1
|
DNA damage alters EGFR signaling and reprograms cellular response via Mre-11. Sci Rep 2022; 12:5760. [PMID: 35388101 PMCID: PMC8986772 DOI: 10.1038/s41598-022-09779-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/24/2022] [Indexed: 12/01/2022] Open
Abstract
To combat the various DNA lesions and their harmful effects, cells have evolved different strategies, collectively referred as DNA damage response (DDR). The DDR largely relies on intranuclear protein networks, which sense DNA lesions, recruit DNA repair enzymes, and coordinates several aspects of the cellular response, including a temporary cell cycle arrest. In addition, external cues mediated by the surface EGF receptor (EGFR) through downstream signaling pathways contribute to the cellular DNA repair capacity. However, cell cycle progression driven by EGFR activation should be reconciled with cell cycle arrest necessary for effective DNA repair. Here, we show that in damaged cells, the expression of Mig-6 (mitogen-inducible gene 6), a known regulator of EGFR signaling, is reduced resulting in heightened EGFR phosphorylation and downstream signaling. These changes in Mig-6 expression and EGFR signaling do not occur in cells deficient of Mre-11, a component of the MRN complex, playing a central role in double-strand break (DSB) repair or when cells are treated with the MRN inhibitor, mirin. RNAseq and functional analysis reveal that DNA damage induces a shift in cell response to EGFR triggering that potentiates DDR-induced p53 pathway and cell cycle arrest. These data demonstrate that the cellular response to EGFR triggering is skewed by components of the DDR, thus providing a plausible explanation for the paradox of the known role played by a growth factor such as EGFR in the DNA damage repair.
Collapse
|
2
|
Andersson EI, Pützer S, Yadav B, Dufva O, Khan S, He L, Sellner L, Schrader A, Crispatzu G, Oleś M, Zhang H, Adnan-Awad S, Lagström S, Bellanger D, Mpindi JP, Eldfors S, Pemovska T, Pietarinen P, Lauhio A, Tomska K, Cuesta-Mateos C, Faber E, Koschmieder S, Brümmendorf TH, Kytölä S, Savolainen ER, Siitonen T, Ellonen P, Kallioniemi O, Wennerberg K, Ding W, Stern MH, Huber W, Anders S, Tang J, Aittokallio T, Zenz T, Herling M, Mustjoki S. Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling. Leukemia 2017; 32:774-787. [PMID: 28804127 DOI: 10.1038/leu.2017.252] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
T-cell prolymphocytic leukemia (T-PLL) is a rare and aggressive neoplasm of mature T-cells with an urgent need for rationally designed therapies to address its notoriously chemo-refractory behavior. The median survival of T-PLL patients is <2 years and clinical trials are difficult to execute. Here we systematically explored the diversity of drug responses in T-PLL patient samples using an ex vivo drug sensitivity and resistance testing platform and correlated the findings with somatic mutations and gene expression profiles. Intriguingly, all T-PLL samples were sensitive to the cyclin-dependent kinase inhibitor SNS-032, which overcame stromal-cell-mediated protection and elicited robust p53-activation and apoptosis. Across all patients, the most effective classes of compounds were histone deacetylase, phosphoinositide-3 kinase/AKT/mammalian target of rapamycin, heat-shock protein 90 and BH3-family protein inhibitors as well as p53 activators, indicating previously unexplored, novel targeted approaches for treating T-PLL. Although Janus-activated kinase-signal transducer and activator of transcription factor (JAK-STAT) pathway mutations were common in T-PLL (71% of patients), JAK-STAT inhibitor responses were not directly linked to those or other T-PLL-specific lesions. Overall, we found that genetic markers do not readily translate into novel effective therapeutic vulnerabilities. In conclusion, novel classes of compounds with high efficacy in T-PLL were discovered with the comprehensive ex vivo drug screening platform warranting further studies of synergisms and clinical testing.
Collapse
Affiliation(s)
- E I Andersson
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Pützer
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - B Yadav
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Dufva
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Khan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L He
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - L Sellner
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - A Schrader
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - G Crispatzu
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - M Oleś
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - H Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - S Adnan-Awad
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - S Lagström
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - D Bellanger
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - J P Mpindi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - S Eldfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - T Pemovska
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - P Pietarinen
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - A Lauhio
- Department of Medicine, Division of Infectious Disease, Helsinki University Central Hospital (HUCH), Helsinki, Finland
| | - K Tomska
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - C Cuesta-Mateos
- Departamento de Immunología, Hospital Universitario de la Princesa, Madrid, Spain
| | - E Faber
- Department of Hemato-oncology, University Hospital Olomouc, Olomouc, Czech Republic
| | - S Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - S Kytölä
- Helsinki University Central Hospital (HUCH), Laboratory of Genetics, HUSLAB, Helsinki, Finland
| | - E-R Savolainen
- Nordlab Oulu, Hematology Laboratory, MRC Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - T Siitonen
- Department of Hematology, Oulu University Hospital, MRC Oulu, University of Oulu, Oulu, Finland
| | - P Ellonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - O Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - K Wennerberg
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - W Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - M-H Stern
- Institut Curie, INSERM U830, PSL Research University, Paris, France
| | - W Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - S Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - J Tang
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - T Zenz
- Department of Translational Oncology and Molecular Therapy in Haematology and Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - M Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), CMMC, Center for Molecular Medicine, University of Cologne, Germany
| | - S Mustjoki
- Hematology Research Unit Helsinki, Department of Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
3
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
4
|
Moiola C, De Luca P, Cotignola J, Gardner K, Vazquez E, De Siervi A. Dynamic coregulatory complex containing BRCA1, E2F1 and CtIP controls ATM transcription. Cell Physiol Biochem 2012; 30:596-608. [PMID: 22832221 PMCID: PMC7451964 DOI: 10.1159/000341441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2012] [Indexed: 12/12/2022] Open
Abstract
Chromosomal instability is a key feature in cancer progression. Recently we have reported that BRCA1 regulates the transcription of several genes in prostate cancer, including ATM (ataxia telangiectasia mutated). Although it is well accepted that ATM is a pivotal mediator in genotoxic stress, it is unknown whether ATM transcription is regulated during the molecular response to DNA damage. Here we investigate ATM transcription regulation in human prostate tumor PC3 cell line. We have found that doxorubicin and mitoxantrone repress ATM transcription in PC3 cells but etoposide and methotrexate do not affect ATM expression. We have demonstrated that BRCA1 binds to ATM promoter and after doxorubicin exposure, it is released. BRCA1 overexpression increases ATM transcription and this enhancement is abolished by BRCA1 depletion. Moreover, BRCA1-BRCT domain loss impairs the ability of BRCA1 to regulate ATM promoter activity, strongly suggesting that BRCT domain is essential for ATM regulation by BRCA1. BRCA1-overexpressing PC3 cells exposed to KU55933 ATM kinase inhibitor showed significant decreased ATM promoter activity compared to untreated cells, suggesting that ATM transcriptional regulation by BRCA1 is partially mediated by the ATM kinase activity. In addition, we have demonstrated E2F1 binding to ATM promoter before and after doxorubicin exposure. E2F1 overexpression diminishes ATM transcription after doxorubicin exposure which is impaired by E2F1 dominant negative mutants. Finally, the co-regulator of transcription CtIP increases ATM transcription. CtIP increases ATM transcription. Altogether, BRCA1/E2F1/CtIP binding to ATM promoter activates ATM transcription. Doxorubicin exposure releases BRCA1 and CtIP from ATM promoter still keeping E2F1 recruited and, in turn, represses ATM expression.
Collapse
Affiliation(s)
- Cristian Moiola
- Department of Biological Chemistry, School of Sciences (FCEN), University of Buenos Aires (UBA), CONICET, Buenos Aires
| | - Paola De Luca
- Department of Biological Chemistry, School of Sciences (FCEN), University of Buenos Aires (UBA), CONICET, Buenos Aires
| | - Javier Cotignola
- Department of Biological Chemistry, School of Sciences (FCEN), University of Buenos Aires (UBA), CONICET, Buenos Aires
| | - Kevin Gardner
- Department of Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Elba Vazquez
- Department of Biological Chemistry, School of Sciences (FCEN), University of Buenos Aires (UBA), CONICET, Buenos Aires
| | - Adriana De Siervi
- Department of Biological Chemistry, School of Sciences (FCEN), University of Buenos Aires (UBA), CONICET, Buenos Aires
| |
Collapse
|
5
|
Ghosh S, Narang H, Sarma A, Krishna M. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation. Mutat Res 2011; 716:10-19. [PMID: 21839752 DOI: 10.1016/j.mrfmmm.2011.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.
Collapse
Affiliation(s)
- Somnath Ghosh
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | | | |
Collapse
|
6
|
Zhu F, Zykova TA, Peng C, Zhang J, Cho YY, Zheng D, Yao K, Ma WY, Lau ATY, Bode AM, Dong Z. Phosphorylation of H2AX at Ser139 and a new phosphorylation site Ser16 by RSK2 decreases H2AX ubiquitination and inhibits cell transformation. Cancer Res 2011; 71:393-403. [PMID: 21224359 DOI: 10.1158/0008-5472.can-10-2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Histone H2AX is a histone H2A variant that is ubiquitously expressed throughout the genome. It plays a key role in the cellular response to DNA damage and has been designated as the histone guardian of the genome. Histone H2AX deficiency decreases genomic stability and increases tumor susceptibility of normal cells and tissues. However, the role of histone H2AX phosphorylation in malignant transformation and cancer development is not totally clear. Herein, we found that ribosomal S6 kinase 2 (RSK2) directly phosphorylates histone H2AX at Ser139 and also at a newly discovered site, Ser16. Epidermal growth factor (EGF)-induced phosphorylation of histone H2AX at both sites was decreased in RSK2 knockout cells. Phosphorylated RSK2 and histone H2AX colocalized in the nucleus following EGF treatment, and the phosphorylation of histone H2AX by RSK2 enhanced the stability of histone H2AX and prevented cell transformation induced by EGF. RSK2 and DNA-PK, but not ATM or ATR, are required for EGF-induced phosphorylation of H2AX at Ser139; however, only RSK2 is required for phosphorylation of H2AX at Ser16. Phosphorylation of histone H3 was suppressed in cells expressing wild-type H2AX compared with H2AX knockout (H2AX-/-) cells. EGF-associated AP-1 transactivation activity was dramatically lower in H2AX-/- cells overexpressing wild-type H2AX than H2AX-/- cells expressing mutant H2AX-AA. Thus, the RSK2/H2AX signaling pathway negatively regulates the RSK2/histone H3 pathway and therefore maintains normal cell proliferation.
Collapse
Affiliation(s)
- Feng Zhu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Golding SE, Morgan RN, Adams BR, Hawkins AJ, Povirk LF, Valerie K. Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells. Cancer Biol Ther 2009; 8:730-8. [PMID: 19252415 DOI: 10.4161/cbt.8.8.7927] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is frequently dysregulated in malignant glioma that leads to increased resistance to cancer therapy. Upregulation of wild type or expression of mutant EGFR is associated with tumor radioresistance and poor clinical outcome. EGFR variant III (EGFRvIII) is the most common EGFR mutation in malignant glioma. Radioresistance is thought to be, at least in part, the result of a strong cytoprotective response fueled by signaling via AKT and ERK that is heightened by radiation in the clinical dose range. Several groups including ours have shown that this response may modulate DNA repair. Herein, we show that expression of EGFRvIII promoted gamma-H2AX foci resolution, a surrogate for double-strand break (DSB) repair, and thus enhanced DNA repair. Conversely, small molecule inhibitors targeting EGFR, MEK, and the expression of dominant-negative EGFR (EGFR-CD533) significantly reduced the resolution of gamma-H2AX foci. When homologous recombination repair (HRR) and non-homologous end joining (NHEJ) were specifically examined, we found that EGFRvIII stimulated and CD533 compromised HRR and NHEJ, respectively. Furthermore, NHEJ was blocked by inhibitors of AKT and ERK signaling pathways. Moreover, expression of EGFRvIII and CD533 increased and reduced, respectively, the formation of phospho-DNA-PKcs and -ATM repair foci, and RAD51 foci and expression levels, indicating that DSB repair is regulated at multiple levels. Altogether, signaling from EGFR and EGFRvIII promotes both HRR and NHEJ that is likely a contributing factor towards the radioresistance of malignant gliomas.
Collapse
Affiliation(s)
- Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298-0058, USA
| | | | | | | | | | | |
Collapse
|
8
|
Truman JP, Rotenberg SA, Kang JH, Lerman G, Fuks Z, Kolesnick R, Marquez VE, Haimovitz-Friedman A. PKCalpha activation downregulates ATM and radio-sensitizes androgen-sensitive human prostate cancer cells in vitro and in vivo. Cancer Biol Ther 2009; 8:54-63. [PMID: 19029835 DOI: 10.4161/cbt.8.1.7119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that treatment of human androgen-responsive prostate cancer cell lines LNCaP and CWR22-Rv1 with 12-O-tetradecanoylphorbol 13-acetate (TPA), a known protein kinase C (PKC) activator, decreases ATM protein levels, thus de-repressing the enzyme ceramide synthase (CS) and promoting apoptosis as well as radio-sensitizing these cells.(1) Here we show that PKCalpha mediates the TPA effect on ATM expression, since ATM suppression and apoptosis induced by either TPA or diacylglycerol-lactone (DAG-lactone), both inducing PKCalpha activation,(2) are abrogated in LNCaP cells following transfection of a kinase-dead PKCalpha mutant (KD-PKCalpha). Similarly, KD-PKCalpha blocks the apoptotic response elicited by combination of TPA and radiation, whereas expression of constitutively active PKCalpha is sufficient to sensitize cells to radiation alone, without a need to pre-treat the cells with TPA. These findings identify CS activation as a downstream event of PKCalpha activity in LNCaP cells. Similar results were obtained in CWR22-Rv1 cells with DAG-lactone treatment. Using the LNCaP orthotopic prostate model it is shown that treatment with TPA or DAG-lactone induces significant reduction in tumor ATM levels coupled with tumor growth delay. Furthermore, while fractionated radiation alone produces significant tumor growth delay, pretreatment with TPA or DAG-lactone significantly potentiates tumor cure. These findings support a model in which activation of PKCalpha downregulates ATM, thus relieving CS repression by ATM and enhancing apoptosis via ceramide generation. This model may provide a basis for the design of new therapies in prostate cancer.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, Frederick, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S, Dent P. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 2007; 6:789-801. [PMID: 17363476 DOI: 10.1158/1535-7163.mct-06-0596] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure of tumor cells to clinically relevant doses of ionizing radiation causes DNA damage as well as mitochondria-dependent generation of reactive oxygen species. DNA damage causes activation of ataxia telangiectasia mutated and ataxia telangiectasia mutated and Rad3-related protein, which induce cell cycle checkpoints and also modulate the activation of prosurvival and proapoptotic signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun NH(2)-terminal kinase 1/2, respectively. Radiation causes a rapid reactive oxygen species-dependent activation of ERBB family and other tyrosine kinases, leading to activation of RAS proteins and multiple protective downstream signaling pathways (e.g., AKT and ERK1/2), which alter transcription factor function and the apoptotic threshold of cells. The initial radiation-induced activation of ERK1/2 can promote the cleavage and release of paracrine ligands, which cause a temporally delayed reactivation of receptors and intracellular signaling pathways in irradiated and unirradiated bystander cells. Hence, signals from within the cell can promote activation of membrane-associated receptors, which signal back into the cytosol: signaling from inside the cell outward to receptors and then inward again via kinase pathways. However, cytosolic signaling can also cause release of membrane-associated paracrine factors, and thus, paracrine signals from outside of the cell can promote activation of growth factor receptors: signaling from the outside inward. The ultimate consequence of these signaling events after multiple exposures may be to reprogram the irradiated and affected bystander cells in terms of their expression levels of growth-regulatory and cell survival proteins, resulting in altered mitogenic rates and thresholds at which genotoxic stresses cause cell death. Inhibition of signaling in one and/or multiple survival pathways enhances radiosensitivity. Prolonged inhibition of any one of these pathways, however, gives rise to lineages of cells, which have become resistant to the inhibitor drug, by evolutionary selection for the clonal outgrowth of cells with point mutations in the specific targeted protein that make the target protein drug resistant or by the reprogramming of multiple signaling processes within all cells, to maintain viability. Thus, tumor cells are dynamic with respect to their reliance on specific cell signaling pathways to exist and rapidly adapt to repeated toxic challenges in an attempt to maintain tumor cell survival.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Biochemistry, Virginia Commonwealth University, 401 College Street, Box 980035, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Golding SE, Rosenberg E, Neill S, Dent P, Povirk LF, Valerie K. Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response. Cancer Res 2007; 67:1046-53. [PMID: 17283137 DOI: 10.1158/0008-5472.can-06-2371] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accurate joining of DNA double-strand breaks by homologous recombination repair (HRR) is critical to the long-term survival of the cell. The three major mitogen-activated protein (MAP) kinase (MAPK) signaling pathways, extracellular signal-regulated kinase (ERK), p38, and c-Jun-NH(2)-kinase (JNK), regulate cell growth, survival, and apoptosis. To determine the role of MAPK signaling in HRR, we used a human in vivo I-SceI-based repair system. First, we verified that this repair platform is amenable to pharmacologic manipulation and show that the ataxia telangiectasia mutated (ATM) kinase is critical for HRR. The ATM-specific inhibitor KU-55933 compromised HRR up to 90% in growth-arrested cells, whereas this effect was less pronounced in cycling cells. Then, using well-characterized MAPK small-molecule inhibitors, we show that ERK1/2 and JNK signaling are important positive regulators of HRR in growth-arrested cells. On the other hand, inhibition of the p38 MAPK pathway generated an almost 2-fold stimulation of HRR. When ERK1/2 signaling was stimulated by oncogenic RAF-1, an approximately 2-fold increase in HRR was observed. KU-55933 partly blocked radiation-induced ERK1/2 phosphorylation, suggesting that ATM regulates ERK1/2 signaling. Furthermore, inhibition of MAP/ERK kinase (MEK)/ERK signaling resulted in severely reduced levels of phosphorylated (S1981) ATM foci but not gamma-H2AX foci, and suppressed ATM phosphorylation levels >85% throughout the cell cycle. Collectively, these results show that MAPK signaling positively and negatively regulates HRR in human cells. More specifically, ATM-dependent signaling through the RAF/MEK/ERK pathway is critical for efficient HRR and for radiation-induced ATM activation, suggestive of a regulatory feedback loop between ERK and ATM.
Collapse
Affiliation(s)
- Sarah E Golding
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
11
|
Klising-Sireul E, Rigaud O, Ory K, Ugolin N, Lebeau J, Levalois C, Lectard B, Chevillard S. Transcriptional response of wild-type and ataxia telangiectasia lymphoblasts following exposure to equitoxic doses of ionizing radiation. JOURNAL OF RADIATION RESEARCH 2006; 47:259-72. [PMID: 16974071 DOI: 10.1269/jrr.0594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Experiments were designed to compare the transcriptional response to ionizing radiation (IR) of wild-type (WT) and ataxia telangiectasia (AT) cells. mRNA levels were assessed 2, 4 and 24 h after exposure to equitoxic doses using cDNA microarrays. Data reveal distinct patterns of gene expression between AT and WT cells since IR-responsive genes were mostly cell-type specific, this group representing 87 and 94% of the responding genes in WT and AT cells, respectively. In both cell lines, transcriptional alterations of genes associated with proliferation correlated with the observed cell cycle and growth data. Deregulated genes involved in apoptosis suggest that wild-type cells were more prone to cell death by apoptosis than AT cells. Furthermore, genes associated with the response to oxidative stress were particularly deregulated in wild-type cells whereas alterations of genes related to unexpected pathways including RNA processing, protein synthesis and lipid metabolism were specifically found in irradiated AT cells. These data suggest that under radiation conditions leading to a similar survival of WT and AT cells, the mechanisms triggered after radiation were mainly dependent on ATM status and thus on the intrinsic radiosensitivity.
Collapse
Affiliation(s)
- Eve Klising-Sireul
- CEA, DSV, DRR, Laboratoire de Cancérologie Expérimentale, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gueven N, Fukao T, Luff J, Paterson C, Kay G, Kondo N, Lavin MF. Regulation of the Atm promoter in vivo. Genes Chromosomes Cancer 2006; 45:61-71. [PMID: 16180236 DOI: 10.1002/gcc.20267] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While ATM, the protein defective in the human genetic disorder ataxia-telangiectasia (A-T), is primarily activated as a preexisting protein by radiation, there is also evidence that expression of the protein can be regulated at the transcriptional level. Activation of the ATM promoter by ionizing radiation has been reported only in quiescent cells in culture. To investigate how the Atm promoter is regulated in vivo, we generated transgenic mice that express the luciferase reporter gene under the control of the murine Atm promoter. Using a biophotonic imaging system luciferase activity was monitored in vivo. Strong promoter activity was detected throughout the transgenic animals with particularly high signals from the thymus, abdominal region, and reproductive organs. This activity further increased in response to both ionizing radiation and heat stress in a time dependent manner. Luciferase activity, measured in vitro in extracts from different tissues, showed highest activities in testes, ovaries, and cerebellum. Subjecting these mice to a single dose of 4 Gy total body radiation led to a time-dependent activation of the promoter with the strongest response observed in the peritoneal membrane, skin, and spleen. For most tissues tested, maximal promoter activity was reached 8 hr after radiation. The observed changes in promoter activity largely correlated with levels and activity of Atm protein in tissue extracts. These results demonstrate that, in addition to activation by autophosphorylation, Atm can also be regulated in vivo at the transcriptional level possibly ensuring a more sustained response to radiation and other stimuli.
Collapse
Affiliation(s)
- Nuri Gueven
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Truman JP, Gueven N, Lavin M, Leibel S, Kolesnick R, Fuks Z, Haimovitz-Friedman A. Down-regulation of ATM protein sensitizes human prostate cancer cells to radiation-induced apoptosis. J Biol Chem 2005; 280:23262-72. [PMID: 15837784 PMCID: PMC1855286 DOI: 10.1074/jbc.m503701200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Treatment with the protein kinase C activator 12-O-tetradecanoylphorbol 12-acetate (TPA) enables radiation-resistant LNCaP human prostate cancer cells to undergo radiation-induced apoptosis, mediated via activation of the enzyme ceramide synthase (CS) and de novo synthesis of the sphingolipid ceramide (Garzotto, M., Haimovitz-Friedman, A., Liao, W. C., White-Jones, M., Huryk, R., Heston, D. W. W., Cardon-Cardo, C., Kolesnick, R., and Fuks, Z. (1999) Cancer Res. 59, 5194-5201). Here, we show that TPA functions to decrease the cellular level of the ATM (ataxia telangiectasia mutated) protein, known to repress CS activation (Liao, W.-C., Haimovitz-Friedman, A., Persaud, R., McLoughlin, M., Ehleiter, D., Zhang, N., Gatei, M., Lavin, M., Kolesnick, R., and Fuks, Z. (1999) J. Biol. Chem. 274, 17908-17917). Gel shift analysis in LNCaP and CWR22-Rv1 cells demonstrated a significant reduction in DNA binding of the Sp1 transcription factor to the ATM promoter, and quantitative reverse transcription-PCR showed a 50% reduction of ATM mRNA between 8 and 16 h of TPA treatment, indicating that TPA inhibits ATM transcription. Furthermore, treatment of LNCaP, CWR22-Rv1, PC-3, and DU-145 human prostate cells with antisense-ATM oligonucleotides, which markedly reduced cellular ATM levels, significantly enhanced radiation-induced CS activation and apoptosis, leading to apoptosis at doses as a low as 1 gray. These data suggest that the CS pathway initiates a generic mode of radiation-induced apoptosis in human prostate cancer cells, regulated by a suppressive function of ATM, and that ATM might represent a potential target for pharmacologic inactivation with potential clinical applications in human prostate cancer.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Shahrabani-Gargir L, Pandita TK, Werner H. Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 2004; 145:5679-87. [PMID: 15345673 DOI: 10.1210/en.2004-0613] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IGF-I receptor (IGF-IR) has a central role in cell cycle progression as well as in the establishment of the transformed phenotype. Increased expression of the IGF-IR gene, in addition, is correlated with acquisition of radioresistance for cell killing. The ataxia-telangiectasia mutated (ATM) gene product has a pivotal role in coordinating the cellular response to DNA damage. The present study was aimed at testing the hypothesis that the ability of ATM to coordinate the DNA damage response that will lead to cell survival or, alternatively, to apoptosis depends, to a significant extent, on its capacity to control IGF-IR gene expression. The potential involvement of ATM in regulation of IGF-IR expression and function was investigated in isogenic cells with and without ATM function [AT22IJE-T/pEBS7 (ATM -/-) and ATM-corrected AT22IJE-T/YZ5 (ATM +/+) cells and 293 human embryonic kidney cells transfected with small interfering RNAs targeted to ATM]. In addition, the effect of ATM on IGF-IR expression was assessed in nonisogenic cells with ATM function (HFF + human telomerase reverse transcriptase) and without ATM function (GM5823 + human telomerase reverse transcriptase). Results obtained showed that IGF-IR gene expression and IGF-IR promoter activity were largely reduced in ATM -/- cells. Addition of the radiomimetic agent neocarzinostatin for 4 h, however, induced a significant increase in IGF-IR levels in cells without ATM function. In addition, IGF-I-induced IGF-IR and insulin receptor substrate-1 phosphorylation were greatly impaired in ATM-deficient cells. Furthermore, we identified zinc-finger transcription factors Sp1 and WT1 as potential mediators of the effect of ATM on IGF-IR gene expression. The present data suggests that the IGF-IR gene is a novel downstream target in an ATM-mediated DNA damage response pathway. Deregulated expression of the IGF-IR gene after ionizing radiation may be linked to genomic instability and enhanced transforming capacity.
Collapse
Affiliation(s)
- Limor Shahrabani-Gargir
- Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
15
|
Chen S, Wang G, Makrigiorgos GM, Price BD. Stable siRNA-mediated silencing of ATM alters the transcriptional profile of HeLa cells. Biochem Biophys Res Commun 2004; 317:1037-44. [PMID: 15094373 DOI: 10.1016/j.bbrc.2004.03.149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Indexed: 11/30/2022]
Abstract
The ATM protein, which is mutated in the inherited disease ataxia telangiectasia (AT), is a key regulator of the cells' DNA damage response. AT cells also exhibit constitutive activation of transcriptional regulators such as p53, E2F, AP1, and NFkappaB. Inactivation of ATM may therefore alter the cells' transcriptional profile. ATM expression in HeLa cells was silenced with siRNA expressed from a plasmid based vector, generating a stable cell line, HeLaATM601. HeLaATM601 cells displayed minimal levels of ATM protein and had a 10-fold increase in sensitivity to ionizing radiation. DNA microarray analysis demonstrated that 35 genes were upregulated and five genes were downregulated in HeLaATM601 cells. Genes upregulated in the absence of ATM included interferon-response proteins, cell cycle regulators, integral membrane proteins, and adhesion and extracellular matrix proteins. Using real-time PCR, these genes were also upregulated in cells derived from AT patients. Inactivation of the ATM protein therefore has a significant impact on the transcriptional profile of the cell.
Collapse
Affiliation(s)
- Shujuan Chen
- Department of Radiation Oncology, JF513, Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney St., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
16
|
Gueven N, Keating K, Fukao T, Loeffler H, Kondo N, Rodemann HP, Lavin MF. Site-directed mutagenesis of the ATM promoter: consequences for response to proliferation and ionizing radiation. Genes Chromosomes Cancer 2003; 38:157-67. [PMID: 12939743 DOI: 10.1002/gcc.10261] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins
- Binding Sites/genetics
- Binding Sites/radiation effects
- Cell Cycle Proteins
- Cell Division/genetics
- Cell Division/radiation effects
- Cell Line
- Cell Line, Transformed
- Chlorocebus aethiops
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/radiation effects
- Gamma Rays
- Humans
- Infant, Newborn
- Male
- Mutagenesis, Site-Directed/genetics
- Mutagenesis, Site-Directed/radiation effects
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/radiation effects
- Protein Binding/genetics
- Protein Binding/radiation effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/radiation effects
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/radiation effects
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/radiation effects
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/radiation effects
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Vero Cells
Collapse
Affiliation(s)
- Nuri Gueven
- Queensland Cancer Fund Research Laboratory, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Ataxia telangiectasia is one of a group of recessive hereditary genomic instability disorders and is characterized by progressive neurodegeneration, immunodeficiency and cancer susceptibility. Heterozygotes for the mutated gene are more susceptible to cancer and to ischaemic heart disease. The affected gene, ATM (ataxia telangiectasia mutated), has been cloned and codes for a protein kinase (ATM), which orchestrates the cellular response to DNA double-strand breaks after ionising radiation. An underlying feature of ataxia telangiectasia is oxidative stress and there is chronic activation of stress response pathways in tissues showing pathology such as the cerebellum, but not in the cerebrum or liver. ATM has also been shown to be activated by insulin and to have a wider role in signal transduction and cell growth. Many, but not all, aspects of the phenotype can be attributed to a defective DNA damage response. The oxidative stress may result directly from accumulated DNA damage in affected tissues or ATM may have an additional role in sensing/modulating redox homeostasis. The basis for the observed tissue specificity of the oxidative damage in ataxia telangiectasia is not clear.
Collapse
Affiliation(s)
- Dianne J Watters
- School of Biomolecular and Biomedical Science, Griffith University, Brisbane, Queensland, Australia.
| |
Collapse
|
18
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
19
|
Kozlov S, Gueven N, Keating K, Ramsay J, Lavin MF. ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 2003; 278:9309-17. [PMID: 12645530 DOI: 10.1074/jbc.m300003200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ataxia-telangiectasia Mutated (ATM), mutated in the human disorder ataxia-telangiectasia, is rapidly activated by DNA double strand breaks. The mechanism of activation remains unresolved, and it is uncertain whether autophosphorylation contributes to activation. We describe an in vitro immunoprecipitation system demonstrating activation of ATM kinase from unirradiated extracts by preincubation with ATP. Activation is both time- and ATP concentration-dependent, other nucleotides fail to activate ATM, and DNA is not required. ATP activation is specific for ATM since it is not observed with kinase-dead ATM, it requires Mn2+, and it is inhibited by wortmannin. Exposure of activated ATM to phosphatase abrogates activity, and repeat cycles of ATP and phosphatase treatment reveal a requirement for autophosphorylation in the activation process. Phosphopeptide mapping revealed similarities between the patterns of autophosphorylation for irradiated and ATP-treated ATM. Caffeine inhibited ATM kinase activity for substrates but did not interfere with ATM autophosphorylation. ATP failed to activate either A-T and rad3-related protein (ATR) or DNA-dependent protein kinase under these conditions, supporting the specificity for ATM. These data demonstrate that ATP can specifically induce activation of ATM by a mechanism involving autophosphorylation. The relationship of this activation to DNA damage activation remains unclear but represents a useful model for understanding in vivo activation.
Collapse
Affiliation(s)
- Sergei Kozlov
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston Qld 4029, Australia
| | | | | | | | | |
Collapse
|
20
|
Famulski KS, Al-Hijailan RS, Dobler K, Pienkowska M, Al-Mohanna F, Paterson MC. Aberrant sensing of extracellular Ca2+ by cultured ataxia telangiectasia fibroblasts. Oncogene 2003; 22:471-5. [PMID: 12545170 DOI: 10.1038/sj.onc.1206167] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ataxia telangiectasia (AT) is a human hereditary syndrome whose underlying gene product, ataxia telangiectasia mutated (ATM) protein kinase, is involved in multiple intracellular signaling pathways. We demonstrated previously that AT fibroblasts are defective in intracellular Ca(2+) mobilization in response to both stress-inducing and mitogenic stimuli. To extend these findings, normal and AT cells were exposed to serum in the presence of different concentrations of extracellular Ca(2+) ([Ca(2+)](o)), and release of intracellular Ca(2+), activation of calmodulin-dependent protein kinase II and phosphorylation of kinases ERK1 and 2 were monitored. When maintained in high [Ca(2+)](o) (0.42 mM), normal fibroblasts responded to serum introduction more rapidly and efficiently than did AT cells. Unexpectedly, decreasing the [Ca(2+)](o) in the medium had a diametrically opposite effect. Under low [Ca(2+)](o) (0.0022 mM) conditions, normal cells were slow and inefficient in their responses, whereas AT cells showed a substantial improvement in all three end points. These findings demonstrate that loss of ATM kinase function deregulates the extracellular calcium-sensing receptor (CaR). This malfunction presumably arises from a post-transcriptional event, since CaR mRNA proved to be normal in AT cells. Together, our data suggest that ATM may mediate cell response to mitogenic factors by tightly regulating the set point of the CaR and thereby modulating the crosstalk between this metabotropic receptor and growth factor receptors. Alternatively, the faulty sensing of extracellular calcium in AT cells may be secondary to a state of chronic oxidative stress attributable to ATM deficiency.
Collapse
Affiliation(s)
- Konrad S Famulski
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|