1
|
Yao H, Chen J, Wang Y, Li Y, Tang P, Liang M, Jiang Q. Uncovering therapeutic targets for Pre-eclampsia and pregnancy hypertension via multi-tissue data integration. BMC Pregnancy Childbirth 2025; 25:479. [PMID: 40269770 PMCID: PMC12020376 DOI: 10.1186/s12884-025-07608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Pre-eclampsia (PE) and pregnancy hypertension (PH) are common and serious complications during pregnancy, which can lead to maternal and fetal death in severe cases. Therefore, further research on the potential therapeutic targets of PE and PH is of great significance for developing new treatment strategies. METHODS This study used the summary data-based Mendelian randomization (SMR) method to analyze expression quantitative trait loci (eQTL) data from blood, aorta, and uterus with Genome-wide association studies (GWAS) data on PE and PH, exploring potential genetic loci involved in PE and PH. Since proteinuria is a clinical manifestation of PE, we also analyzed genes related to the kidney and PE. The HEIDI test was used for heterogeneity testing, and results were adjusted using FDR. The cis-eQTL data were obtained from the blood summary-level data of the eQTLGen Consortium and the aorta and uterus data from the V8 release of the GTEx eQTL summary data. The GWAS data for PE and PH were obtained from the FinnGen Documentation of R10 release. This study utilized the STROBE-MR checklist for reporting Mendelian Randomization (MR) studies. RESULTS This study identified several potential therapeutic targets by integrating eQTL data from blood, uterus, and aorta with GWAS data for PE and PH, as well as kidney eQTL data with GWAS data for PE. Additionally, the study discovered some genes with common roles in PE and PH, offering new insights into the shared pathological mechanisms of these two conditions. These findings not only provide new clues to the pathogenesis of PE and PH but also offer crucial foundational data for the development of future therapeutic strategies. CONCLUSION This study revealed multiple potential therapeutic targets for PE and PH, providing new insights for basic experimental research and clinical treatment to mitigate the severe consequences of PE and PH. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hang Yao
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Jiahao Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuxin Li
- Graduate School of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Peiyu Tang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingpeng Liang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qingling Jiang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China.
| |
Collapse
|
2
|
Liu Y, Li R, Wang Y. Clinical outcomes and placental pathological characteristics after fresh embryo transfer and frozen-thawed embryo transfer with different endometrial preparation protocols. Placenta 2023; 131:65-70. [PMID: 36493625 DOI: 10.1016/j.placenta.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yuanying Liu
- National Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Rong Li
- National Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Yongqing Wang
- National Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Yang Y, Yao HJ, Lin WJ, Huang SC, Li XD, He FZ. Real role of growth factor receptor-binding protein 10: Linking lipid metabolism to diabetes cardiovascular complications. World J Clin Cases 2022; 10:12875-12879. [PMID: 36569013 PMCID: PMC9782935 DOI: 10.12998/wjcc.v10.i35.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular complications of patients with type 2 diabetes mellitus (T2DM) threaten the health and life of numerous individuals. Recently, growth factor receptor-binding protein 10 (GRB10) was found to play a pivotal role in vascular complications of T2DM, which participates in the regulation of lipid metabolism of T2DM patients. The genetic variation of GRB10 rs1800504 is closely related to the risk of coronary heart disease in patients with T2DM. The development of GRB10 as a key mediator in the association of lipid metabolism with cardiovascular complications in T2DM is detailed in and may provide new potential concerns for the study of cardiovascular complications in T2DM patients.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Hua-Jie Yao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430000, Hubei Province, China
| | - Wei-Jie Lin
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Si-Chao Huang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Xiao-Dong Li
- Department of Quality Control, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| | - Fa-Zhong He
- Department of Quality Control, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
4
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
5
|
Yang Y, Qiu W, Meng Q, Liu M, Lin W, Yang H, Wang R, Dong J, Yuan N, Zhou Z, He F. GRB10 rs1800504 Polymorphism Is Associated With the Risk of Coronary Heart Disease in Patients With Type 2 Diabetes Mellitus. Front Cardiovasc Med 2021; 8:728976. [PMID: 34651026 PMCID: PMC8505721 DOI: 10.3389/fcvm.2021.728976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetic vascular complications are one of the main causes of death and disability. Previous studies have reported that genetic variation is associated with diabetic vascular complications. In this study, we aimed to investigate the association between GRB10 polymorphisms and susceptibility to type 2 diabetes mellitus (T2DM) vascular complications. Eight single nucleotide polymorphisms (SNPs) in the GRB10 gene were genotyped by MassARRAY system and 934 patients with type 2 diabetes mellitus (T2DM) were included for investigation. We found that GRB10 rs1800504 CC+CT genotypes were significantly associated with increased risk of coronary heart disease (CHD) compared with TT genotype (OR = 2.24; 95%CI: 1.36-3.70, p = 0.002). Consistently, levels of cholesterol (CHOL) (CC+CT vs. TT, 4.44 ± 1.25 vs. 4.10 ± 1.00 mmol/L; p = 0.009) and low density lipoprotein cholesterin (LDL-CH) (CC+CT vs. TT, 2.81 ± 1.07 vs. 2.53 ± 0.82 mmol/L; p = 0.01) in T2DM patients with TT genotype were significant lower than those of CC+CT genotypes. We further validated in MIHA cell that the total cholesterol (TC) level in GRB10-Mut was significantly reduced compared with GRB10-WT; p = 0.0005. Likewise, the reversed palmitic acid (PA) induced lipid droplet formation in GRB10-Mut was more effective than in GRB10-WT. These results suggest that rs1800504 of GRB10 variant may be associated with the blood lipids and then may also related to the risk of CHD in patients with T2DM.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Wentao Qiu
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Qian Meng
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Mouze Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijie Lin
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Haikui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Ningning Yuan
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Fazhong He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| |
Collapse
|
6
|
Hao J, Ci X, Wang Y, Choi SYC, Sullivan SE, Xue H, Wu R, Dong X, Haegert AM, Collins CC, Lin D, Wang Y. GRB10 sustains AR activity by interacting with PP2A in prostate cancer cells. Int J Cancer 2020; 148:469-480. [PMID: 33038264 DOI: 10.1002/ijc.33335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) progression is driven by androgen receptor (AR) signaling. Unfortunately, androgen-deprivation therapy and the use of even more potent AR pathway inhibitors (ARPIs) cannot bring about a cure. ARPI resistance (ie, castration-resistant PCa, CRPC) will inevitably develop. Previously, we demonstrated that GRB10 is an AR transcriptionally repressed gene that functionally contributes to CRPC development and ARPI resistance. GRB10 expression is elevated prior to CRPC development in our patient-derived xenograft models and is significantly upregulated in clinical CRPC samples. Here, we analyzed transcriptomic data from GRB10 knockdown in PCa cells and found that AR signaling is downregulated. While the mRNA expression of AR target genes decreased upon GRB10 knockdown, AR expression was not affected at the mRNA or protein level. We further found that phosphorylation of AR serine 81 (S81), which is critical for AR transcriptional activity, is decreased by GRB10 knockdown and increased by its overexpression. Luciferase assay using GRB10-knockdown cells also indicate reduced AR activity. Immunoprecipitation coupled with mass spectrometry revealed an interaction between GRB10 and the PP2A complex, which is a known phosphatase of AR. Further validations and analyses showed that GRB10 binds to the PP2Ac catalytic subunit with its PH domain. Mechanistically, GRB10 knockdown increased PP2Ac protein stability, which in turn decreased AR S81 phosphorylation and reduced AR activity. Our findings indicate a reciprocal feedback between GRB10 and AR signaling, implying the importance of GRB10 in PCa progression.
Collapse
Affiliation(s)
- Jun Hao
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Xinpei Ci
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yong Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Stephen Yiu Chuen Choi
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Sarah E Sullivan
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Kinesiology and Physical Education, McGill University, Quebec, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Anne M Haegert
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Gallart-Palau X, Serra A, Hase Y, Tan CF, Chen CP, Kalaria RN, Sze SK. Brain-derived and circulating vesicle profiles indicate neurovascular unit dysfunction in early Alzheimer's disease. Brain Pathol 2019; 29:593-605. [PMID: 30629763 DOI: 10.1111/bpa.12699] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022] Open
Abstract
Vascular factors that reduce blood flow to the brain are involved in apparition and progression of dementia. We hypothesized that cerebral hypoperfusion (CH) might alter the molecular compositions of brain intercellular communication mechanisms while affecting the neurovascular unit in preclinical and clinical human dementias. To test that hypothesis, mice were subjected to bilateral common carotid stenosis (BCAS) and the molecular compositions of brain-derived and circulating extracellular vesicles (EVs) were assessed. Murine brain vesicle profiles were then analyzed in parallel with brain EVs from post-mortem subjects affected by preclinical Alzheimer's Disease (AD) and mixed dementias. Brain EVs were identified with molecular mediators of hypoxia responses, neuroprotection and neurotoxicity in BCAS mice, patterns also partially resembled by subjects with preclinical AD and mixed dementias. Together these findings indicate that brain EVs represent a promising source of therapeutic targets and circulating markers of neurovascular insult in idiopathic dementias. Furthermore, the results obtained generate novel and compelling hypotheses about the molecular involvement of the vascular component in the etiology of human dementias.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Aida Serra
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yoshiki Hase
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Chee Fan Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Christopher P Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raj N Kalaria
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Naudin C, Chevalier C, Roche S. The role of small adaptor proteins in the control of oncogenic signalingr driven by tyrosine kinases in human cancer. Oncotarget 2017; 7:11033-55. [PMID: 26788993 PMCID: PMC4905456 DOI: 10.18632/oncotarget.6929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Protein phosphorylation on tyrosine (Tyr) residues has evolved as an important mechanism to coordinate cell communication in multicellular organisms. The importance of this process has been revealed by the discovery of the prominent oncogenic properties of tyrosine kinases (TK) upon deregulation of their physiological activities, often due to protein overexpression and/or somatic mutation. Recent reports suggest that TK oncogenic signaling is also under the control of small adaptor proteins. These cytosolic proteins lack intrinsic catalytic activity and signal by linking two functional members of a catalytic pathway. While most adaptors display positive regulatory functions, a small group of this family exerts negative regulatory functions by targeting several components of the TK signaling cascade. Here, we review how these less studied adaptor proteins negatively control TK activities and how their loss of function induces abnormal TK signaling, promoting tumor formation. We also discuss the therapeutic consequences of this novel regulatory mechanism in human oncology.
Collapse
Affiliation(s)
- Cécile Naudin
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France
| | - Clément Chevalier
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Present address: SFR Biosit (UMS CNRS 3480/US INSERM 018), MRic Photonics Platform, University Rennes, Rennes, France
| | - Serge Roche
- CNRS UMR5237, University Montpellier, CRBM, Montpellier, France.,Equipe Labellisée LIGUE 2014, Ligue Contre le Cancer, Paris, France
| |
Collapse
|
9
|
García-Palmero I, Pompas-Veganzones N, Villalobo E, Gioria S, Haiech J, Villalobo A. The adaptors Grb10 and Grb14 are calmodulin-binding proteins. FEBS Lett 2017; 591:1176-1186. [PMID: 28295264 DOI: 10.1002/1873-3468.12623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
We identified the Grb7 family members, Grb10 and Grb14, as Ca2+ -dependent CaM-binding proteins using Ca2+ -dependent CaM-affinity chromatography as we previously did with Grb7. The potential CaM-binding sites were identified and experimentally tested using fluorescent-labeled peptides corresponding to these sites. The apparent affinity constant of these peptides for CaM, and the minimum number of calcium ions bound to CaM that are required for effective binding to these peptides were also determined. We prepared deletion mutants of the three adaptor proteins lacking the identified sites and determined that they lost or strongly diminished their CaM-binding capacity following the sequence Grb7 > > Grb14 > Grb10. More than one CaM-binding site and/or accessory CaM-binding sites appear to exist in Grb10 and Grb14, as compared to a single one present in Grb7.
Collapse
Affiliation(s)
- Irene García-Palmero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Noemí Pompas-Veganzones
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Spain
| | - Sophie Gioria
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UMS 3286 CNRS-Université de Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, France
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| |
Collapse
|
10
|
Reddy MA, Das S, Zhuo C, Jin W, Wang M, Lanting L, Natarajan R. Regulation of Vascular Smooth Muscle Cell Dysfunction Under Diabetic Conditions by miR-504. Arterioscler Thromb Vasc Biol 2016; 36:864-73. [PMID: 26941017 DOI: 10.1161/atvbaha.115.306770] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Diabetes mellitus accelerates proatherogenic and proinflammatory phenotype of vascular smooth muscle cell (VSMC) associated with vascular complications. Evidence shows that microRNAs (miRNAs) play key roles in VSMC functions, but their role under diabetic conditions is unclear. We profiled miRNAs in VSMC from diabetic mice and examined their role in VSMC dysfunction. APPROACH AND RESULTS High throughput small RNA-sequencing identified 135 differentially expressed miRNAs in VSMC from type 2 diabetic db/db mice (db/dbVSMC) versus nondiabetic db/+ mice. Several of these miRNAs were known to regulate VSMC functions. We further focused on miR-504, because it was highly upregulated in db/dbVSMC, and its function in VSMC is unknown. miR-504 and its host gene Fgf13 were significantly increased in db/dbVSMC and in aortas from db/db mice. Bioinformatics analysis predicted that miR-504 targets including signaling adaptor Grb10 and transcription factor Egr2 could regulate growth factor signaling. We experimentally validated Grb10 and Egr2 as novel targets of miR-504. Overexpression of miR-504 in VSMC inhibited contractile genes and enhanced extracellular signal-regulated kinase 1/2 activation, proliferation, and migration. These effects were blocked by miR-504 inhibitors. Grb10 knockdown mimicked miR-504 functions and increased inflammatory genes. Egr2 knockdown-inhibited anti-inflammatory Socs1 and increased proinflammatory genes. Furthermore, high glucose and palmitic acid upregulated miR-504 and inflammatory genes, but downregulated Grb10. CONCLUSIONS Diabetes mellitus misregulates several miRNAs including miR-504 that can promote VSMC dysfunction. Because changes in many of these miRNAs are sustained in diabetic VSMC even after in vitro culture, they may be involved in metabolic memory of vascular complications. Targeting such mechanisms could offer novel therapeutic strategies for diabetic complications.
Collapse
Affiliation(s)
- Marpadga A Reddy
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Sadhan Das
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Chen Zhuo
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Wen Jin
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Mei Wang
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Linda Lanting
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA
| | - Rama Natarajan
- From the Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA.
| |
Collapse
|
11
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
12
|
Mainigi MA, Olalere D, Burd I, Sapienza C, Bartolomei M, Coutifaris C. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol Reprod 2014; 90:26. [PMID: 24352558 DOI: 10.1095/biolreprod.113.110411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes.
Collapse
Affiliation(s)
- Monica A Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
13
|
Kabir NN, Kazi JU. Grb10 is a dual regulator of receptor tyrosine kinase signaling. Mol Biol Rep 2014; 41:1985-92. [PMID: 24420853 DOI: 10.1007/s11033-014-3046-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
The adaptor protein Grb10 is a close homolog of Grb7 and Grb14. These proteins are characterized by an N-terminal proline-rich region, a Ras-GTPase binding domain, a PH domain, an SH2 domain and a BPS domain in between the PH and SH2 domains. Human Grb10 gene encodes three splice variants. These variants show differences in functionality. Grb10 associates with multiple proteins including tyrosine kinases in a tyrosine phosphorylation dependent or independent manner. Association with multiple proteins allows Grb10 to regulate different signaling pathways resulting in different biological consequences.
Collapse
Affiliation(s)
- Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Bagura Road, Barisal, Bangladesh
| | | |
Collapse
|
14
|
FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol 2012; 7:402-18. [PMID: 23246379 DOI: 10.1016/j.molonc.2012.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/22/2012] [Indexed: 01/17/2023] Open
Abstract
The adaptor protein Grb10 plays important roles in mitogenic signaling. However, its roles in acute myeloid leukemia (AML) are predominantly unknown. Here we describe the role of Grb10 in FLT3-ITD-mediated AML. We observed that Grb10 physically associates with FLT3 in response to FLT3-ligand (FL) stimulation through FLT3 phospho-tyrosine 572 and 793 residues and constitutively associates with oncogenic FLT3-ITD. Furthermore endogenous Grb10-FLT3 association was observed in OCI-AML-5 cells. Grb10 expression did not alter FLT3 receptor activation or stability in Ba/F3-FLT3 cells. However, expression of Grb10 enhanced FL-induced Akt phosphorylation without affecting Erk or p38 phosphorylation in Ba/F3-FLT3-WT and Ba/F3-FLT3-ITD. Selective Grb10 depletion reduced Akt phosphorylation in Ba/F3-FLT3-WT and OCI-AML-5 cells. Grb10 transduces signal from FLT3 by direct interaction with p85 and Ba/F3-FLT3-ITD cells expressing Grb10 exhibits higher STAT5 activation. Grb10 regulates the cell cycle by increasing cell population in S-phase. Expression of Grb10 furthermore resulted in an increased proliferation and survival of Ba/F3-FLT3-ITD cells as well as increased colony formation in semisolid culture. Grb10 expression was significantly increased in AML patients compared to healthy controls and was also elevated in patients carrying FLT3-ITD mutants. The elevated Grb10 expression partially correlated to relapse as well as to poor prognosis. These results suggest that Grb10 binds to both normal and oncogenic FLT3 and induces PI3K-Akt and STAT5 signaling pathways resulting in an enhanced proliferation, survival and colony formation of hematopoietic cells.
Collapse
|
15
|
Horowitz A, Seerapu HR. Regulation of VEGF signaling by membrane traffic. Cell Signal 2012; 24:1810-20. [PMID: 22617029 DOI: 10.1016/j.cellsig.2012.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58].
Collapse
Affiliation(s)
- Arie Horowitz
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
16
|
Huang Q, Szebenyi DME. Structural basis for the interaction between the growth factor-binding protein GRB10 and the E3 ubiquitin ligase NEDD4. J Biol Chem 2010; 285:42130-9. [PMID: 20980250 PMCID: PMC3009938 DOI: 10.1074/jbc.m110.143412] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 10/11/2010] [Indexed: 01/28/2023] Open
Abstract
In addition to inhibiting insulin receptor and IGF1R kinase activity by directly binding to the receptors, GRB10 can also negatively regulate insulin and IGF1 signaling by mediating insulin receptor and IGF1R degradation through ubiquitination. It has been shown that GRB10 can interact with the C2 domain of the E3 ubiquitin ligase NEDD4 through its Src homology 2 (SH2) domain. Therefore, GRB10 might act as a connector, bringing NEDD4 close to IGF1R to facilitate the ubiquitination of IGF1R by NEDD4. This is the first case in which it has been found that an SH2 domain could colocalize a ubiquitin ligase and its substrate. Here we report the crystal structure of the NEDD4 C2-GRB10 SH2 complex at 2.0 Å. The structure shows that there are three interaction interfaces between NEDD4 C2 and GRB10 SH2. The main interface centers on an antiparallel β-sheet composed of the F β-strand of GRB10 SH2 and the C β-strand of NEDD4 C2. NEDD4 C2 binds at nonclassical sites on the SH2 domain surface, far from the classical phosphotyrosine-binding pocket. Hence, this interaction is phosphotyrosine-independent, and GRB10 SH2 can bind the C2 domain of NEDD4 and the kinase domain of IGF1R simultaneously. Based on these results, a model of how NEDD4 interacts with IGF1R through GRB10 has been proposed. This report provides further evidence that SH2 domains can participate in important signaling interactions beyond the classical recognition of phosphotyrosine.
Collapse
Affiliation(s)
- Qingqiu Huang
- MacCHESS, Cornell University, Ithaca, New York 14853, USA.
| | | |
Collapse
|
17
|
Sturk C, Dumont DJ. Tyrosine phosphorylation of Grb14 by Tie2. Cell Commun Signal 2010; 8:30. [PMID: 20973951 PMCID: PMC2978215 DOI: 10.1186/1478-811x-8-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/25/2010] [Indexed: 12/05/2022] Open
Abstract
Background Growth factor receptor bound (Grb) proteins 7, 10 and 14 are a family of structurally related multi-domain adaptor proteins involved in a variety of biological processes. Grb7, 10 and 14 are known to become serine and/or threonine phosphorylated in response to growth factor (GF) stimulation. Grb7 and 10 have also been shown to become tyrosine phosphorylated under certain conditions. Under experimental conditions Grb7 is tyrosine phosphorylated by the Tie2/Tie-2/Tek angiogenic receptor tyrosine kinase (RTK). Furthermore, Grb14 has also been shown to interact with Tie2, however tyrosine phosphorylation of this Grb family member has yet to be reported. Results Here we report for the first time tyrosine phosphorylation of Grb14. This phosphorylation requires a kinase competent Tie2 as well as intact tyrosines 1100 and 1106 (Y1100 and Y1106) on the receptor. Furthermore, a complete SH2 domain on Grb14 is required for Grb14 tyrosine phosphorylation by Tie2. Grb14 was also able to become tyrosine phosphorylated in primary endothelial cells when treated with a soluble and potent variant of the Tie2 ligand, cartilage oligomeric matrix protein (COMP) Ang1. Conclusion Our results show that Grb14, like its family members Grb7 and Grb10, is able to be tyrosine phosphorylated. Furthermore, our data indicate a role for Grb14 in endothelial signaling downstream of the Tie2 receptor.
Collapse
Affiliation(s)
- Celina Sturk
- Molecular and Cellular Biology Research, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| | | |
Collapse
|
18
|
Nedd4 and Nedd4-2: closely related ubiquitin-protein ligases with distinct physiological functions. Cell Death Differ 2010; 17:68-77. [PMID: 19557014 DOI: 10.1038/cdd.2009.84] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Nedd4 (neural precursor cell-expressed developmentally downregulated gene 4) family of ubiquitin ligases (E3s) is characterized by a distinct modular domain architecture, with each member consisting of a C2 domain, 2-4 WW domains, and a HECT-type ligase domain. Of the nine mammalian members of this family, Nedd4 and its close relative, Nedd4-2, represent the ancestral ligases with strong similarity to the yeast, Rsp5. In Saccharomyces cerevisiae Rsp5 has a key role in regulating the trafficking, sorting, and degradation of a large number of proteins in multiple cellular compartments. However, in mammals the Nedd4 family members, including Nedd4 and Nedd4-2, appear to have distinct functions, thereby suggesting that these E3s target specific proteins for ubiquitylation. In this article we focus on the biology and emerging functions of Nedd4 and Nedd4-2, and review recent in vivo studies on these E3s.
Collapse
|
19
|
Pan S, World CJ, Kovacs CJ, Berk BC. Glucose 6-Phosphate Dehydrogenase Is Regulated Through c-Src–Mediated Tyrosine Phosphorylation in Endothelial Cells. Arterioscler Thromb Vasc Biol 2009; 29:895-901. [DOI: 10.1161/atvbaha.109.184812] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shi Pan
- From the Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, NY
| | - Cameron J. World
- From the Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, NY
| | - Christopher J. Kovacs
- From the Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, NY
| | - Bradford C. Berk
- From the Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
20
|
Dasgupta B, Muller WA. Endothelial Src kinase regulates membrane recycling from the lateral border recycling compartment during leukocyte transendothelial migration. Eur J Immunol 2009; 38:3499-507. [PMID: 18991269 DOI: 10.1002/eji.200838605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
When leukocytes cross endothelial cells during the inflammatory response, membrane from the recently described lateral border recycling compartment (LBRC) is selectively targeted around diapedesing leukocytes. This "targeted recycling" is critical for leukocyte transendothelial migration. Blocking homophilic PECAM interactions between leukocytes and endothelial cells blocks targeted recycling from the LBRC and blocks diapedesis. However, the cellular signaling pathways that trigger targeted recycling are not known. We show that targeted recycling from the LBRC is dependent on Src kinase. The selective Src kinase inhibitor PP2 blocked targeted recycling and blocked diapedesis by over 70%. However, Src kinase inhibition did not affect the structure or normal constitutive recycling of membrane from the LBRC in the absence of leukocytes. PECAM, a Src kinase substrate, traffics between the LBRC and the endothelial surface at the cell border. However, virtually all of the PECAM in the cell that was phosphorylated on tyrosine residues was found in the LBRC. These findings demonstrate that Src kinase activity is critical for the targeted recycling of membrane from the LBRC to the site of transendothelial migration and that the PECAM in the LBRC is qualitatively different from the PECAM on the surface of endothelial cells.
Collapse
Affiliation(s)
- Bidisha Dasgupta
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
21
|
Deng Y, Zhang M, Riedel H. Mitogenic roles of Gab1 and Grb10 as direct cellular partners in the regulation of MAP kinase signaling. J Cell Biochem 2008; 105:1172-82. [DOI: 10.1002/jcb.21829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Hasseine LK, Murdaca J, Suavet F, Longnus S, Giorgetti-Peraldi S, Van Obberghen E. Hrs is a positive regulator of VEGF and insulin signaling. Exp Cell Res 2007; 313:1927-42. [PMID: 17445799 DOI: 10.1016/j.yexcr.2007.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/25/2022]
Abstract
Both VEGF and insulin are implicated in the pathogenesis of diabetic retinopathy. While it has been established for many years that the number of cell surface receptors impacts upon VEGF and insulin action, little is known about the precise machinery and proteins driving VEGF-R2 and IR degradation. Here, we investigate the role of Hepatocyte growth factor-Regulated tyrosine kinase Substrate (Hrs), a regulator of RTK trafficking, in VEGF and insulin signaling. We report that ectopic expression of Hrs increases VEGF-R2 and IR number and tyrosine phosphorylation, leading to amplification of their downstream signaling. The UIM (Ubiquitin Interacting Motif) domain of Hrs is required for Hrs-induced increases in VEGF-R2, but not in IR. Furthermore, Hrs is tyrosine-phosphorylated in response to VEGF and insulin. We show that the UIM domain is required for Hrs phosphorylation in response to VEGF, but not to insulin. Importantly, Hrs co-localizes with both VEGF-R2 and IR and co-immunoprecipitates with both in a manner independent of the Hrs-UIM domain. Finally, we demonstrate that Hrs inhibits Nedd4-mediated VEGF-R2 degradation and acts additively with Grb10. We conclude that Hrs is a positive regulator of VEGF-R2 and IR signaling and that ectopic expression of Hrs protects both VEGF-R2 and IR from degradation.
Collapse
|
23
|
Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006; 63:601-15. [PMID: 16465447 PMCID: PMC2773843 DOI: 10.1007/s00018-005-5426-3] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymphatic vessel development and homeostasis but also have profound effects on neural cells. VEGFs are predominantly produced by endothelial, hematopoietic and stromal cells in response to hypoxia and upon stimulation with growth factors such as transforming growth factors, interleukins or platelet-derived growth factor. VEGFs bind to three variants of type III receptor tyrosine kinases, VEGF receptor 1, 2 and 3. Each VEGF isoform binds to a particular subset of these receptors giving rise to the formation of receptor homo- and heterodimers that activate discrete signaling pathways. Signal specificity of VEGF receptors is further modulated upon recruitment of coreceptors, such as neuropilins, heparan sulfate, integrins or cadherins. Here we summarize the knowledge accumulated since the discovery of these proteins more than 20 years ago with the emphasis on the signaling pathways activated by VEGF receptors in endothelial cells during cell migration, growth and differentiation.
Collapse
Affiliation(s)
- S. Cébe-Suarez
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - A. Zehnder-Fjällman
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - K. Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, 5232 Villigen, Switzerland
| |
Collapse
|
24
|
Shearwin-Whyatt L, Dalton HE, Foot N, Kumar S. Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays 2006; 28:617-28. [PMID: 16700065 DOI: 10.1002/bies.20422] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ubiquitination is essential in mediating diverse cellular functions including protein degradation and trafficking. Ubiquitin-protein (E3) ligases determine the substrate specificity of the ubiquitination process. The Nedd4 family of E3 ligases is an evolutionarily conserved family of proteins required for the ubiquitination of a large number of cellular targets. As a result, this family regulates a wide variety of cellular processes including transcription, stability and trafficking of plasma membrane proteins, and the degradation of misfolded proteins. The modular architecture of the proteins, comprising a C2 domain, multiple WW domains and a catalytic domain, enables diverse intermolecular interactions and recruitment to various subcellular locations. The WW domains commonly mediate interaction with substrate proteins; however, an increasing number of Nedd4 targets do not contain obvious WW domain-interaction motifs suggesting the involvement of accessory proteins. This review discusses recent insights into how accessory and adaptor proteins modulate the activities of Nedd4 family members, including recruitment of novel substrates, alteration of subcellular localisation and effects on ubiquitination.
Collapse
|
25
|
Abstract
The Grb proteins (growth factor receptor-bound proteins) Grb7, Grb10 and Grb14 constitute a family of structurally related multidomain adapters with diverse cellular functions. Grb10 and Grb14, in particular, have been implicated in the regulation of insulin receptor signalling, whereas Grb7 appears predominantly to be involved in focal adhesion kinase-mediated cell migration. However, at least in vitro, these adapters can bind to a variety of growth factor receptors. The highest identity within the Grb7/10/14 family occurs in the C-terminal SH2 (Src homology 2) domain, which mediates binding to activated receptors. A second well-conserved binding domain, BPS [between the PH (pleckstrin homology) and SH2 domains], can act to enhance binding to the IR (insulin receptor). Consistent with a putative adapter function, some non-receptor-binding partners, including protein kinases, have also been identified. Grb10 and Grb14 are widely, but not uniformly, expressed in mammalian tissues, and there are various isoforms of Grb10. Binding of Grb10 or Grb14 to autophosphorylated IR in vitro inhibits tyrosine kinase activity towards other substrates, but studies on cultured cell lines have been conflicting as to whether Grb10 plays a positive or negative role in insulin signalling. Recent gene knockouts in mice have established that Grb10 and Grb14 act as inhibitors of intracellular signalling pathways regulating growth and metabolism, although the phenotypes of the two knockouts are distinct. Ablation of Grb14 enhances insulin action in liver and skeletal muscle and improves whole-body tolerance, with little effect on embryonic growth. Ablation of Grb10 results in disproportionate overgrowth of the embryo and placenta involving unidentified pathways, and also impacts on hepatic glycogen synthesis, and probably on glucose homoeostasis. This review discusses the extent to which previous studies in vitro can account for the observed phenotype of knockout animals, and considers evidence that aberrant function of Grb10 or Grb14 may contribute to disorders of growth and metabolism in humans.
Collapse
Affiliation(s)
- Lowenna J Holt
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 2QR, UK.
| | | |
Collapse
|
26
|
Murdaca J, Treins C, Monthouël-Kartmann MN, Pontier-Bres R, Kumar S, Van Obberghen E, Giorgetti-Peraldi S. Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J Biol Chem 2004; 279:26754-61. [PMID: 15060076 DOI: 10.1074/jbc.m311802200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the cellular mechanisms used to prevent continuous and enhanced activation in response to growth factors is the internalization and degradation of their receptors. Little is known about the molecular mechanisms involved in vascular endothelial growth factor receptor-2 (VEGF-R2) degradation. In a previous work, we have shown that the adaptor protein Grb10 is a positive regulator of the VEGF signaling pathway. Indeed, VEGF stimulates Grb10 expression, and Grb10 overexpression induces an increase in the amount and the tyrosine phosphorylation of VEGF-R2. In the present manuscript, we demonstrate that Grb10 stimulates VEGF-R2 expression by inhibiting the Nedd4-mediated VEGF-R2 degradation. First, we show that proteasome inhibition by MG132 induces an increase in VEGF-R2 amount, and that VEGF-R2 is ubiquitinated in response to VEGF. Expression of Nedd4, a HECT domain-containing ubiquitin ligase, induces the disappearance of VEGF-R2 in cells, suggesting that Nedd4 is involved in VEGF-R2 degradation. To determine whether Nedd4 directly ubiquitinates VEGF-R2, we expressed a ubiquitin ligase-deficient mutant Nedd4C854S. In the presence of Nedd4C854S, VEGF-R2 is expressed and ubiquitinated. These results suggest that VEGF-R2 is ubiquitinated but that Nedd4 is not involved in this process. Finally, we show that Grb10 constitutively associates with Nedd4. Co-expression of Nedd4 and Grb10 restores the expression of VEGF-R2, suggesting that Grb10 inhibits the Nedd4-mediated degradation of VEGF-R2. In this study, we show that Grb10 acts as a positive regulator in VEGF-R2 signaling and protects VEGF-R2 from degradation by interacting with Nedd4, a component of the endocytic machinery.
Collapse
Affiliation(s)
- Joseph Murdaca
- INSERM U145, Institut Federatif de Recherche 50, Faculte de Medecine, 06107 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Deng Y, Bhattacharya S, Swamy OR, Tandon R, Wang Y, Janda R, Riedel H. Growth factor receptor-binding protein 10 (Grb10) as a partner of phosphatidylinositol 3-kinase in metabolic insulin action. J Biol Chem 2003; 278:39311-22. [PMID: 12783867 DOI: 10.1074/jbc.m304599200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of the metabolic insulin response by mouse growth factor receptor-binding protein 10 (Grb10) has been addressed in this report. We find mouse Grb10 to be a critical component of the insulin receptor (IR) signaling complex that provides a functional link between IR and p85 phosphatidylinositol (PI) 3-kinase and regulates PI 3-kinase activity. This regulatory mechanism parallels the established link between IR and p85 via insulin receptor substrate (IRS) proteins. A direct association was demonstrated between Grb10 and p85 but was not observed between Grb10 and IRS proteins. In addition, no effect of mouse Grb10 was observed on the association between IRS-1 and p85, on IRS-1-associated PI 3-kinase activity, or on insulin-mediated activation of IR or IRS proteins. A critical role of mouse Grb10 was observed in the regulation of PI 3-kinase activity and the resulting metabolic insulin response. Dominant-negative Grb10 domains, in particular the SH2 domain, eliminated the metabolic response to insulin in differentiated 3T3-L1 adipocytes. This was consistently observed for glycogen synthesis, glucose and amino acid transport, and lipogenesis. In parallel, the same metabolic responses were substantially elevated by increased levels of Grb10. A similar role of Grb10 was confirmed in mouse L6 cells. In addition to the SH2 domain, the Pro-rich amino-terminal region of Grb10 was implicated in the regulation of PI 3-kinase catalytic activity. These regulatory roles of Grb10 were extended to specific insulin mediators downstream of PI 3-kinase including PKB/Akt, glycogen synthase kinase, and glycogen synthase. In contrast, a regulatory role of Grb10 in parallel insulin response pathways including p70 S6 kinase, ubiquitin ligase Cbl, or mitogen-activated protein kinase p38 was not observed. The dissection of the interaction of mouse Grb10 with p85 and the resulting regulation of PI 3-kinase activity should help elucidate the complexity of the IR signaling mechanism.
Collapse
Affiliation(s)
- Youping Deng
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Guan H, Smirnov DA, Ricciardi RP. Identification of genes associated with adenovirus 12 tumorigenesis by microarray. Virology 2003; 309:114-24. [PMID: 12726732 DOI: 10.1016/s0042-6822(02)00135-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A total of 242 genes were shown to be differentially expressed between haplotypically matched tumorigenic adenovirus 12 (Ad12) and nontumorigenic Ad5-transformed cells using a microarray containing 8734 cDNAs. Eighty-seven of the differentially expressed genes have known roles that include signal transduction, cell growth and proliferation, transcription regulation, protease, and immune functions. The remaining differentially expressed genes are represented by EST cDNAs which have functions that are either completely unknown or proposed, based on sequence similarity to known genes. A subset of 22 differentially expressed genes from the microarray was further examined by Northern blot analyses to verify the identification of new genes associated with Ad12 tumorigenesis. Growth factor receptor binding protein 10 (Grb10) and protease nexin 1 (PN-1) were overexpressed in all of the tumorigenic Ad12-transformed cells examined, whereas expression of these genes was negligible in all of the nontumorigenic Ad5-transformed cells. By contrast, other genes including B cell translocation gene 2 (BTG2) were shown to be significantly up-regulated in Ad5-transformed cells as compared to Ad12-transformed cells.
Collapse
Affiliation(s)
- Hancheng Guan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|