic transformation. However, the molecular players and the biological mechanisms laying behind remain currently mostly undefined. The aim of this study has been to investigate the potential anti-leukemic effect of DFX, by functionally and molecularly analyzing its effects in three different leukemia cell lines, harboring or not p53 mutations, and in human primary cells derived from 15 MDS/AML patients. Our findings indicated that DFX can lead to apoptosis, impairment of cell growth only in a context of IOL, and can induce a significant alteration of mitochondria network, with a sharp reduction in mitochondrial activity. Moreover, through a remarkable reduction of Murine Double Minute 2 (MDM2), known to regulate the stability of p53 and p73 proteins, we observed an enhancement of p53 transcriptional activity after DFX. Interestingly, this iron depletion-triggered signaling is enabled by p73, in the absence of p53, or in the presence of a p53 mutant form. In conclusion, we propose a mechanism by which the increased p53 family transcriptional activity and protein stability could explain the potential benefits of iron chelation therapy in terms of improving OS and delaying leukemic transformation.
Collapse
Affiliation(s)
- Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
- Correspondence:
| | - Serena Stanga
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, 10126 Turin, Italy;
| | - Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Silvia Ravera
- Human Anatomy Section, Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy;
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Lucrezia Pironi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Patrizia Scaravaglio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Francesca Napoli
- Department of Oncology, University of Turin, 10043 Turin, Italy; (F.N.); (E.B.)
| | - Carmen Fava
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Marco De Gobbi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Francesco Frassoni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10043 Turin, Italy; (F.N.); (E.B.)
| | - Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (C.C.); (G.A.); (A.M.); (L.P.); (J.P.); (M.S.A.); (P.S.); (C.F.); (M.D.G.); (F.F.); (G.S.); (B.P.); (D.C.)
| |
Collapse
|
41
|
Suarez OJ, Vega CJ, Sanchez EN, González-Santiago AE, Rodríguez-Jorge O, Alanis AY, Chen G, Hernandez-Vargas EA. Pinning Control for the p53-Mdm2 Network Dynamics Regulated by p14ARF. Front Physiol 2020; 11:976. [PMID: 32982771 PMCID: PMC7485292 DOI: 10.3389/fphys.2020.00976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/17/2020] [Indexed: 01/26/2023] Open
Abstract
p53 regulates the cellular response to genotoxic damage and prevents carcinogenic events. Theoretical and experimental studies state that the p53-Mdm2 network constitutes the core module of regulatory interactions activated by cellular stress induced by a variety of signaling pathways. In this paper, a strategy to control the p53-Mdm2 network regulated by p14ARF is developed, based on the pinning control technique, which consists into applying local feedback controllers to a small number of nodes (pinned ones) in the network. Pinned nodes are selected on the basis of their importance level in a topological hierarchy, their degree of connectivity within the network, and the biological role they perform. In this paper, two cases are considered. For the first case, the oscillatory pattern under gamma-radiation is recovered; afterward, as the second case, increased expression of p53 level is taken into account. For both cases, the control law is applied to p14ARF (pinned node based on a virtual leader methodology), and overexpressed Mdm2-mediated p53 degradation condition is considered as carcinogenic initial behavior. The approach in this paper uses a computational algorithm, which opens an alternative path to understand the cellular responses to stress, doing it possible to model and control the gene regulatory network dynamics in two different biological contexts. As the main result of the proposed control technique, the two mentioned desired behaviors are obtained.
Collapse
Affiliation(s)
- Oscar J. Suarez
- Electrical Engineering Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guadalajara, Mexico
| | - Carlos J. Vega
- Electrical Engineering Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guadalajara, Mexico
| | - Edgar N. Sanchez
- Electrical Engineering Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guadalajara, Mexico
| | - Ana E. González-Santiago
- Biomedical Sciences Department, Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá, Mexico
| | - Otoniel Rodríguez-Jorge
- Biochemistry and Molecular Biology Department, Instituto de Investigaciones Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Alma Y. Alanis
- Computer Sciences Department, Universidad de Guadalajara, Guadalajara, Mexico
| | - Guanrong Chen
- Electrical Engineering Department, City University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
42
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020. [PMID: 32824207 DOI: 10.339/cancers12082296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA.,University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.,Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
43
|
Vishnoi K, Viswakarma N, Rana A, Rana B. Transcription Factors in Cancer Development and Therapy. Cancers (Basel) 2020; 12:cancers12082296. [PMID: 32824207 PMCID: PMC7464564 DOI: 10.3390/cancers12082296] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multi-step process and requires constitutive expression/activation of transcription factors (TFs) for growth and survival. Many of the TFs reported so far are critical for carcinogenesis. These include pro-inflammatory TFs, hypoxia-inducible factors (HIFs), cell proliferation and epithelial-mesenchymal transition (EMT)-controlling TFs, pluripotency TFs upregulated in cancer stem-like cells, and the nuclear receptors (NRs). Some of those, including HIFs, Myc, ETS-1, and β-catenin, are multifunctional and may regulate multiple other TFs involved in various pro-oncogenic events, including proliferation, survival, metabolism, invasion, and metastasis. High expression of some TFs is also correlated with poor prognosis and chemoresistance, constituting a significant challenge in cancer treatment. Considering the pivotal role of TFs in cancer, there is an urgent need to develop strategies targeting them. Targeting TFs, in combination with other chemotherapeutics, could emerge as a better strategy to target cancer. So far, targeting NRs have shown promising results in improving survival. In this review, we provide a comprehensive overview of the TFs that play a central role in cancer progression, which could be potential therapeutic candidates for developing specific inhibitors. Here, we also discuss the efforts made to target some of those TFs, including NRs.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Navin Viswakarma
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; (K.V.); (N.V.); (A.R.)
- University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
44
|
Huang Z, Liu X, Ma A, Wang XA, Guo X, Zhao T, Zhang J, Yang S, Xu R. Molecular cloning, characterization and expression analysis of p53 from turbot Scophthalmus maximus and its response to thermal stress. J Therm Biol 2020; 90:102560. [PMID: 32479378 DOI: 10.1016/j.jtherbio.2020.102560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 11/29/2022]
Abstract
The tumor suppressor protein, p53 plays a crucial role in protecting genetic integrity. Once activated by diverse cell stresses, p53 reversibly activates downstream target genes to regulate cell cycle and apoptosis. However, few studies have investigated the effects of thermal stress in turbot, specifically the p53 signaling pathway. In this study, the rapid amplification of cDNA ends was used to obtain a full-length cDNA of the turbot p53 gene (Sm-p53) and perform bioinformatics analysis. The results showed that the cDNA of the Sm-p53 gene was 2928 bp in length, encoded a 381 amino acid protein, with a theoretical isoelectric point of 6.73. It was composed of a DNA binding and a tetramerization domain. Expression of Sm-p53 in different tissues was detected and quantified by qRT-PCR, and was highest in the liver. We also investigated the expression profiles of Sm-p53 in different tissue and TK cells after thermal stress. These result suggested that Sm-p53 plays a key role, and provides a theoretical basis for Sm-p53 changes in environmental stress responses in the turbot.
Collapse
Affiliation(s)
- Zhihui Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Xiaofei Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Xin-An Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Xiaoli Guo
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Tingting Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Jinsheng Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Shuangshuang Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China; Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Limited Corporation, Yantai, 264006, China
| |
Collapse
|
45
|
Das K, Garnica O, Flores J, Dhandayuthapani S. Methionine sulfoxide reductase A (MsrA) modulates cells and protects against Mycoplasma genitalium induced cytotoxicity. Free Radic Biol Med 2020; 152:323-335. [PMID: 32222467 DOI: 10.1016/j.freeradbiomed.2020.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) is a ubiquitous antioxidant repair enzyme which specifically reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Previous studies have shown that lack of or overexpression of MsrA in cells affects the function of proteins and can lead to altered cellular processes. Interestingly, some pathogenic bacteria secrete and/or carry MsrA on their surface, suggesting some key roles for this enzyme in the modulation of host cellular processes. Therefore, we investigated how exogenously added MsrA affects the ability of the host cells in combating infection by using an in vitroMycoplasma genitalium cytotoxicity model. HeLa cells pretreated with MsrA and infected with M. genitalium showed significantly lower necrosis (cytotoxicity) than untreated cells infected with M. genitalium. Intriguingly, necrotic cell death pathway specific real time RT-PCR revealed that M. genitalium infection upregulates the expression of the TNF gene in HeLa cells and that MsrA pretreatment of the cells downregulates its expression significantly. Consistent with this, enzyme linked immunosorbent assay (ELISA) results showed that HeLa cells pretreated with MsrA secreted reduced levels of TNF-α following M. genitalium infection. Also, our study demonstrates that MsrA treatment of cells affects the phosphorylation status of transcriptional regulators such as NF-кB, JNK and p53 that regulate different cytokines. Further, fluorescent microscopy showed the cellular uptake of exogenously added MsrA fused with red fluorescent protein (MsrA-RFP). Altogether, our results suggest that secreted MsrA may help pathogens to modulate host cellular processes.
Collapse
Affiliation(s)
- Kishore Das
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Javier Flores
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA; Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
46
|
Two Birds with One Stone: NFAT1-MDM2 Dual Inhibitors for Cancer Therapy. Cells 2020; 9:cells9051176. [PMID: 32397368 PMCID: PMC7291050 DOI: 10.3390/cells9051176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor p53 is believed to be the mostly studied molecule in modern biomedical research. Although p53 interacts with hundreds of molecules to exert its biological functions, there are only a few modulators regulating its expression and function, with murine double minute 2 (MDM2) playing a key role in this regard. MDM2 also contributes to malignant transformation and cancer development through p53-dependent and -independent mechanisms. There is an increasing interest in developing MDM2 inhibitors for cancer prevention and therapy. We recently demonstrated that the nuclear factor of activated T cells 1 (NFAT1) activates MDM2 expression. NFAT1 regulates several cellular functions in cancer cells, such as cell proliferation, migration, invasion, angiogenesis, and drug resistance. Both NFAT isoforms and MDM2 are activated and overexpressed in several cancer subtypes. In addition, a positive correlation exists between NFAT1 and MDM2 in tumor tissues. Our recent clinical study has demonstrated that high expression levels of NFAT1 and MDM2 are independent predictors of a poor prognosis in patients with hepatocellular carcinoma. Thus, inhibition of the NFAT1-MDM2 pathway appears to be a novel potential therapeutic strategy for cancer. In this review, we summarize the potential oncogenic roles of MDM2 and NFAT1 in cancer cells and discuss the efforts of discovery and the development of several newly identified MDM2 and NFAT1 inhibitors, focusing on their potent in vitro and in vivo anticancer activities. This review also highlights strategies and future directions, including the need to focus on the development of more specific and effective NFAT1-MDM2 dual inhibitors for cancer therapy.
Collapse
|
47
|
Huang Z, Li X, Xie T, Gu C, Ni K, Yin Q, Cao X, Zhang C. Elevated Expression of RIOK1 Is Correlated with Breast Cancer Hormone Receptor Status and Promotes Cancer Progression. Cancer Res Treat 2020; 52:1067-1083. [PMID: 32599985 PMCID: PMC7577803 DOI: 10.4143/crt.2020.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose RIOK1 has been proved to play an important role in cancer cell proliferation and migration in various types of cancers—such as colorectal and gastric cancers. However, the expression of RIOK1 in breast cancer (BC) and the relationship between RIOK1 expression and the development of BC are not well characterized. In this study, we assessed the expression of RIOK1 in BC and evaluated the mechanisms underlying its biological function in this disease context. Materials and Methods We used immunohistochemistry, western blot and quantitative real-time polymerase chain reaction to evaluate the expression of RIOK1 in BC patients. Then, knockdown or overexpression of RIOK1 were used to evaluate the effect on BC cells in vitro and in vivo. Finally, we predicted miR-204-5p could be a potential regulator of RIOK1. Results We found that the expression levels of RIOK1 were significantly higher in hormone receptor (HR)–negative BC patients and was associated with tumor grades (p=0.010) and p53 expression (p=0.008) and survival duration (p=0.011). Kaplan-Meier analysis suggested a tendency for the poor prognosis. In vitro, knockdown of RIOK1 could inhibit proliferation, invasion, and induced apoptosis in HR-negative BC cells and inhibited tumorigenesis in vivo, while overexpression of RIOK1 promoted HR-positive tumor progression. MiR-204-5p could regulate RIOK1 expression and be involved in BC progression. Conclusion These findings indicate that RIOK1 expression could be a biomarker of HR-negative BC, and it may serve as an effective prognostic indicator and promote BC progression.
Collapse
Affiliation(s)
- Zhiqi Huang
- Medical School of Nantong University, Nantong, China
| | - Xingyu Li
- Medical School of Nantong University, Nantong, China
| | - Tian Xie
- Department of Clinical Research Center, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Changjiang Gu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Kan Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingqing Yin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaolei Cao
- Medical School of Nantong University, Nantong, China
| | - Chunhui Zhang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
48
|
Bae JR, Park WH, Suh DH, No JH, Kim YB, Kim K. Role of limonin in anticancer effects of Evodia rutaecarpa on ovarian cancer cells. BMC Complement Med Ther 2020; 20:94. [PMID: 32197606 PMCID: PMC7085187 DOI: 10.1186/s12906-020-02890-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/11/2020] [Indexed: 12/01/2022] Open
Abstract
Background Ovarian cancer therapy generally involves systemic chemotherapy with anticancer drugs; however, chemotherapy with a platinum-based drug has often been shown to cause adverse reactions and drug resistance in ovarian cancer patients. Evodia rutaecarpa (ER) reportedly shows anticancer activity against various types of cancer cells. However, the effects of ER have not yet been fully uncovered in ovarian cancer. Methods In the present study, we investigated the anticancer effects of an ER extract and its components against the ovarian cancer cell lines SKOV-33, A2780, RMUG-S and a cisplatin-resistant SKOV-3 cell line (CisR SKOV-3). Cell viability and colony formation assays along with subcellular fractionation analysis, immunoblotting, and immunofluorescence staining were performed. Results ER treatment led to a significant reduction in the viability of SKOV-3 cells. Moreover, limonin, a compound found in ER, reduced the viability of both serous-type (SKOV-3 and A2780) and mucinous-type (RMUG-S) ovarian cancer cells by inducing apoptosis via activation of the p53 signaling pathway. Furthermore, limonin reversed the drug resistance through activation of apoptosis in CisR SKOV-3. Conclusion Taken together, our findings suggest that limonin contributes to the anti-ovarian cancer effects of ER by inducing apoptosis via activation of the p53 signaling pathway.
Collapse
Affiliation(s)
- Jae Ryul Bae
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Wook Ha Park
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
49
|
Kang DY, Sp N, Jo ES, Rugamba A, Hong DY, Lee HG, Yoo JS, Liu Q, Jang KJ, Yang YM. The Inhibitory Mechanisms of Tumor PD-L1 Expression by Natural Bioactive Gallic Acid in Non-Small-Cell Lung Cancer (NSCLC) Cells. Cancers (Basel) 2020; 12:E727. [PMID: 32204508 PMCID: PMC7140102 DOI: 10.3390/cancers12030727] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype and accounts for more than 80% of all lung cancer cases. Epidermal growth factor receptor (EGFR) phosphorylation by binding growth factors such as EGF activates downstream prooncogenic signaling pathways including KRAS-ERK, JAK-STAT, and PI3K-AKT. These pathways promote the tumor progression of NSCLC by inducing uncontrolled cell cycle, proliferation, migration, and programmed death-ligand 1 (PD-L1) expression. New cytotoxic drugs have facilitated considerable progress in NSCLC treatment, but side effects are still a significant cause of mortality. Gallic acid (3,4,5-trihydroxybenzoic acid; GA) is a phenolic natural compound, isolated from plant derivatives, that has been reported to show anticancer effects. We demonstrated the tumor-suppressive effect of GA, which induced the decrease of PD-L1 expression through binding to EGFR in NSCLC. This binding inhibited the phosphorylation of EGFR, subsequently inducing the inhibition of PI3K and AKT phosphorylation, which triggered the activation of p53. The p53-dependent upregulation of miR-34a induced PD-L1 downregulation. Further, we revealed the combination effect of GA and anti-PD-1 monoclonal antibody in an NSCLC-cell and peripheral blood mononuclear-cell coculture system. We propose a novel therapeutic application of GA for immunotherapy and chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Eun Seong Jo
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Alexis Rugamba
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Dae Young Hong
- Department of Emergency Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Hong Ghi Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Konkuk University Medical Center, Seoul 05029, Korea;
| | - Ji-Seung Yoo
- Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-0808, Japan;
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun 130000, Jilin, China;
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea; (D.Y.K.); (N.S.); (E.S.J.); (A.R.)
| |
Collapse
|
50
|
Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, Smits EL, Lardon F, van Dam PA. The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol 2020; 60:41-56. [DOI: 10.1016/j.semcancer.2019.10.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
|