1
|
ACBD3 Bioinformatic Analysis and Protein Expression in Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23168881. [PMID: 36012147 PMCID: PMC9408326 DOI: 10.3390/ijms23168881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
ACBD3 overexpression has previously been found to correlate with worse prognosis for breast cancer patients and, as an incredibly diverse protein in both function and cellular localisation, ACBD3 may have a larger role in breast cancer than previously thought. This study further investigated ACBD3′s role in breast cancer. Bioinformatic databases were queried to characterise ACBD3 expression and mutation in breast cancer and to investigate how overexpression affects breast cancer patient outcomes. Immunohistochemistry was carried out to examine ACBD3 location within cells and tissue structures. ACBD3 was more highly expressed in breast cancer than in any other cancer or matched normal tissue, and expression over the median level resulted in reduced relapse-free, overall, and distant metastasis-free survival for breast cancer patients as a whole, with some differences observed between subtypes. IHC analysis found that ACBD3 levels varied based on hormone receptor status, indicating that ACBD3 could be a candidate biomarker for poor patient prognosis in breast cancer and may possibly be a biomarker for ER signal reprogramming of precancerous breast tissue.
Collapse
|
2
|
Mosallaei M, Ehtesham N, Rahimirad S, Saghi M, Vatandoost N, Khosravi S. PBMCs: a new source of diagnostic and prognostic biomarkers. Arch Physiol Biochem 2022; 128:1081-1087. [PMID: 32293207 DOI: 10.1080/13813455.2020.1752257] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are various types of molecular biomarkers that are derived from distinct starting materials. Although many indirect biomarkers are found in blood, their detection remains a challenging issue because of the high degree of fragmentation, minute quantity and a vast amount of non-specific background. The present review points out the sensitivity and specificity of peripheral blood mononuclear cells (PBMCs) as an intact source of biomarkers in a variety of diseases. Multiple recent studies that have used PBMCs as a source of biomarkers reveal the alteration of mRNAs/microRNAs (miRNAs) signature and methylation profile in many kinds of disorders; for instance, dysregulation of mRNAs/miRNAs in schizophrenia, diabetes and different types of cancers and change in the methylation status of LINE-1 in neoplasms. In conclusion with a strong probability, PBMCs mimic conditions of some tissues which are in contact with them like the tumour cells, hence providing a non-invasive and suitable source of biomarkers.
Collapse
Affiliation(s)
- Meysam Mosallaei
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Naeim Ehtesham
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Rahimirad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Saghi
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA university of medical sciences, Tehran, Iran
| | - Nasim Vatandoost
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharifeh Khosravi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Zhao T, Afrifa J, Wang D, Yu J. Association between HIC1 promoter methylation and solid tumor: A meta-analysis. EXCLI JOURNAL 2020; 19:476-489. [PMID: 32398971 PMCID: PMC7214777 DOI: 10.17179/excli2020-1102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/27/2020] [Indexed: 01/11/2023]
Abstract
The epigenetic silencing of tumor suppressor genes by promoter methylation plays an increasingly important role in cancer research. A number of studies have reported the contribution of HIC1 promoter methylation towards the occurrence and development of solid tumors, even though HIC1 promoter methylation has also been found in normal and benign tissue samples. We sought to perform a more accurate and comprehensive meta-analysis to assess the association between HIC1 promoter methylation and cancer risk. We searched and retrieved all published studies on HIC1 promoter methylation in PubMed, Google Scholar, Embase, Cochrane Library, and Web of Science databases. After two reviewers checked the studies and extracted the necessary data independently, the meta-analysis was performed using STATA 12.0 software. A total of 14 case-control studies (949 cancer patients, 282 benign, and 371 normal controls) were included in our study. We report a significantly elevated HIC1 promoter methylation in tumor samples compared to normal (OR = 7.02, 95 % CI 3.12-15.78, P < 0.001) and benign controls (OR = 2.69, 95 % CI 1.13-6.42, P = 0.025). Subgroup analysis stratified by ethnicity showed a significantly reduced heterogeneity among North American (I2 = 0.0 %, P = 0.502) and European (I2 = 33.7 %, P = 0.183) samples. In addition, heterogeneity was significantly reduced among MSP based detection method (I2 = 36.4 %, P = 0.139) when samples were stratified based on the methylation detection methods. The overall outcome demonstrated that HIC1 promoter methylation may be involved in the occurrence and development of solid tumors and has the potential to serve as an epigenetic maker in various specific tumors.
Collapse
Affiliation(s)
- Tie Zhao
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Justice Afrifa
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.,Department of Medical Laboratory Science, University of Cape Coast, Cape Coast, Ghana
| | - Dong Wang
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Jingcui Yu
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
4
|
Soozangar N, Sadeghi MR, Jeddi F, Somi MH, Shirmohamadi M, Samadi N. Comparison of genome‐wide analysis techniques to DNA methylation analysis in human cancer. J Cell Physiol 2017; 233:3968-3981. [DOI: 10.1002/jcp.26176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Narges Soozangar
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad R. Sadeghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Farhad Jeddi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Mohammad H. Somi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Nasser Samadi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences,Tabriz University of Medical SciencesTabrizIran
- Department of Biochemistry, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Jeuken JWM, van der Maazen RWM, Wesseling P. Molecular Diagnostics as a Tool to Personalize Treatment in Adult Glioma Patients. Technol Cancer Res Treat 2016; 5:215-29. [PMID: 16700618 DOI: 10.1177/153303460600500305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Gliomas, the most frequent primary brain tumors in humans, form a heterogeneous group, encompassing many different histological types and malignancy grades. Within this group, the diffuse infiltrative gliomas are by far the most common in adults. The major representatives in this subgroup are the diffuse astrocytic, oligodendroglial, and mixed oligo-astrocytic tumors. Especially in these diffuse gliomas, the role of molecular diagnostics is rapidly increasing. After summarizing the most relevant genetic aberrations and pathways in these tumors detected up till now, this review will discuss the clinical relevance of this information. Several molecular markers have been identified in diffuse gliomas that carry diagnostic and prognostic information. In addition, some of these and other markers predict the response of these gliomas to particular (chemo)therapeutic approaches. The techniques used to obtain this molecular information, as well as the advantages and disadvantages of the different techniques will be discussed. Finally, future perspectives will be presented with regard to the contribution of molecular diagnostics to tailor-made therapy in glioma patients.
Collapse
Affiliation(s)
- Judith W M Jeuken
- Department of Pathology, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
6
|
Abstract
Genomics has generated a wealth of data that is now being used to identify additional molecular alterations associated with cancer development. Mapping these alterations in the cancer genome is a critical first step in dissecting oncological pathways. There are two ways in which cancer research has changed in recent years. The first is the progressive elucidation of the genomic basis of cancer. This has been accomplished by the generation of detailed information using procedures such as global expression profiling. The second is a renewed emphasis on the role of epigenetic modifications in the etiology of cancer. Changes in DNA methylation and chromatin modification patterns are some of the epigenetic factors that cause gene deregulation in cancer. In this article, current and evolving genomic applications and the hypotheses underlying the modality for cancer therapy will be reviewed.
Collapse
Affiliation(s)
- Takashi Sakatani
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
7
|
Olkhov-Mitsel E, Bapat B. Strategies for discovery and validation of methylated and hydroxymethylated DNA biomarkers. Cancer Med 2012; 1:237-60. [PMID: 23342273 PMCID: PMC3544446 DOI: 10.1002/cam4.22] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/13/2022] Open
Abstract
DNA methylation, consisting of the addition of a methyl group at the fifth-position of cytosine in a CpG dinucleotide, is one of the most well-studied epigenetic mechanisms in mammals with important functions in normal and disease biology. Disease-specific aberrant DNA methylation is a well-recognized hallmark of many complex diseases. Accordingly, various studies have focused on characterizing unique DNA methylation marks associated with distinct stages of disease development as they may serve as useful biomarkers for diagnosis, prognosis, prediction of response to therapy, or disease monitoring. Recently, novel CpG dinucleotide modifications with potential regulatory roles such as 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine have been described. These potential epigenetic marks cannot be distinguished from 5-methylcytosine by many current strategies and may potentially compromise assessment and interpretation of methylation data. A large number of strategies have been described for the discovery and validation of DNA methylation-based biomarkers, each with its own advantages and limitations. These strategies can be classified into three main categories: restriction enzyme digestion, affinity-based analysis, and bisulfite modification. In general, candidate biomarkers are discovered using large-scale, genome-wide, methylation sequencing, and/or microarray-based profiling strategies. Following discovery, biomarker performance is validated in large independent cohorts using highly targeted locus-specific assays. There are still many challenges to the effective implementation of DNA methylation-based biomarkers. Emerging innovative methylation and hydroxymethylation detection strategies are focused on addressing these gaps in the field of epigenetics. The development of DNA methylation- and hydroxymethylation-based biomarkers is an exciting and rapidly evolving area of research that holds promise for potential applications in diverse clinical settings.
Collapse
Affiliation(s)
- Ekaterina Olkhov-Mitsel
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalToronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, Ontario, Canada
| | - Bharati Bapat
- Samuel Lunenfeld Research Institute, Mount Sinai HospitalToronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, Ontario, Canada
- Department of Pathology, University Health Network, University of TorontoToronto, Ontario, Canada
| |
Collapse
|
8
|
How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012; 94:2314-37. [PMID: 22847185 DOI: 10.1016/j.biochi.2012.07.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/16/2012] [Indexed: 02/06/2023]
Abstract
A biomarker is a molecular target analyzed in a qualitative or quantitative manner to detect and diagnose the presence of a disease, to predict the outcome and the response to a specific treatment allowing personalized tailoring of patient management. Biomarkers can belong to different types of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more specific and sensitive than commonly used protein biomarkers, which could clearly justify their use in clinics. However, very few of them are at the moment used in clinics and even less commercial tests are currently available. The objective of this review is to discuss the advantages of DNA methylation as a biomarker, the practical considerations for their development, and their use in disease detection, prediction of outcome or treatment response, through multiple examples mainly focusing on cancer, but also to evoke their potential for complex diseases and prenatal diagnostics.
Collapse
Affiliation(s)
- Alexandre How Kit
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, 27 rue Juliette Dodu, 75010 Paris, France
| | | | | |
Collapse
|
9
|
Abstract
Metastable and somatically heritable patterns of DNA methylation provide an important level of genomic regulation. In this article, we review methods for analyzing these genome-wide epigenetic patterns and offer a perspective on the ever-expanding literature, which we hope will be useful for investigators who are new to this area. The historical aspects that we cover will be helpful in interpreting this literature and we hope that our discussion of the newest analytical methods will stimulate future progress. We emphasize that no single approach can provide a complete view of the overall methylome, and that combinations of several modalities applied to the same sample set will give the clearest picture. Given the unexpected epigenomic patterns and new biological principles, as well as new disease markers, that have been uncovered in recent studies, it is likely that important discoveries will continue to be made using genome-wide DNA methylation profiling.
Collapse
Affiliation(s)
- Tao Zuo
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
10
|
Yang M, Park JY. DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 2012; 863:67-109. [PMID: 22359288 DOI: 10.1007/978-1-61779-612-8_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use.
Collapse
Affiliation(s)
- Mihi Yang
- Division of Cancer Prevention and Controls, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
11
|
A proof-of-principle demonstration of a novel microarray-based method for quantifying DNA methylation levels. Mol Biotechnol 2011; 46:243-9. [PMID: 20563671 DOI: 10.1007/s12033-010-9297-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Demethylation of CD11a (ITGAL; GeneID:3683; HGNC: 6148) and CD70 (TNFSF7; GeneID:970; HGNC:11937) regulatory regions in CD4(+) T cells contributes to the development of autoreactivity and autoantibody overstimulation in systemic lupus erythematosus (SLE). In this study, we present a novel approach for measuring the methylation status of CD11a and CD70 promoter sequences. The procedure combines the standard method of bisulfite conversion of methylated CpG pairs with high-throughput oligonucleotide microarray-based technology that allows for rapid quantification of deoxycytosine and deoxymethylcytosine content in bisulfite-treated DNA samples. The microarrays were first used to generate a standard curve from fully methylated and fully unmethylated DNA samples using a one-dimensional linear regression equation that calculated fluorescence emission as a function of methylation levels. The methylation status of the CD70 and CD11a promoters in SLE and control CD4(+) T cell samples were measured, and the microarray prediction was found to be highly accurate when compared to bisulfite sequencing. Furthermore, the microarrays were able to detect differences in the methylation status between SLE patient and healthy control samples. These results indicate that our new microarray-based assay could prove to be a highly reliable, rapid, and cost effective diagnostic and prognostic test for SLE.
Collapse
|
12
|
Claus R, Plass C, Armstrong SA, Bullinger L. DNA methylation profiling in acute myeloid leukemia: from recent technological advances to biological and clinical insights. Future Oncol 2011; 6:1415-31. [PMID: 20919827 DOI: 10.2217/fon.10.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia represents a heterogeneous malignant hematological disease with a complex underlying biology suggesting multiple patterns of genetic and epigenetic alterations. Recent evidence suggests that epigenetic mechanisms, especially deregulation of DNA methylation, play an important pathogenic role in leukemogenesis and the first epigenetic drugs have entered the clinic. Therefore, an improved understanding of the impact of altered epigenetic patterns on leukemogenesis represents a pre-requisite for improved patient management and outcome. Here, we provide an overview of current advances in deciphering the leukemic epigenome and its clinical relevance. Recent high-throughput analyses and genome-wide studies provide an optimal starting point for future epigenetic and integrative analyses that will further the development and use of predictive and prognostic epigenetic markers in acute myeloid leukemia.
Collapse
Affiliation(s)
- Rainer Claus
- Department of Epigenomics & Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | |
Collapse
|
13
|
Abstract
BACKGROUND The prostate gland is the most common site of cancer and the second leading cause of cancer mortality in American men. It is well known that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. METHODS This review discusses current information on methylated genes associated with prostate cancer development and progression. RESULTS Over 30 genes have been investigated for promoter methylation in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is reviewed. CONCLUSIONS These findings may provide new information of the pathogenesis of prostate cancer. Certain epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use.
Collapse
Affiliation(s)
- Jong Y Park
- Division of Cancer Prevention and Control, Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
14
|
Park YJ, Claus R, Weichenhan D, Plass C. Genome-wide epigenetic modifications in cancer. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2011; 67:25-49. [PMID: 21141723 PMCID: PMC3066002 DOI: 10.1007/978-3-7643-8989-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epigenetic alterations in cancer include changes in DNA methylation and associated histone modifications that influence the chromatin states and impact gene expression patterns. Due to recent technological advantages, the scientific community is now obtaining a better picture of the genome-wide epigenetic changes that occur in a cancer genome. These epigenetic alterations are associated with chromosomal instability and changes in transcriptional control which influence the overall gene expression differences seen in many human malignancies. In this review, we will briefly summarize our current knowledge of the epigenetic patterns and mechanisms of gene regulation in healthy tissues and relate this to what is known for cancer genomes. Our focus will be on DNA methylation. We will review the current standing of technologies that have been developed over recent years. This field is experiencing a revolution in the strategies used to measure epigenetic alterations, which includes the incorporation of next generation sequencing tools. We also will review strategies that utilize epigenetic information for translational purposes, with a special emphasis on the potential use of DNA methylation marks for early disease detection and prognosis. The review will close with an outlook on challenges that this field is facing.
Collapse
Affiliation(s)
- Yoon Jung Park
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
15
|
Fernandez SV, Snider KE, Wu YZ, Russo IH, Plass C, Russo J. DNA methylation changes in a human cell model of breast cancer progression. Mutat Res 2010; 688:28-35. [PMID: 20193695 PMCID: PMC2872054 DOI: 10.1016/j.mrfmmm.2010.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/07/2010] [Accepted: 02/22/2010] [Indexed: 12/31/2022]
Abstract
Epigenetic inactivation of genes by DNA hypermethylation plays an important role in carcinogenesis. An in vitro model of human breast epithelial cell transformation was used to study epigenetic changes induced by estradiol during the neoplastic process. Different stages of tumor initiation and progression are represented in this model being MCF-10F the normal stage; trMCF cells, the transformed stage; bsMCF cells, the invasive stage and, caMCF cells, the tumor stage. Global methylation studies by restriction landmark genomic scanning (RLGS) showed an increased DNA methylation during the in the invasive and tumor stages. Expression studies showed that NRG1 (neuregulin 1), CSS3 (chondroitin sulfate synthase 3) and SNIP (SNAP-25-interacting protein) were downregulated in the invasive and tumor cells. The transformed cells showed low expression of STXBP6 (amysin) compared to the parental cells MCF-10F. The treatment of these cells with the demethylating agent 5-aza-dC alone or in combination with the histone deacetylase inhibitor trichostatin increased the expression of NRG1, STXBP6, CSS3 and SNIP confirming that DNA methylation plays an important role in the regulation of the expression of these genes. The NRG1 exon 1 has a region located between -136 and +79 (considering +1, the translational initiation site) rich in CpG sites that was analyzed by methylation specific PCR (MSP). NRG1 exon 1 showed progressive changes in the methylation pattern associated with the progression of the neoplastic process in this model; NRG1 exon 1 was unmethylated in MCF-10F and trMCF cells, becoming hypermethylated in the invasive (bsMCF) and tumor (caMCF) stages. Studies of human breast tissue samples showed that NRG1 exon 1 was partially methylated in 14 out of 17 (82.4%) invasive carcinomas although it was unmethylated in normal tissues (8 out of 10 normal breast tissue samples). Furthermore, NRG1 exon 1 was partially methylated in 9 out of 14 (64.3%) morphologically normal tissue samples adjacent to invasive carcinomas.
Collapse
Affiliation(s)
- Sandra V Fernandez
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
DNA methylation plays an important role in regulating normal development and carcinogenesis. Current understanding of the biological roles of DNA methylation is limited to its role in the regulation of gene transcription, genomic imprinting, genomic stability, and X chromosome inactivation. In the past 2 decades, a large number of changes have been identified in cancer epigenomes when compared with normals. These alterations fall into two main categories, namely, hypermethylation of tumor suppressor genes and hypomethylation of oncogenes or heterochromatin, respectively. Aberrant methylation of genes controlling the cell cycle, proliferation, apoptosis, metastasis, drug resistance, and intracellular signaling has been identified in multiple cancer types. Recent advancements in whole-genome analysis of methylome have yielded numerous differentially methylated regions, the functions of which are largely unknown. With the development of high resolution tiling microarrays and high throughput DNA sequencing, more cancer methylomes will be profiled, facilitating the identification of new candidate genes or ncRNAs that are related to oncogenesis, new prognostic markers, and the discovery of new target genes for cancer therapy.
Collapse
Affiliation(s)
- Hoi-Hung Cheung
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
17
|
Abstract
There is growing concern that estrogenic environmental compounds that act as endocrine-disrupting chemicals might potentially have adverse effects on hormone-sensitive organs such as the breast. This concern is further fueled by evidence indicating that natural estrogens, specifically 17beta-estradiol, are important factors in the initiation and progression of breast cancer. We have developed an in vitro-in vivo model in which we have demonstrated the carcinogenicity of E2 in human breast epithelial cells MCF-10F. Hypermethylation of NRG1, STXBP6, BMP6, CSS3, SPRY1, and SNIP were found at different progression stages in this model. The use of this powerful and unique model has provided a tool for exploring whether bisphenol A and butyl benzyl phthalate have relevance in the initiation of breast cancer. These studies provide firsthand evidence that the natural estrogen 17beta-estradiol and xenoestrogenic substances like bisphenol A are able to induce neoplastic transformation in human breast epithelial cells.
Collapse
Affiliation(s)
- S.V. Fernandez
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J. Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
18
|
Zenz T, Mertens D, Döhner H, Stilgenbauer S. Molecular diagnostics in chronic lymphocytic leukemia – Pathogenetic and clinical implications. Leuk Lymphoma 2009; 49:864-73. [DOI: 10.1080/10428190701882955] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Camoriano M, Kinney SRM, Moser MT, Foster BA, Mohler JL, Trump DL, Karpf AR, Smiraglia DJ. Phenotype-specific CpG island methylation events in a murine model of prostate cancer. Cancer Res 2008; 68:4173-82. [PMID: 18519676 DOI: 10.1158/0008-5472.can-07-6715] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aberrant DNA methylation plays a significant role in nearly all human cancers and may contribute to disease progression to advanced phenotypes. Study of advanced prostate cancer phenotypes in the human disease is hampered by limited availability of tissues. We therefore took advantage of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model to study whether three different phenotypes of TRAMP tumors (PRIM, late-stage primary tumors; AIP, androgen-independent primary tumors; and MET, metastases) displayed specific patterns of CpG island hypermethylation using Restriction Landmark Genomic Scanning. Each tumor phenotype displayed numerous hypermethylation events, with the most homogeneous methylation pattern in AIP and the most heterogeneous pattern in MET. Several loci displayed a phenotype-specific methylation pattern; the most striking pattern being loci methylated at high frequency in PRIM and AIP but rarely in MET. Examination of the mRNA expression of three genes, BC058385, Goosecoid, and Neurexin 2, which exhibited nonpromoter methylation, revealed increased expression associated with downstream methylation. Only methylated samples showed mRNA expression, in which tumor phenotype was a key factor determining the level of expression. The CpG island in the human orthologue of BC058385 was methylated in human AIP but not in primary androgen-stimulated prostate cancer or benign prostate. The clinical data show a proof-of-principle that the TRAMP model can be used to identify targets of aberrant CpG island methylation relevant to human disease. In conclusion, phenotype-specific hypermethylation events were associated with the overexpression of different genes and may provide new markers of prostate tumorigenesis.
Collapse
Affiliation(s)
- Marta Camoriano
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Smiraglia DJ, Kulawiec M, Bistulfi GL, Gupta SG, Singh KK. A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther 2008; 7:1182-90. [PMID: 18458531 DOI: 10.4161/cbt.7.8.6215] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epigenetic modification in the nuclear genome plays a key role in human tumorigenesis. In this paper, we investigated whether changes in the mtDNA copy number frequently reported to vary in a number of human tumors induce methylation changes in the nucleus. We utilized the Restriction Landmark Genomic Scanning (RLGS) to identify genes that undergo changes in their methylation status in response to the depletion and repletion of mtDNA. Our study demonstrates that depletion of mtDNA results in significant changes in methylation pattern of a number of genes. Furthermore, our study suggests that methylation changes are reversed by the restoration of mtDNA in cells otherwise lacking the entire mitochondrial genome. These studies provide the first direct evidence that mitochondria regulate epigenetic modification in the nucleus that may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
For years, head and neck squamous cell carcinomas (HNSCC) have been among the leading cancers worldwide. Despite considerable efforts, the 5-year survival rate for HNSCC has not changed significantly. To improve this situation, it is necessary to understand the fundamental biological processes leading to the disease and its progression. In addition to known genetic changes in HNSCC, molecular cytogenetic investigations have identified chromosomal regions of gains and losses, but many of the responsible candidate genes have yet to be identified. Furthermore, recent results indicate the importance of epigenetic modifications in HNSCC, such as DNA methylation. Several genes, including the tumor suppressor CDKN2A and other candidates such as DAPK1, MGMT, TIMP3, TCF21, and C/EBPalpha, have been found to harbor hypermethylated regulatory sequences that lead to reduced expression or gene silencing. Hypermethylation in such genes could be used not only as biomarkers for the early detection of HNSCC but also to improve prevention strategies and therapy outcomes.
Collapse
Affiliation(s)
- P Schmezer
- Abteilung Toxikologie und Krebsrisikofaktoren, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg
| | | |
Collapse
|
22
|
Lambert AR, Sussman D, Shen B, Maunus R, Nix J, Samuelson J, Xu SY, Stoddard BL. Structures of the rare-cutting restriction endonuclease NotI reveal a unique metal binding fold involved in DNA binding. Structure 2008; 16:558-69. [PMID: 18400177 DOI: 10.1016/j.str.2008.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/07/2008] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
The structure of the rare-cutting restriction endonuclease NotI, which recognizes the 8 bp target 5'-GCGGCCGC-3', has been solved with and without bound DNA. Because of its specificity (recognizing a site that occurs once per 65 kb), NotI is used to generate large genomic fragments and to map DNA methylation status. NotI contains a unique metal binding fold, found in a variety of putative endonucleases, occupied by an iron atom coordinated within a tetrahedral Cys4 motif. This domain positions nearby protein elements for DNA recognition, and serves a structural role. While recognition of the central six base pairs of the target is accomplished via a saturated hydrogen bond network typical of restriction enzymes, the most peripheral base pairs are engaged in a single direct contact in the major groove, reflecting reduced pressure to recognize those positions. NotI may represent an evolutionary intermediate between mobile endonucleases (which recognize longer target sites) and canonical restriction endonucleases.
Collapse
Affiliation(s)
- Abigail R Lambert
- Graduate Program in Biomolecular Structure and Design, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang SS, Smiraglia DJ, Wu YZ, Ghosh S, Rader JS, Cho KR, Bonfiglio TA, Nayar R, Plass C, Sherman ME. Identification of novel methylation markers in cervical cancer using restriction landmark genomic scanning. Cancer Res 2008; 68:2489-97. [PMID: 18381458 DOI: 10.1158/0008-5472.can-07-3194] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant methylation of CpG islands in gene promoters often represents an early clonal event in carcinogenesis. Accordingly, defining methylation profiles may be useful for developing marker panels for early detection or predicting the risk of cancer precursors. To identify specific genes frequently methylated in cervical cancer, we conducted methylation profiling of 20 primary human cervical cancers using NotI-based restriction landmark genomic scanning (RLGS). Of 2,172 RLGS fragments analyzed (average, 1,753 CpG islands per patient), 186 RLGS fragments were lost in at least one tumor and 40 were lost in three or more. Methylation was identified in 19 (95%) of 20 tumor samples compared with normal DNA. Bisulfite sequencing was conducted to confirm RLGS results. Of the confirmed markers frequently methylated, we developed Methylight assays for two corresponding genes, nucleolar protein 4 (NOL4), and lipoma HMGIC fusion partner-like protein 4 (LHFPL4), which were methylated in 85% and 55% of cancers, respectively. Using these assays, we further confirmed frequent CpG island methylation in the original cancers and in another independent series of 15 cervical cancers. We also showed methylation at a reduced frequency in a set of carefully reviewed cytology specimens demonstrating cells exfoliated from cancer precursor lesions. In summary, we identified, for the first time, NOL4 and LHFPL4 as novel methylation targets specific for cervical cancer. Inclusion of NOL4 and LHFPL4 in evaluating methylation panels for early detection, risk prediction, and etiologic research on cervical cancer is warranted.
Collapse
Affiliation(s)
- Sophia S Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20852-7234, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Microarray-based methods to identify DNA methylation in cancer. YI CHUAN = HEREDITAS 2008; 30:295-303. [DOI: 10.3724/sp.j.1005.2008.00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Nagase H, Ghosh S. Epigenetics: differential DNA methylation in mammalian somatic tissues. FEBS J 2008; 275:1617-23. [PMID: 18331347 DOI: 10.1111/j.1742-4658.2008.06330.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetics refers to heritable phenotypic alterations in the absence of DNA sequence changes, and DNA methylation is one of the extensively studied epigenetic alterations. DNA methylation is an evolutionally conserved mechanism to regulate gene expression in mammals. Because DNA methylation is preserved during DNA replication it can be inherited. Thus, DNA methylation could be a major mechanism by which to produce semi-stable changes in gene expression in somatic tissues. Although it remains controversial whether germ-line DNA methylation in mammalian genomes is stably heritable, frequent tissue-specific and disease-specific de novo methylation events are observed during somatic cell development/differentiation. In this minireview, we discuss the use of restriction landmark genomic scanning, together with in silico analysis, to identify differentially methylated regions in the mammalian genome. We then present a rough overview of quantitative DNA methylation patterns at 4600 NotI sites and more than 150 differentially methylated regions in several C57BL/6J mouse tissues. Comparative analysis between mice and humans suggests that some, but not all, tissue-specific differentially methylated regions are conserved. A deeper understanding of cell-type-specific differences in DNA methylation might lead to a better illustration of the mechanisms behind tissue-specific differentiation in mammals.
Collapse
Affiliation(s)
- Hiroki Nagase
- Advanced Research Institute for the Sciences and Humanities, Nihon University, 12-5 Goban-cho, Chiyoda-ku, Tokyo, Japan.
| | | |
Collapse
|
26
|
Hattori N, Shiota K. Epigenetics: the study of embryonic stem cells by restriction landmark genomic scanning. FEBS J 2008; 275:1624-30. [DOI: 10.1111/j.1742-4658.2008.06331.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Koike K, Matsuyama T, Ebisuzaki T. Epigenetics: application of virtual image restriction landmark genomic scanning (Vi-RLGS). FEBS J 2008; 275:1608-16. [PMID: 18331348 DOI: 10.1111/j.1742-4658.2008.06329.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Restriction landmark genomic scanning (RLGS) is a powerful method for the systematic detection of genetic mutations in DNA length and epigenetic alteration due to DNA methylation. However, the identification of polymorphic spots is difficult because the resulting RLGS spots contain very little target DNA and many non-labeled DNA fragments. To overcome this, we developed a virtual image restriction landmark genomic scanning (Vi-RLGS) system to compare actual RLGS patterns with computer-simulated RLGS patterns (virtual RLGS patterns). Here, we demonstrate in detail the contents of the simulation program (rlgssim), based on the linear relationship between the reciprocal of mobility plotted against DNA fragment length and Vi-RLGS profiling of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kuniaki Koike
- Computational Astrophysics Laboratory, Discovery Research Institute, RIKEN, Saitama, Japan
| | | | | |
Collapse
|
28
|
DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 2007; 104:19351-6. [PMID: 18042717 DOI: 10.1073/pnas.0707258104] [Citation(s) in RCA: 555] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B(12) and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure-effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.
Collapse
|
29
|
Plass C, Byrd JC, Raval A, Tanner SM, de la Chapelle A. Molecular profiling of chronic lymphocytic leukaemia: genetics meets epigenetics to identify predisposing genes. Br J Haematol 2007; 139:744-52. [PMID: 17961188 DOI: 10.1111/j.1365-2141.2007.06875.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular profiling may lead to a better understanding of a disease. This knowledge is especially important in malignancies, where multiple alterations are required during the progression from premalignant to malignant stages. Such information can be useful for the development of novel biomarkers that allow the prediction of a clinical course, response to treatment or early detection. Molecular data is also utilized to develop targeted therapies. Moreover, gene defects identified in profiling studies will help to understand the molecular pathways disrupted in the disease. This review provides an overview of molecular profiling approaches in chronic lymphocytic leukaemia (CLL). We will describe our current understanding of genetic alterations in CLL, the use of familial CLL for the identification of predisposing mutations, and the search for epigenetic alterations in CLL.
Collapse
Affiliation(s)
- Christoph Plass
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, the Comprehensive Cancer Center at the Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
In general, DNA methylation acts in concert with other epigenetic processes, including histone modifications, chromatin remodeling and microRNAs, to shape the overall chromatin structure of the nucleus and potentially modify its functional state. Aberrant DNA methylation events can occur in a number of human diseases but we are only just beginning to appreciate the scope and magnitude of this process in human health. As one example, in contrast to normal cells, the cancer methylome is characterized by reciprocal hypermethylation of specific regulatory regions of genes along with an overall decrease in the quantity of 5-methylcytosine throughout the remainder of the genome. Currently, near genome-wide technologies are available and have been utilized to examine the extent of DNA methylation in discovery-based studies involving several physiological and disease states. Although early in the process, DNA methylation is being explored as a biomarker to be used in clinical practice for early detection of disease, tumor classification and for predicting disease outcome or recurrence. This perspective focuses on the current and future states of the use of DNA methylation biomarkers in disease diagnosis, prognosis and classification, with a particular emphasis on cancer.
Collapse
Affiliation(s)
- Huidong Shi
- University of Missouri-Columbia, School of Medicine, Department of Pathology and Anatomical Sciences, Columbia, MO 65212, USA.
| | | | | |
Collapse
|
31
|
Shames DS, Minna JD, Gazdar AF. Methods for detecting DNA methylation in tumors: From bench to bedside. Cancer Lett 2007; 251:187-98. [PMID: 17166656 DOI: 10.1016/j.canlet.2006.10.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/18/2006] [Accepted: 10/19/2006] [Indexed: 12/31/2022]
Abstract
Tumor-acquired changes in DNA methylation are the focus of research in an increasing number of basic, translational, and clinical laboratories around the world. In the laboratory, genome-wide technologies such as expression and DNA microarrays have been adapted to analyze patterns of DNA methylation and to screen for novel disease markers. Other technologies that are relatively inexpensive and highly sensitive such as methylation-specific PCR (MSP), or quantitative, such as quantitative MSP and pyrosequencing are widely used in retrospective studies and have potential in a diagnostic setting. In the near future, it may be possible to screen patients for common cancers using DNA methylation signatures as well as to measure patient responses to treatment, to identify patients at increased risk, or to monitor interventions designed to reduce cancer incidence. In this article, we review genome-wide and quantitative, high- resolution methods for methylation analysis that are used in the laboratory and clinic, and discuss their potential for use in a clinical setting.
Collapse
Affiliation(s)
- David S Shames
- The Hamon Center of Therapeutic Oncology Research and the Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | | | | |
Collapse
|
32
|
Estécio MR, Gharibyan V, Shen L, Ibrahim AE, Doshi K, He R, Jelinek J, Yang AS, Yan PS, Huang THM, Tajara EH, Issa JPJ. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2007; 2:e399. [PMID: 17476321 PMCID: PMC1851990 DOI: 10.1371/journal.pone.0000399] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/04/2007] [Indexed: 12/14/2022] Open
Abstract
Background Alterations in DNA methylation in cancer include global hypomethylation and gene-specific hypermethylation. It is not clear whether these two epigenetic errors are mechanistically linked or occur independently. This study was performed to determine the relationship between DNA hypomethylation, hypermethylation and microsatellite instability in cancer. Methodology/Principal Findings We examined 61 cancer cell lines and 60 colorectal carcinomas and their adjacent tissues using LINE-1 bisulfite-PCR as a surrogate for global demethylation. Colorectal carcinomas with sporadic microsatellite instability (MSI), most of which are due to a CpG island methylation phenotype (CIMP) and associated MLH1 promoter methylation, showed in average no difference in LINE-1 methylation between normal adjacent and cancer tissues. Interestingly, some tumor samples in this group showed increase in LINE-1 methylation. In contrast, MSI-showed a significant decrease in LINE-1 methylation between normal adjacent and cancer tissues (P<0.001). Microarray analysis of repetitive element methylation confirmed this observation and showed a high degree of variability in hypomethylation between samples. Additionally, unsupervised hierarchical clustering identified a group of highly hypomethylated tumors, composed mostly of tumors without microsatellite instability. We extended LINE-1 analysis to cancer cell lines from different tissues and found that 50/61 were hypomethylated compared to peripheral blood lymphocytes and normal colon mucosa. Interestingly, these cancer cell lines also exhibited a large variation in demethylation, which was tissue-specific and thus unlikely to be resultant from a stochastic process. Conclusion/Significance Global hypomethylation is partially reversed in cancers with microsatellite instability and also shows high variability in cancer, which may reflect alternative progression pathways in cancer.
Collapse
Affiliation(s)
- Marcos R.H. Estécio
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Vazganush Gharibyan
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Lanlan Shen
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | | | - Ketan Doshi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rong He
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jaroslav Jelinek
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Allen S. Yang
- Department of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pearlly S. Yan
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Tim H-M. Huang
- Human Cancer Genetics Program, Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Eloiza H. Tajara
- Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Jean-Pierre J. Issa
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Allegrucci C, Wu YZ, Thurston A, Denning CN, Priddle H, Mummery CL, Ward-van Oostwaard D, Andrews PW, Stojkovic M, Smith N, Parkin T, Jones ME, Warren G, Yu L, Brena RM, Plass C, Young LE. Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Hum Mol Genet 2007; 16:1253-68. [PMID: 17409196 DOI: 10.1093/hmg/ddm074] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Widespread provision of human embryonic stem cells (hESCs) for therapeutic use, drug screening and disease modelling will require cell lines sustainable over long periods in culture. Since the short-term, in vitro culture of mammalian embryos can result in DNA methylation changes, the epigenetic stability of hESCs warrants investigation. Existing hESC lines have been derived and cultured under diverse conditions, providing the potential for programming differential changes into the epigenome that may result in inter-line variability over and above that inherited from the embryo. By examining the DNA methylation profiles of > 2000 genomic loci by Restriction Landmark Genome Scanning, we identified substantial inter-line epigenetic distance between six independently derived hESC lines. Lines were found to inherit further epigenetic changes over time in culture, with most changes arising in the earliest stages post-derivation. The loci affected varied between lines. The majority of culture-induced changes (82.3-87.5%) were stably inherited both within the undifferentiated cells and post-differentiation. Adapting a line to a serum-free culture system resulted in additional epigenetic instability. Overall 80.5% of the unstable loci uncovered in hESCs have been associated previously with an adult tumour phenotype. Our study shows that current methods of hESC propagation can rapidly programme stable and unpredictable epigenetic changes in the stem cell genome. This highlights the need for (i) novel screening strategies to determine the experimental utility and biosafety of hESCs and (ii) optimization and standardization of procedures for the derivation and culture of hESC lines that minimize culture-induced instability.
Collapse
Affiliation(s)
- Cinzia Allegrucci
- Division of Obstetrics and Gynaecology and Wolfson Centre for Stem Cells, Tissue Engineering and Modelling (STEM), University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Calmon MF, Colombo J, Carvalho F, Souza FP, Filho JFG, Fukuyama EE, Camargo AA, Caballero OLS, Tajara EH, Cordeiro JA, Rahal P. Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer. ACTA ACUST UNITED AC 2007; 173:31-7. [PMID: 17284367 DOI: 10.1016/j.cancergencyto.2006.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/07/2006] [Accepted: 09/08/2006] [Indexed: 11/21/2022]
Abstract
Hypermethylation in the promoter region has been associated with a loss of gene function that may give a selective advantage to neoplastic cells. In this study, the methylation pattern of genes CDKN2A (alias p14, p14(ARF), p16, p16(INK4a)), DAPK1, CDH1, and ADAM23 was analyzed in 43 samples of head and neck tumors using methylation-specific polymerase chain reaction. In the oropharynx, there was a statistically significant association between hypermethylation of the DAPK1 gene and the occurrence of lymph node metastases, and in the larynx there was statistically significant evidence of an association between hypermethylation of the ADAM23 gene and advanced stages of the tumors. Thus, a correlation was observed between hypermethylation of the promoter region of genes DAPK1 and ADAM23 and the progression of head and neck cancer.
Collapse
Affiliation(s)
- Marilia F Calmon
- Department of Biology, UNESP-IBILCE, Rua Cristovão Colombo, 2265, Jardim Nazareth, CEP: 15054-000, São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ivascu C, Wasserkort R, Lesche R, Dong J, Stein H, Thiel A, Eckhardt F. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas. Int J Biochem Cell Biol 2007; 39:1523-38. [PMID: 17433759 DOI: 10.1016/j.biocel.2007.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/22/2007] [Accepted: 02/02/2007] [Indexed: 01/06/2023]
Abstract
Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.
Collapse
MESH Headings
- 5' Untranslated Regions
- Cell Line, Tumor
- Cell Lineage
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Humans
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphocytes/cytology
- Lymphocytes/metabolism
- Lymphoma/metabolism
- Lymphoma/pathology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Claudia Ivascu
- Epigenomics AG, Kleine Präsidentenstrasse 1, 10178 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Plass C, Smiraglia DJ. Genome-wide Analysis of DNA Methylation Changes in Human Malignancies. Curr Top Microbiol Immunol 2006; 310:179-98. [PMID: 16909911 DOI: 10.1007/3-540-31181-5_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic modification of the DNA sequence and thus does not change the genetic code but affects chromosomal stability and gene expression. DNA methylation patterns are heritable and can be passed on to the daughter cell. In this review, we briefly summarize our current knowledge on normal DNA methylation patterns and move on to discuss the current state of the field with respect to altered DNA methylation in cancer. We make a special attempt to address current questions relating to genome-wide DNA methylation patterns. Since DNA methylation is used as a therapeutic target in clinical studies, it is of utmost importance to define potential target sequences that could be used as diagnostic or prognostic markers. We conclude the review by outlining possible scenarios that may explain tumor type-specific DNA methylation patterns described by assays evaluating genome-wide levels of DNA methylation.
Collapse
Affiliation(s)
- C Plass
- Division of Human Cancer Genetics, The Ohio State University, Tzagournis Medical Research Facility, Columbus 43210, USA.
| | | |
Collapse
|
37
|
Djuric U, El-Maarri O, Lamb B, Kuick R, Seoud M, Coullin P, Oldenburg J, Hanash S, Slim R. Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA methylation. Hum Genet 2006; 120:390-5. [PMID: 16874523 DOI: 10.1007/s00439-006-0192-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 04/19/2006] [Indexed: 01/19/2023]
Abstract
An imprinting disorder has been believed to underlie the etiology of familial biparental hydatidiform moles (HMs) based on the abnormal methylation or expression of imprinted genes in molar tissues. However, the extent of the epigenetic defect in these tissues and the developmental stage at which the disorder begins have been poorly defined. In this study, we assessed the extent of abnormal DNA methylation in two HMs caused by mutations in the recently identified 19q13.4 gene, NALP7. We demonstrate normal postzygotic DNA methylation patterns at major repetitive and long interspersed nuclear elements (LINEs), genes on the inactive X-chromosome, three-cancer related genes, and CpG rich regions surrounding the PEG3 differentially methylated region (DMR). Our data provide a comprehensive assessment of DNA methylation in familial molar tissues and indicate that abnormal DNA methylation in these tissues is restricted to imprinted DMRs. The known role of NALP7 in apoptosis and inflammation pinpoints previously unrecognized pathways that could directly or indirectly underlie the abnormal methylation of imprinted genes in molar tissues.
Collapse
Affiliation(s)
- Ugljesa Djuric
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Center, Montreal, Canada, H3G 1A4
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M, Segal E, Pikarski E, Young RA, Niveleau A, Cedar H, Simon I. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 2006; 38:149-53. [PMID: 16444255 DOI: 10.1038/ng1719] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation has a role in the regulation of gene expression during normal mammalian development but can also mediate epigenetic silencing of CpG island genes in cancer and other diseases. Many individual genes (including tumor suppressors) have been shown to undergo de novo methylation in specific tumor types, but the biological logic inherent in this process is not understood. To decipher this mechanism, we have adopted a new approach for detecting CpG island DNA methylation that can be used together with microarray technology. Genome-wide analysis by this technique demonstrated that tumor-specific methylated genes belong to distinct functional categories, have common sequence motifs in their promoters and are found in clusters on chromosomes. In addition, many are already repressed in normal cells. These results are consistent with the hypothesis that cancer-related de novo methylation may come about through an instructive mechanism.
Collapse
Affiliation(s)
- Ilana Keshet
- Department of Cellular Biochemistry and Human Genetics, Hebrew University, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kazhiyur-Mannar R, Smiraglia DJ, Plass C, Wenger R. Contour area filtering of two-dimensional electrophoresis images. Med Image Anal 2006; 10:353-65. [PMID: 16531098 DOI: 10.1016/j.media.2006.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 01/20/2006] [Accepted: 01/24/2006] [Indexed: 11/22/2022]
Abstract
We describe an algorithm, Contour Area Filtering, for separating background from foreground in gray scale images. The algorithm is based on the area contained within gray scale contour lines. It can be viewed as a form of local thresholding, or as a seed growing algorithm, or as a type of watershed segmentation. The most important feature of the algorithm is that it uses object area to determine the segmentation. Thus, it is relatively impervious to brightness and contrast variations across an image or between different images. Contour Area Filtering was designed specifically for image analysis of 2D electrophoresis gels, although it can be applied to other gray scale images. A typical gel image is an electrophoretogram or a phosphor image of 1000-2500 spots representing protein or DNA restriction fragments. The images are quantitative with spot intensities reflective of the number of proteins or the DNA fragment copy number. The background intensity can vary widely across the image caused both by variation in spot density and by the physical laboratory process of creating a gel. Analyzing and comparing gel images entails extracting and segmenting spots, registering images and matching spots, and measuring differences between spots. We present experimental results which show that Contour Area Filtering is a quick, efficient method for separating electrophoresis gel background from foreground with extremely high accuracy.
Collapse
Affiliation(s)
- Ramakrishnan Kazhiyur-Mannar
- Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
40
|
Wen XZ, Akiyama Y, Baylin SB, Yuasa Y. Frequent epigenetic silencing of the bone morphogenetic protein 2 gene through methylation in gastric carcinomas. Oncogene 2005; 25:2666-73. [PMID: 16314833 DOI: 10.1038/sj.onc.1209297] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, it was reported that exogenous bone morphogenetic protein (BMP)-2 acted as an antiproliferative agent in a variety of cell lines, including normal and cancerous gastric cell lines, indicating that BMP-2 plays an important role during cell growth. However, despite the loss of BMP-2 expression in several cancers, the underlying mechanism remains unknown. Epigenetic silencing through DNA methylation is one of the key steps during carcinogenesis. In this study, we found, through analysis by the methylation-specific polymerase chain reaction technique, CpG island methylation of the BMP-2 promoter region in gastric and colon cancer cell lines. BMP-2 mRNA was found to be activated after 5-aza-2'-deoxycytidine treatment of the methylation-positive cells. Moreover, 24 of the 56 (42.9%) gastric cancer tissues exhibited promoter methylation. Immunohistochemical staining revealed that 18 of the 24 (75%) gastric cancer tissues without methylation signals exhibited BMP-2 expression, whereas among 20 cancer tissues with strong methylation signals only four (20%) expressed BMP-2 (P = 0.0003). These findings indicate that BMP-2 methylation is strongly associated with the loss of BMP-2 protein expression in the primary gastric carcinomas. BMP-2 methylation was more often observed in diffuse type (60.7%) than in intestinal type (25%) gastric carcinomas (P = 0.007). Thus, aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be related to gastric carcinogenesis, particularly in the diffuse type.
Collapse
Affiliation(s)
- X-Z Wen
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Wang Y, Yu Q, Cho AH, Rondeau G, Welsh J, Adamson E, Mercola D, McClelland M. Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia 2005; 7:748-60. [PMID: 16207477 PMCID: PMC1501885 DOI: 10.1593/neo.05289] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 04/15/2005] [Accepted: 04/22/2005] [Indexed: 12/31/2022]
Abstract
DNA methylation and copy number in the genomes of three immortalized prostate epithelial and five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, and PC3M-LN4) were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme HpaII, followed by linker ligation, polymerase chain reaction (PCR) amplification, labeling, and hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5%) showed differential hybridization between immortalized prostate epithelial and cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, and TSPY) previously observed in prostate cancer and 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, and WIT-1). The majority of genes that appear to be both differentially methylated and differentially regulated between prostate epithelial and cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, and GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.
Collapse
Affiliation(s)
- Yipeng Wang
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Qiuju Yu
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Ann H Cho
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Gaelle Rondeau
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - John Welsh
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| | - Eileen Adamson
- The Burnham Institute, Cancer Research Center, La Jolla, CA, USA
| | - Dan Mercola
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Michael McClelland
- Sidney Kimmel Cancer Center, 10835 Road to the Cure, San Diego, CA 92121, USA
| |
Collapse
|
42
|
Yu L, Liu C, Bennett K, Wu YZ, Dai Z, Vandeusen J, Opavsky R, Raval A, Trikha P, Rodriguez B, Becknell B, Mao C, Lee S, Davuluri RV, Leone G, Van den Veyver IB, Caligiuri MA, Plass C. A NotI-EcoRV promoter library for studies of genetic and epigenetic alterations in mouse models of human malignancies. Genomics 2005; 84:647-60. [PMID: 15475242 DOI: 10.1016/j.ygeno.2004.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 06/23/2004] [Indexed: 12/31/2022]
Abstract
Aberrant promoter methylation and associated chromatin changes are primarily studied in human malignancies. Thus far, mouse models for human cancer have been rarely utilized to study the role of DNA methylation in tumor onset and progression. It would be advantageous to use mouse tumor models to a greater extent to study the role and mechanism of DNA methylation in cancer because mouse models allow manipulation of the genome, study of samples/populations with a homogeneous genetic background, the possibility of modulating gene expression in vivo, the statistical power of using large numbers of tumor samples, access to various tumor stages, and the possibility of preclinical trials. Therefore, it is likely that the mouse will emerge as an increasingly utilized model to study DNA methylation in cancer. To foster the use of mouse models, we developed an arrayed mouse NotI-EcoRV genomic library, with clones from three commonly used mouse strains (129SvIMJ, FVB/NJ, and C57BL/6J). A total of 23,040 clones representing an estimated three- to fourfold coverage of the mouse genome were arrayed in 60 x 384-well plates. We developed restriction landmark genomic scanning (RLGS) mixing gels with 32 plates to enable the cloning of methylated sequences from RLGS profiles run with NotI-EcoRV-HinfI. RLGS was used to study aberrant methylation in two mouse models that overexpressed IL-15 or c-Myc and developed either T/NK-cell leukemia or T-cell lymphomas, respectively. Careful analysis of 198 sequences showed that 188 (94.9%) identified CpG-island sequences, 132 sequences (66.7%) had homology to the 5' regions of known genes or mRNAs, and all 132 NotI-EcoRV clones were located at the same CpG islands with the predicted promoter sequences. We have also developed a modified pGL3-based luciferase vector that now contains the NotI, AscI, and EcoRV restriction sites and allows the rapid cloning of NotI-EcoRV library fragments in both orientations. Luciferase assays using NotI-EcoRV clones confirmed that the library is enriched for promoter sequences. Thus, this library will support future genetic and epigenetic studies in mouse models.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- CpG Islands/genetics
- DNA Methylation
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Gene Expression Regulation, Neoplastic/genetics
- Gene Library
- Genome, Human
- Humans
- Interleukin-15/genetics
- Interleukin-15/physiology
- Leukemia, Experimental/genetics
- Leukemia, Experimental/metabolism
- Luciferases/metabolism
- Lymphoma/genetics
- Lymphoma/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Animal
- Promoter Regions, Genetic/genetics
- Restriction Mapping
Collapse
Affiliation(s)
- Li Yu
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Balch C, Huang THM, Brown R, Nephew KP. The epigenetics of ovarian cancer drug resistance and resensitization. Am J Obstet Gynecol 2004; 191:1552-72. [PMID: 15547525 DOI: 10.1016/j.ajog.2004.05.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ovarian cancer is the most lethal of all gynecologic neoplasms. Early-stage malignancy is frequently asymptomatic and difficult to detect and thus, by the time of diagnosis, most women have advanced disease. Most of these patients, although initially responsive, eventually develop and succumb to drug-resistant metastases. The success of typical postsurgical regimens, usually a platinum/taxane combination, is limited by primary tumors being intrinsically refractory to treatment and initially responsive tumors becoming refractory to treatment, due to the emergence of drug-resistant tumor cells. This review highlights a prominent role for epigenetics, particularly aberrant DNA methylation and histone acetylation, in both intrinsic and acquired drug-resistance genetic pathways in ovarian cancer. Administration of therapies that reverse epigenetic "silencing" of tumor suppressors and other genes involved in drug response cascades could prove useful in the management of drug-resistant ovarian cancer patients. In this review, we summarize recent advances in the use of methyltransferase and histone deacetylase inhibitors and possible synergistic combinations of these to achieve maximal tumor suppressor gene re-expression. Moreover, when used in combination with conventional chemotherapeutic agents, epigenetic-based therapies may provide a means to resensitize ovarian tumors to the proven cytotoxic activities of conventional chemotherapeutics.
Collapse
Affiliation(s)
- Curtis Balch
- Medical Sciences, Indiana University, Bloomington, Ind, USA
| | | | | | | |
Collapse
|
44
|
Dai Z, Popkie AP, Zhu WG, Timmers CD, Raval A, Tannehill-Gregg S, Morrison CD, Auer H, Kratzke RA, Niehans G, Amatschek S, Sommergruber W, Leone GW, Rosol T, Otterson GA, Plass C. Bone morphogenetic protein 3B silencing in non-small-cell lung cancer. Oncogene 2004; 23:3521-9. [PMID: 15116090 DOI: 10.1038/sj.onc.1207441] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bone morphogenetic protein 3B (BMP3B) is a member of the TGF-beta superfamily. The BMP3B promoter sequence was previously identified as a target for aberrant DNA methylation in non-small-cell lung cancer (NSCLC). Aberrant DNA hypermethylation in the BMP3B promoter is associated with downregulation of BMP3B transcription in both primary human lung cancers as well as lung cancer cell lines. In order to understand the mechanisms of BMP3B silencing in lung cancer, a sample set of 91 primary NSCLCs was used to detect aberrant BMP3B promoter methylation, mutations in the coding sequence of BMP3B, and loss of heterozygosity (LOH). Our results showed that 45 of 91 (or 49.5%) tested primary NSCLCs exhibited increased promoter methylation, and 40% demonstrated LOH in at least one of the flanking microsatellite markers sJRH and D10S196 (63 kb upstream or 3.338 Mbp downstream of BMP3B). The lung cancer cell line A549, a type II alveolar epithelial human lung cancer cell line, is characterized by aberrant DNA promoter methylation. We used retroviral vector constructs containing the BMP3B cDNA to re-express the gene in A549 cells and to investigate the effects on cell growth. No change in the cell growth rate was observed after BMP3B re-expression, as compared to the vector controls. Although the number of colonies formed in anchorage-dependent assays was only slightly decreased, the colony-forming ability of A549 cells after BMP3B expression in anchorage-independent assays in soft agar was significantly reduced to 10% (P<0.005, t-test). Moreover, the in vivo tumorigenicity assay in nude mice indicated that cells re-expressing BMP3B grew significantly slower than cells not expressing BMP3B (P<0.05, t-test). In conclusion, this study provides evidence that BMP3B expression is repressed by different mechanisms in lung cancer, and that the silencing of BMP3B promotes lung tumor development.
Collapse
Affiliation(s)
- Zunyan Dai
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, Bembea M, Liu TH, Heerema NA, Rassenti L, Liyanarachchi S, Davuluri R, Byrd JC, Plass C. Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res 2004; 64:2424-33. [PMID: 15059895 DOI: 10.1158/0008-5472.can-03-2870] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CpG island methylation is an epigenetic alteration that contributes to tumorigenesis by transcriptional inactivation of genes. Little is known about the overall levels of CpG island methylation in chronic lymphocytic leukemia (CLL). To provide a baseline estimate of global aberrant methylation and identify target sequences for additional investigation, we performed Restriction Landmark Genomic Scanning on 10 CLL samples. Two methylation-sensitive landmark enzymes were used (NotI and AscI), allowing assessment of over 3000 CpG islands in each sample. Tumor-derived Restriction Landmark Genomic Scanning profiles were compared with profiles from CD19-selected B cells from normal volunteers and matched normal neutrophils from 4 CLL patients. We found 2.5-8.1% (mean 4.8%) of the CpG islands in CLL samples were aberrantly methylated compared with controls, and the methylation events had a nonrandom distribution (P < 0.0001). Furthermore, we identified 193 aberrantly methylated sequences, of which 93% have CpG island characteristics and 90% have homology to genes or expressed sequences. One such gene, the G protein-coupled metabotropic glutamate receptor 7 (GRM7), possibly inhibits cyclic AMP signaling in the induction of apoptosis. Bisulfite sequencing of GRM7 confirmed extensive CpG island methylation, and treatment with 5-aza-2'-deoxycytidine (decitabine) resulted in up-regulated expression of several genes in vitro with concurrent cellular depletion of DNMT1 protein. Our dual-enzyme global methylation study shows that CLL is characterized by widespread nonrandom CpG island methylation similar to other tumors and provides a panel of novel methylation targets that can be used in larger studies designed to assess impact on disease progression and survival.
Collapse
Affiliation(s)
- Laura J Rush
- Department of Veterinary Biosciences, Comprehensive Cancer Center and The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Blanchard F, Tracy E, Smith J, Chattopadhyay S, Wang Y, Held WA, Baumann H. DNA methylation controls the responsiveness of hepatoma cells to leukemia inhibitory factor. Hepatology 2003; 38:1516-28. [PMID: 14647063 DOI: 10.1016/j.hep.2003.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The related members of the interleukin 6 (IL-6) family of cytokines, IL-6, leukemia inhibitory factor (LIF), and oncostatin M, act as major inflammatory mediators and induce the hepatic acute phase reaction. Normal parenchymal liver cells express the receptors for these cytokines, and these receptors activate, to a comparable level, the intracellular signaling through signal transducer and activator of transcription (STAT) proteins and extracellular-regulated kinase (ERK). In contrast, hepatoma cell lines show attenuated responsiveness to some of these cytokines that is correlated with lower expression of the corresponding ligand-binding receptor subunits. This study tests the hypothesis that the reduced expression of LIF receptor (LIFR) observed in hepatoma cells is mediated by altered DNA methylation. H-35 rat hepatoma cells that have a greatly reduced LIF responsiveness were treated with 5-aza-2'-deoxycytidine, an inhibitor of DNA methyltransferase. Surviving and proliferating cells showed reestablished expression of LIFR protein and function. Restriction landmark genomic scanning (RLGS) demonstrated genome-wide drug-induced alterations in DNA methylation status, with striking similarities in the demethylation pattern among independently derived clonal lines. Upon extended growth in the absence of 5-aza-2'-deoxycytidine, the cells exhibit partial reversion to pretreatment patterns. Demethylation and remethylation of the CpG island within the LIFR promoter that is active in normal liver cells correlate with increased and decreased usage of this promoter in H-35 cells. In conclusion, these results indicate that transformed liver cells frequently undergo epigenetic alterations that suppress LIFR gene expression and modify the responsiveness to this IL-6 type cytokine.
Collapse
Affiliation(s)
- Frédéric Blanchard
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM. Predicting aberrant CpG island methylation. Proc Natl Acad Sci U S A 2003; 100:12253-8. [PMID: 14519846 PMCID: PMC218745 DOI: 10.1073/pnas.2037852100] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain genes succumb to this aberrant event. To address this question, we used Restriction Landmark Genome Scanning to analyze the susceptibility of 1,749 unselected CpG islands to de novo methylation driven by overexpression of DNA cytosine-5-methyltransferase 1 (DNMT1). We found that although the overall incidence of CpG island methylation was increased in cells overexpressing DNMT1, not all loci were equally affected. The majority of CpG islands (69.9%) were resistant to de novo methylation, regardless of DNMT1 overexpression. In contrast, we identified a subset of methylation-prone CpG islands (3.8%) that were consistently hypermethylated in multiple DNMT1 overexpressing clones. Methylation-prone and methylation-resistant CpG islands were not significantly different with respect to size, C+G content, CpG frequency, chromosomal location, or promoter association. We used DNA pattern recognition and supervised learning techniques to derive a classification function based on the frequency of seven novel sequence patterns that was capable of discriminating methylation-prone from methylation-resistant CpG islands with 82% accuracy. The data indicate that CpG islands differ in their intrinsic susceptibility to de novo methylation, and suggest that the propensity for a CpG island to become aberrantly methylated can be predicted based on its sequence context.
Collapse
Affiliation(s)
- F A Feltus
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Human cancers are caused by multiple mechanisms. Research in the last 30 years has firmly established the roles of a group of genes including oncogenes, tumor suppressor genes, and DNA repair genes in human cancers. The activation and inactivation of these cancer genes can be caused by genetic mutations or epigenetic alterations. The epigenetic changes in cancers include methylation of CpG islands, loss of imprinting, and chromatin modification. The completion of the genome sequences of many organisms including the human has transformed the traditional approach to molecular biology research into an era of functional genome research. Traditional research usually involves the study of one or a few genes (proteins) in a particular biological process in normal physiology or disease. Functional genome research takes advantage of newly available genome sequences and high-throughput genome technologies to study genes and/or proteins to inform the perspective of entire biological processes. I will focus on recent progress in the identification of imprinted genes and methylation of CpG islands through genome-wide analysis.
Collapse
Affiliation(s)
- Maxwell P Lee
- Laboratory of Population Genetics, National Cancer Institute, 41 Library Drive D702C, Bethesda, Maryland 20892, USA.
| |
Collapse
|
49
|
Smiraglia DJ, Plass C. The development of CpG island methylation biomarkers using restriction landmark genomic scanning. Ann N Y Acad Sci 2003; 983:110-9. [PMID: 12724216 DOI: 10.1111/j.1749-6632.2003.tb05966.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CpG island hypermethylation is a common occurrence in cancer. Because this is a stable molecular alteration of the DNA, which can be detected easily from very small amounts, DNA methylation is an attractive candidate to use as a molecular biomarker. Recent studies have used DNA methylation of genes known to be targets of genetic disruption in cancer as biomarkers for early detection of cancer, classification of malignancies, response to drug treatment, and as markers predictive of outcome. Since many of the currently used targets of methylation are methylated at rather low frequencies in various cancer types even though the gene may be frequently disrupted by other mechanisms, it would be useful to develop additional markers that are methylated at high frequency in the cancer being studied. Restriction landmark genomic scanning has been used for the identification of frequent targets of methylation in multiple malignancies. These markers, which can be either cancer type-specific or nonspecific, may prove to be effective biomarkers for diagnostic or prognostic purposes, or for midpoint analysis of intervention strategies.
Collapse
Affiliation(s)
- Dominic J Smiraglia
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
50
|
Smiraglia DJ, Smith LT, Lang JC, Rush LJ, Dai Z, Schuller DE, Plass C. Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 2003; 40:25-33. [PMID: 12525538 PMCID: PMC1735270 DOI: 10.1136/jmg.40.1.25] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) often metastasise to the cervical lymph nodes. It is known for HNSCC as well as other cancers that progression from normal tissue to primary tumour and finally to metastatic tumour is characterised by an accumulation of genetic mutations. DNA methylation, an epigenetic modification, can result in loss of gene function in cancer, similar to genetic mutations such as deletions and point mutations. We have investigated the DNA methylation phenotypes of both primary HNSCC and metastatic tumours from 13 patients using restriction landmark genomic scanning (RLGS). With this technique, we were able to assess the methylation status of an average of nearly 1300 CpG islands for each tumour. We observed that the number of CpG islands hypermethylated in metastatic tumours is significantly greater than what is found in the primary tumours overall, but not in every patient. Interestingly, the data also clearly show that many loci methylated in a patient's primary tumour are no longer methylated in the metastatic tumour of the same patient. Thus, even though metastatic HNSCC methylate a greater proportion of CpG islands than do the primary tumours, they do so at different subsets of loci. These data show an unanticipated variability in the methylation state of loci in primary and metastatic HNSCCs within the same patient. We discuss two possible explanations for how different epigenetic events might arise between the primary tumour and the metastatic tumour of a person.
Collapse
Affiliation(s)
- D J Smiraglia
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|