1
|
Thau H, Gerjol BP, Hahn K, von Gudenberg RW, Knoedler L, Stallcup K, Emmert MY, Buhl T, Wyles SP, Tchkonia T, Tullius SG, Iske J. Senescence as a molecular target in skin aging and disease. Ageing Res Rev 2025; 105:102686. [PMID: 39929368 DOI: 10.1016/j.arr.2025.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
Skin aging represents a multifactorial process influenced by both intrinsic and extrinsic factors, collectively known as the skin exposome. Cellular senescence, characterized by stable cell cycle arrest and secretion of pro-inflammatory molecules, has been implicated as a key driver of physiological and pathological skin aging. Increasing evidence points towards the role of senescence in a variety of dermatological diseases, where the accumulation of senescent cells in the epidermis and dermis exacerbates disease progression. Emerging therapeutic strategies such as senolytics and senomorphics offer promising avenues to target senescent cells and mitigate their deleterious effects, providing potential treatments for both skin aging and senescence-associated skin diseases. This review explores the molecular mechanisms of cellular senescence and its role in promoting age-related skin changes and pathologies, while compiling the observed effects of senotherapeutics in the skin and discussing the translational relevance.
Collapse
Affiliation(s)
- Henriette Thau
- Van Cleve Cardiac Regenerative Medicine Program Mayo Clinic, Rochester, Minesota, USA; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian P Gerjol
- Department of Internal Medicine, Klinik Hirslanden, Zurich, Switzerland
| | - Katharina Hahn
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | - Rosalie Wolff von Gudenberg
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonard Knoedler
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health Berlin, Germany
| | - Kenneth Stallcup
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, Göttingen University Medical Center, Göttingen, Germany
| | | | - Tamar Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Deng Q, Liu X, Wen X, Huang H, Tang H. UVB Induces Sympathetic Nervous System Activation and Norepinephrine Secretion to Regulate The Skin Color of Mice Through the β2-AR/AP-1 Pathway in Epidermal Keratinocytes. Inflammation 2025:10.1007/s10753-024-02221-0. [PMID: 39794626 DOI: 10.1007/s10753-024-02221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
The aim of this study was to investigate how ultraviolet B (UVB) light regulates AP-1 expression via the β2-adrenergic receptor (β2-AR) in epidermal keratinocytes, which in turn regulates melanin synthesis in melanocytes, thereby modulating downstream melanin production in skin hair follicles and altering mouse skin color. We established a UV-irradiated mouse model to investigate the effects of UV radiation on changes in skin color. By measuring changes in the expression of genes related to cutaneous sympathetic nerves, norepinephrine synthesis and melanin synthesis, we investigated the relationship between β2-AR expression and cutaneous melanogenesis and determined the localization of β2-AR in cells. The results of the siRNA-mediated transfection of keratinized cells with downregulated β2-AR expression were further verified in vitro. Our results suggest that UVB alters the color of the dorsal skin in mice by activating the AP-1/IL-6 pathway, which triggers the sympathetic release of norepinephrine, thereby increasing β2-AR expression in keratinocytes. Overall, our study improves the current understanding of how UVB light influences skin color changes and highlights the complex interplay between ultraviolet radiation and skin physiology.
Collapse
Affiliation(s)
- Qirui Deng
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xinyan Liu
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
| | - Xiujuan Wen
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
| | - Hao Huang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China
| | - Hongfeng Tang
- Department of Dermatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), NO. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Bozó R, Flink LB, Ambrus B, Ghaffarinia A, Koncz B, Kui R, Gyulai R, Kemény L, Bata-Csörgő Z. The Expression of Cytokines and Chemokines Potentially Distinguishes Mild and Severe Psoriatic Non-Lesional and Resolved Skin from Healthy Skin and Indicates Different Stages of Inflammation. Int J Mol Sci 2024; 25:11292. [PMID: 39457071 PMCID: PMC11509107 DOI: 10.3390/ijms252011292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
In the psoriatic non-lesional (PS-NL) skin, the tissue environment potentially influences the development and recurrence of lesions. Therefore, we aimed to investigate mechanisms involved in regulating tissue organization in PS-NL skin. Cytokine, chemokine, protease, and protease inhibitor levels were compared between PS-NL skin of patients with mild and severe symptoms and healthy skin. By comparing mild and severe PS-NL vs. healthy skin, differentially expressed cytokines and chemokines suggested alterations in hemostasis-related processes, while protease inhibitors showed no psoriasis severity-related changes. Comparing severe and mild PS-NL skin revealed disease severity-related changes in the expression of proteases, cytokines, and chemokines primarily involving methyl-CpG binding protein 2 (MECP2) and extracellular matrix organization-related mechanisms. Cytokine and chemokine expression in clinically resolved versus healthy skin showed slight interleukin activity, differing from patterns in mild and severe PS-NL skin. Immunofluorescence analysis revealed the severity-dependent nuclear expression pattern of MECP2 and decreased expression of 5-methylcytosine and 5-hydroxymethylcytosine in the PS-NL vs. healthy skin, and in resolved vs. healthy skin. Our results suggest distinct cytokine-chemokine signaling between the resolved and PS-NL skin of untreated patients with varying severities. These results highlight an altered inflammatory response, epigenetic regulation, and tissue organization in different types of PS-NL skin with possibly distinct, severity-dependent para-inflammatory states.
Collapse
Affiliation(s)
- Renáta Bozó
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Lili Borbála Flink
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Ambrus
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Ameneh Ghaffarinia
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Balázs Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
- HCEMM-BRC Systems Immunology Research Group, H-6726 Szeged, Hungary
| | - Róbert Kui
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Rolland Gyulai
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
| | - Lajos Kemény
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, H-6720 Szeged, Hungary
| | - Zsuzsanna Bata-Csörgő
- Department of Dermatology and Allergology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (L.B.F.); (Z.B.-C.)
- HCEMM-USZ Skin Research Group, University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Dermatological Research Group, Hungarian Research Network, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Zhang D, Fan H, Liu X, Wang S, Lang X, Ma W, Pang Y. Multiple Bowen's disease due to long-term narrow-band ultraviolet B phototherapy: A case report and literature review. J Cosmet Dermatol 2024; 23:1583-1587. [PMID: 38279518 DOI: 10.1111/jocd.16189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE By presenting a case study on multiple instances of Bowen's disease and the consistent use of narrow-band ultraviolet B (NB-UVB) phototherapy over a three-year period, our aim is to enhance the comprehension of domestic clinicians regarding the disease. Additionally, we seek to review existing literature, encouraging dermatologists to consider clinical secondary primary lesion diagnoses. METHOD Our approach involves analyzing a diagnosed case of multiple Bowen's disease, examining clinical manifestations, histopathology, imaging results, and treatment methods related to NB-UVB phototherapy. We aim to facilitate discussion and understanding through a comprehensive literature analysis. RESULTS An elderly male with a 30-year history of psoriasis vulgaris initiated continuous NB-UVB therapy three years ago. A year later, he developed red patches and plaques with distinct borders and scaly surfaces on his face, trunk, lower extremities, and scrotum. Histopathological examination confirmed Bowen's disease. Treatment involved liquid nitrogen cryotherapy, with no recurrence observed during the one-year follow-up. CONCLUSION This case highlights that Bowen's disease, typically solitary, can manifest as multiple instances, especially in individuals with a history of psoriasis vulgaris. While NB-UVB stands as the primary treatment for psoriasis vulgaris, caution is warranted due to the potential risk of skin tumor induction with prolonged high-dose usage. Clinicians should be vigilant in monitoring and assessing the long-term implications of such therapies.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huiping Fan
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuankai Liu
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Shuai Wang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoqiao Lang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Weiyuan Ma
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yunyan Pang
- Department of Dermatology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
5
|
Kim MJ, Ahn HJ, Kong D, Lee S, Kim DH, Kang KS. Modeling of solar UV-induced photodamage on the hair follicles in human skin organoids. J Tissue Eng 2024; 15:20417314241248753. [PMID: 38725732 PMCID: PMC11080775 DOI: 10.1177/20417314241248753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/06/2024] [Indexed: 05/12/2024] Open
Abstract
Solar ultraviolet (sUV) exposure is known to cause skin damage. However, the pathological mechanisms of sUV on hair follicles have not been extensively explored. Here, we established a model of sUV-exposed skin and its appendages using human induced pluripotent stem cell-derived skin organoids with planar morphology containing hair follicles. Our model closely recapitulated several symptoms of photodamage, including skin barrier disruption, extracellular matrix degradation, and inflammatory response. Specifically, sUV induced structural damage and catagenic transition in hair follicles. As a potential therapeutic agent for hair follicles, we applied exosomes isolated from human umbilical cord blood-derived mesenchymal stem cells to sUV-exposed organoids. As a result, exosomes effectively alleviated inflammatory responses by inhibiting NF-κB activation, thereby suppressing structural damage and promoting hair follicle regeneration. Ultimately, our model provided a valuable platform to mimic skin diseases, particularly those involving hair follicles, and to evaluate the efficacy and underlying mechanisms of potential therapeutics.
Collapse
Affiliation(s)
- Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hee-Jin Ahn
- Cytotherapy R&D Center, PRIMORIS THERAPEUTICS CO., LTD., Gwangmyeong-si, Gyeonggi-do, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co., Ltd., Geumcheon-gu, Seoul, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biotechnology, Sungshin Women’s University, Seoul, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Shmarov F, Smith GR, Weatherhead SC, Reynolds NJ, Zuliani P. Individualised computational modelling of immune mediated disease onset, flare and clearance in psoriasis. PLoS Comput Biol 2022; 18:e1010267. [PMID: 36178923 PMCID: PMC9524682 DOI: 10.1371/journal.pcbi.1010267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Despite increased understanding about psoriasis pathophysiology, currently there is a lack of predictive computational models. We developed a personalisable ordinary differential equations model of human epidermis and psoriasis that incorporates immune cells and cytokine stimuli to regulate the transition between two stable steady states of clinically healthy (non-lesional) and disease (lesional psoriasis, plaque) skin. In line with experimental data, an immune stimulus initiated transition from healthy skin to psoriasis and apoptosis of immune and epidermal cells induced by UVB phototherapy returned the epidermis back to the healthy state. Notably, our model was able to distinguish disease flares. The flexibility of our model permitted the development of a patient-specific “UVB sensitivity” parameter that reflected subject-specific sensitivity to apoptosis and enabled simulation of individual patients’ clinical response trajectory. In a prospective clinical study of 94 patients, serial individual UVB doses and clinical response (Psoriasis Area Severity Index) values collected over the first three weeks of UVB therapy informed estimation of the “UVB sensitivity” parameter and the prediction of individual patient outcome at the end of phototherapy. An important advance of our model is its potential for direct clinical application through early assessment of response to UVB therapy, and for individualised optimisation of phototherapy regimes to improve clinical outcome. Additionally by incorporating the complex interaction of immune cells and epidermal keratinocytes, our model provides a basis to study and predict outcomes to biologic therapies in psoriasis. We present a new computer model for psoriasis, an immune-mediated disabling skin disease which presents with red, raised scaly plaques that can appear over the whole body. Psoriasis affects millions of people in the UK alone and causes significant impairment to quality of life, and currently has no cure. Only a few treatments (including UVB phototherapy) can induce temporary remission. Despite our increased understanding about psoriasis, treatments are still given on a ‘trial and error’ basis and there are no reliable computer models that can a) elucidate the mechanisms behind psoriasis onset or flare and b) predict a patient’s response to a course of treatment (e.g., phototherapy) and the likelihood of inducing a period of remission. Our computer model addresses both these needs. First, it explicitly describes the interaction between the immune system and skin cells. Second, our model captures response to therapy at the individual patient level and enables personalised prediction of clinical outcomes. Notably, our model also supports prediction of amending individual UVB phototherapy regimes based on the patient’s initial response that include for example personalised delivery schedules (i.e., 3x weekly vs. 5x weekly phototherapy). Therefore, our work is a crucial step towards precision medicine for psoriasis treatment.
Collapse
Affiliation(s)
- Fedor Shmarov
- School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Graham R. Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sophie C. Weatherhead
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Nick J. Reynolds
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (NJR); (PZ)
| | - Paolo Zuliani
- Department of Computer Science, University of Manchester, Manchester, United Kingdom
- * E-mail: (NJR); (PZ)
| |
Collapse
|
7
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
8
|
Ho CY, Dreesen O. Faces of cellular senescence in skin aging. Mech Ageing Dev 2021; 198:111525. [PMID: 34166688 DOI: 10.1016/j.mad.2021.111525] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/30/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
The skin is comprised of different cell types with different proliferative capacities. Skin aging occurs with chronological age and upon exposure to extrinsic factors such as photodamage. During aging, senescent cells accumulate in different compartments of the human skin, leading to impaired skin physiology. Diverse skin cell types may respond differently to senescence-inducing stimuli and it is not clear how this results in aging-associated skin phenotypes and pathologies. This review aims to examine and provide an overview of current evidence of cellular senescence in the skin. We will focus on cellular characteristics and behaviour of different skin cell types undergoing senescence in the epidermis and dermis, with a particular focus on the complex interplay between mitochondrial dysfunction, autophagy and DNA damage pathways. We will also examine how the dermis and epidermis cope with the accumulation of DNA damage during aging.
Collapse
Affiliation(s)
- Chin Yee Ho
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore
| | - Oliver Dreesen
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648, Singapore.
| |
Collapse
|
9
|
Addison R, Weatherhead SC, Pawitri A, Smith GR, Rider A, Grantham HJ, Cockell SJ, Reynolds NJ. Therapeutic wavelengths of ultraviolet B radiation activate apoptotic, circadian rhythm, redox signalling and key canonical pathways in psoriatic epidermis. Redox Biol 2021; 41:101924. [PMID: 33812333 PMCID: PMC8050411 DOI: 10.1016/j.redox.2021.101924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Ultraviolet B radiation (UVB) exerts pleiotropic effects on human skin. DNA damage response and repair pathways are activated by UVB; if damage cannot be repaired, apoptosis ensues. Although cumulative UVB exposure predisposes to skin cancer, UVB phototherapy is widely used as an effective treatment for psoriasis. Previous studies defined the therapeutic action spectrum of UVB and showed that psoriasis is resistant to apoptosis. This study aimed to investigate early molecular responses within psoriasis plaques following irradiation with single equi-erythemogenic doses of clinically-effective (311 nm, narrow-band) compared to clinically-ineffective (290 nm) UVB. Forty-eight micro-dissected epidermal samples from 20 psoriatic patients were analyzed using microarrays. Our bioinformatic analysis compared gene expression between 311 nm irradiated, 290 nm irradiated and control psoriasis epidermis to specifically identify 311 nm UVB differentially expressed genes (DEGs) and their upstream regulatory pathways. Key DEGs and pathways were validated by immunohistochemical analysis. There was a dynamic induction and repression of 311 nm UVB DEGs between 6 h and 18 h, only a limited number of DEGs maintained their designated expression status between time-points. Key disease and function pathways included apoptosis, cell death, cell migration and leucocyte chemotaxis. DNA damage response pathways, NRF2-mediated oxidative stress response and P53 signalling were key nodes, interconnecting apoptosis and cell cycle arrest. Interferon signalling, dendritic cell maturation, granulocyte adhesion and atherosclerotic pathways were also differentially regulated. Consistent with these findings, top transcriptional regulators of 311 nm UVB DEGs related to: a) apoptosis, DNA damage response and cell cycle control; b) innate/acquired immune regulation and inflammation; c) hypoxia/redox response and angiogenesis; d) circadian rhythmicity; f) EGR/AP1 signalling and keratinocyte differentiation; and g) mitochondrial biogenesis. This research provides important insights into the molecular targets of 311 nm UVB, underscoring key roles for apoptosis and cell death. These and the other key pathways delineated may be central to the therapeutic effects of 311 nm in psoriasis.
Collapse
Affiliation(s)
- Rachel Addison
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie C Weatherhead
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Anandika Pawitri
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Graham R Smith
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Ashley Rider
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Henry J Grantham
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Simon J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK
| | - Nick J Reynolds
- Institute of Translational and Clinical Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle Upon Tyne, UK; Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK.
| |
Collapse
|
10
|
Atalay S, Gęgotek A, Skrzydlewska E. Protective Effects of Cannabidiol on the Membrane Proteome of UVB-Irradiated Keratinocytes. Antioxidants (Basel) 2021; 10:402. [PMID: 33800305 PMCID: PMC8001542 DOI: 10.3390/antiox10030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Ultraviolet (UV) radiation contained in sunlight disturbs the redox state of skin cells, leading to changes in the structures and functions of macromolecules including components of biological membranes. Cannabidiol (CBD), which accumulates in biomembranes, may be a promising protective antioxidant compound. Accordingly, the aim of this study was to compare the effects of short-term (24 h) and long-term (48 h) CBD application on the proteomic profile of biological membranes in UVB-irradiated keratinocytes. The data obtained show that UVB radiation quantitatively and qualitatively modified cell membrane proteins, with a particular research focus on adducts of proteins with the lipid peroxidation products malondialdehyde (MDA) or 4-hydroxynonenal (4-HNE). CBD application reduced the UVB-enhanced level of these protein adducts. This was particularly notable amongst proteins related to cell proliferation and apoptosis. Moreover, CBD dramatically increased the UVB-induced expression of proteins involved in the regulation of protein translation and cell proliferation (S3a/L13a/L7a ribosomal proteins), the inflammatory response (S100/S100-A6 proteins), and maintenance of redox balance (peroxiredoxin-1, carbonyl reductase 1, and aldo-keto reductase family 1 members). In contrast, CBD effects on the level of 4-HNE-protein adducts involved in the antioxidant response and proteasomal degradation process indicate that CBD may protect keratinocytes in connection with protein catabolism processes or pro-apoptotic action.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, 15-089 Białystok, Poland; (S.A.); (A.G.)
| |
Collapse
|
11
|
Intracellular Insulin-like growth factor binding protein 2 (IGFBP2) contributes to the senescence of keratinocytes in psoriasis by stabilizing cytoplasmic p21. Aging (Albany NY) 2020; 12:6823-6851. [PMID: 32302288 PMCID: PMC7202509 DOI: 10.18632/aging.103045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Psoriasis is a chronic Th1/Th17 lymphocytes-mediated inflammatory skin disease, in which epidermal keratinocytes exhibit a peculiar senescent state, resistance to apoptosis and the acquisition of senescence-associated secretory phenotype (SASP). SASP consists of the release of soluble factors, including IGFBPs, that exert extracellular and intracellular functions in IGF-dependent or independent manner.In this report, we investigated the expression and function of IGFBP2 in senescent keratinocytes isolated from the skin of patients with plaque psoriasis. We found that IGFBP2 is aberrantly expressed and released by these cells in vivo, as well as in vitro in keratinocyte cultures undergoing progressive senescence, and it associates with the cyclin-dependent kinase inhibitors p21 and p16 expression. For the first time, we provide evidence for a dual action of IGFBP2 in psoriatic keratinocytes during growth and senescence processes. While extracellular IGFBP2 counter-regulates IGF-induced keratinocyte hyper-proliferation, intracellular IGFBP2 inhibits apoptosis by interacting with p21 and protecting it from ubiquitin-dependent degradation. Indeed, we found that cytoplasmic p21 sustains anti-apoptotic processes, by inhibiting pro-caspase 3 cleavage and JNK phosphorylation in senescent psoriatic keratinocytes. As a consequence, abrogation of p21, as well as that of IGFBP2, found to stabilize cytoplasmic p21 levels, lead to the restoration of apoptosis mechanisms in psoriatic keratinocytes, commonly observed in healthy cells.
Collapse
|
12
|
Fujita K. p53 Isoforms in Cellular Senescence- and Ageing-Associated Biological and Physiological Functions. Int J Mol Sci 2019; 20:ijms20236023. [PMID: 31795382 PMCID: PMC6928910 DOI: 10.3390/ijms20236023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Cellular senescence, a term originally used to define the characteristics of normal human fibroblasts that reached their replicative limit, is an important factor for ageing, age-related diseases including cancer, and cell reprogramming. These outcomes are mediated by senescence-associated changes in gene expressions, which sometimes lead to the secretion of pro-inflammatory factors, or senescence-associated secretory phenotype (SASP) that contribute to paradoxical pro-tumorigenic effects. p53 functions as a transcription factor in cell-autonomous responses such as cell-cycle control, DNA repair, apoptosis, and cellular senescence, and also non-cell-autonomous responses to DNA damage by mediating the SASP function of immune system activation. The human TP53 gene encodes twelve protein isoforms, which provides an explanation for the pleiotropic p53 function on cellular senescence. Recent reports suggest that some short isoforms of p53 may modulate gene expressions in a full-length p53-dependent and -independent manner, in other words, some p53 isoforms cooperate with full-length p53, whereas others operate independently. This review summarizes our current knowledge about the biological activities and functions of p53 isoforms, especially Δ40p53, Δ133p53α, and p53β, on cellular senescence, ageing, age-related disorder, reprogramming, and cancer. Numerous cellular and animal model studies indicate that an unbalance in p53 isoform expression in specific cell types causes age-related disorders such as cancer, premature ageing, and degenerative diseases.
Collapse
Affiliation(s)
- Kaori Fujita
- Cell Induction and Regulation Field, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. Unravelling the insulin-like growth factor I-mediated photoprotection of the skin. Cytokine Growth Factor Rev 2019; 52:45-55. [PMID: 31767341 DOI: 10.1016/j.cytogfr.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Chronic exposure of human skin to solar ultraviolet radiation (UVR) induces a range of biological reactions which may directly or indirectly lead to the development of skin cancer. In order to overcome these damaging effects of UVR and to reduce photodamage, the skin's endogenous defence system functions in concert with the various exogenous photoprotectors. Growth factors, particularly insulin-like growth factor-I (IGF-I), produced within the body as a result of cellular interaction in response to UVR demonstrates photoprotective properties in human skin. This review summarises the impact of UVR-induced photolesions on human skin, discusses various endogenous as well as exogenous approaches of photoprotection described to date and explains how IGF-I mediates UVR photoprotective responses at the cellular and mitochondrial level. Further, we describe the current interventions using growth factors and propose how the knowledge of the IGF-I photoprotection signalling cascades may direct the development of improved UVR protection and remedial strategies.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Institute of Medical Biology, A⁎STAR, Singapore
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
14
|
Yang LY, Greig NH, Tweedie D, Jung YJ, Chiang YH, Hoffer BJ, Miller JP, Chang KH, Wang JY. The p53 inactivators pifithrin-μ and pifithrin-α mitigate TBI-induced neuronal damage through regulation of oxidative stress, neuroinflammation, autophagy and mitophagy. Exp Neurol 2019; 324:113135. [PMID: 31778663 DOI: 10.1016/j.expneurol.2019.113135] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/20/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the most common causes of death and disability worldwide. We investigated whether inhibition of p53 using pifithrin (PFT)-α or PFT-μ provides neuroprotective effects via p53 transcriptional dependent or -independent mechanisms, respectively. Sprague Dawley rats were subjected to controlled cortical impact TBI followed by the administration of PFTα or PFT-μ (2 mg/kg, i.v.) at 5 h after TBI. Brain contusion volume, as well as sensory and motor functions were evaluated at 24 h after TBI. TBI-induced impairments were mitigated by both PFT-α and PFT-μ. Fluoro-Jade C staining was used to label degenerating neurons within the TBI-induced cortical contusion region that, together with Annexin V positive neurons, were reduced by PFT-μ. Double immunofluorescence staining similarly demonstrated that PFT-μ significantly increased HO-1 positive neurons and mRNA expression in the cortical contusion region as well as decreased numbers of 4-hydroxynonenal (4HNE)-positive cells. Levels of mRNA encoding for p53, autophagy, mitophagy, anti-oxidant, anti-inflammatory related genes and proteins were measured by RT-qPCR and immunohistochemical staining, respectively. PFT-α, but not PFT-μ, significantly lowered p53 mRNA expression. Both PFT-α and PFT-μ lowered TBI-induced pro-inflammatory cytokines (IL-1β and IL-6) mRNA levels as well as TBI-induced autophagic marker localization (LC3 and p62). Finally, treatment with PFT-μ mitigated TBI-induced declines in mRNA levels of PINK-1 and SOD2. Our data suggest that both PFT-μ and PFT-α provide neuroprotective actions through regulation of oxidative stress, neuroinflammation, autophagy, and mitophagy mechanisms, and that PFT-μ, in particular, holds promise as a TBI treatment strategy.
Collapse
Affiliation(s)
- Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yoo Jin Jung
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Barry J Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonathan P Miller
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ke-Hui Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei 110, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
15
|
Regan S, Yang X, Finnberg NK, El-Deiry WS, Pu JJ. Occurrence of acute myeloid leukemia in hydroxyurea-treated sickle cell disease patient. Cancer Biol Ther 2019; 20:1389-1397. [PMID: 31423878 DOI: 10.1080/15384047.2019.1647055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Hydroxyurea (HU) has been widely used in sickle cell disease. Its potential long-term risk for carcinogenesis or leukemogenic risk remains undefined. Here, we report a 26 y old African-American female with Sickle Cell Disease (SCD) who developed refractory/relapsed acute myeloid leukemia (AML) 6 months after 26 months of HU use. That patient's cytogenetics and molecular genetics analyses demonstrated a complex mutation profile with 5q deletion, trisomy 8, and P53 deletion (deletion of 17p13.1). P53 gene sequence studies revealed a multitude of somatic mutations that most suggest a treatment-related etiology. The above-mentioned data indicates that the patient may have developed acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) as a direct result of HU exposure.
Collapse
Affiliation(s)
- Samuel Regan
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA
| | - Xuebin Yang
- Department of Pathology, Perelman School of Medicine at the University of Pennsylvania , Philadelphia , PA , USA
| | | | - Wafik S El-Deiry
- Department of Pathology, Warren Alpert Medical School, Brown University , Providence , Rhode Island , USA
| | - Jeffrey J Pu
- Department of Medicine, College of Medicine, SUNY Upstate Medical University , Syracuse , New York , USA.,Upstate Cancer Center, Departments of Medicine, Pathology, and Pharmacology, SUNY Upstate Medical University , Syracuse , New York , USA.,Syracuse VA Medical Center, SUNY Upstate Medical University , Syracuse , New York , USA
| |
Collapse
|
16
|
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol 2018; 9:892. [PMID: 30233358 PMCID: PMC6131672 DOI: 10.3389/fphar.2018.00892] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Asiatic acid (AA) is a naturally occurring aglycone of ursane type pentacyclic triterpenoids. It is abundantly present in many edible and medicinal plants including Centella asiatica that is a reputed herb in many traditional medicine formulations for wound healing and neuropsychiatric diseases. AA possesses numerous pharmacological activities such as antioxidant and anti-inflammatory and regulates apoptosis that attributes its therapeutic effects in numerous diseases. AA showed potent antihypertensive, nootropic, neuroprotective, cardioprotective, antimicrobial, and antitumor activities in preclinical studies. In various in vitro and in vivo studies, AA found to affect many enzymes, receptors, growth factors, transcription factors, apoptotic proteins, and cell signaling cascades. This review aims to represent the available reports on therapeutic potential and the underlying pharmacological and molecular mechanisms of AA. The review also also discusses the challenges and prospects on the pharmaceutical development of AA such as pharmacokinetics, physicochemical properties, analysis and structural modifications, and drug delivery. AA showed favorable pharmacokinetics and found bioavailable following oral or interaperitoneal administration. The studies demonstrate the polypharmacological properties, therapeutic potential and molecular mechanisms of AA in numerous diseases. Taken together the evidences from available studies, AA appears one of the important multitargeted polypharmacological agents of natural origin for further pharmaceutical development and clinical application. Provided the favorable pharmacokinetics, safety, and efficacy, AA can be a promising agent or adjuvant along with currently used modern medicines with a pharmacological basis of its use in therapeutics.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Kapil Suchal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Charu Sharma
- Department of Internal Meicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Chang RS, Chen CS, Huang CL, Chang CT, Cui Y, Chung WJ, Shu WY, Chiang CS, Chuang CY, Hsu IC. Unexpected dose response of HaCaT to UVB irradiation. In Vitro Cell Dev Biol Anim 2018; 54:589-599. [PMID: 30083841 DOI: 10.1007/s11626-018-0280-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
Abstract
Application of high-dosage UVB irradiation in phototherapeutic dermatological treatments present health concerns attributed to UV-exposure. In assessing UV-induced photobiological damage, we investigated dose-dependent effects of UVB irradiation on human keratinocyte cells (HaCaT). Our study implemented survival and apoptosis assays and revealed an unexpected dose response wherein higher UVB-dosage induced higher viability. Established inhibitors, such as AKT- (LY294002), PKC- (Gö6976, and Rottlerin), ERK- (PD98059), P38 MAPK- (SB203580), and JNK- (SP600125), were assessed to investigate UV-induced apoptotic pathways. Despite unobvious contributions of known signaling pathways in dose-response mediation, microarray analysis identified transcriptional expression of UVB-response genes related to the respiratory-chain. Observed correlation of ROS-production with UVB irradiation potentiated ROS as the underlying mechanism for observed dose responses. Inability of established pathways to explain such responses suggests the complex nature underlying UVB-phototherapy response.
Collapse
Affiliation(s)
- Rong-Shing Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ching-Lung Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chiu-Ting Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yujia Cui
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | | | - Wun-Yi Shu
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Ian C Hsu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| |
Collapse
|
18
|
Zhuang Y, Han C, Li B, Jin L, Dang E, Fang H, Qiao H, Wang G. NB-UVB irradiation downregulates keratin-17 expression in keratinocytes by inhibiting the ERK1/2 and STAT3 signaling pathways. Arch Dermatol Res 2018; 310:147-156. [PMID: 29349514 DOI: 10.1007/s00403-018-1812-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Keratin-17 (K17) is a cytoskeletal protein produced by keratinocytes (KCs), which is overexpressed in psoriasis and may play a pivotal role in its pathogenesis. Narrow-band ultraviolet B (NB-UVB) irradiation is used as a general treatment for psoriasis, although its impact on K17 expression has yet to be determined. In this study, we aimed to investigate the effect of NB-UVB irradiation on K17 expression and its signaling pathways. After exposure to NB-UVB irradiation, immortalized human keratinocytes (HaCaT cells) were analyzed by flow cytometry, CCK-8 assays and transmission electron microscopy to examine proliferation. Meanwhile, K17 expression in primary human epithelial keratinocytes was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot analysis and immunofluorescence. HaCaT cells pre-incubated with PD-98059 and piceatannol were subjected to western blot analysis to examine ERK1/2 and STAT3 phosphorylation. The ears of mice treated with imiquimod (IMQ) and irradiated by NB-UVB were taken to examine K17 expression by qRT-PCR, western blot analysis, and immunofluorescence. Our results showed that 400 mJ/cm2 of NB-UVB irradiation was the maximum tolerable dose for HaCaT cells and could cause inhibited HaCaT cell proliferation and moderate increase of the early apoptosis. Furthermore, NB-UVB irradiation could downregulate K17 expression by inhibiting the ERK1/2 and STAT3 signaling pathways. In experiments conducted in vivo, NB-UVB irradiation with doses of MED or higher could eliminate the IMQ-induced psoriasis-like dermatitis and inhibit K17 expression. These results indicated that NB-UVB irradiation may eliminate chronic psoriatic plaques by suppressing K17 expression via the ERK1/2 and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yuchen Zhuang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Changxu Han
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Liang Jin
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Contrasting effects of an Mdm2 functional polymorphism on tumor phenotypes. Oncogene 2017; 37:332-340. [PMID: 28925402 DOI: 10.1038/onc.2017.344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
Abstract
MDM2, an E3 ubiquitin ligase, is a potent inhibitor of the p53 tumor suppressor and is elevated in many human cancers that retain wild-type p53. MDM2 SNP309G is a functional polymorphism that results in elevated levels of MDM2 (due to enhanced SP1 binding to the MDM2 promoter) thus decreasing p53 activity. Mdm2SNP309G/G mice are more prone to spontaneous tumor formation than Mdm2SNP309T/T mice, providing direct evidence for the impact of this SNP in tumor development. We asked whether environmental factors impact SNP309G function and show that SNP309G cooperates with ionizing radiation to exacerbate tumor development. Surprisingly, ultraviolet B light or Benzo(a)pyrene exposure of skin shows that SNP309G allele actually protects against squamous cell carcinoma susceptibility. These contrasting differences led us to interrogate the mechanism by which Mdm2 SNP309 regulates tumor susceptibility in a tissue-specific manner. Although basal Mdm2 levels were significantly higher in most tissues in Mdm2SNP309G/G mice compared with Mdm2SNP309T/T mice, they were significantly lower in Mdm2SNP309G/G keratinocytes, the cell-type susceptible to squamous cell carcinoma. The assessment of potential transcriptional regulators in ENCODE ChIP-seq database identified transcriptional repressor E2F6 as a possible negative regulator of MDM2 expression. Our data show that E2F6 suppresses Mdm2 expression in cells harboring the SNP309G allele but not the SNP309T allele. Thus, Mdm2 SNP309G exhibits tissue-specific regulation and differentially impacts cancer risk.
Collapse
|
20
|
Sample A, He YY. Autophagy in UV Damage Response. Photochem Photobiol 2017; 93:943-955. [PMID: 27935061 PMCID: PMC5466513 DOI: 10.1111/php.12691] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/22/2016] [Indexed: 12/14/2022]
Abstract
UV radiation exposure from sunlight and artificial tanning beds is the major risk factor for the development of skin cancer and skin photoaging. UV-induced skin damage can trigger a cascade of DNA damage response signaling pathways, including cell cycle arrest, DNA repair and, if damage is irreparable, apoptosis. Compensatory proliferation replaces the apoptotic cells to maintain skin barrier integrity. Disruption of these processes can be exploited to promote carcinogenesis by allowing the survival and proliferation of damaged cells. UV radiation also induces autophagy, a catabolic process that clears unwanted or damaged proteins, lipids and organelles. The mechanisms by which autophagy is activated following UV exposure, and the functions of autophagy in UV response, are only now being clarified. Here, we summarize the current understanding of the mechanisms governing autophagy regulation by UV, the roles of autophagy in regulating cellular response to UV-induced photodamage and the implications of autophagy modulation in the treatment and prevention of photoaging and skin cancer.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
21
|
de Gruijl FR. UV adaptation: Pigmentation and protection against overexposure. Exp Dermatol 2017; 26:557-562. [DOI: 10.1111/exd.13332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Frank R. de Gruijl
- Department of Dermatology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
22
|
Liao C, Xie G, Zhu L, Chen X, Li X, Lu H, Xu B, Ramot Y, Paus R, Yue Z. p53 Is a Direct Transcriptional Repressor of Keratin 17: Lessons from a Rat Model of Radiation Dermatitis. J Invest Dermatol 2016; 136:680-689. [DOI: 10.1016/j.jid.2015.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 11/15/2022]
|
23
|
Simoniello P, Wiedemann J, Zink J, Thoennes E, Stange M, Layer PG, Kovacs M, Podda M, Durante M, Fournier C. Exposure to Carbon Ions Triggers Proinflammatory Signals and Changes in Homeostasis and Epidermal Tissue Organization to a Similar Extent as Photons. Front Oncol 2016; 5:294. [PMID: 26779439 PMCID: PMC4705223 DOI: 10.3389/fonc.2015.00294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/10/2015] [Indexed: 12/27/2022] Open
Abstract
The increasing application of charged particles in radiotherapy requires a deeper understanding of early and late side effects occurring in skin, which is exposed in all radiation treatments. We measured cellular and molecular changes related to the early inflammatory response of human skin irradiated with carbon ions, in particular cell death induction and changes in differentiation and proliferation of epidermal cells during the first days after exposure. Model systems for human skin from healthy donors of different complexity, i.e., keratinocytes, coculture of skin cells, 3D skin equivalents, and skin explants, were used to investigate the alterations induced by carbon ions (spread-out Bragg peak, dose-averaged LET 100 keV/μm) in comparison to X-ray and UV-B exposure. After exposure to ionizing radiation, in none of the model systems, apoptosis/necrosis was observed. Carbon ions triggered inflammatory signaling and accelerated differentiation of keratinocytes to a similar extent as X-rays at the same doses. High doses of carbon ions were more effective than X-rays in reducing proliferation and inducing abnormal differentiation. In contrast, changes identified following low-dose exposure (≤0.5 Gy) were induced more effectively after X-ray exposure, i.e., enhanced proliferation and change in the polarity of basal cells.
Collapse
Affiliation(s)
- Palma Simoniello
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Julia Wiedemann
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Joana Zink
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Eva Thoennes
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Maike Stange
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
| | - Paul G Layer
- Department of Biology, Technische Universität Darmstadt , Darmstadt , Germany
| | | | - Maurizio Podda
- Department of Dermatology, Darmstadt Hospital , Darmstadt , Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Hochschule Darmstadt, Darmstadt, Germany
| |
Collapse
|
24
|
Fernandez TL, Van Lonkhuyzen DR, Dawson RA, Kimlin MG, Upton Z. Insulin-like growth factor-I and UVB photoprotection in human keratinocytes. Exp Dermatol 2015; 24:235-8. [PMID: 25607472 DOI: 10.1111/exd.12637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
Abstract
Ultraviolet radiation (UVR), in particular the UVB spectrum, is a risk factor for skin cancer development. The generation and accumulation of UVB-induced genetic mutations are fundamental premalignant events. Keratinocyte interactions between other cutaneous cell populations and the surrounding microenvironment determine cell fate and acute photoresponses. In this study, the importance of the insulin-like growth factor (IGF) system, in particular the insulin-like growth factor-I (IGF-I), on influencing key processes in the keratinocyte acute photoresponse was investigated. Exogenous IGF-I and other growth factors present in dermal fibroblast-conditioned media (CM) were found to significantly enhance keratinocyte survival following UVB irradiation in vitro. This pretreatment was also shown to cause a shift in the expression levels of various DNA damage response proteins. Consequently, this was associated with accelerated rates of UVB-induced cyclobutane pyrimidine dimer removal in these samples. Finally, activation of the IGF system influenced cell cycle progression in UVB-irradiated keratinocytes. Taken together, these results highlight the importance of the IGF signalling network in initiating the repair of potentially mutagenic DNA damage in human keratinocytes. The dysregulation of these processes may therefore have significant implications in the aetiology of skin cancers and other cutaneous diseases.
Collapse
Affiliation(s)
- Tara Lyn Fernandez
- Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | | | | | | | | |
Collapse
|
25
|
Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015; 6:14. [PMID: 25674088 PMCID: PMC4309199 DOI: 10.3389/fimmu.2015.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| | - Sophie Paczesny
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| |
Collapse
|
26
|
Zhao Y, Marjanovic M, Chaney EJ, Graf BW, Mahmassani Z, Boppart MD, Boppart SA. Longitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope. BIOMEDICAL OPTICS EXPRESS 2014; 5:3699-716. [PMID: 25360383 PMCID: PMC4206335 DOI: 10.1364/boe.5.003699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 05/04/2023]
Abstract
We demonstrate real-time, longitudinal, label-free tracking of apoptotic and necrotic cells in living tissue using a multimodal microscope. The integrated imaging platform combines multi-photon microscopy (MPM, based on two-photon excitation fluorescence), optical coherence microscopy (OCM), and fluorescence lifetime imaging microscopy (FLIM). Three-dimensional (3-D) co-registered images are captured that carry comprehensive information of the sample, including structural, molecular, and metabolic properties, based on light scattering, autofluorescence intensity, and autofluorescence lifetime, respectively. Different cell death processes, namely, apoptosis and necrosis, of keratinocytes from different epidermal layers are longitudinally monitored and investigated. Differentiation of the two cell death processes in a complex living tissue environment is enabled by quantitative image analysis and high-confidence classification processing based on the multidimensional, cross-validating imaging data. These results suggest that despite the limitations of each individual label-free modality, this multimodal imaging approach holds the promise for studies of different cell death processes in living tissue and in vivo organs.
Collapse
Affiliation(s)
- Youbo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Eric J. Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Benedikt W. Graf
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ziad Mahmassani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marni D. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Tendler Y, Pokroy R, Panshin A, Weisinger G. p53 protein subcellular localization and apoptosis in rodent corneal epithelium cell culture following ultraviolet irradiation. Int J Mol Med 2013; 31:540-6. [PMID: 23338225 DOI: 10.3892/ijmm.2013.1247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/03/2012] [Indexed: 11/06/2022] Open
Abstract
The tumor-suppressor gene p53 encodes a phosphoprotein involved in the control of cell growth. p53 expression and function have been documented in malignancy, apoptosis and the aging processes. Recently, p53 has been mapped and characterized in the normal cornea across different species. In the present study, high levels of cytoplasmic p53 protein were noted in normal primary corneal epithelium cultures by immunohistochemistry and western blot analysis. Following ultraviolet (UV) irradiation, the level of cytoplasmic p53 protein expression was increased beginning from 30 min and lasting until 6 h post-irradiation and then returned close to control levels by 24 h. Cytoplasmic p53 phosphorylation was detected from 30 min following UV treatment until 6 h post-irradiation. p53 protein became apparent in the nucleus in a fraction of these cultured cells beginning 30 min following UV irradiation and was still present 24 h later. We also found that p53 colocalized with mitochondria 2 h following UV irradiation in some of the cells and remained there up to 24 h. As the expression levels of p53 transcription following UV irradiation were not significantly altered, the increase in cytoplasmic p53 protein expression may be conditional only upon post-translational stabilization. We also observed that the apoptotic index increased following UV irradiation in the same time frame as the p53 nuclear transfer and was partially suppressed by pifithrin-α, which is a reversible inhibitor of p53-mediated apoptosis and p53-dependent gene transcription. The present study offers new evidence suggesting that cytoplasmic p53 in rodent corneal epithelium is functionally active.
Collapse
Affiliation(s)
- Yevgeny Tendler
- Department of Clinical Biochemistry, Rambam Medical Center, Haifa, Israel.
| | | | | | | |
Collapse
|
28
|
p53 acts as a co-repressor to regulate keratin 14 expression during epidermal cell differentiation. PLoS One 2012; 7:e41742. [PMID: 22911849 PMCID: PMC3404013 DOI: 10.1371/journal.pone.0041742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/27/2012] [Indexed: 11/22/2022] Open
Abstract
During epidermal cell differentiation, keratin 14 (K14) expression is down-regulated, p53 expression varies, and the expression of the p53 target genes, p21 and 14-3-3σ, increases. These trends suggest that the relative transcriptional activity of p53 is increased during epidermal cell differentiation. To determine the relationship between K14 and p53, we constructed K14 promoters of various sizes and found that wild-type p53 could repress the promoter activity of all of the K14 promoter constructs in H1299 cells. K14-p160 contains an SP1 binding site mutation that prevents p53 from repressing K14 expression. Using a DNA affinity precipitation assay, we confirmed that p53 forms a complex with SP1 at the SP1 binding site between nucleotides -48 and -43 on the K14 promoter. Thus, our data indicate that p53 acts as a co-repressor to down-regulate K14 expression by binding to SP1. Next, we used a 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal cell differentiation model to examine the inhibition of K14 expression caused by increased p53 activity. Human ovarian teratocarcinoma C9 cells were treated with TPA to induce differentiation. Over-expression of the dominant negative p53 mutant ΔTAp53, which inhibits p53 activity, prevented the TPA-induced K14 down-regulation in C9 cells. Furthermore, treatment of normal primary human foreskin keratinocytes (PHFK) with the p53 inhibitor pifithrin-α (PFT-α) showed that the inhibition of p53 activity relieves K14 repression during epidermal cell differentiation. Finally, we found that TPA induces the phosphorylation of p53 at residue 378, which enhances the affinity of p53 to bind to Sp1 and repress K14 expression.
Collapse
|
29
|
Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N. The role of the E2F transcription factor family in UV-induced apoptosis. Int J Mol Sci 2011; 12:8947-60. [PMID: 22272113 PMCID: PMC3257110 DOI: 10.3390/ijms12128947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a) are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8) appear to antagonize E2F-induced cell death. In this review we will discuss (i) the potential role of E2Fs in UV-induced cell death and (ii) the implications of this to the development of UV-induced cutaneous malignancies.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Liliana Endo-Munoz
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Orla Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Nicholas Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3176-5894; Fax: +61-7-3176-5946
| |
Collapse
|
30
|
Moussalli MJ, Wu Y, Zuo X, Yang XL, Wistuba II, Raso MG, Morris JS, Bowser JL, Minna JD, Lotan R, Shureiqi I. Mechanistic contribution of ubiquitous 15-lipoxygenase-1 expression loss in cancer cells to terminal cell differentiation evasion. Cancer Prev Res (Phila) 2011; 4:1961-72. [PMID: 21881028 PMCID: PMC3232310 DOI: 10.1158/1940-6207.capr-10-0280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loss of terminal cell differentiation promotes tumorigenesis. 15-Lipoxygenase-1 (15-LOX-1) contributes to terminal cell differentiation in normal cells. The mechanistic significance of 15-LOX-1 expression loss in human cancers to terminal cell differentiation suppression is unknown. In a screen of 128 cancer cell lines representing more than 20 types of human cancer, we found that 15-LOX-1 mRNA expression levels were markedly lower than levels in terminally differentiated cells. Relative expression levels of 15-LOX-1 (relative to the level in terminally differentiated primary normal human-derived bronchial epithelial cells) were lower in 79% of the screened cancer cell lines than relative expression levels of p16 (INK4A), which promotes terminal cell differentiation and is considered one of the most commonly lost tumor suppressor genes in cancer cells. 15-LOX-1 was expressed during terminal differentiation in three-dimensional air-liquid interface cultures, and 15-LOX-1 expression and terminal differentiation occurred in immortalized nontransformed bronchial epithelial but not in lung cancer cell lines. 15-LOX-1 expression levels were lower in human tumors than in paired normal lung epithelia. Short hairpin RNA-mediated downregulation of 15-LOX-1 in Caco-2 cells blocked enterocyte-like differentiation, disrupted tight junction formation, and blocked E-cadherin and ZO-1 localization to the cell wall membrane. 15-LOX-1 episomal expression in Caco-2 and HT-29 colon cancer cells induced differentiation. Our findings indicate that 15-LOX-1 downregulation in cancer cells is an important mechanism for terminal cell differentiation dysregulation and support the potential therapeutic utility of 15-LOX-1 reexpression to inhibit tumorigenesis.
Collapse
Affiliation(s)
- Micheline J. Moussalli
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuanqing Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiangsheng Zuo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiu L. Yang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ignacio Ivan Wistuba
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria G. Raso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey S. Morris
- Department of Biostatistics and Applied Mathematics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jessica L. Bowser
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Reuben Lotan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Imad Shureiqi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Weatherhead SC, Farr PM, Jamieson D, Hallinan JS, Lloyd JJ, Wipat A, Reynolds NJ. Keratinocyte apoptosis in epidermal remodeling and clearance of psoriasis induced by UV radiation. J Invest Dermatol 2011; 131:1916-26. [PMID: 21614017 PMCID: PMC3160491 DOI: 10.1038/jid.2011.134] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Psoriasis is a common chronic skin disorder, but the mechanisms involved in the resolution and clearance of plaques remain poorly defined. We investigated the mechanism of action of UVB, which is highly effective in clearing psoriasis and inducing remission, and tested the hypothesis that apoptosis is a key mechanism. To distinguish bystander effects, equal erythemal doses of two UVB wavelengths were compared following in vivo irradiation of psoriatic plaques; one is clinically effective (311 nm) and one has no therapeutic effect on psoriasis (290 nm). Only 311 nm UVB induced significant apoptosis in lesional epidermis, and most apoptotic cells were keratinocytes. To determine clinical relevance, we created a computational model of psoriatic epidermis. Modeling predicted apoptosis would occur in both stem and transit-amplifying cells to account for plaque clearance; this was confirmed and quantified experimentally. The median rate of keratinocyte apoptosis from onset to cell death was 20 minutes. These data were fed back into the model and demonstrated that the observed level of keratinocyte apoptosis was sufficient to explain UVB-induced plaque resolution. Our human studies combined with a systems biology approach demonstrate that keratinocyte apoptosis is a key mechanism in psoriatic plaques clearance, providing the basis for future molecular investigation and therapeutic development.
Collapse
Affiliation(s)
- Sophie C Weatherhead
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University Medical School, Newcastle upon Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim RH, Lee RS, Williams D, Bae S, Woo J, Lieberman M, Oh JE, Dong Q, Shin KH, Kang MK, Park NH. Bisphosphonates induce senescence in normal human oral keratinocytes. J Dent Res 2011; 90:810-6. [PMID: 21427353 DOI: 10.1177/0022034511402995] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) commonly occurs in individuals receiving bisphosphonates (BPs) with clinical manifestations of the exposed necrotic bone. Although defective wound healing of soft tissue is frequently, if not always, observed in BRONJ, the effects of BPs on oral soft tissue or cells remain unknown. To investigate the effects of BPs on cells of oral mucosal tissue, we studied the effect of pamidronate (PAM), one of the BPs most commonly administered to cancer patients, on the phenotypes of normal human oral keratinocytes (NHOK) and fibroblasts (NHOF). When exposed to PAM at 10 µM, NHOK, not NHOF, underwent senescence: NHOK overexpressed senescence-associated β-galactosidase (SA-β-Gal), p16INK4A, IL-6, and IL-8. When exposed to a higher level (50 µM) of PAM, NHOK maintained senescent phenotypes, but NHOF underwent apoptosis. PAM-induced senescence in NHOK is mediated, in part, via geranylgeranylation of the mevalonate pathway. Our in vitro 3D oral mucosal tissue construction studies further demonstrated that PAM induced senescence and impaired re-epithelialization of oral mucosa. Analysis of these data indicates that premature senescence of oral mucosal cells and subsequent defective soft-tissue wound healing might be partly responsible for the development of BRONJ in individuals receiving PAM or other BPs.
Collapse
Affiliation(s)
- R H Kim
- UCLA School of Dentistry, Center for the Health Sciences, Room 43-091, 10833 Le Conte Ave, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Increased expression of TRAIL and its death receptors DR4 and DR5 in plaque psoriasis. Arch Dermatol Res 2011; 303:389-97. [DOI: 10.1007/s00403-011-1125-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/09/2011] [Accepted: 01/14/2011] [Indexed: 12/18/2022]
|
34
|
Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N. The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmet Sci 2011; 33:234-44. [DOI: 10.1111/j.1468-2494.2010.00622.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abstract
Skin and its appendages provide a protective barrier against the assaults of the environment. To perform its role, epidermis undergoes an ongoing renewal through a balance of proliferation and differentiation/apoptosis called homeostasis. Keratinocyte stem cells reside in a special microenvironment called niche in basal epidermis, adult hair follicle, and sebaceous glands. While a definite marker has yet to be detected, data raised part in humans and part in the mouse system point to a critical role of stem and its progeny transit amplifying cells in epidermal homeostasis. Stem cells are protected from apoptosis and are long resident in adult epidermis. This renders them more prone to be the origin of skin cancer. In this review, we will outline the main features of adult stem cells in mouse and humans and discuss their fate in relation to differentiation, apoptosis, and cancer.
Collapse
Affiliation(s)
- Carlo Pincelli
- Laboratory of Cutaneous Biology, School of Biosciences and Biotechnologies, University of Modena and Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
36
|
Madonna S, Scarponi C, Sestito R, Pallotta S, Cavani A, Albanesi C. The IFN-gamma-dependent suppressor of cytokine signaling 1 promoter activity is positively regulated by IFN regulatory factor-1 and Sp1 but repressed by growth factor independence-1b and Krüppel-like factor-4, and it is dysregulated in psoriatic keratinocytes. THE JOURNAL OF IMMUNOLOGY 2010; 185:2467-81. [PMID: 20644166 DOI: 10.4049/jimmunol.1001426] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidermal keratinocytes can counteract the detrimental effects of IFN-gamma by inducing the expression of suppressor of cytokine signaling (SOCS)1, which plays an important anti-inflammatory and self-protective role. To date, limited information exists on its expression and regulation in human diseased keratinocytes. In this study, we compared the expression levels of SOCS1 in keratinocytes isolated from skin affected by psoriasis with cells obtained from healthy donors, unveiling that keratinocytes are more prone than healthy cells to upregulate SOCS1 mRNA expression in response to IFN-gamma. We explored the regulatory mechanisms involved in socs1 gene transcription, and found that Sp1 and IFN regulatory factor-1 transcription factors are, respectively, responsible for the basal and IFN-gamma-induced activity of human socs1 promoter. In parallel, we demonstrated that socs1 promoter is negatively regulated by two transcriptional repressors, namely, growth factor independence-1b and Krüppel-like factor 4, which tightly control SOCS1 transcription on IFN-gamma stimulation. Interestingly, although the expression of Sp1 and IFN regulatory factor-1 activators of socs1 promoter is unaltered, growth factor independence-1b and Krüppel-like factor 4 are significantly reduced in psoriatic compared with healthy keratinocytes. This reduction and the consequent unbalanced binding of transcriptional activators and repressors to socs1 promoter after IFN-gamma stimulation might be responsible for the enhanced expression of SOCS1 in psoriatic cells. We suggest that SOCS1 exaggerated upregulation in psoriatic keratinocytes could represent a mechanism through which these cells attempt to protect themselves from IFN-gamma effects. However, the SOCS1 increased levels in psoriatic keratinocytes are not sufficient to completely inhibit the expression of proinflammatory genes.
Collapse
Affiliation(s)
- Stefania Madonna
- Laboratorio di Immunologia Sperimentale, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Bunderson-Schelvan M, Erbe AK, Schwanke C, Pershouse MA. Suppression of the mouse double minute 4 gene causes changes in cell cycle control in a human mesothelial cell line responsive to ultraviolet radiation exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:753-9. [PMID: 19472317 PMCID: PMC2789868 DOI: 10.1002/em.20498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The TP53 tumor suppressor gene is the most frequently inactivated gene in human cancer identified to date. However, TP53 mutations are rare in human mesotheliomas, as well as in many other types of cancer, suggesting that aberrant TP53 function may be due to alterations in its regulatory pathways. Mouse double minute 4 (MDM4) has been shown to be a key regulator of TP53 activity, both independently as well as in concert with its structural homolog, Mouse Double Minute 2 (MDM2). The purpose of this study was to characterize the effects of MDM4 suppression on TP53 and other proteins involved in cell cycle control before and after ultraviolet (UV) exposure in MeT5a cells, a nonmalignant human mesothelial line. Short hairpin RNA (shRNA) was used to investigate the impact of MDM4 on TP53 function and cellular transcription. Suppression of MDM4 was confirmed by Western blot. MDM4 suppressed cells were analyzed for cell cycle changes with and without exposure to UV. Changes in cell growth as well as differences in the regulation of direct transcriptional targets of TP53, CDKN1A (cyclin-dependent kinase 1alpha, p21) and BAX, suggest a shift from cell cycle arrest to apoptosis upon increasing UV exposure. These results demonstrate the importance of MDM4in cell cycle regulation as well as a possible role inthe pathogenesis of mesothelioma-type cancers.
Collapse
|
38
|
Abstract
The skin is the largest organ of the body and protects the organism against external physical, chemical and biological insults, such as wounding, ultraviolet radiation and micro-organisms. The epidermis is the upper part of the skin that is continuously renewed. The keratinocytes are the major cell type in the epidermis and undergo a specialized form of programmed cell death, called cornification, which is different from classical apoptosis. In keep with this view, several lines of evidence indicate that NF-kB is an important factor providing protection against keratinocyte apoptosis in homeostatic and inflammatory conditions. In contrast, the hair follicle is an epidermal appendage that shows cyclic apoptosis-driven involution, as part of the normal hair cycle. The different cell death programs need to be well orchestrated to maintain skin homeostasis. One of the major environmental insults to the skin is UVB radiation, causing the occurrence of apoptotic sunburn cells. Deregulation of cell death mechanisms in the skin can lead to diseases such as cancer, necrolysis and graft-versus-host disease. Here we review the apoptotic and the anti-apoptotic mechanisms in skin homeostasis and disease.
Collapse
|
39
|
Yun YP, Lee JY, Ahn EK, Lee KH, Yoon HK, Lim Y. Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line. Toxicol In Vitro 2009; 23:21-8. [DOI: 10.1016/j.tiv.2008.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 09/13/2008] [Accepted: 09/17/2008] [Indexed: 11/26/2022]
|
40
|
Lewis DA, Travers JB, Spandau DF. A new paradigm for the role of aging in the development of skin cancer. J Invest Dermatol 2008; 129:787-91. [PMID: 18818672 DOI: 10.1038/jid.2008.293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Bacqueville D, Mavon A. Caspase-3 Activation and DNA Damage in Pig Skin Organ Culture After Solar Irradiation. Photochem Photobiol 2008; 84:1164-71. [DOI: 10.1111/j.1751-1097.2008.00297.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Vitruk TY, Ryazantseva NV, Pesterev PN, Mustafina LR. Features of the apoptosis markers expression by skin cell with ageing. BULLETIN OF SIBERIAN MEDICINE 2008. [DOI: 10.20538/1682-0363-2008-2-23-28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The immunohistochemical study of skin was conducted to verify presence of p53, bcl-2 and bax apoptosis markers in epidermal keratinocytes of patients from two age groups: 16 to 44 years old and 45 to 64 years old. It was discovered that with chronological ageing of skin the expression levels of p53 and bax apoptosis markers are raised by epidermal cells in patients of elder age group. Obtained data testifies to cumulative damaging effect of a quantity of proapoptotic factors (oxidative stress, UV-waves, ionizing radiation, chemical reagents etc.) on epidermal cells with ageing.
Collapse
|
43
|
Lewis DA, Yi Q, Travers JB, Spandau DF. UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol Biol Cell 2008; 19:1346-53. [PMID: 18216278 DOI: 10.1091/mbc.e07-10-1041] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To cope with the frequent exposure to carcinogenic UV B (UVB) wavelengths found in sunlight, keratinocytes have acquired extensive protective measures to handle UVB-induced DNA damage. Recent in vitro and epidemiological data suggest one these protective mechanisms is dependent on the functional status of the insulin-like growth factor-1 receptor (IGF-1R) signaling network in keratinocytes. During the normal UVB response, ligand-activated IGF-1Rs protect keratinocytes from UVB-induced apoptosis; however, as a consequence, these keratinocytes fail to proliferate. This adaptive response of keratinocytes to UVB exposure maintains the protective barrier function of the epidermis while ensuring that UVB-damaged keratinocytes do not replicate DNA mutations. In contrast, when keratinocytes are exposed to UVB in the absence of IGF-1R activation, the keratinocytes are more sensitive to UVB-induced apoptosis, but the surviving keratinocytes retain the capacity to proliferate. This aberrant UVB response represents flawed protection from UVB damage potentially resulting in the malignant transformation of keratinocytes. Using normal human keratinocytes grown in vitro, we have demonstrated that activation of the IGF-1R promotes the premature senescence of UVB-irradiated keratinocytes through increased generation of reactive oxygen species (ROS) and by maintaining the expression of the cyclin-dependent kinase inhibitor p21(CDKN1A). Furthermore, IGF-1R-dependent UVB-induced premature senescence required the phosphorylation of p53 serine 46. These data suggest one mechanism of keratinocyte resistance to UVB-induced carcinogenesis involves the induction of IGF-1R-dependent premature senescence.
Collapse
Affiliation(s)
- Davina A Lewis
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202-5121, USA
| | | | | | | |
Collapse
|
44
|
Marble DJ, Gordon KB, Nickoloff BJ. Targeting TNFalpha rapidly reduces density of dendritic cells and macrophages in psoriatic plaques with restoration of epidermal keratinocyte differentiation. J Dermatol Sci 2007; 48:87-101. [PMID: 17689932 PMCID: PMC2703191 DOI: 10.1016/j.jdermsci.2007.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/31/2007] [Accepted: 06/21/2007] [Indexed: 01/04/2023]
Abstract
BACKGROUND The cytokine network theory for psoriasis postulates a key role for TNFalpha in mediating inflammation and altered epidermal differentiation. OBJECTIVE This study defines responses following administration of adalimumab, a TNFalpha inhibitor, in pre-psoriatic skin (PN) and lesional psoriatic plaques (PP) skin. METHODS PN and PP skin before and after treatment were biopsied at days 2, 7, 28 and 84 (n=6 different patients). Cryosections were immunohistochemically stained to detect TNFalpha and other relevant markers in epidermal and dermal compartments. Detection of apoptosis utilized antibody specific for activated caspase 3. Semiquantitative assessments and statistical analysis was performed for each staining profile. RESULTS TNFalpha+ cells were increased in PP skin. PP skin was also characterized by a four-fold increase in number of CD68+ macrophages as well as eight-fold increase in CD11c+ dermal dendritic cells (DCs) compared to PN skin. By two-color immunofluorescence staining, both CD68+ cells as well as CD11c+ cells expressed TNFalpha. Following initiation of adalimumab therapy, CD11c+ cells, significantly decreased in PP skin at days 7, 28, and 84, while CD68+ and CD14+ cells decreased at days 28 and 84. Other markers for DCs (CD83, CD86) showed decreases at days 7, 28, and 84. Reduction in DCs, macrophages or T cells was not accompanied by increased activated caspase 3-positive cells. When a keratinocyte terminal differentiation marker was examined, adalimumab triggered rapid restoration of loricrin expression (beginning on day 2), with loss of aberrant differentiation marker, keratin 17 (K17). CONCLUSION Adalimumab impacts dermal-based immunocytes, and the epidermal compartment also responds by restoration of normal differentiation without detectable apoptosis.
Collapse
Affiliation(s)
- Deborah J. Marble
- Department of Medicine, Division of Dermatology, Loyola University Medical Center, Maywood, Illinois
| | | | - Brian J. Nickoloff
- Department of Pathology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois
| |
Collapse
|
45
|
Yazici AC, Karabulut AA, Ozen O, Ekşioğlu M, Ustün H. Expression of p53 in lesions and unaffected skin of patients with plaque-type and guttate psoriasis: A quantitative comparative study. J Dermatol 2007; 34:367-74. [PMID: 17535401 DOI: 10.1111/j.1346-8138.2007.00290.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Psoriasis is a common inflammatory and hyperproliferative skin disease characterized by hyperproliferation of keratinocytes. The pathogenesis of psoriasis has yet to be determined. The control of cell growth is a delicately balanced process, regulated by external signals or the internal genetic program of an individual cell. In psoriasis, these processes are disturbed and some candidate genes like p53 are suspected of being involved in the pathogenesis of the disease. The p53 protein is essential for the regulation of cell proliferation. The study was performed on 32 patients with psoriasis (24 plaque type, eight guttate type). Biopsy specimens for immunohistochemical determination of p53 protein expression were collected from both the lesional and the nonlesional skin sites that were not exposed to sun in all of the patients (n = 32). Taking the ultraviolet (UV) exposure of the skin into consideration, a third skin sample was taken from each patient (n = 7) who had lesions on the sun-exposed areas. Immunohistochemical assessment of p53 expression in skin was determined as p53 protein expression per 1000 cells (keratinocytes). The statistical analysis revealed that the expressions of p53 per 1000 cells were higher in non-sun-exposed lesional skin than the non-sun-exposed nonlesional skin, also in plaque-type psoriasis than guttate-type psoriasis (P = 0.000, P = 0.046, P = 0.037, respectively). There was a positive correlation between the p53 expression in non-sun-exposed lesional skin versus expression in sun-exposed lesional skin (cubic centimeters = 0.811, P = 0.027). Our results show a stronger association of elevated p53 expression with chronic rather than acute inflammatory psoriasis. This may indicate a mechanistic difference between plaque-type and guttate psoriasis. Alternatively, this could reflect a chronological course as the disease transitions from an acute to a chronic phase.
Collapse
Affiliation(s)
- Ayça Cordan Yazici
- Department of Dermatology, Faculty of Medicine, Mersin University, Mersin, Turkey.
| | | | | | | | | |
Collapse
|
46
|
Cirillo N, Femiano F, Gombos F, Lanza A. Metalloproteinase 9 is the outer executioner of desmoglein 3 in apoptotic keratinocytes. Oral Dis 2007; 13:341-5. [PMID: 17448220 DOI: 10.1111/j.1601-0825.2006.01287.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the specific matrix metalloproteinases (MMPs) targeting desmoglein 3 (Dsg3) in apoptotic keratinocytes. METHOD Inhibitor studies on cultured keratinocytes and Western blot analysis. RESULTS Blocking of MMP-9 activity strongly reduces shedding of Dsg3 from cell surface. MMP-2 has a less relevant role in the cleavage of Dsg3 while other MMPs, such as MMP-1, -3, and -8, do not target Dsg3. CONCLUSION Apoptic keratinocytes impair the extracellular domain of cell surface Dsg3 by MMP-9 activity. The discovery of a specific targeting of Dsg3 could be useful to understand the pathophysiology of diseases in which Dsg3 is affected.
Collapse
Affiliation(s)
- N Cirillo
- Regional Center on Craniofacial Malformations-MRI, Department of Odontostomatology, 1st School of Medicine and Surgery, II University of Naples, Naples, Italy.
| | | | | | | |
Collapse
|
47
|
Abstract
Apoptosis of keratinocytes is a key mechanism required for epidermal homeostasis and the renewal of damaged cells. Its dysregulation has been implicated in many skin diseases including cancer and hyperproliferative disorders. In the present study, the effect of sodium butyrate, a histone deacetylase inhibitor, on keratinocyte apoptosis was investigated using the HaCaT human keratinocyte cell line. Sodium butyrate induced morphological changes associated with apoptosis and nuclear fragmentation of HaCaTs. Annexin V staining demonstrated that sodium butyrate induced apoptosis in a dose and time-dependent manner with 50% of HaCaTs apoptotic after exposure to 0.8 mg/ml sodium butyrate for 24 h. Apoptosis was associated with upregulation of cell surface expression of the death receptor Fas and activation of the extrinsic caspase pathway, with induction of caspase 8 activity peaking after 8 h. Caspase 3 activity peaked after 24 h and was associated with cleavage of the caspase 3 substrate, poly (ADP-ribose) polymerase (PARP). The intrinsic caspase pathway was not activated as caspase 9 activity was not detected, and there was no change in the expression of terminal differentiation markers keratin 10 and involucrin following sodium butyrate treatment. Together these results indicate that sodium butyrate is a potent inducer of Fas associated apoptosis via caspase activation in HaCaT keratinocytes, an effect that is independent of the induction of terminal differentiation.
Collapse
Affiliation(s)
- Ilse S Daehn
- Child Health Research Institute, Women's and Children's Hospital, North Adelaide, SA, Australia
| | | | | |
Collapse
|
48
|
Ishida T, Sakaguchi I. Protection of Human Keratinocytes from UVB-Induced Inflammation Using Root Extract of Lithospermum erythrorhizon. Biol Pharm Bull 2007; 30:928-34. [PMID: 17473437 DOI: 10.1248/bpb.30.928] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UVB irradiation is an important inducer of biological changes in skin and can activate inflammatory reactions and apoptotic pathways, leading to skin damage. A root extract of Lithospermum erythrorhizon (SK), which has naphthoquinone pigments containing shikonin and shikonin derivatives, is known for its anti-inflammatory, anti-bacterial, and anti-tumor activity, and for its scavenging of reactive oxygen species. However, the effect of SK against UV damage is not clear. The aim of this study was to evaluate the efficacy of SK against UVB induced damage in normal human epidermal keratinocytes (NHEK). UVB-irradiated NHEK showed decreased cell viability, increased production of interleukin (IL)-1alpha, IL-6, IL-8, and tumor necrosis factor-alpha, and induced apoptosis. In an apoptosis pathway assay, UVB-irradiated NHEK showed increased caspase-3 activity, p53 and its phosphorylation at serine 15 compared with non-irradiated cells. All these effects induced by UVB irradiation were clearly inhibited by treatment with SK before and after UVB irradiation for 24 h. It is suggested that SK can protect epidermal cells against harmful effects of UVB irradiation and that SK treatment is probably beneficial for photoprotection of the skin.
Collapse
Affiliation(s)
- Takahiro Ishida
- Institute of Cosmetic Sciences, Club Cosmetics Co Ltd, Ikoma, Nara, Japan.
| | | |
Collapse
|
49
|
Leverrier S, Bergamaschi D, Ghali L, Ola A, Warnes G, Akgül B, Blight K, García-Escudero R, Penna A, Eddaoudi A, Storey A. Role of HPV E6 proteins in preventing UVB-induced release of pro-apoptotic factors from the mitochondria. Apoptosis 2006; 12:549-60. [PMID: 17195958 DOI: 10.1007/s10495-006-0004-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/30/2006] [Indexed: 12/14/2022]
Abstract
Apoptotic elimination of UV-damaged cells from the epidermis is an important step in preventing both the emergence and expansion of cells with carcinogenic potential. A pivotal event in apoptosis is the release of apoptogenic factors from the mitochondria, although the mechanisms by which the different proteins are released are not fully understood. Here we demonstrate that UV radiation induced the mitochondrial to nuclear translocation of apoptosis inducing factor (AIF) in normal skin. The human papillomavirus (HPV) E6 protein prevented release of AIF and other apoptotic factors such as cytochrome c and Omi from mitochondria of UV-damaged primary epidermal keratinocytes and preserved mitochondrial integrity. shRNA silencing of Bak, a target for E6-mediated proteolysis, demonstrated the requirement of Bak for UV-induced AIF release and mitochondrial fragmentation. Furthermore, screening non-melanoma skin cancer biopsies revealed an inverse correlation between HPV status and AIF nuclear translocation. Our results indicate that the E6 activity towards Bak is a key factor that promotes survival of HPV-infected cells that facilitates tumor development.
Collapse
Affiliation(s)
- Sabrina Leverrier
- CR-UK, Skin Tumour Laboratory, Centre for Cutaneous Research, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hubert A, Paris S, Piret JP, Ninane N, Raes M, Michiels C. Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J Cell Sci 2006; 119:3351-62. [PMID: 16882692 DOI: 10.1242/jcs.03069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
HIF-1 (hypoxia-inducible factor-1) is the main transcription factor involved in the adaptation of cells to hypoxia. In addition to regulation of HIF-1alpha protein level, HIF-1 activity is also enhanced by several pathways involving asparagine hydroxylation and phosphorylation. Here, we investigated the relationship between casein kinase 2 (CK2), p53 and HIF-1. An increase in p53 protein level and transcriptional activity was observed when CK2 was inhibited by different inhibitors under normoxia and hypoxia. This increase was in parallel with a decrease in HIF-1 activity without changes in HIF-1alpha protein level, indicating a regulation of its transcriptional activity. Similar results were obtained using CK2alpha siRNA. Ectopic overexpression of p53 also led to an inhibition of HIF-1 activity. Conversely, CK2 inhibition had no effect in p53-null cells indicating that the inhibitory effect of CK2 inhibitors requires the presence of p53. p53 activity was not required because overexpression of a p53 mutated in its DNA-binding domain exerted the same effect as wild-type p53 and because the effect of CK2 inhibitors was still observed when p53 activity was inhibited by pifithrin-alpha. Since CK2 activity is increased in hypoxic conditions, this process provides one more mechanism to ensure enhanced HIF-1 activity under such conditions.
Collapse
Affiliation(s)
- Antoine Hubert
- Laboratory of Biochemistry and Cellular Biology, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|