1
|
Talukdar J, Megha, Choudhary H, Bhatnagar S, Pandit A, Mishra AK, Karmakar S, Sharan P. The Interplay of Chronic Stress and Cancer: Pathophysiology and Implications for Integrated Care. Cancer Rep (Hoboken) 2025; 8:e70143. [PMID: 40387308 DOI: 10.1002/cnr2.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Cancer-associated depression is a multifaceted condition that arises from the interplay of biological, psychological, and social factors in individuals diagnosed with cancer. Understanding this condition involves exploring how cancer and its treatments can precipitate depressive symptoms and the mechanisms behind this association. Chronic stress, inflammation, and immunological responses play a crucial role in the development of both cancer and depression. The objective of this review is to describe and synthesize information on the complex interactions between chronic stress, inflammation, immunological responses, and cancer development. Additionally, it aims to review existing evidence regarding mechanisms such as neurotransmitter imbalances, structural brain changes, and genetic predispositions as key contributors to depression in cancer patients. RECENT FINDINGS A comprehensive literature search on Cancer-associated Depression was conducted in electronic databases, including APA PsycINFO, Medline, Google Scholar, Embase, PubMed, Scopus, and Web of Science. The research focused on understanding the potential relationship between stress-induced depression and cancer by examining neurochemical, anatomical, immunological, genetic, and psychological changes. The findings revealed a compilation of both quantitative and qualitative studies on depression in cancer patients. Evidence suggested a potential link between cancer-induced stress and depression, with increased levels of proinflammatory cytokines (such as IL-6) and dysregulation of neurotransmitters, including serotonin, contributing to the onset of depression. Furthermore, studies indicated that antidepressants, along with psychological interventions, were effective in managing depression among cancer patients. CONCLUSION This narrative review provides insights into the importance of integrating oncology and mental health services to address the psychosocial needs of cancer patients. Future research should focus on the bidirectional interactions between stress and cancer, aiming to improve cancer care by incorporating mental health support. Addressing the mental health aspects of cancer treatment can significantly enhance patient outcomes and overall quality of life.
Collapse
Affiliation(s)
- Joyeeta Talukdar
- Department of Bio-Chemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Megha
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Hemant Choudhary
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Sushma Bhatnagar
- Department of Onco-Anaesthesia & Palliative Medicine, DR. B.R.A.I.R.C.H, All India Institute of Medical Sciences, New Delhi, India
| | - Anuja Pandit
- Department of Onco-Anaesthesia & Palliative Medicine, DR. B.R.A.I.R.C.H, All India Institute of Medical Sciences, New Delhi, India
| | - Ashwani Kumar Mishra
- National Drug Dependence Treatment Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Bio-Chemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pratap Sharan
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Moulton C, Lisi V, Silvestri M, Ceci R, Grazioli E, Sgrò P, Caporossi D, Dimauro I. Impact of Physical Activity on DNA Methylation Signatures in Breast Cancer Patients: A Systematic Review with Bioinformatic Analysis. Cancers (Basel) 2024; 16:3067. [PMID: 39272925 PMCID: PMC11394229 DOI: 10.3390/cancers16173067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA's influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA's impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA's capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Monica Silvestri
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
3
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. Involvement of multiple epigenetic mechanisms by altered DNA methylation from the early stage of renal carcinogenesis before proliferative lesion formation upon repeated administration of ochratoxin A. Toxicology 2024; 506:153875. [PMID: 38945198 DOI: 10.1016/j.tox.2024.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a rat renal carcinogen that induces karyomegaly and micronuclei in proximal tubular epithelial cells (PTECs). We previously performed comprehensive gene profiling of alterations in promoter-region methylation and gene expression in PTECs of rats treated with OTA for 13 weeks. The OTA-specific gene profile was obtained by excluding genes showing expression changes similar to those upon treatment with 3-chloro-1,2-propanediol, a renal carcinogen not inducing karyomegaly. In this study, we validated the candidate genes using methylated DNA enrichment PCR and real-time RT-PCR, and identified Gen1, Anxa3, Cdkn1a, and Osm as genes showing OTA-specific epigenetic changes. These genes and related molecules were subjected to gene expression and immunohistochemical analyses in the PTECs of rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. Cdkn1a upregulation and increase of p21WAF1/CIP1+ karyomegalic PTECs were observed with OTA, matching the findings associated with micronucleus-inducing carcinogens. This suggested that the increase of p21WAF1/CIP1+ karyomegalic PTECs is linked to micronucleus formation, which in turn accelerates chromosomal instability. The upregulation of Cdkn1a-related genes with OTA suggests the acquisition of a senescence-associated secretory phenotype, which promotes the establishment of a carcinogenic environment. Meanwhile, OTA specifically caused a decrease of GEN1+ PTECs reflecting Gen1 downregulation and an increase of ANXA3+ PTECs reflecting Anxa3 upregulation, as well as Osm upregulation. OTA may efficiently disrupt pathways for repairing the DNA double-strand breaks that it itself causes, via Gen1 downregulation, and enhance cell proliferation through the upregulation of Anxa3 and Osm. This may exacerbate the chromosomal instability from the early stage of OTA-induced renal carcinogenesis before proliferative lesions form. OTA may cause renal carcinogenesis involving multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Amado-Garzon SB, Molina-Pimienta L, Vejarano-Pombo A, Vélez-Bonilla M, Moreno-Chaparro J, Buitrago-Lopez A. Elevated Vitamin B12, Risk of Cancer, and Mortality: A Systematic Review. Cancer Invest 2024; 42:515-526. [PMID: 38953509 DOI: 10.1080/07357907.2024.2366907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Vitamin B12 (B12) is a molecule involved in several biological. Abnormally high levels are frequently found, but their causes can be multiple, and consequences have not been clearly elucidated. The objective of this review was to summarize the current evidence on the associations of elevated B12 and the development of cancer, and all-cause mortality in adults. Six references looking at mortality and seven looking at cancer risk were included. The evidence suggests an association between elevated B12 with a higher risk of cancer, with risk ratios ranging 1,88 to 5,9. There was less consistent evidence linking vitamin B12 and mortality.
Collapse
Affiliation(s)
- Sandra B Amado-Garzon
- Department of Internal Medicine at Hospital Universitario San Ignacio. Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia
| | - Luisana Molina-Pimienta
- Department of Internal Medicine at Hospital Universitario San Ignacio. Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia
| | - Andrea Vejarano-Pombo
- Department of Internal Medicine at Hospital Universitario San Ignacio. Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia
| | - Mariana Vélez-Bonilla
- Department of Internal Medicine at Hospital Universitario San Ignacio. Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia
| | - Jaime Moreno-Chaparro
- Department of Clinical Epidemiology and Biostatistics. Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia
| | - Adriana Buitrago-Lopez
- Department of Clinical Epidemiology and Biostatistics. Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, D.C. Colombia
| |
Collapse
|
5
|
Baranová I, Samec M, Dvorská D, Šťastný I, Janíková K, Kašubová I, Hornáková A, Lukáčová E, Kapinová A, Biringer K, Halašová E, Danková Z. Droplet digital PCR analysis of CDH13 methylation status in Slovak women with invasive ductal breast cancer. Sci Rep 2024; 14:14700. [PMID: 38926485 PMCID: PMC11208553 DOI: 10.1038/s41598-024-65580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Identifying novel epigenetic biomarkers is a promising way to improve the clinical management of patients with breast cancer. Our study aimed to determine the methylation pattern of 25 tumor suppressor genes (TSG) and select the best methylation biomarker associated with clinicopathological features in the cohort of Slovak patients diagnosed with invasive ductal carcinoma (IDC). Overall, 166 formalin-fixed, paraffin-embedded (FFPE) tissues obtained from patients with IDC were included in the study. The methylation status of the promoter regions of 25 TSG was analyzed using semiquantitative methylation-specific MLPA (MS-MLPA). We identified CDH13 as the most frequently methylated gene in our cohort of patients. Further analysis by ddPCR confirmed an increased level of methylation in the promoter region of CDH13. A significant difference in CDH13 methylation levels was observed between IDC molecular subtypes LUM A versus HER2 (P = 0.0116) and HER2 versus TNBC (P = 0.0234). In addition, significantly higher methylation was detected in HER2+ versus HER2- tumors (P = 0.0004) and PR- versus PR+ tumors (P = 0.0421). Our results provide evidence that alteration in CDH13 methylation is associated with clinicopathological features in the cohort of Slovak patients with IDC. In addition, using ddPCR as a methylation-sensitive method represents a promising approach characterized by higher precision and technical simplicity to measure the methylation of target CpGs in CDH13 compared to other conventional methods such as MS-MLPA.
Collapse
Affiliation(s)
- Ivana Baranová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Department of Pathological Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Dana Dvorská
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Igor Šťastný
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Katarína Janíková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ivana Kašubová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Hornáková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Lukáčová
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Kapinová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin and Martin University Hospital, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Danková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Biobank for Cancer and Rare Diseases, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
6
|
Linowiecka K, Guz J, Dziaman T, Urbanowska-Domańska O, Zarakowska E, Szpila A, Szpotan J, Skalska-Bugała A, Mijewski P, Siomek-Górecka A, Różalski R, Gackowski D, Oliński R, Foksiński M. The level of active DNA demethylation compounds in leukocytes and urine samples as potential epigenetic biomarkers in breast cancer patients. Sci Rep 2024; 14:6481. [PMID: 38499584 PMCID: PMC10948817 DOI: 10.1038/s41598-024-56326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.
Collapse
Affiliation(s)
- Kinga Linowiecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| | - Jolanta Guz
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Tomasz Dziaman
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Olga Urbanowska-Domańska
- Department of Oncology, Professor Franciszek Lukaszczyk Oncology Centre, Romanowskiej 2, 85-796, Bydgoszcz, Poland
| | - Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Aleksandra Skalska-Bugała
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Paweł Mijewski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Agnieszka Siomek-Górecka
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Rafał Różalski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Ryszard Oliński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland
| | - Marek Foksiński
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, 85‑092, Bydgoszcz, Poland.
| |
Collapse
|
7
|
Singh SP, Tewari M, Singh AK, Mishra RR, Shukla HS. Epigenetic Silencing of p16INK4a gene in Sporadic Breast Cancer. Indian J Surg Oncol 2023; 14:822-828. [PMID: 38187858 PMCID: PMC10766924 DOI: 10.1007/s13193-023-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/06/2023] [Indexed: 01/09/2024] Open
Abstract
Epigenetic alterations of tumor suppressor genes (TSG) involved in the onset and progression of Breast Cancer (BC) may serve as biomarkers for early detection and prediction of disease prognosis. We have herein tried to determine the methylation status of TSG, p16INK4a, in our 50 BC patients and their association with clinicopathological parameters. The methylation status of the p16INK4a gene in fresh tissue samples from 50 patients with BC was assessed by methylation-specific polymerase chain reaction (MS-PCR). The mean age of BC patients was 49.30 ± 9.75 years. Of 50 BC samples tested, 21 (42%) had methylated p16INK4a gene. p16INK4a gene hypermethylation was significantly associated with age ≤ 50 years, premenopausal status and advanced BC stage. Multivariate analysis revealed a strong association between advanced BC stage (Stage III and Stage IV) and p16INK4a hypermethylation (P = 0.008, RR = 5.996, 95% CI = 1.581-22.739). p16INK4a methylation was significantly associated with Triple Negative BC (TNBC) (P = 0.045, OR = 4.181, 95% CI = 1.030-16.981). These findings indicate that p16INK4a hypermethylation frequently occurs in BC. Hypermethylation of p16INK4a in young, premenopausal, TNBC and with advance stage in BC patients suggests its association with aggressive BC.
Collapse
Affiliation(s)
- Satya P. Singh
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Mallika Tewari
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Alok K. Singh
- Department of Geriatric Medicine, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| | - Raghvendra R. Mishra
- Medical Lab Technology, DDU Kaushal Kendra, Banaras Hindu University, Varanasi, India
| | - Hari S. Shukla
- Department of Surgical Oncology, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India 221005
| |
Collapse
|
8
|
Ozawa S, Ojiro R, Tang Q, Zou X, Woo GH, Yoshida T, Shibutani M. Identification of genes showing altered DNA methylation and gene expression in the renal proximal tubular cells of rats treated with ochratoxin A for 13 weeks. J Appl Toxicol 2023; 43:1533-1548. [PMID: 37162024 DOI: 10.1002/jat.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
9
|
Zappe K, Kopic A, Scheichel A, Schier AK, Schmidt LE, Borutzki Y, Miedl H, Schreiber M, Mendrina T, Pirker C, Pfeiler G, Hacker S, Haslik W, Pils D, Bileck A, Gerner C, Meier-Menches S, Heffeter P, Cichna-Markl M. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023; 12:1462. [PMID: 37296582 PMCID: PMC10252461 DOI: 10.3390/cells12111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Kopic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Scheichel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Schier
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Emanuel Schmidt
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Mendrina
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Pfeiler
- Division of Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Excavation of Molecular Subtypes of Endometrial Cancer Based on DNA Methylation. Genes (Basel) 2022; 13:genes13112106. [DOI: 10.3390/genes13112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity makes the diagnosis and treatment of endometrial cancer difficult. As an important modulator of gene expression, DNA methylation can affect tumor heterogeneity and, therefore, provide effective information for clinical treatment. In this study, we explored specific prognostic clusters based on 482 examples of endometrial cancer methylation data in the TCGA database. By analyzing 4870 CpG clusters, we distinguished three clusters with different prognostics. Differences in DNA methylation levels are associated with differences in age, grade, clinical pathological staging, and prognosis. Subsequently, we screened out 264 specific hypermethylation and hypomethylation sites and constructed a prognostic model for Bayesian network classification, which corresponded to the classification of the test set to the classification results of the train set. Since the tumor microenvironment plays a key role in determining immunotherapy responses, we conducted relevant analyses based on clusters separated from DNA methylation data to determine the immune function of each cluster. We also predicted their sensitivity to chemotherapy drugs. Specific classifications of DNA methylation may help to address the heterogeneity of previously existing molecular clusters of endometrial cancer, as well as to develop more effective, individualized treatments.
Collapse
|
11
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
12
|
Asim A, Kiani YS, Saeed MT, Jabeen I. Decoding the Role of Epigenetics in Breast Cancer Using Formal Modeling and Machine-Learning Methods. Front Mol Biosci 2022; 9:882738. [PMID: 35898303 PMCID: PMC9309526 DOI: 10.3389/fmolb.2022.882738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Breast carcinogenesis is known to be instigated by genetic and epigenetic modifications impacting multiple cellular signaling cascades, thus making its prevention and treatments a challenging endeavor. However, epigenetic modification, particularly DNA methylation-mediated silencing of key TSGs, is a hallmark of cancer progression. One such tumor suppressor gene (TSG) RUNX3 (Runt-related transcription factor 3) has been a new insight in breast cancer known to be suppressed due to local promoter hypermethylation mediated by DNA methyltransferase 1 (DNMT1). However, the precise mechanism of epigenetic-influenced silencing of the RUNX3 signaling resulting in cancer invasion and metastasis remains inadequately characterized. In this study, a biological regulatory network (BRN) has been designed to model the dynamics of the DNMT1–RUNX3 network augmented by other regulators such as p21, c-myc, and p53. For this purpose, the René Thomas qualitative modeling was applied to compute the unknown parameters and the subsequent trajectories signified important behaviors of the DNMT1–RUNX3 network (i.e., recovery cycle, homeostasis, and bifurcation state). As a result, the biological system was observed to invade cancer metastasis due to persistent activation of oncogene c-myc accompanied by consistent downregulation of TSG RUNX3. Conversely, homeostasis was achieved in the absence of c-myc and activated TSG RUNX3. Furthermore, DNMT1 was endorsed as a potential epigenetic drug target to be subjected to the implementation of machine-learning techniques for the classification of the active and inactive DNMT1 modulators. The best-performing ML model successfully classified the active and least-active DNMT1 inhibitors exhibiting 97% classification accuracy. Collectively, this study reveals the underlined epigenetic events responsible for RUNX3-implicated breast cancer metastasis along with the classification of DNMT1 modulators that can potentially drive the perception of epigenetic-based tumor therapy.
Collapse
|
13
|
Exposure of pigs to glyphosate affects gene-specific DNA methylation and gene expression. Toxicol Rep 2022; 9:298-310. [PMID: 35284244 PMCID: PMC8908043 DOI: 10.1016/j.toxrep.2022.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide and crop desiccant. Glyphosate has long been suspected of leading to the development of cancer and of compromising fertility. Herbicides have been increasingly recognized as epigenetic modifiers, and the impact of glyphosate on human and animal health might be mediated by epigenetic modifications. This article presents the results from an animal study where pigs were exposed to glyphosate while feeding. The experimental setup included a control group with no glyphosate added to the feed and two groups of pigs with 20 ppm and 200 ppm of glyphosate added to the feed, respectively. After exposure, the pigs were dissected, and tissues of the small intestine, liver, and kidney were used for DNA methylation and gene expression analyses. No significant change in global DNA methylation was found in the small intestine, kidney, or liver. Methylation status was determined for selected genes involved in various functions such as DNA repair and immune defense. In a CpG island of the promoter for IL18, we observed significantly reduced DNA methylation for certain individual CpG positions. However, this change in DNA methylation had no influence on IL18 mRNA expression. The expression of the DNA methylation enzymes DNMT1, DNMT3A, and DNMT3B was measured in the small intestine, kidney, and liver of pigs exposed to glyphosate. No significant changes in relative gene expression were found for these enzymes following dietary exposure to 20 and 200 ppm glyphosate. In contrast, a significant increase in expression of the enzyme TET3, responsible for demethylation, was observed in kidneys exposed to 200 ppm glyphosate. A large animal study with exposure of pigs to glyphosate is presented here. Pigs were exposed to 20 ppm and 200 ppm in the diet. No significant changes in global DNA methylation was observed. A significantly reduced DNA methylation was found in the porcine IL18 promoter. A significant increase in TET3 expression was seen in porcine kidneys exposed to 200 ppm glyphosate.
Collapse
|
14
|
Seale KN, Tkaczuk KHR. Circulating Biomarkers in Breast Cancer. Clin Breast Cancer 2021; 22:e319-e331. [PMID: 34756687 DOI: 10.1016/j.clbc.2021.09.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer management has progressed immensely over the decades, but the disease is still a major source of morbidity and mortality worldwide. Even with enhanced imaging detection and tissue biopsy capabilities, disease can progress on an ineffective treatment before additional information is obtained through standard methods of response evaluation, including the RECIST 1.1 criteria, widely used for assessment of treatment response and benefit from therapy.6 Circulating biomarkers have the potential to provide valuable insight into disease progression and response to therapy, and they can serve to identify actionable mutations and tumor characteristics that can direct therapy. These biomarkers can be collected at higher frequencies than imaging or tissue sampling, potentially allowing for more informed management. This review will evaluate the roles of circulating biomarkers in breast cancer, including the serum markers Carcinoembryonic antigen CA15-3, CA27-29, HER2 ECD, and investigatory markers such as GP88; and the components of the liquid biopsy, including circulating tumor cells, cell free DNA/DNA methylation, circulating tumor DNA, and circulating microRNA.
Collapse
Affiliation(s)
- Katelyn N Seale
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 South Greene Street, S9D12, Baltimore, MD 21201
| | - Katherine H R Tkaczuk
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 South Greene Street, S9D12, Baltimore, MD 21201.
| |
Collapse
|
15
|
Bridging the Gaps between Circulating Tumor Cells and DNA Methylation in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13164209. [PMID: 34439363 PMCID: PMC8391503 DOI: 10.3390/cancers13164209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer is the second most common male malignancy, with a highly variable clinical presentation and outcome. Therefore, diagnosis, prognostication, and management remain a challenge, as available clinical, imaging, and pathological parameters provide limited risk assessment. Thus, many biomarkers are under study to fill this critical gap, some of them based on epigenetic aberrations that might be detected in liquid biopsies. Herein, we provide a critical review of published data on the usefulness of DNA methylation and circulating tumor cells in diagnosis and treatment decisions in cases of prostate cancer, underlining key aspects and discussing the importance of these advances to the improvement of the management of prostate cancer patients. Using minimally invasive blood tests, the detection of highly specific biomarkers might be crucial for making therapeutic decisions, determining response to specific treatments, and allowing early diagnosis.
Collapse
|
16
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
17
|
Liu Z, Liu J, Liu R, Xue M, Zhang W, Zhao X, Zhu J, Xia P. Downregulated ZNF132 predicts unfavorable outcomes in breast Cancer via Hypermethylation modification. BMC Cancer 2021; 21:367. [PMID: 33827486 PMCID: PMC8028803 DOI: 10.1186/s12885-021-08112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/28/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND An important mechanism that promoter methylation-mediated gene silencing for gene inactivation is identified in human tumorigenesis. Methylated genes have been found in breast cancer (BC) and beneficial biomarkers for early diagnosis. Prognostic assessment of breast cancer remain little known. Zinc finger protein 132 (ZNF132) is downregulated by promoter methylation in prostate cancer and esophageal squamous cell carcinoma. However, no study provides information on the status of ZNF132, analyzes diagnosis and prognostic significance of ZNF132 in BC. METHODS In the present study, the expression of ZNF132 mRNA and protein level was determined based on the Cancer Genome Atlas (TCGA) RNA-Seq database and clinical samples analysis and multiple cancer cell lines verification. P rognostic significance of ZNF132 in BC was assessed using the Kaplan-Meier plotter. Molecular mechanisms exploration of ZNF132 in BC was performed using the multiple bioinformatic tools. Hypermethylated status of ZNF132 in BC cell lines was confirmed via Methylation specific polymerase chain reaction (MSP) analysis. RESULTS The expression of ZNF132 both the mRNA and protein levels was downregulated in BC tissues. These results were obtained based on TCGA database and clinical sample analysis. Survival analysis from the Kaplan-Meier plotter revealed that the lower level of ZNF132 was associated with a shorter Relapse Free Survival (RFS) time. Receiver operating characteristic curve (ROC) of 0.887 confirmed ZNF132 had powerful sensitivity and specificity to distinguish between BC and adjacent normal tissues. Bioinformatic analysis showed that 6% ((58/960)) alterations of ZNF132 were identified from cBioPortal. ZNF132 participated in multiple biological pathways based on the Gene Set Enrichment Analysis (GSEA) database including the regulation of cell cycle and glycolysis. Finally, MSP analysis demonstrated that ZNF132 was hypermethylated in a panel of breast cancer cell lines and 5-aza-2'-deoxycytidine (5-Aza-dC) treatment restored ZNF132 expression in partial cell lines. CONCLUSIONS Results revealed that hypermethylation of ZNF132 contributed to its downregulated expression and could be identified as a new diagnostic and prognostic marker in BC.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Jiaxin Liu
- Department of Gerontological Surgery, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Ruimiao Liu
- Department of Clinical Laboratory, Peoples Hospital of Xi'an (Fourth Hospital of Xi'an), Xi'an, 710004, Shaanxi, China
| | - Man Xue
- Department of General Surgery, Tongchuan Mining Bureau Central Hospital, Tongchuan, 727000, Shaanxi, China
| | - Weifan Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Xinhui Zhao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Jiang Zhu
- Department of Breast Disease, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, Shaanxi, China
| | - Peng Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
18
|
Suman M, Dugué PA, Wong EM, Joo JE, Hopper JL, Nguyen-Dumont T, Giles GG, Milne RL, McLean C, Southey MC. Association of variably methylated tumour DNA regions with overall survival for invasive lobular breast cancer. Clin Epigenetics 2021; 13:11. [PMID: 33461604 PMCID: PMC7814464 DOI: 10.1186/s13148-020-00975-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tumour DNA methylation profiling has shown potential to refine disease subtyping and improve the diagnosis and prognosis prediction of breast cancer. However, limited data exist regarding invasive lobular breast cancer (ILBC). Here, we investigated the genome-wide variability of DNA methylation levels across ILBC tumours and assessed the association between methylation levels at the variably methylated regions and overall survival in women with ILBC. Methods Tumour-enriched DNA was prepared by macrodissecting formalin-fixed paraffin embedded (FFPE) tumour tissue from 130 ILBCs diagnosed in the participants of the Melbourne Collaborative Cohort Study (MCCS). Genome-wide tumour DNA methylation was measured using the HumanMethylation 450K (HM450K) BeadChip array. Variably methylated regions (VMRs) were identified using the DMRcate package in R. Cox proportional hazards regression models were used to assess the association between methylation levels at the ten most significant VMRs and overall survival. Gene set enrichment analyses were undertaken using the web-based tool Metaspace. Replication of the VMR and survival analysis findings was examined using data retrieved from The Cancer Genome Atlas (TCGA) for 168 ILBC cases. We also examined the correlation between methylation and gene expression for the ten VMRs of interest using TCGA data. Results We identified 2771 VMRs (P < 10−8) in ILBC tumours. The ten most variably methylated clusters were predominantly located in the promoter region of the genes: ISM1, APC, TMEM101, ASCL2, NKX6, HIST3H2A/HIST3H2BB, HCG4P3, HES5, CELF2 and EFCAB4B. Higher methylation level at several of these VMRs showed an association with reduced overall survival in the MCCS. In TCGA, all associations were in the same direction, however stronger than in the MCCS. The pooled analysis of the MCCS and TCGA data showed that methylation at four of the ten genes was associated with reduced overall survival, independently of age and tumour stage; APC: Hazard Ratio (95% Confidence interval) per one-unit M-value increase: 1.18 (1.02–1.36), TMEM101: 1.23 (1.02–1.48), HCG4P3: 1.37 (1.05–1.79) and CELF2: 1.21 (1.02–1.43). A negative correlation was observed between methylation and gene expression for CELF2 (R = − 0.25, P = 0.001), but not for TMEM101 and APC. Conclusions Our study identified regions showing greatest variability across the ILBC tumour genome and found methylation at several genes to potentially serve as a biomarker of survival for women with ILBC.
Collapse
Affiliation(s)
- Medha Suman
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ee Ming Wong
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - JiHoon Eric Joo
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - John L Hopper
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Tu Nguyen-Dumont
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Graham G Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Roger L Milne
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia.,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.,Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Catriona McLean
- Anatomical Pathology, Alfred Health, The Alfred Hospital, Melbourne, VIC, 3181, Australia
| | - Melissa C Southey
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, 3010, Australia. .,Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia. .,Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
19
|
Li S, Wang L, Zhao Q, Wang Z, Lu S, Kang Y, Jin G, Tian J. Genome-Wide Analysis of Cell-Free DNA Methylation Profiling for the Early Diagnosis of Pancreatic Cancer. Front Genet 2020; 11:596078. [PMID: 33424927 PMCID: PMC7794002 DOI: 10.3389/fgene.2020.596078] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malicious cancers, pancreatic cancer is difficult to treat due to the lack of effective early diagnosis. Therefore, it is urgent to find reliable diagnostic and predictive markers for the early detection of pancreatic cancer. In recent years, the detection of circulating cell-free DNA (cfDNA) methylation in plasma has attracted global attention for non-invasive and early cancer diagnosis. Here, we carried out a genome-wide cfDNA methylation profiling study of pancreatic ductal adenocarcinoma (PDAC) patients by methylated DNA immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Compared with healthy individuals, 775 differentially methylated regions (DMRs) located in promoter regions were identified in PDAC patients with 761 hypermethylated and 14 hypomethylated regions; meanwhile, 761 DMRs in CpG islands (CGIs) were identified in PDAC patients with 734 hypermethylated and 27 hypomethylated regions (p-value < 0.0001). Then, 143 hypermethylated DMRs were further selected which were located in promoter regions and completely overlapped with CGIs. After performing the least absolute shrinkage and selection operator (LASSO) method, a total of eight markers were found to fairly distinguish PDAC patients from healthy individuals, including TRIM73, FAM150A, EPB41L3, SIX3, MIR663, MAPT, LOC100128977, and LOC100130148. In conclusion, this work identified a set of eight differentially methylated markers that may be potentially applied in non-invasive diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Shengyue Li
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Lei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihao Wang
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Shuxian Lu
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Jin
- Department of General Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jing Tian
- Key laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
20
|
Pu C, Tian S, He S, Chen W, He Y, Ren H, Zhu J, Tang J, Huang X, Xiang Y, Fu Y, Xiang T. Depression and stress levels increase risk of liver cancer through epigenetic downregulation of hypocretin. Genes Dis 2020; 9:1024-1037. [PMID: 35685472 PMCID: PMC9170575 DOI: 10.1016/j.gendis.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that Hypocretin (HCRT, Orexin) are involved in stress regulation of depression through the hypothalamic-pituitary-adrenal (HPA) axis. However, the molecular mechanism by which Hypocretin regulate neurobiological responses is unknown. Herein, the effects of chronic stress on the epigenetic modification of HCRT and its association with depression were explored with regard to a potential role in cancer progression. In the study, Sprague Dawley (SD) rats were used to establish an animal model of cancer with depression by administrating n-nitrosodiethylamine (DEN) and chronic unpredictable mild stress (CUMS). RNA-sequencing was used to detect differentially expressed genes in the hippocampus of rats and quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the results of RNA-sequencing. The status of HCRT promoter methylation was assessed by methylation specific polymerase chain reaction. Behavioral tests showed that rats exposed to CUMS had significant depressive-like behaviors. The number of liver tumors and tumor load in depressed rats exposed to CUMS was higher than in SD rats without CUMS. RNA-sequencing revealed that HCRT was one of the most siginificantly downregulated gene in the hippocampus of SD rats with CUMS compared to non-stressed group, which was validated by qRT-PCR. HCRT mRNA expression was downregulated and the promoter for HCRT was hyper-methylated in those with depression. These results identified a critical role for chronic psychological stressors in tumorigenesis and cancer progression, via epigenetic HCRT downregulation. Such epigenetic downregulation may be the molecular basis for the association of cancer with depression.
Collapse
|
21
|
SRY-related high-mobility-group box 6 suppresses cell proliferation and is downregulated in breast cancer. Anticancer Drugs 2020; 32:306-313. [PMID: 33038083 DOI: 10.1097/cad.0000000000001004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Breast cancer is one of the most common cancers endangering women's health. SRY-related high-mobility-group box 6 (SOX6) is associated with many cancers, though its role has not been reported in breast cancer. Here, we aimed to explore the expression and function of SOX6 in breast cancer. On the basis of the analysis of SOX6 in The Cancer Genome Atlas, Cancer Cell Line Encyclopedia and Genotype-Tissue Expression databases, we revealed that SOX6 was downregulated in breast cancer, and we verified the results at the cellular level by means of western blotting and quantitative real-time PCR. When SOX6 was overexpressed, the proliferation of breast cancer cells was inhibited, and apoptosis was promoted. Moreover, the methylation level of the SOX6 promoter in breast cancer was significantly higher than that in normal tissues. 5'-Aza-2'-deoxycytidine reversed the high level of methylation that was caused by decreased expression of SOX6. This evidence suggests that SOX6 is a tumor suppressor gene associated with breast cancer. This study could provide a new target for breast cancer treatment.
Collapse
|
22
|
Dai W, Liu H, Liu Y, Xu X, Qian D, Luo S, Cho E, Zhu D, Amos CI, Fang S, Lee JE, Li X, Nan H, Li C, Wei Q. Genetic variants in the folate metabolic pathway genes predict cutaneous melanoma-specific survival. Br J Dermatol 2020; 183:719-728. [PMID: 31955403 PMCID: PMC7367702 DOI: 10.1111/bjd.18878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Folate metabolism plays an important role in DNA methylation and nucleic acid synthesis and thus may function as a regulatory factor in cancer development. Genome-wide association studies (GWASs) have identified some single-nucleotide polymorphisms (SNPs) associated with cutaneous melanoma-specific survival (CMSS), but no SNPs were found in genes involved in the folate metabolic pathway. OBJECTIVES To examine associations between SNPs in folate metabolic pathway genes and CMSS. METHODS We comprehensively evaluated 2645 (422 genotyped and 2223 imputed) common SNPs in folate metabolic pathway genes from a published GWAS of 858 patients from The University of Texas MD Anderson Cancer Center and performed the validation in another GWAS of 409 patients from the Nurses' Health Study and Health Professionals Follow-up Study, in which 95/858 (11·1%) and 48/409 (11·7%) patients died of cutaneous melanoma, respectively. RESULTS We identified two independent SNPs (MTHFD1 rs1950902 G>A and ALPL rs10917006 C>T) to be associated with CMSS in both datasets, and their meta-analysis yielded an allelic hazards ratio of 1·75 (95% confidence interval 1·32-2·32, P = 9·96 × 10-5 ) and 2·05 (1·39-3·01, P = 2·84 × 10-4 ), respectively. The genotype-phenotype correlation analyses provided additional support for the biological plausibility of these two variants' roles in tumour progression, suggesting that variation in SNP-related mRNA expression levels is likely to be the mechanism underlying the observed associations with CMSS. CONCLUSIONS Two possibly functional genetic variants, MTHFD1 rs1950902 and ALPL rs10917006, were likely to be independently or jointly associated with CMSS, which may add to personalized treatment in the future, once further validated. What is already known about this topic? Existing data show that survival rates vary among patients with melanoma with similar clinical characteristics; therefore, it is necessary to identify additional complementary biomarkers for melanoma-specific prognosis. A hypothesis-driven approach, by pooling the effects of single-nucleotide polymorphisms (SNPs) in a specific biological pathway as genetic risk scores, may provide a prognostic utility, and genetic variants of genes in folate metabolism have been reported to be associated with cancer risk. What does this study add? Two genetic variants in the folate metabolic pathway genes, MTHFD1 rs1950902 and ALPL rs10917006, are significantly associated with cutaneous melanoma-specific survival (CMSS). What is the translational message? The identification of genetic variants will make a risk-prediction model possible for CMSS. The SNPs in the folate metabolic pathway genes, once validated in larger studies, may be useful in the personalized management and treatment of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- W Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - H Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Y Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - X Xu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - D Qian
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Luo
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
| | - E Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - D Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - C I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - J E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - X Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - H Nan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - C Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Q Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
23
|
McEligot AJ, Poynor V, Sharma R, Panangadan A. Logistic LASSO Regression for Dietary Intakes and Breast Cancer. Nutrients 2020; 12:nu12092652. [PMID: 32878103 PMCID: PMC7551912 DOI: 10.3390/nu12092652] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
A multitude of dietary factors from dietary fat to macro and micronutrients intakes have been associated with breast cancer, yet data are still equivocal. Therefore, utilizing data from the large, multi-year, cross-sectional National Health and Nutrition Examination Survey (NHANES), we applied a novel, modern statistical shrinkage technique, logistic least absolute shrinkage and selection operator (LASSO) regression, to examine the association between dietary intakes in women, ≥50 years, with self-reported breast cancer (n = 286) compared with women without self-reported breast cancer (1144) from the 1999–2010 NHANES cycle. Logistic LASSO regression was used to examine the relationship between twenty-nine variables, including dietary variables from food, as well as well-established/known breast cancer risk factors, and to subsequently identify the most relevant variables associated with self-reported breast cancer. We observed that as the penalty factor (λ) increased in the logistic LASSO regression, well-established breast cancer risk factors, including age (β = 0.83) and parity (β = −0.05) remained in the model. For dietary macro and micronutrient intakes, only vitamin B12 (β = 0.07) was positively associated with self-reported breast cancer. Caffeine (β = −0.01) and alcohol (β = 0.03) use also continued to remain in the model. These data suggest that a diet high in vitamin B12, as well as alcohol use may be associated with self-reported breast cancer. Nonetheless, additional prospective studies should apply more recent statistical techniques to dietary data and cancer outcomes to replicate and confirm the present findings.
Collapse
Affiliation(s)
- Archana J. McEligot
- Department of Public Health, California State University, Fullerton, CA 92834, USA
- Correspondence: ; Tel.: +1-657-278-3822
| | - Valerie Poynor
- Department of Mathematics, California State University, Fullerton, CA 92834, USA;
| | - Rishabh Sharma
- Department of Computer Science, University of Houston, Houston, TX 77004, USA;
| | - Anand Panangadan
- Department of Computer Science, California State University, Fullerton, CA 92834, USA;
| |
Collapse
|
24
|
Ghazi T, Arumugam T, Foolchand A, Chuturgoon AA. The Impact of Natural Dietary Compounds and Food-Borne Mycotoxins on DNA Methylation and Cancer. Cells 2020; 9:E2004. [PMID: 32878338 PMCID: PMC7565866 DOI: 10.3390/cells9092004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer initiation and progression is an accumulation of genetic and epigenetic modifications. DNA methylation is a common epigenetic modification that regulates gene expression, and aberrant DNA methylation patterns are considered a hallmark of cancer. The human diet is a source of micronutrients, bioactive molecules, and mycotoxins that have the ability to alter DNA methylation patterns and are thus a contributing factor for both the prevention and onset of cancer. Micronutrients such as betaine, choline, folate, and methionine serve as cofactors or methyl donors for one-carbon metabolism and other DNA methylation reactions. Dietary bioactive compounds such as curcumin, epigallocatechin-3-gallate, genistein, quercetin, resveratrol, and sulforaphane reactivate essential tumor suppressor genes by reversing aberrant DNA methylation patterns, and therefore, they have shown potential against various cancers. In contrast, fungi-contaminated agricultural foods are a source of potent mycotoxins that induce carcinogenesis. In this review, we summarize the existing literature on dietary micronutrients, bioactive compounds, and food-borne mycotoxins that affect DNA methylation patterns and identify their potential in the onset and treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (T.G.); (T.A.); (A.F.)
| |
Collapse
|
25
|
CRISPR-mediated promoter de/methylation technologies for gene regulation. Arch Pharm Res 2020; 43:705-713. [PMID: 32725389 DOI: 10.1007/s12272-020-01257-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
DNA methylation on cytosines of CpG dinucleotides is well established as a basis of epigenetic regulation in mammalian cells. Since aberrant regulation of DNA methylation in promoters of tumor suppressor genes or proto-oncogenes may contribute to the initiation and progression of various types of human cancer, sequence-specific methylation and demethylation technologies could have great clinical benefit. The CRISPR-Cas9 protein with a guide RNA can target DNA sequences regardless of the methylation status of the target site, making this system superb for precise methylation editing and gene regulation. Targeted methylation-editing technologies employing the dCas9 fusion proteins have been shown to be highly effective in gene regulation without altering the DNA sequence. In this review, we discuss epigenetic alterations in tumorigenesis as well as various dCas9 fusion technologies and their usages in site-specific methylation editing and gene regulation.
Collapse
|
26
|
Rose JT, Moskovitz E, Boyd JR, Gordon JA, Bouffard NA, Fritz AJ, Illendula A, Bushweller JH, Lian JB, Stein JL, Zaidi SK, Stein GS. Inhibition of the RUNX1-CBFβ transcription factor complex compromises mammary epithelial cell identity: a phenotype potentially stabilized by mitotic gene bookmarking. Oncotarget 2020; 11:2512-2530. [PMID: 32655837 PMCID: PMC7335667 DOI: 10.18632/oncotarget.27637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
RUNX1 has recently been shown to play an important role in determination of mammary epithelial cell identity. However, mechanisms by which loss of the RUNX1 transcription factor in mammary epithelial cells leads to epithelial-to-mesenchymal transition (EMT) are not known. Here, we report that interaction between RUNX1 and its heterodimeric partner CBFβ is essential for sustaining mammary epithelial cell identity. Disruption of RUNX1-CBFβ interaction, DNA binding, and association with mitotic chromosomes alters cell morphology, global protein synthesis, and phenotype-related gene expression. During interphase, RUNX1 is organized as punctate, predominantly nuclear, foci that are dynamically redistributed during mitosis, with a subset localized to mitotic chromosomes. Genome-wide RUNX1 occupancy profiles for asynchronous, mitotically enriched, and early G1 breast epithelial cells reveal RUNX1 associates with RNA Pol II-transcribed protein coding and long non-coding RNA genes and RNA Pol I-transcribed ribosomal genes critical for mammary epithelial proliferation, growth, and phenotype maintenance. A subset of these genes remains occupied by the protein during the mitosis to G1 transition. Together, these findings establish that the RUNX1-CBFβ complex is required for maintenance of the normal mammary epithelial phenotype and its disruption leads to EMT. Importantly, our results suggest, for the first time, that RUNX1 mitotic bookmarking of a subset of epithelial-related genes may be an important epigenetic mechanism that contributes to stabilization of the mammary epithelial cell identity.
Collapse
Affiliation(s)
- Joshua T. Rose
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Eliana Moskovitz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- These authors contributed equally to this work
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Jonathan A. Gordon
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Nicole A. Bouffard
- Microscopy Imaging Center at the Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Andrew J. Fritz
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
27
|
Butler C, Sprowls S, Szalai G, Arsiwala T, Saralkar P, Straight B, Hatcher S, Tyree E, Yost M, Kohler WJ, Wolff B, Putnam E, Lockman P, Liu T. Hypomethylating Agent Azacitidine Is Effective in Treating Brain Metastasis Triple-Negative Breast Cancer Through Regulation of DNA Methylation of Keratin 18 Gene. Transl Oncol 2020; 13:100775. [PMID: 32408199 PMCID: PMC7225776 DOI: 10.1016/j.tranon.2020.100775] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023] Open
Abstract
Breast cancer patients presenting with symptomatic brain metastases have poor prognosis, and current chemotherapeutic agents are largely ineffective. In this study, we evaluated the hypomethylating agent azacitidine (AZA) for its potential as a novel therapeutic in preclinical models of brain metastasis of breast cancer. We used the parental triple-negative breast cancer MDA-MB-231 (231) cells and their brain colonizing counterpart (231Br) to ascertain phenotypic differences in response to AZA. We observed that 231Br cells have higher metastatic potential compared to 231 cells. With regard to therapeutic value, the AZA IC50 value in 231Br cells is significantly lower than that in parental cells (P < .01). AZA treatment increased apoptosis and inhibited the Wnt signaling transduction pathway, angiogenesis, and cell metastatic capacity to a significantly higher extent in the 231Br line. AZA treatment in mice with experimental brain metastases significantly reduced tumor burden (P = .0112) and increased survival (P = .0026) compared to vehicle. Lastly, we observed a decreased expression of keratin 18 (an epithelial maker) in 231Br cells due to hypermethylation, elucidating a potential mechanism of action of AZA in treating brain metastases from breast cancer.
Collapse
Affiliation(s)
- Christopher Butler
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | - Samuel Sprowls
- Department of Pharmaceutical Sciences, College of Pharmacy, West Virginia University, Morgantown, WV
| | - Gabor Szalai
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV; Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM
| | - Tasneem Arsiwala
- Department of Pharmaceutical Sciences, College of Pharmacy, West Virginia University, Morgantown, WV
| | - Pushkar Saralkar
- Department of Pharmaceutical Sciences, College of Pharmacy, West Virginia University, Morgantown, WV
| | - Benjamin Straight
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | - Shea Hatcher
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | - Evan Tyree
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | - Michael Yost
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | - William J Kohler
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | - Benjamin Wolff
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV
| | | | - Paul Lockman
- Department of Pharmaceutical Sciences, College of Pharmacy, West Virginia University, Morgantown, WV
| | - Tuoen Liu
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, 400 Lee Street North, Lewisburg, WV.
| |
Collapse
|
28
|
Delmonico L, Alves G, Bines J. Cell free DNA biology and its involvement in breast carcinogenesis. Adv Clin Chem 2020; 97:171-223. [PMID: 32448434 DOI: 10.1016/bs.acc.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy represents a procedure for minimally invasive analysis of non-solid tissue, blood and other body fluids. It comprises a set of analytes that includes circulating tumor cells (CTCs) and circulating free DNA (cfDNA), RNA, long noncoding RNA (lncRNA) and micro RNA (miRNA), as well as extracellular vesicles. These novel analytes represent an alternative tool to complement diagnosis and monitor and predict response to treatment of the tumoral process and may be used for other disease processes such viral and parasitic infection. This review focuses on the biologic and molecular characteristics of cfDNA in general and the molecular changes (mutational and epigenetic) proven useful in oncologic practice for diagnosis, monitoring and treatment of breast cancer specifically.
Collapse
Affiliation(s)
- Lucas Delmonico
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - Gilda Alves
- Laboratório de Marcadores Circulantes, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - José Bines
- Instituto Nacional de Câncer (INCA-HCIII), Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Bao-Caamano A, Rodriguez-Casanova A, Diaz-Lagares A. Epigenetics of Circulating Tumor Cells in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1220:117-134. [PMID: 32304083 DOI: 10.1007/978-3-030-35805-1_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Aitor Rodriguez-Casanova
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain.,Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel Diaz-Lagares
- Cancer Epigenomics, Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain. .,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
30
|
Dettogni RS, Stur E, Laus AC, da Costa Vieira RA, Marques MMC, Santana IVV, Pulido JZ, Ribeiro LF, de Jesus Parmanhani N, Agostini LP, Dos Reis RS, de Vargas Wolfgramm Dos Santos E, Alves LNR, Garcia FM, Santos JA, do Prado Ventorim D, Reis RM, Louro ID. Potential biomarkers of ductal carcinoma in situ progression. BMC Cancer 2020; 20:119. [PMID: 32050925 PMCID: PMC7017577 DOI: 10.1186/s12885-020-6608-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background Ductal carcinoma in situ is a non-obligate precursor of invasive breast carcinoma and presents a potential risk of over or undertreatment. Finding molecular biomarkers of disease progression could allow for more adequate patient treatment. We aimed to identify potential biomarkers that can predict invasiveness risk. Methods In this epithelial cell-based study archival formalin-fixed paraffin-embedded blocks from six patients diagnosed with invasive lesions (pure invasive ductal carcinoma), six with in-situ lesions (pure ductal carcinoma in situ), six with synchronous lesions (invasive ductal carcinoma with an in-situ component) and three non-neoplastic breast epithelium tissues were analyzed by gene expression profiling of 770 genes, using the nCounter® PanCancer Pathways panel of NanoString Technologies. Results The results showed that in comparison with non-neoplastic tissue the pure ductal carcinoma in situ was one with the most altered gene expression profile. Comparing pure ductal carcinoma in situ and in-situ component six differentially expressed genes were found, three of them (FGF2, GAS1, and SFRP1), play a role in cell invasiveness. Importantly, these genes were also differentially expressed between invasive and noninvasive groups and were negatively regulated in later stages of carcinogenesis. Conclusions We propose these three genes (FGF2, GAS1, and SFRP1) as potential biomarkers of ductal carcinoma in situ progression, suggesting that their downregulation may be involved in the transition of stationary to migrating invasive epithelial cells.
Collapse
Affiliation(s)
- Raquel Spinassé Dettogni
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil.
| | - Elaine Stur
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Ana Carolina Laus
- Molecular Oncology Research Center-Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil
| | | | - Márcia Maria Chiquitelli Marques
- Molecular Oncology Research Center-Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Barretos School of Health Sciences-FACISB, Barretos, Sao Paulo, Brazil
| | | | - José Zago Pulido
- Evangelical Hospital of Cachoeiro de Itapemirim, Cachoeiro de Itapemirim, Espirito Santo, Brazil.,Oncology Clinical Research Center, Cachoeiro de Itapemirim, Espirito Santo, Brazil
| | - Laura Fregonassi Ribeiro
- Evangelical Hospital of Cachoeiro de Itapemirim, Cachoeiro de Itapemirim, Espirito Santo, Brazil
| | - Narelle de Jesus Parmanhani
- Evangelical Hospital of Cachoeiro de Itapemirim, Cachoeiro de Itapemirim, Espirito Santo, Brazil.,Oncology Clinical Research Center, Cachoeiro de Itapemirim, Espirito Santo, Brazil
| | - Lidiane Pignaton Agostini
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Raquel Silva Dos Reis
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | | - Lyvia Neves Rebello Alves
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Fernanda Mariano Garcia
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Jéssica Aflávio Santos
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Diego do Prado Ventorim
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center-Barretos Cancer Hospital, Barretos, Sao Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS)-Health Sciences School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iúri Drumond Louro
- Department of Biological Sciences-Human and Molecular Genetics Nucleus, Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| |
Collapse
|
31
|
Liu K, Dong F, Gao H, Guo Y, Li H, Yang F, Zhao P, Dai Y, Wang J, Zhou W, Zou C. Promoter hypermethylation of the CFTR gene as a novel diagnostic and prognostic marker of breast cancer. Cell Biol Int 2020; 44:603-609. [PMID: 31721358 DOI: 10.1002/cbin.11260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer-related deaths among women. New biomarkers with definite diagnostic and prognostic efficacy are urgently needed. Here, we showed that the promoter of the cystic fibrosis transmembrane conductance regulator (CFTR) was hypermethylated in breast cancer. The messenger RNA level of CFTR was downregulated in breast cancer. Notably, all 19 breast cancer patients with hypermethylated CFTR were diagnosed with invasive carcinoma. Moreover, CFTR was upregulated in decitabine (10 μM) treated breast cancer cells. Overexpression of CFTR inhibited cell growth whereas knockdown of CFTR promoted cell invasion. In the tissue array analysis, the CFTR protein level decreased significantly in breast cancer and low CFTR protein level correlated with poor survival with a P-value of 0.034. Thus, promoter hypermethylation of the CFTR gene might be a novel diagnostic marker of breast cancer.
Collapse
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Fajin Dong
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hengyuan Gao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yaomin Guo
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Haili Li
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Fang Yang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Pan Zhao
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Yong Dai
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Jianhong Wang
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Wenbin Zhou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Chang Zou
- The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| |
Collapse
|
32
|
Babaei K, Khaksar R, Zeinali T, Hemmati H, Bandegi A, Samidoust P, Ashoobi MT, Hashemian H, Delpasand K, Talebinasab F, Naebi H, Mirpour SH, Keymoradzadeh A, Norollahi SE. Epigenetic profiling of MUTYH, KLF6, WNT1 and KLF4 genes in carcinogenesis and tumorigenesis of colorectal cancer. Biomedicine (Taipei) 2019; 9:22. [PMID: 31724937 PMCID: PMC6855188 DOI: 10.1051/bmdcn/2019090422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is distinguished by epigenetic elements like DNA methylation, histone modification, histone acetylation and RNA remodeling which is related with genomic instability and tumor initiation. Correspondingly, as a main epigenetic regulation, DNA methylation has an impressive ability in order to be used in CRC targeted therapy. Meaningly, DNA methylation is identified as one of most important epigenetic regulators in gene expression and is considered as a notable potential driver in tumorigenesis and carcinogenesis through gene-silencing of tumor suppressors genes. Abnormal methylation situation, even in the level of promoter regions, does not essentially change the gene expression levels, particularly if the gene was become silenced, leaving the mechanisms of methylation without any response. According to the methylation situation which has a strong eagerness to be highly altered on CpG islands in carcinogenesis and tumorigenesis, considering its epigenetic fluctuations in finding new biomarkers is of great importance. Modifications in DNA methylation pattern and also enrichment of methylated histone signs in the promoter regions of some certain genes like MUTYH, KLF4/6 and WNT1 in different signaling pathways could be a notable key contributors to the upregulation of tumor initiation in CRC. These epigenetic alterations could be employed as a practical diagnostic biomarkers for colorectal cancer. In this review, we will be discuss these fluctuations of MUTYH, KLF4/6 and WNT1 genes in CRC.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Roya Khaksar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Hemmati
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmadreza Bandegi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Pirouz Samidoust
- Razi Clinical Research Development Unit, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Taghi Ashoobi
- Department of Surgery, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hooman Hashemian
- Pediatric Diseases Research Center,Guilan University of Medical ciences, Rasht, Iran
| | - Kourosh Delpasand
- School of Medicine, Kurdistan University of Mdical Ciences, Sanandaj, Iran
| | - Fereshteh Talebinasab
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hoora Naebi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Hossein Mirpour
- Department of Hematology and Oncology, Razi hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
33
|
Revilla-López G, Rodríguez-Rivero AM, Del Valle LJ, Puiggalí J, Turon P, Alemán C. Biominerals Formed by DNA and Calcium Oxalate or Hydroxyapatite: A Comparative Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11912-11922. [PMID: 31373826 DOI: 10.1021/acs.langmuir.9b01566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biominerals formed by DNA and calcium oxalate (CaOx) or hydroxyapatite (HAp), the most important and stable phase of calcium phosphate) have been examined and compared using a synergistic combination of computer simulation and experimental studies. The interest of this comparison stems from the medical observation that HAp- and CaOx-based microcalcifications are frequently observed in breast cancer tissues, and some of their features are used as part of the diagnosis. Molecular dynamics simulations show that (1) the DNA double helix remains stable when it is adsorbed onto the most stable facet of HAp, whereas it undergoes significant structural distortions when it is adsorbed onto CaOx; (2) DNA acts as a template for the nucleation and growth of HAp but not for the mineralization of CaOx; and (3) the DNA double helix remains stable when it is encapsulated inside HAp nanopores, but it becomes destabilized when the encapsulation occurs into CaOx nanopores. Furthermore, CaOx and HAp minerals containing DNA molecules inside and/or adsorbed on the surface have been prepared in the lab by mixing solutions containing the corresponding ions with fish sperm DNA. Characterization of the formed minerals, which has been focused on the identification of DNA using UV-vis spectroscopy, indicates that the tendency to adsorb and, especially, encapsulate DNA is much smaller for CaOx than for HAp, which is in perfect agreement with results from molecular dynamics simulations. Finally, quantum mechanical calculations have been performed to rationalize these results in terms of molecular interactions, evidencing the high affinity of Ca2+ toward oxalate anions in an aqueous environment.
Collapse
Affiliation(s)
- Guillem Revilla-López
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
| | - Anna M Rodríguez-Rivero
- Research and Development , B. Braun Surgical, S.A. , Ctra. de Terrassa 121 , Rubí, 08191 Barcelona , Spain
- Universitat Autònoma de Barcelona. Campus de la UAB , Plaça Cívica, Bellaterra, 08193 Barcelona , Spain
| | - Luis J Del Valle
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. C , 08019 Barcelona , Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. C , 08019 Barcelona , Spain
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| | - Pau Turon
- Research and Development , B. Braun Surgical, S.A. , Ctra. de Terrassa 121 , Rubí, 08191 Barcelona , Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. I2 , 08019 Barcelona , Spain
- Barcelona Research Center for Multiscale Science and Engineering, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany 10-14, Edif. C , 08019 Barcelona , Spain
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| |
Collapse
|
34
|
Sun S, Lee YR, Enfield B. Hemimethylation Patterns in Breast Cancer Cell Lines. Cancer Inform 2019; 18:1176935119872959. [PMID: 31496635 PMCID: PMC6716185 DOI: 10.1177/1176935119872959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023] Open
Abstract
DNA methylation is an epigenetic event that involves adding a methyl group to the cytosine (C) site, especially the one that pairs with a guanine (G) site (ie, CG or CpG site), in a human genome. This event plays an important role in both cancerous and normal cell development. Previous studies often assume symmetric methylation on both DNA strands. However, asymmetric methylation, or hemimethylation (methylation that occurs only on 1 DNA strand), does exist and has been reported in several studies. Due to the limitation of previous DNA methylation sequencing technologies, researchers could only study hemimethylation on specific genes, but the overall genomic hemimethylation landscape remains relatively unexplored. With the development of advanced next-generation sequencing techniques, it is now possible to measure methylation levels on both forward and reverse strands at all CpG sites in an entire genome. Analyzing hemimethylation patterns may potentially reveal regions related to undergoing tumor growth. For our research, we first identify hemimethylated CpG sites in breast cancer cell lines using Wilcoxon signed rank tests. We then identify hemimethylation patterns by grouping consecutive hemimethylated CpG sites based on their methylation states, methylation "M" or unmethylation "U." These patterns include regular (or consecutive) hemimethylation clusters (eg, "MMM" on one strand and "UUU" on another strand) and polarity (or reverse) clusters (eg, "MU" on one strand and "UM" on another strand). Our results reveal that most hemimethylation clusters are the polarity type, and hemimethylation does occur across the entire genome with notably higher numbers in the breast cancer cell lines. The lengths or sizes of most hemimethylation clusters are very short, often less than 50 base pairs. After mapping hemimethylation clusters and sites to corresponding genes, we study the functions of these genes and find that several of the highly hemimethylated genes may influence tumor growth or suppression. These genes may also indicate a progressing transition to a new tumor stage.
Collapse
Affiliation(s)
- Shuying Sun
- Department of Mathematics, Texas State University, San Marcos, TX, USA
| | - Yu Ri Lee
- Department of Mathematics, Texas State University, San Marcos, TX, USA
| | - Brittany Enfield
- Global Engineering Systems, Cypress Semiconductor, Austin, TX, USA
| |
Collapse
|
35
|
Wang T, McCullough LE, White AJ, Bradshaw PT, Xu X, Cho YH, Terry MB, Teitelbaum SL, Neugut AI, Santella RM, Chen J, Gammon MD. Prediagnosis aspirin use, DNA methylation, and mortality after breast cancer: A population-based study. Cancer 2019; 125:3836-3844. [PMID: 31402456 DOI: 10.1002/cncr.32364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The authors hypothesized that epigenetic changes may help to clarify the underlying biologic mechanism linking aspirin use to breast cancer prognosis. To the authors' knowledge, this is the first epidemiologic study to examine whether global methylation and/or tumor promoter methylation of breast cancer-related genes interact with aspirin use to impact mortality after breast cancer. METHODS Prediagnosis aspirin use was assessed through in-person interviews within a population-based cohort of 1508 women diagnosed with a first primary breast cancer in 1996 and 1997. Global methylation in peripheral blood was assessed by long interspersed elements-1 (LINE-1) and the luminometric methylation assay. Promoter methylation of 13 breast cancer-related genes was measured in tumor by methylation-specific polymerase chain reaction and the MethyLight assay. Vital status was determined by the National Death Index through December 31, 2014 (N = 202/476 breast cancer-specific/all-cause deaths identified among 1266 women with any methylation assessment and complete aspirin data). Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% CIs, and the likelihood ratio test was used to evaluate multiplicative interactions. RESULTS All-cause mortality was elevated among aspirin users who had methylated promotor of BRCA1 (HR, 1.67; 95% CI, 1.26-2.22), but not among those with unmethylated promoter of BRCA1 (HR, 0.99; 95% CI, 0.67-1.45; P for interaction ≤.05). Decreased breast cancer-specific mortality was observed among aspirin users who had unmethylated promotor of BRCA1 and PR and global hypermethylation of LINE-1 (HR, 0.60, 0.78, and 0.63, respectively; P for interaction ≤.05), although the 95% CIs included the null. CONCLUSIONS The current study suggests that the LINE-1 global methylation and promoter methylation of BRCA1 and PR in tumor may interact with aspirin use to influence mortality after breast cancer.
Collapse
Affiliation(s)
- Tengteng Wang
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Patrick T Bradshaw
- Division of Epidemiology, University of California, Berkeley, California
| | - Xinran Xu
- Department of Biometrics, Roche Product Development in Asia-Pacific, Shanghai, China
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University, New York, New York
| | - Susan L Teitelbaum
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alfred I Neugut
- Department of Epidemiology, Columbia University, New York, New York.,Department of Medicine, Columbia University, New York, New York
| | | | - Jia Chen
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
36
|
Nissar S, Sameer AS, Rasool R, Chowdri NA, Rashid F. Promoter methylation and Ile105val polymorphism of GSTP1 gene in the modulation of colorectal cancer risk in ethnic Kashmiri population. Indian J Cancer 2019; 56:248-253. [PMID: 31389389 DOI: 10.4103/ijc.ijc_11_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Glutathione-S-transferases (GSTs) are the most important phase II enzymes of the xenobiotic pathway responsible for the detoxification of carcinogens. GSTP1 gene polymorphisms are mostly associated with a lack or an alteration of enzymatic activity toward several substrates thus resulting in increased cancer susceptibility. GSTP1 promoter methylation is also frequently associated with tumor development or poor prognosis in a wide range of tumors. AIM In this study, we examined the role of genetic polymorphism and promoter methylation of GSTP1 gene in the context of modulation of risk of colorectal cancer (CRC) in Kashmiri population. METHODS This study used tissue tumor samples (114) and blood samples from (160) patients with CRC and 200 blood samples from healthy donors. GSTP1 polymorphism was studied using polymerase chain reaction (PCR)-restriction fragment length polymorphism and methylation using methylation-specific PCR. RESULTS There was no significant association between GSTP1 I105V genotypes and the CRC (P>0.05). However, we found a significant association of the Val/Val variant genotype with the dwelling and smoking status (P-value < 0.05). Overall, the homozygous variant Val/Val genotype was associated with a modestly elevated risk for CRC (OR = 1.57; 95% CI = 0.67-3.57). Methyl-specific-PCR analysis revealed 25.4% methylation of the GSTP1 promoter in CRC cases and was not found to be statistically significantly associated with clinicopathological parameters of the CRC cases (P>0.05). Also, no significant associations of any of the three genotypes with promoter hypermethylation were observed. CONCLUSION We conclude that promoter hypermethylation in homozygous GSTP1 mutants did not elevate the risk of CRC in Kashmiri population.
Collapse
Affiliation(s)
- Saniya Nissar
- Departments of Biochemistry and Clinical Biochemistry, University of Kashmir; Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Aga Syed Sameer
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India; Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, KSA
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Nissar A Chowdri
- Department of Surgery, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Fouzia Rashid
- Department of Clinical Biochemistry, University of Kashmir, Soura, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
37
|
Rudzińska M, Parodi A, Soond SM, Vinarov AZ, Korolev DO, Morozov AO, Daglioglu C, Tutar Y, Zamyatnin AA. The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. Int J Mol Sci 2019; 20:3602. [PMID: 31340550 PMCID: PMC6678516 DOI: 10.3390/ijms20143602] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Dmitry O Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Cenk Daglioglu
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
38
|
Humphries B, Wang Z, Yang C. MicroRNA Regulation of Epigenetic Modifiers in Breast Cancer. Cancers (Basel) 2019; 11:E897. [PMID: 31252590 PMCID: PMC6678197 DOI: 10.3390/cancers11070897] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
Epigenetics refers to the heritable changes in gene expression without a change in the DNA sequence itself. Two of these major changes include aberrant DNA methylation as well as changes to histone modification patterns. Alterations to the epigenome can drive expression of oncogenes and suppression of tumor suppressors, resulting in tumorigenesis and cancer progression. In addition to modifications of the epigenome, microRNA (miRNA) dysregulation is also a hallmark for cancer initiation and metastasis. Advances in our understanding of cancer biology demonstrate that alterations in the epigenome are not only a major cause of miRNA dysregulation in cancer, but that miRNAs themselves also indirectly drive these DNA and histone modifications. More explicitly, recent work has shown that miRNAs can regulate chromatin structure and gene expression by directly targeting key enzymes involved in these processes. This review aims to summarize these research findings specifically in the context of breast cancer. This review also discusses miRNAs as epigenetic biomarkers and as therapeutics, and presents a comprehensive summary of currently validated epigenetic targets in breast cancer.
Collapse
Affiliation(s)
- Brock Humphries
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109; USA.
| | - Zhishan Wang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.
- Center for Research on Environment Disease, College of Medicine, University of Kentucky, Lexington, KY 40536; USA.
| |
Collapse
|
39
|
Barros SP, Hefni E, Nepomuceno R, Offenbacher S, North K. Targeting epigenetic mechanisms in periodontal diseases. Periodontol 2000 2019; 78:174-184. [PMID: 30198133 DOI: 10.1111/prd.12231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetic factors are heritable genome modifications that potentially impact gene transcription, contributing to disease states. Epigenetic marks play an important role in chronic inflammatory conditions, as observed in periodontal diseases, by allowing microbial persistence or by permitting microbial insult to play a role in the so-called 'hit-and-run' infectious mechanism, leading to lasting pathogen interference with the host genome. Epigenetics also affects the health sciences by providing a dynamic mechanistic framework to explain the way in which environmental and behavioral factors interact with the genome to alter disease risk. In this article we review current knowledge of epigenome regulation in light of the multifactorial nature of periodontal diseases. We discuss epigenetic tagging in identified genes, and consider the potential implications of epigenetic changes on host-microbiome dynamics in chronic inflammatory states and in response to environmental stressors. The most recent advances in genomic technologies have placed us in a position to analyze interaction effects (eg, between periodontal disease and type 2 diabetes mellitus), which can be investigated through epigenome-wide association analysis. Finally, because of the individualized traits of epigenetic biomarkers, pharmacoepigenomic perspectives are also considered as potentially novel therapeutic approaches for improving periodontal disease status.
Collapse
Affiliation(s)
- Silvana P Barros
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Eman Hefni
- Department of Periodontology, School of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia
| | - Rafael Nepomuceno
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Steven Offenbacher
- Department of Periodontology, University of North Carolina, Chapel Hil, NC, USA
| | - Kari North
- Department of Epidemiology and Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
40
|
Collin LJ, McCullough LE, Conway K, White AJ, Xu X, Cho YH, Shantakumar S, Teitelbaum SL, Neugut AI, Santella RM, Chen J, Gammon MD. Reproductive characteristics modify the association between global DNA methylation and breast cancer risk in a population-based sample of women. PLoS One 2019; 14:e0210884. [PMID: 30763347 PMCID: PMC6375664 DOI: 10.1371/journal.pone.0210884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022] Open
Abstract
DNA methylation has been implicated in breast cancer aetiology, but little is known about whether reproductive history and DNA methylation interact to influence carcinogenesis. This study examined modification of the association between global DNA methylation and breast cancer risk by reproductive characteristics. A population-based case-control study assessed reproductive history in an interviewer-administered questionnaire. Global DNA methylation was measured from white blood cell DNA using luminometric methylation assay (LUMA) and pyrosequencing assay (long interspersed elements-1 (LINE-1). We estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) among 1 070 breast cancer cases and 1 110 population-based controls. Effect modification was assessed on additive and multiplicative scales. LUMA methylation was associated with elevated breast cancer risk across all strata (comparing the highest to the lowest quartile), but estimates were higher among women with age at menarche ≤12 years (OR = 2.87, 95%CI = 1.96–4.21) compared to >12 years (OR = 1.66, 95%CI = 1.20–2.29). We observed a 2-fold increase in the LUMA methylation-breast cancer association among women with age at first birth >23 years (OR = 2.62, 95%CI = 1.90–3.62) versus ≤23 years (OR = 1.32, 95% CI = 0.84–2.05). No modification was evident for parity or lactation. Age at menarche and age at first birth may be modifiers of the association between global DNA methylation and breast cancer risk.
Collapse
Affiliation(s)
- Lindsay J. Collin
- Department of Epidemiology, Emory University, Atlanta, GA, United States of America
- * E-mail:
| | - Lauren E. McCullough
- Department of Epidemiology, Emory University, Atlanta, GA, United States of America
| | - Kathleen Conway
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Science, Research Triangle Park, NC, United States of America
| | - Xinran Xu
- Roche Product Development in Asia-Pacific, Shanghai, China
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States of America
| | | | - Susan L. Teitelbaum
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alfred I. Neugut
- Department of Epidemiology, Columbia University, New York, NY,United States of America
- Department of Medicine, Columbia University, New York, NY, United States of America
| | - Regina M. Santella
- Department of Environmental Health, Columbia University, New York, NY, United States of America
| | - Jia Chen
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Department of Oncological Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Marilie D. Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
41
|
Alhudiri IM, Nolan CC, Ellis IO, Elzagheid A, Rakha EA, Green AR, Chapman CJ. Expression of Lamin A/C in early-stage breast cancer and its prognostic value. Breast Cancer Res Treat 2019; 174:661-668. [DOI: 10.1007/s10549-018-05092-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
42
|
Shukla S, Penta D, Mondal P, Meeran SM. Epigenetics of Breast Cancer: Clinical Status of Epi-drugs and Phytochemicals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:293-310. [PMID: 31456191 DOI: 10.1007/978-3-030-20301-6_16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics refers to alterations in gene expression due to differential histone modifications and DNA methylation at promoter sites of genes. Epigenetic alterations are reversible and are heritable during somatic cell division, but do not involve changes in nucleotide sequence. Epigenetic regulation plays a critical role in normal growth and embryonic development by controlling transcriptional activities of several genes. In last two decades, these modifications have been well recognized to be involved in tumor initiation and progression, which has motivated many investigators to incorporate this novel field in cancer drug development. Recently, growing number of epigenetic changes have been reported that are involved in the regulations of genes involved in breast tumor growth and metastasis. Drugs possessing epigenetic modulatory activities known as epi-drugs, mainly the inhibitors of histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Some of these drugs are undergoing different clinical trials for breast cancer treatment. Several phytochemicals such as green tea polyphenols, curcumin, genistein, resveratrol and sulforaphane have also been shown to alter epigenetic modifications in multiple cancer types including breast cancer. In this chapter, we summarize the role of epigenetic changes in breast cancer progression and metastasis. We have also discussed about various epigenetic modulators possessing chemopreventive and therapeutic efficacy against breast cancer with future perspectives.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Department of Paediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dhanamjai Penta
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Priya Mondal
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
43
|
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in Metastatic Breast Cancer: Its Regulation and Implications in Diagnosis, Prognosis and Therapeutics. Curr Cancer Drug Targets 2019; 19:82-100. [PMID: 29714144 DOI: 10.2174/1568009618666180430130248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
Collapse
Affiliation(s)
- Yuan Seng Wu
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Zhong Yang Lee
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|
44
|
Salta S, P Nunes S, Fontes-Sousa M, Lopes P, Freitas M, Caldas M, Antunes L, Castro F, Antunes P, Palma de Sousa S, Henrique R, Jerónimo C. A DNA Methylation-Based Test for Breast Cancer Detection in Circulating Cell-Free DNA. J Clin Med 2018; 7:E420. [PMID: 30405052 PMCID: PMC6262630 DOI: 10.3390/jcm7110420] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Accepted: 11/04/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Breast cancer (BrC) is the most frequent neoplasm in women. New biomarkers, including aberrant DNA methylation, may improve BrC management. Herein, we evaluated the detection and prognostic performance of seven genes' promoter methylation (APC, BRCA1, CCND2, FOXA1, PSAT1, RASSF1A and SCGB3A1). METHODS Methylation levels were assessed in primary BrC tissues by quantitative methylation-specific polymerase chain reaction (QMSP) and in circulating cell-free DNA (ccfDNA) by multiplex QMSP from two independent cohorts of patients (Cohort #1, n = 137; and Cohort #2, n = 44). Receiver operating characteristic (ROC) curves were constructed, and log-rank test and Cox regression were performed to assess the prognostic value of genes' methylation levels. RESULTS The gene-panel APC, FOXA1, RASSF1A, SCGB3A1 discriminated normal from cancerous tissue with high accuracy (95.55%). In multivariable analysis, high PSAT1-methylation levels [>percentile 75 (P75)] associated with longer disease-free survival, whereas higher FOXA1-methylation levels (>P75) associated with shorter disease-specific survival. The best performing panel in ccfDNA (APC, FOXA1 and RASSF1A) disclosed a sensitivity, specificity and accuracy over 70%. CONCLUSIONS This approach enables BrC accurate diagnosis and prognostic stratification in tissue samples, and allows for early detection in liquid biopsies, thus suggesting a putative value for patient management.
Collapse
Affiliation(s)
- Sofia Salta
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Mário Fontes-Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Paula Lopes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Micaela Freitas
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
| | - Margarida Caldas
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Fernando Castro
- Breast Cancer Clinic and Department of Surgical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Pedro Antunes
- Breast Cancer Clinic and Department of Surgical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Susana Palma de Sousa
- Breast Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal.
| |
Collapse
|
45
|
Jin W, Li QZ, Zuo YC, Cao YN, Zhang LQ, Hou R, Su WX. Relationship Between DNA Methylation in Key Region and the Differential Expressions of Genes in Human Breast Tumor Tissue. DNA Cell Biol 2018; 38:49-62. [PMID: 30346835 DOI: 10.1089/dna.2018.4276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Breast cancer has a high mortality rate for females. Aberrant DNA methylation plays a crucial role in the occurrence and progression of breast carcinoma. By comparing DNA methylation differences between tumor breast tissue and normal breast tissue, we calculate and analyze the distributions of the hyper- and hypomethylation sites in different function regions. Results indicate that enhancer regions are often hypomethylated in breast cancer. CpG islands (CGIs) are mainly hypermethylated, while the flanking CGI (shores and shelves) is more easily hypomethylated. The hypomethylation in gene body region is related to the upregulation of gene expression, and the hypomethylation of enhancer regions is closely associated with gene expression upregulation in breast cancer. Some key hypomethylation sites in enhancer regions and key hypermethylation sites in CGIs for regulating key genes are, respectively, found, such as oncogenes ESR1 and ERBB2 and tumor suppressor genes FBLN2, CEBPA, and FAT4. This suggests that the recognizing methylation status of these genes will be useful for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Wen Jin
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Qian-Zhong Li
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China .,2 The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University , Hohhot, China
| | - Yong-Chun Zuo
- 2 The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University , Hohhot, China
| | - Yan-Ni Cao
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Lu-Qiang Zhang
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Rui Hou
- 1 Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University , Hohhot, China
| | - Wen-Xia Su
- 3 College of Science, Inner Mongolia Agricultural University , Hohhot, China
| |
Collapse
|
46
|
McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim Biophys Acta Rev Cancer 2018; 1870:185-197. [PMID: 30318472 DOI: 10.1016/j.bbcan.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
The PI3K/Akt/mTOR pathway plays a role in various oncogenic processes in breast cancer and key pathway aberrations have been identified which drive the different molecular subtypes. Early drugs developed targeting this pathway produced some clinical success but were hampered by pharmacokinetics, tolerability and efficacy problems. This created a need for new PI3K pathway-inhibiting drugs, which would produce more robust results allowing incorporation into treatment regimens for breast cancer patients. In this review, the most promising candidates from the new generation of PI3K-pathway inhibitors is explored, presenting evidence from preclinical and early clinical research, as well as ongoing trials utilising these drugs in breast cancer cohorts. The problems hindering the development of drugs targeting the PI3K pathway are examined, which have created problems for their use as monotherapies. PI3K pathway inhibitor combinations therefore remains a dynamic research area, and their role in combination with immunotherapies and epigenetic therapies is also inspected.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sarah McGarrigle
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Graham P Pidgeon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
47
|
Zimmers SM, Browne EP, Williams KE, Jawale RM, Otis CN, Schneider SS, Arcaro KF. TROP2 methylation and expression in tamoxifen-resistant breast cancer. Cancer Cell Int 2018; 18:94. [PMID: 30002602 PMCID: PMC6034260 DOI: 10.1186/s12935-018-0589-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The DNA methyltransferase 1 inhibitor, 5-Aza-2'-deoxycytidine (5-Aza-dC) is a potential treatment for breast cancer. However, not all breast tumors will respond similarly to treatment with 5-Aza-dC, and little is known regarding the response of hormone-resistant breast cancers to 5-Aza-dC. METHODS We demonstrate that 5-Aza-dC-treatment has a stronger effect on an estrogen receptor-negative, Tamoxifen-selected cell line, TMX2-28, than on the estrogen receptor-positive, MCF7, parental cell line. Using data obtained from the HM450 Methylation Bead Chip, pyrosequencing, and RT-qPCR, we identified a panel of genes that are silenced by promoter methylation in TMX2-28 and re-expressed after treatment with 5-Aza-dC. RESULTS One of the genes identified, tumor associated calcium signal transducer 2 (TACSTD2), is altered by DNA methylation, and there is evidence that in some cancers decreased expression may result in greater proliferation. Analysis of DNA methylation of TACSTD2 and protein expression of its product, trophoblast antigen protein 2 (TROP2), was extended to a panel of primary (n = 34) and recurrent (n = 34) breast tumors. Stratifying tumors by both recurrence and ER status showed no significant relationship between TROP2 levels and TACSTD2 methylation. Knocking down TACSTD2 expression in MCF7 increased proliferation however; re-expressing TACSTD2 in TMX2-28 did not inhibit proliferation, indicating that TACSTD2 re-expression alone was insufficient to explain the decreased proliferation observed after treatment with 5-Aza-dC. CONCLUSIONS These results illustrate the complexity of the TROP2 signaling network. However, TROP2 may be a valid therapeutic target for some cancers. Further studies are needed to identify biomarkers that indicate how TROP2 signaling affects tumor growth and whether targeting TROP2 would be beneficial to the patient.
Collapse
Affiliation(s)
- Stephanie M. Zimmers
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 540D, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Eva P. Browne
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 540D, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Kristin E. Williams
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 540D, 240 Thatcher Road, Amherst, MA 01003 USA
| | - Rahul M. Jawale
- Pathology Department, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199 USA
| | - Christopher N. Otis
- Pathology Department, Baystate Medical Center, 759 Chestnut Street, Springfield, MA 01199 USA
| | - Sallie S. Schneider
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 540D, 240 Thatcher Road, Amherst, MA 01003 USA
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, 3601 Main Street, Springfield, MA 01199 USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Life Sciences Laboratories, Room 540D, 240 Thatcher Road, Amherst, MA 01003 USA
| |
Collapse
|
48
|
Wu HC, Do C, Andrulis IL, John EM, Daly MB, Buys SS, Chung WK, Knight JA, Bradbury AR, Keegan THM, Schwartz L, Krupska I, Miller RL, Santella RM, Tycko B, Terry MB. Breast cancer family history and allele-specific DNA methylation in the legacy girls study. Epigenetics 2018; 13:240-250. [PMID: 29436922 DOI: 10.1080/15592294.2018.1435243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Family history, a well-established risk factor for breast cancer, can have both genetic and environmental contributions. Shared environment in families as well as epigenetic changes that also may be influenced by shared genetics and environment may also explain familial clustering of cancers. Epigenetic regulation, such as DNA methylation, can change the activity of a DNA segment without a change in the sequence; environmental exposures experienced across the life course can induce such changes. However, genetic-epigenetic interactions, detected as methylation quantitative trait loci (mQTLs; a.k.a. meQTLs) and haplotype-dependent allele-specific methylation (hap-ASM), can also contribute to inter-individual differences in DNA methylation patterns. To identify differentially methylated regions (DMRs) associated with breast cancer susceptibility, we examined differences in white blood cell DNA methylation in 29 candidate genes in 426 girls (ages 6-13 years) from the LEGACY Girls Study, 239 with and 187 without a breast cancer family history (BCFH). We measured methylation by targeted massively parallel bisulfite sequencing (bis-seq) and observed BCFH DMRs in two genes: ESR1 (Δ4.9%, P = 0.003) and SEC16B (Δ3.6%, P = 0.026), each of which has been previously implicated in breast cancer susceptibility and pubertal development. These DMRs showed high inter-individual variability in methylation, suggesting the presence of mQTLs/hap-ASM. Using single nucleotide polymorphisms data in the bis-seq amplicon, we found strong hap-ASM in SEC16B (with allele specific-differences ranging from 42% to 74%). These findings suggest that differential methylation in genes relevant to breast cancer susceptibility may be present early in life, and that inherited genetic factors underlie some of these epigenetic differences.
Collapse
Affiliation(s)
- Hui-Chen Wu
- a Herbert Irving Comprehensive Cancer Center , Columbia University Medical Center , New York , NY.,b Department of Environmental Health Sciences , Mailman School of Public Health of Columbia University , New York , NY
| | - Catherine Do
- c John Theurer Cancer Center , Hackensack University Medical Center , Hackensack NJ
| | - Irene L Andrulis
- d Lunenfeld-Tanenbaum Research Institute , Sinai Health System , Toronto , Ontario.,e Departments of Molecular Genetics and Laboratory Medicine and Pathobiology , University of Toronto , Toronto , Ontario , Canada
| | - Esther M John
- f Cancer Prevention Institute of California , Fremont CA.,g Department of Health Research & Policy (Epidemiology) , and Stanford Cancer Institute, Stanford University School of Medicine , Stanford , CA
| | - Mary B Daly
- h Department of Clinical Genetics , Fox Chase Cancer Center , Philadelphia , PA
| | - Saundra S Buys
- i Department of Medicine and , Huntsman Cancer Institute, University of Utah Health Sciences Center , UT
| | - Wendy K Chung
- j Departments of Pediatrics ; Department of Medicine , Columbia University College of Physicians and Surgeons , New York , NY
| | - Julia A Knight
- d Lunenfeld-Tanenbaum Research Institute , Sinai Health System , Toronto , Ontario.,k Dalla Lana School of Public Health , University of Toronto , Toronto
| | - Angela R Bradbury
- l Departments of Medicine, Division of Hematology/Oncology, Department of Medical Ethics and Health Policy, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA
| | - Theresa H M Keegan
- m Center for Oncology Hematology Outcomes Research and Training (COHORT).,n Division of Hematology and Oncology , University of California Davis School of Medicine , Sacramento , CA
| | - Lisa Schwartz
- o Department of Pediatrics, Division of Oncology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA.,p The Children's Hospital of Philadelphia , Philadelphia , PA
| | - Izabela Krupska
- a Herbert Irving Comprehensive Cancer Center , Columbia University Medical Center , New York , NY
| | - Rachel L Miller
- a Herbert Irving Comprehensive Cancer Center , Columbia University Medical Center , New York , NY.,j Departments of Pediatrics ; Department of Medicine , Columbia University College of Physicians and Surgeons , New York , NY
| | - Regina M Santella
- a Herbert Irving Comprehensive Cancer Center , Columbia University Medical Center , New York , NY.,b Department of Environmental Health Sciences , Mailman School of Public Health of Columbia University , New York , NY
| | - Benjamin Tycko
- c John Theurer Cancer Center , Hackensack University Medical Center , Hackensack NJ.,q Lombardi Comprehensive Cancer Center , Georgetown University , Washington , DC
| | - Mary Beth Terry
- a Herbert Irving Comprehensive Cancer Center , Columbia University Medical Center , New York , NY.,b Department of Environmental Health Sciences , Mailman School of Public Health of Columbia University , New York , NY.,r Imprints Center , Columbia University Medical Center , New York , NY.,s Department of Epidemiology , Mailman School of Public Health of Columbia University , New York , NY
| |
Collapse
|
49
|
Yadav P, Masroor M, Nandi K, Kaza RCM, Jain SK, Khurana N, Saxena A. Promoter Methylation of BRCA1, DAPK1 and RASSF1A is Associated with Increased Mortality among Indian Women with Breast Cancer. Asian Pac J Cancer Prev 2018; 19:443-448. [PMID: 29480000 PMCID: PMC5980932 DOI: 10.22034/apjcp.2018.19.2.443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Promoter methylation has been observed for several genes in association with cancer development and progression. Hypermethylation mediated-silencing of tumor suppressor genes (TSGs) may contribute to breast cancer pathogenesis. The present study was conducted to investigate the promoter methylation status of BRCA1, DAPK1 and RASSF1A genes in Indian women with breast cancer. Materials and Methods: Promoter methylation was evaluated in DNA extracted from mononuclear cells (MNCs) in peripheral blood samples of 60 histopathologically confirmed newly diagnosed, untreated cases of breast cancer as well as 60 age and sex matched healthy controls using MS-PCR. Association of promoter methylation with breast cancer-specific mortality was analyzed with Cox proportional hazards models. Kaplan-Meier survival analysis was performed for overall survival of the breast cancer patients. Results: We observed a significant increase of BRCA1, DAPK1 and RASSF1A promoter methylation levels by 51.7% (P <0.001), 55.0% (P <0.001) and 46.6% (P <0.001), respectively, when compared to healthy controls. A strong correlation was noted between hypermethylation of the tumor suppressor genes BRCA1 (P= 0.009), DAPK1 (P= 0.008) and RASSF1A (P= 0.02)) with early and advanced stages of breast cancer patients. We also found that breast cancer-specific mortality was significantly associated with promoter methylation of BRCA1 [HR and 95% CI: 3.25 (1.448-7.317)] and DAPK1 [HR and 95% CI: 2.32 (1.05-5.11)], whereas limited significant link was evident with RASSF1A [HR and 95% CI: 1.54 (0.697-3.413]. Conclusion: Our results suggest that promoter methylation of BRCA1, DAPK1 and RASSF1A genes may be associated with disease progression and poor overall survival of Indian women with breast cancer.
Collapse
Affiliation(s)
- Prasant Yadav
- Department of Biochemistry, Maulana Azad Medical College, New Delhi, India
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yin X, Xiang T, Mu J, Mao H, Li L, Huang X, Li C, Feng Y, Luo X, Wei Y, Peng W, Ren G, Tao Q. Protocadherin 17 functions as a tumor suppressor suppressing Wnt/β-catenin signaling and cell metastasis and is frequently methylated in breast cancer. Oncotarget 2018; 7:51720-51732. [PMID: 27351130 PMCID: PMC5239510 DOI: 10.18632/oncotarget.10102] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/28/2016] [Indexed: 11/29/2022] Open
Abstract
Protocadherins play important roles in the regulation of cell adhesion and signaling transduction. Aberrant expression of protocadherins has been shown to be associated with multiple tumorigenesis. We previously identified PCDH17, encoding protocadherin 17, as a frequently methylated and downregulated tumor suppressor gene (TSG) in gastric and colorectal cancers. Here, we examined the abnormalities and functions of PCDH17 in breast cancer pathogenesis. We used PCR and immunohistochemistry to check its expression pattern in breast tumor cell lines and primary tumors. Methylation-specific PCR (MSP) was applied to examine its promoter methylation status in breast tumor cell lines and primary tumors. The biological functions of PCDH17 in breast tumor cells were assessed using in vitro and in vivo assays. We found that PCDH17 was frequently downregulated or silenced in 78% (7/9) of breast tumor cell lines, as well as 89% (32/36) of primary tumors. Downregulation of PCDH17 in breast cancer was mainly due to the methylation of its promoter. Ectopic expression of PCDH17 in breast tumor cells inhibited cell proliferation and mobility through arresting cell cycle and inducing apoptosis. In breast tumor cells, PCDH17 significantly suppressed the active β-catenin level and its downstream target gene expression. Thus, we found that PCDH17 functions as a tumor suppressor inhibiting Wnt/β-catenin signaling and metastasis in breast cancer but is frequently methylated in primary tumors which could be a potential biomarker.
Collapse
Affiliation(s)
- Xuedong Yin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Mao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Chunhong Li
- Oncology Department, Suining Sichuan Center Hospital, Sichuan, China
| | - Yixiao Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinrong Luo
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Tao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| |
Collapse
|