1
|
Liu X, Wu J, Peng Y, Qian H, Lv X, Li F, Jin K, Niu Y, Song J, Han W, Chen G, Li B, Zuo Q. Chicken Primordial Germ Cells Do Not Proliferate in Insulin-Lacking Media. Int J Mol Sci 2025; 26:3122. [PMID: 40243906 PMCID: PMC11988930 DOI: 10.3390/ijms26073122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Insulin is an important component of stem cell cultures; however, its role in the proliferation of avian primordial germ cells (PGCs) is unknown. The proliferation of PGCs in cultures varies and the growth factors and signaling pathways necessary to induce the proliferation of PGCs in chickens are unknown. Therefore, we conducted the present study to investigate the effect of insulin on the survival and proliferation of PGCs. In this study, we observed that under this culture system, PGCs proliferate in the presence of insulin, but do not proliferate in the absence of insulin. Furthermore, in insulin-lacking media, the expression of pluripotency genes, including LIN28, NANOG, POUV, and SOX2, was markedly decreased. Similarly, the expression of cell adhesion proteins ZO-1, Occludin, and JAM-A was significantly reduced. Elevated levels of ROS, GSSG, and MDA reduced the redox capacity of the cells and induced apoptosis. Subsequent transcriptome analyses revealed that insulin is one of the key factors in the proliferation of chicken PGCs through the regulation of downstream genes by PI3K/AKT, ECM-receptor interaction, Wnt, and P53 signaling, and that these downstream genes may be important for PGCs' proliferation and survival.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jun Wu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yixiu Peng
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoqian Lv
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Fan Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Qisheng Zuo
- Key Laboratory of Animal Genetics, Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Liu X, Ye L, Ding Y, Gong W, Qian H, Jin K, Niu Y, Zuo Q, Song J, Han W, Chen G, Li B. Role of PI3K/AKT signaling pathway involved in self-renewing and maintaining biological properties of chicken primordial germ cells. Poult Sci 2024; 103:104140. [PMID: 39173217 PMCID: PMC11379996 DOI: 10.1016/j.psj.2024.104140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Avian primordial germ cells (PGCs) are important culture cells for the production of transgenic chickens and preservation of the genetic resources of endangered species; however, culturing these cells in vitro proves challenging. Although the proliferation of chicken PGCs is dependent on insulin, the underlying molecular mechanisms remain unclear. In the present study, we explored the expression of the PI3K/AKT signaling pathway in PGCs, investigated its effects on PGC self-renewal and biological properties, and identified the underlying mechanisms. Our findings indicated that although supplementation with the PI3K/AKT activator IGF-1 failed to promote proliferation under the assessed culture conditions, the PI3K/AKT inhibitor LY294002 resulted in retarded cell proliferation and reduced expression of germ cell-related markers. We further demonstrated that inhibition of PI3K/AKT regulates the cell cycle and promotes apoptosis in PGCs by activating the expression of BAX and inhibiting that of Bcl-2. These findings indicated that the PI3K/AKT pathway is required for cell renewal, apoptosis, and maintenance of the reproductive potential in chicken PGCs. This study aimed to provide a theoretical basis for the optimization and improvement of a culture system for chicken PGCs and provide insights into the self-renewal of vertebrate PGCs as well as potential evolutionary changes in this unique cell population.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Liu Ye
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hongwu Qian
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MA 20742, USA
| | - Wei Han
- Poultry Institute, Chinese Academy of Agricultural Sciences Poultry Institute of Jiangsu, Yangzhou 225003, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| |
Collapse
|
4
|
Wang Z, Gong W, Yao Z, Jin K, Niu Y, Li B, Zuo Q. Mechanisms of Embryonic Stem Cell Pluripotency Maintenance and Their Application in Livestock and Poultry Breeding. Animals (Basel) 2024; 14:1742. [PMID: 38929361 PMCID: PMC11201147 DOI: 10.3390/ani14121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials. However, the technologies for long-term in vitro culture or establishment of cell lines for PSCs in livestock are still immature, and research progress is uneven, which poses challenges for the application of PSCs in various fields. The establishment of a robust in vitro system for these cells is critically dependent on understanding their pluripotency maintenance mechanisms. It is believed that the combined effects of pluripotent transcription factors, pivotal signaling pathways, and epigenetic regulation contribute to maintaining their pluripotent state, forming a comprehensive regulatory network. This article will delve into the primary mechanisms underlying the maintenance of pluripotency in PSCs and elaborate on the applications of PSCs in the field of livestock.
Collapse
Affiliation(s)
- Ziyu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wei Gong
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zeling Yao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.W.); (W.G.); (Z.Y.); (K.J.); (Y.N.); (B.L.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Fang S, Wang J, Liu G, Qu B, Chunyu J, Xu W, Xiang J, Li X. DPPA2/4 Promote the Pluripotency and Proliferation of Bovine Extended Pluripotent Stem Cells by Upregulating the PI3K/AKT/GSK3β/β-Catenin Signaling Pathway. Cells 2024; 13:382. [PMID: 38474345 PMCID: PMC10930381 DOI: 10.3390/cells13050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3β/β-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of β-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3β/β-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinzhu Xiang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| | - Xueling Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China; (S.F.); (J.W.); (G.L.); (B.Q.); (J.C.); (W.X.)
| |
Collapse
|
6
|
Glover HJ, Holliday H, Shparberg RA, Winkler D, Day M, Morris MB. Signalling pathway crosstalk stimulated by L-proline drives mouse embryonic stem cells to primitive-ectoderm-like cells. Development 2023; 150:dev201704. [PMID: 37823343 PMCID: PMC10652046 DOI: 10.1242/dev.201704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The amino acid L-proline exhibits growth factor-like properties during development - from improving blastocyst development to driving neurogenesis in vitro. Addition of 400 μM L-proline to self-renewal medium drives naïve mouse embryonic stem cells (ESCs) to early primitive ectoderm-like (EPL) cells - a transcriptionally distinct primed or partially primed pluripotent state. EPL cells retain expression of pluripotency genes, upregulate primitive ectoderm markers, undergo a morphological change and have increased cell number. These changes are facilitated by a complex signalling network hinging on the Mapk, Fgfr, Pi3k and mTor pathways. Here, we use a factorial experimental design coupled with statistical modelling to understand which signalling pathways are involved in the transition between ESCs and EPL cells, and how they underpin changes in morphology, cell number, apoptosis, proliferation and gene expression. This approach reveals pathways which work antagonistically or synergistically. Most properties were affected by more than one inhibitor, and each inhibitor blocked specific aspects of the naïve-to-primed transition. These mechanisms underpin progression of stem cells across the in vitro pluripotency continuum and serve as a model for pre-, peri- and post-implantation embryogenesis.
Collapse
Affiliation(s)
- Hannah J. Glover
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Holly Holliday
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | | | - David Winkler
- Department of Biochemistry and Chemistry, Latrobe Institute for Molecular Science, Latrobe University, Bundoora 3083, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
- Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Margot Day
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| | - Michael B. Morris
- School of Medical Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
7
|
An J, Tan R, Hu X, Cai Z, Sun M, Ge Q, Ma W, Li H, Lu H. Kinase inhibit region of SOCS3 attenuates IL6-induced proliferation and astrocytic differentiation of neural stem cells via cross talk between signaling pathways. CNS Neurosci Ther 2022; 29:168-180. [PMID: 36217678 PMCID: PMC9804055 DOI: 10.1111/cns.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Efficiency of neural stem cells (NSCs) therapy for brain injury is restricted by astrogliosis around the damaged region, in which JAK2/STAT3 signaling plays a key role. The SOCS3 that can directly inhibit JAK/STAT3 pathway. Here, we investigated the effects of a fusion peptide that combined kinase inhibitory region (KIR) of SOCS3 and virus trans-activator of transcription (TAT) on biological behavior of cultured NSCs under inflammatory conditions. METHODS NSCs were isolated from embryonic brain of SD rats, TAT-KIR was synthesized, and penetration rate was evaluated by flow cytometry (FACS). CCK8, immunostaining, and FACS were used to detected of TAT-KIR on the proliferation of NSCs. The expressions of GFAP and β tubulin III positive cells induced by IL6 with/without TAT-KIR were examined by immunostaining and Western blotting to observe the NSCs differentiation, and the effect of TAT-KIR on signaling cross talk was observed by Western blotting. RESULTS Penetration rate of TAT-KIR into primary cultured NSCs was up to 94%. TAT-KIR did not affect the growth and viability of NSCs. It significantly reduced the NSCs proliferation that enhanced by IL-6 stimulation via blocking the cell cycle progression from the G0/G1 to S phase. In addition, TAT-KIR attenuated astrocytic differentiation and kept high level of neuronal differentiation derived from IL-6-induced NSCs. The fate of NSCs differentiation under inflammatory conditions was affected by TAT-KIR, which was associated with synchronous inhibition of STAT3 and AKT, while promoting JNK expression. CONCLUSION TAT-KIR mimetic of SOCS3 could be a promising approach for brain repair via regulating the biological behaviors of exogenous NSCs.
Collapse
Affiliation(s)
- Jing An
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Ruo‐Lan Tan
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiao‐Xuan Hu
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Zhen‐Lu Cai
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Mei‐Qi Sun
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Qian Ge
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Wen Ma
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| | - Hui‐Liang Li
- Faculty of Medical Sciences, Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Hai‐Xia Lu
- Department of Neurobiology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anChina
| |
Collapse
|
8
|
Lu Y, Tang D, Zheng Z, Wang X, Zuo N, Yan R, Wu C, Ma J, Wang C, Xu H, He Y, Liu D, Liu S. Cingulin b Is Required for Zebrafish Lateral Line Development Through Regulation of Mitogen-Activated Protein Kinase and Cellular Senescence Signaling Pathways. Front Mol Neurosci 2022; 15:844668. [PMID: 35600071 PMCID: PMC9119177 DOI: 10.3389/fnmol.2022.844668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/11/2022] [Indexed: 01/10/2023] Open
Abstract
Cingulin, a cytoplasmic element of tight junctions (TJs), is involved in maintenance of the integrity of epithelial and endothelial cells. However, the role of cingulin in the development of auditory organs remains unclear. Zebrafish is popular as a model organism for hearing research. Using the whole mount in situ hybridization (WISH) experiment, we detected the expression of cingulin b in the posterior lateral line system (PLLs) of zebrafish. We traced the early development progress of zebrafish PLLs from 36 hpf to 72 hpf, and found that inhibition of cingulin b by target morpholinos resulted in severe developmental obstruction, including decreased number of neuromasts, reduced proliferative cells in the primordium, and repressed hair cell differentiation in the neuromasts. To examine the potential mechanism of cingulin b in the development of zebrafish PLL neuromasts, we performed RNA-seq analysis to compare the differently expressed genes (DEGs) between cingulin b knockdown samples and the controls. The KEGG enrichment analysis revealed that MAPK signaling pathway and cellular senescence were the key pathways with most DEGs in cingulin b-MO morphants compared to the Control-MO embryos. Furthermore, quantitative RT-PCR analysis confirmed the findings by RNA-seq that the transcript levels of cell cycle negative regulators such as tp53 and cdkn1a, were remarkably upregulated after inhibition of cingulin b. Our results therefore indicated an important role of cingulin b in the development of auditory organs, and MAPK signaling pathway was inhibited while cellular senescence pathway was activated after downregulation of cingulin b. We bring forward new insights of cingulin by exploring its function in auditory system.
Collapse
Affiliation(s)
- Yitong Lu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Dongmei Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Zhiwei Zheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Xin Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Na Zuo
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Renchun Yan
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Cheng Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jun Ma
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Chuanxi Wang
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongfei Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yingzi He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yingzi He,
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
- Dong Liu, ;
| | - Shaofeng Liu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Shaofeng Liu,
| |
Collapse
|
9
|
Kim GD. Ursolic Acid Decreases the Proliferation of MCF-7 Cell-Derived Breast Cancer Stem-Like Cells by Modulating the ERK and PI3K/AKT Signaling Pathways. Prev Nutr Food Sci 2021; 26:434-444. [PMID: 35047440 PMCID: PMC8747966 DOI: 10.3746/pnf.2021.26.4.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells are strong drivers of metastasis and cancer relapse, which makes them important therapeutic targets. Ursolic acid (UA), a pentacyclic triterpenoid, has anticancer effects in various types of cancer; however, little is known about its effect on the growth of MCF-7 cell-derived breast cancer stem (BCS)-like cells in estrogen receptor positive breast cancer. In this study, the anticancer activity of UA in MCF-7 cell-derived BCS-like cells and its mechanism of action were evaluated. Furthermore, its inhibitory effects on the proliferation of MCF-7 cell-derived BCS-like cells were compared with that on MCF-7 cells. In MCF-7 cells, UA increased p53 and p21 expression but decreased cyclin D, cyclin E, CDK4, and CDK2 expression to induce cell cycle arrest in the G0/G1 phase. Moreover, UA significantly suppressed migration, invasion, and colony formation in MCF-7 cells, and suppressed mammosphere formation in a concentration- dependent manner. In MCF-7 cell-derived BCS-like cells, UA significantly decreased migration, suppressed p-PI3K, p-AKT, and p-ERK expression, and enhanced p-FoxO1/FoxO3a expression. Accordingly, in MCF-7 cell-derived BCS-like cells, UA suppressed proliferation in part by downregulating ERK and PI3K/AKT signaling pathways. These findings provide the first evidence for the selective effects of UA in BCSs.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
10
|
The specialized mitotic behavior of human embryonic stem cells. Cell Tissue Res 2021; 387:85-93. [PMID: 34729647 DOI: 10.1007/s00441-021-03544-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Human embryonic stem cells (hESCs) are self-renewing and pluripotent cells that originate from the inner cell mass of the blastocyst. Mitosis is fundamental to organism survival and reproduction and is responsible for the equal distribution of duplicated chromosomes into daughter cells. Mitotic dysfunction is associated with a wide variety of human diseases, not least cancer. hESCs have a unique cell cycle distribution, but it is unclear exactly how the mitotic activity of hESCs is related to their proliferation and differentiation. Here, we established a cell line of hESCs stably expressing GFP-α-tubulin and mCherry-H2B by lentiviral infection to analyze and visualize mitosis in detail. During metaphase, the mitotic spindle was smaller and wider and contained a greater proportion of astral microtubules than normal cells. In addition, spindle microtubules were more stable, and chromosome alignment was faster in hESCs than in somatic cells. We also found that the spindle assembly checkpoint was functional in hESCs. These findings thus reveal a specialized mitotic behavior of hESCs.
Collapse
|
11
|
Collard M, Gallagher PE, Tallant EA. A Polyphenol-Rich Extract From Muscadine Grapes Inhibits Triple-Negative Breast Tumor Growth. Integr Cancer Ther 2021; 19:1534735420917444. [PMID: 32578460 PMCID: PMC7315667 DOI: 10.1177/1534735420917444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that tends to affect young women and has a high propensity to metastasize. No targeted treatments are available for this type of breast cancer due to a lack of estrogen or progesterone receptors or overexpression of human epidermal growth factor receptor type 2 overexpression. Currently, patients have no therapeutic options once standard of care is complete, indicating a need for safe and effective therapies to slow or prevent the progression of TNBC to metastatic disease. Studies showed that isolated polyphenols or polyphenol-rich muscadine grape extracts polyphenols inhibit the proliferation of various cancer cells including breast cancer. A proprietary muscadine grape extract (MGE) was administered to nude mice with human MDA-MB-231 TNBC atumors for 4 weeks to determine the effect of the extract on tumor growth. MGE decreased tumor volume in association with a reduction in the proliferative markers Ki67 and cyclin D1. To determine the molecular mechanisms for the MGE-induced reduction in tumor growth, mouse 4T1, MDA-MB-231, or human BT-549 TNBC cells were treated with MGE, and various signaling pathways were investigated. MGE reduced c-Met, differentially abrogated ERK/MAPK and AKT signaling, and decreased a downstream targets of ERK/MAPK and AKT pathways, cyclin D1. Cyclin D1 reduction was associated with retinoblastoma activation and cell cycle arrest in MDA-MB-231 TNBC cells. MGE-regulated molecular signaling pathways were functionally associated with a dose-dependent reduction in cell proliferation. The pluripotency of MGE and high index of safety and tolerability suggest that the extract may serve as a therapeutic to reduce TNBC progression to metastatic disease.
Collapse
Affiliation(s)
| | | | - E Ann Tallant
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
12
|
Okawa ER, Gupta MK, Kahraman S, Goli P, Sakaguchi M, Hu J, Duan K, Slipp B, Lennerz JK, Kulkarni RN. Essential roles of insulin and IGF-1 receptors during embryonic lineage development. Mol Metab 2021; 47:101164. [PMID: 33453419 PMCID: PMC7890209 DOI: 10.1016/j.molmet.2021.101164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/25/2020] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
The insulin and insulin-like growth factor-1 (IGF-1) receptors are important for the growth and development of embryonic tissues. To directly define their roles in the maintenance of pluripotency and differentiation of stem cells, we knocked out both receptors in induced pluripotent stem cells (iPSCs). iPSCs lacking both insulin and IGF-1 receptors (double knockout, DKO) exhibited preserved pluripotency potential despite decreased expression of transcription factors Lin28a and Tbx3 compared to control iPSCs. While embryoid body and teratoma assays revealed an intact ability of DKO iPSCs to form all three germ layers, the latter were composed of primitive neuroectodermal tumor-like cells in the DKO group. RNA-seq analyses of control vs DKO iPSCs revealed differential regulation of pluripotency, developmental, E2F1, and apoptosis pathways. Signaling analyses pointed to downregulation of the AKT/mTOR pathway and upregulation of the STAT3 pathway in DKO iPSCs in the basal state and following stimulation with insulin/IGF-1. Directed differentiation toward the three lineages was dysregulated in DKO iPSCs, with significant downregulation of key markers (Cebpα, Fas, Pparγ, and Fsp27) in adipocytes and transcription factors (Ngn3, Isl1, Pax6, and Neurod1) in pancreatic endocrine progenitors. Furthermore, differentiated pancreatic endocrine progenitor cells from DKO iPSCs showed increased apoptosis. We conclude that insulin and insulin-like growth factor-1 receptors are indispensable for normal lineage development and perturbations in the function and signaling of these receptors leads to upregulation of alternative compensatory pathways to maintain pluripotency. Insulin and IGF-1 receptor signaling regulate the expression of pluripotency genes Lin28 and Tbx3. The STAT3 pathway is upregulated in DKO iPSCs. RNA-seq analyses revealed key developmental and apoptosis pathways regulated by insulin and IGF-1 receptors. Lineage development was dysregulated in DKO iPSCs with downregulation of key mesoderm and endodermal markers.
Collapse
Affiliation(s)
- Erin R Okawa
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Division of Endocrinology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sevim Kahraman
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Praneeth Goli
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Masaji Sakaguchi
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jiang Hu
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Kaiti Duan
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Brittany Slipp
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Fathi Maroufi N, Hasegawa K, Vahedian V, Nazari Soltan Ahmad S, Zarebkohan A, Miresmaeili Mazrakhondi SA, Hosseini V, Rahbarghazi R. A glimpse into molecular mechanisms of embryonic stem cells pluripotency: Current status and future perspective. J Cell Physiol 2020; 235:6377-6392. [DOI: 10.1002/jcp.29616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Nazila Fathi Maroufi
- Stem Cell and Regenerative Medicine InstituteTabriz University of Medical Sciences Tabriz Iran
- Student Research CommitteeTabriz University of Medical Sciences Tabriz Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Kouichi Hasegawa
- Institute for Integrated Cell‐Material Sciences, Institute for Advanced StudyKyoto University Kyoto Japan
| | - Vahid Vahedian
- Department of Medical Laboratory Sciences, Faculty of MedicineIslamic Azad University Sari Iran
- Clinical Laboratory Medicine DepartmentRofeydeh Hospital University of Social Welfare and Rehabilitation Science Tehran Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | | | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Tuberculosis and Lung Disease Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
14
|
Gonnot F, Langer D, Bourillot PY, Doerflinger N, Savatier P. Regulation of Cyclin E by transcription factors of the naïve pluripotency network in mouse embryonic stem cells. Cell Cycle 2019; 18:2697-2712. [PMID: 31462142 PMCID: PMC6773236 DOI: 10.1080/15384101.2019.1656475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Continuous, non-cell cycle-dependent expression of cyclin E is a characteristic feature of mouse embryonic stem cells (mESCs). We studied the 5′ regulatory region of Cyclin E, also known as Ccne1, and identified binding sites for transcription factors of the naïve pluripotency network, including Esrrb, Klf4, and Tfcp2l1 within 1 kilobase upstream of the transcription start site. Luciferase assay and chromatin immunoprecipitation-quantitative polymerase chain reaction (ChiP–qPCR) study highlighted one binding site for Esrrb that is essential to transcriptional activity of the promoter region, and three binding sites for Klf4 and Tfcp2l1. Knockdown of Esrrb, Klf4, and Tfcp2l1 reduced Cyclin E expression whereas overexpression of Esrrb and Klf4 increased it, indicating a strong correlation between the expression level of these factors and that of cyclin E. We observed that cyclin E overexpression delays differentiation induced by Esrrb depletion, suggesting that cyclin E is an important target of Esrrb for differentiation blockade. We observed that mESCs express a low level of miR-15a and that transfection of a miR-15a mimic decreases Cyclin E mRNA level. These results lead to the conclusion that the high expression level of Cyclin E in mESCs can be attributed to transcriptional activation by Esrrb as well as to the absence of its negative regulator, miR-15a.
Collapse
Affiliation(s)
- Fabrice Gonnot
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Diana Langer
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Pierre-Yves Bourillot
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Nathalie Doerflinger
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| | - Pierre Savatier
- Stem Cell and Brain Research Institute, Univ Lyon, Université Lyon 1, Inserm , Bron , France
| |
Collapse
|
15
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Sutherland L, Ruhe M, Gattegno-Ho D, Mann K, Greaves J, Koscielniak M, Meek S, Lu Z, Waterfall M, Taylor R, Tsakiridis A, Brown H, Maciver SK, Joshi A, Clinton M, Chamberlain LH, Smith A, Burdon T. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci 2018; 131:jcs222257. [PMID: 30154213 PMCID: PMC6176924 DOI: 10.1242/jcs.222257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/17/2018] [Indexed: 01/25/2023] Open
Abstract
The cytokine leukaemia inhibitory factor (LIF) promotes self-renewal of mouse embryonic stem cells (ESCs) through activation of the transcription factor Stat3. However, the contribution of other ancillary pathways stimulated by LIF in ESCs, such as the MAPK and PI3K pathways, is less well understood. We show here that naive-type mouse ESCs express high levels of a novel effector of the MAPK and PI3K pathways. This effector is an isoform of the Gab1 (Grb2-associated binder protein 1) adaptor protein that lacks the N-terminal pleckstrin homology (PH) membrane-binding domain. Although not essential for rapid unrestricted growth of ESCs under optimal conditions, the novel Gab1 variant (Gab1β) is required for LIF-mediated cell survival under conditions of limited nutrient availability. This enhanced survival is absolutely dependent upon a latent palmitoylation site that targets Gab1β directly to ESC membranes. These results show that constitutive association of Gab1 with membranes through a novel mechanism promotes LIF-dependent survival of murine ESCs in nutrient-poor conditions.
Collapse
Affiliation(s)
- Linda Sutherland
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Madeleine Ruhe
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Daniela Gattegno-Ho
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Karanjit Mann
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Jennifer Greaves
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Magdalena Koscielniak
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Stephen Meek
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Zen Lu
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Martin Waterfall
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Ryan Taylor
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Anestis Tsakiridis
- Department of Biomedical Science, The University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Helen Brown
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Sutherland K Maciver
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anagha Joshi
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael Clinton
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QT, UK
| | - Tom Burdon
- Division of Developmental Biology, The Roslin Institute and R(D)VS, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
17
|
Lee J, Matsuzawa A, Shiura H, Sutani A, Ishino F. Preferable in vitro condition for maintaining faithful DNA methylation imprinting in mouse embryonic stem cells. Genes Cells 2018; 23:146-160. [PMID: 29356242 DOI: 10.1111/gtc.12560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 12/16/2017] [Indexed: 01/13/2023]
Abstract
Epigenetic properties of cultured embryonic stem cells (ESCs), including DNA methylation imprinting, are important because they affect the developmental potential. Here, we tested a variety of culture media, including knockout serum replacement (KSR) and fetal bovine serum (FBS) with or without inhibitors of Gsk3β and Mek1/2 (2i) at various time points. In addition to the previously known passage-dependent global changes, unexpected dynamic DNA methylation changes occurred in both maternal and paternal differentially methylated regions: under the widely used condition of KSR with 2i, a highly hypomethylated state occurred at early passages (P1-7) as well as P10, but DNA methylation increased over further passages in most conditions, except under KSR with 2i at P25. Dramatic DNA demethylation under KSR+2i until P25 was associated with upregulated Tet1 and Parp1, and their related genes, whereas 2i regulated the expressions of DNA methyltransferase-related genes for the change in DNA methylation during the cumulative number of passages. Although DNA methylation imprinting is more labile under KSR with and without 2i, it can be more faithfully maintained under condition of cooperative FBS and 2i. Thus, our study will provide the useful information for improved epigenetic control of ESCs and iPSCs in applications in regenerative medicine.
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akito Sutani
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
18
|
She S, Wei Q, Kang B, Wang YJ. Cell cycle and pluripotency: Convergence on octamer‑binding transcription factor 4 (Review). Mol Med Rep 2017; 16:6459-6466. [PMID: 28901500 PMCID: PMC5865814 DOI: 10.3892/mmr.2017.7489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
Embryonic stem cells (ESCs) have unlimited expansion potential and the ability to differentiate into all somatic cell types for regenerative medicine and disease model studies. Octamer-binding transcription factor 4 (OCT4), encoded by the POU domain, class 5, transcription factor 1 gene, is a transcription factor vital for maintaining ESC pluripotency and somatic reprogramming. Many studies have established that the cell cycle of ESCs is featured with an abbreviated G1 phase and a prolonged S phase. Changes in cell cycle dynamics are intimately associated with the state of ESC pluripotency, and manipulating cell-cycle regulators could enable a controlled differentiation of ESCs. The present review focused primarily on the emerging roles of OCT4 in coordinating the cell cycle progression, the maintenance of pluripotency and the glycolytic metabolism in ESCs.
Collapse
Affiliation(s)
- Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qucheng Wei
- Cardiovascular Key Lab of Zhejiang, Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
19
|
Wang L, Huang D, Jiang Z, Luo Y, Norris C, Zhang M, Tian X, Tang Y. Akt3 is responsible for the survival and proliferation of embryonic stem cells. Biol Open 2017; 6:850-861. [PMID: 28483982 PMCID: PMC5483023 DOI: 10.1242/bio.024505] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway plays an important role in regulating cell proliferation, metabolism, and survival. However, the distinct roles of Akt isoforms (Akt1, Akt2, and Akt3) in pluripotent stem cell maintenance are not fully defined. Using mouse embryonic stem cells (ESCs), we show that direct inhibition of Akt activity leads to ESC apoptosis. The Akt3, but not Akt1 or Akt2, activity specifically regulates this effect. Inhibiting Akt3 also leads to a cell cycle arrest at G1 phase. These regulatory roles of Akt3 are dependent on its kinase activity. Blocking the expression of Akt1 plus Akt2 in ESCs does not affect cell survival or proliferation, although blocking Akt1 aggravates the apoptotic effect induced by depletion of Akt3. We further show that blocking Akt3 in ESCs results in significant nuclear accumulation of p53, as well as the activation of its downstream targets, such as Mdm2, p21, and Fas. Inhibiting p53 and its downstream targets partially rescued the effects caused by Akt3-depletion. Our results revealed an Akt3 isoform-specific mechanism for ESC survival and proliferation involving the control of p53 activity.
Collapse
Affiliation(s)
- Ling Wang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Delun Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
- Animal Reproduction Institute, Guangxi University, Nanning, 530004, People's Republic of China
| | - Zongliang Jiang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Yan Luo
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Carol Norris
- Center for Open Research Resources and Equipment, University of Connecticut, Storrs, CT 06269, USA
| | - Ming Zhang
- Animal Reproduction Institute, Guangxi University, Nanning, 530004, People's Republic of China
| | - Xiuchun Tian
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
20
|
Chen CY, Cheng YY, Yen CYT, Hsieh PCH. Mechanisms of pluripotency maintenance in mouse embryonic stem cells. Cell Mol Life Sci 2017; 74:1805-1817. [PMID: 27999898 PMCID: PMC11107721 DOI: 10.1007/s00018-016-2438-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 02/02/2023]
Abstract
Mouse embryonic stem cells (mESCs), characterized by their pluripotency and capacity for self-renewal, are driven by a complex gene expression program composed of several regulatory mechanisms. These mechanisms collaborate to maintain the delicate balance of pluripotency gene expression and their disruption leads to loss of pluripotency. In this review, we provide an extensive overview of the key pillars of mESC pluripotency by elaborating on the various essential transcription factor networks and signaling pathways that directly or indirectly support this state. Furthermore, we consider the latest developments in the role of epigenetic regulation, such as noncoding RNA signaling or histone modifications.
Collapse
Affiliation(s)
- Chen-Yun Chen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Yuan-Yuan Cheng
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Christopher Y T Yen
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan
| | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, IBMS Rm.417, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan.
- Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.
- Institute of Medical Genomics and Proteomics, Institute of Clinical Medicine and Department of Surgery, National Taiwan University and Hospital, Taipei, 100, Taiwan.
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
21
|
Liu X, Chen M, Li L, Gong L, Zhou H, Gao D. Extracellular Signal-regulated Kinases (ERKs) Phosphorylate Lin28a Protein to Modulate P19 Cell Proliferation and Differentiation. J Biol Chem 2017; 292:3970-3976. [PMID: 28179426 DOI: 10.1074/jbc.c117.775122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Indexed: 11/06/2022] Open
Abstract
Lin28a, originally discovered in the nematode Caenorhabditis elegans and highly conserved across species, is a well characterized regulator of let-7 microRNA (miRNA) and is implicated in cell proliferation and pluripotency control. However, little is known about how Lin28a function is modulated at the post-translational level and thereby responds to major signaling pathways. Here we show that Lin28a is directly phosphorylated by ERK1/2 kinases at Ser-200. By editing lin28a gene with the CRISPR/Cas9-based method, we generated P19 mouse embryonic carcinoma stem cells expressing Lin28a-S200A (phospho-deficient) and Lin28a-S200D (phospho-mimetic) mutants, respectively, to study the functional impact of Ser-200 phosphorylation. Lin28a-S200D-expressing cells, but not Lin28a-S200A-expressing or control P19 embryonic carcinoma cells, displayed impaired inhibition of let-7 miRNA and resulted in decreased cyclin D1, whereas Lin28a-S200A knock-in cells expressed less let-7 miRNA, proliferated faster, and exhibited differentiation defect upon retinoic acid induction. Therefore our results support that ERK kinase-mediated Lin28a phosphorylation may be an important mechanism for pluripotent cells to facilitate the escape from the self-renewal cycle and start the differentiation process.
Collapse
Affiliation(s)
- Xiangyuan Liu
- From the CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Min Chen
- From the CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Long Li
- From the CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Liyan Gong
- From the CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hu Zhou
- From the CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Daming Gao
- From the CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
22
|
Festuccia N, Gonzalez I, Navarro P. The Epigenetic Paradox of Pluripotent ES Cells. J Mol Biol 2016; 429:1476-1503. [PMID: 27988225 DOI: 10.1016/j.jmb.2016.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Abstract
The propagation and maintenance of gene expression programs are at the foundation of the preservation of cell identity. A large and complex set of epigenetic mechanisms enables the long-term stability and inheritance of transcription states. A key property of authentic epigenetic regulation is being independent from the instructive signals used for its establishment. This makes epigenetic regulation, particularly epigenetic silencing, extremely robust and powerful to lock regulatory states and stabilise cell identity. In line with this, the establishment of epigenetic silencing during development restricts cell potency and maintains the cell fate choices made by transcription factors (TFs). However, how more immature cells that have not yet established their definitive fate maintain their transitory identity without compromising their responsiveness to signalling cues remains unclear. A paradigmatic example is provided by pluripotent embryonic stem (ES) cells derived from a transient population of cells of the blastocyst. Here, we argue that ES cells represent an interesting "epigenetic paradox": even though they are captured in a self-renewing state characterised by extremely efficient maintenance of their identity, which is a typical manifestation of robust epigenetic regulation, they seem not to heavily rely on classical epigenetic mechanisms. Indeed, self-renewal strictly depends on the TFs that previously instructed their undifferentiated identity and relies on a particular signalling-dependent chromatin state where repressive chromatin marks play minor roles. Although this "epigenetic paradox" may underlie their exquisite responsiveness to developmental cues, it suggests that alternative mechanisms to faithfully propagate gene regulatory states might be prevalent in ES cells.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Stem Cell and Developmental Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France.
| |
Collapse
|
23
|
Lo IC, Chan HC, Qi Z, Ng KL, So C, Tsang SY. TRPV3 Channel Negatively Regulates Cell Cycle Progression and Safeguards the Pluripotency of Embryonic Stem Cells. J Cell Physiol 2016; 231:403-13. [PMID: 26130157 DOI: 10.1002/jcp.25086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/23/2015] [Indexed: 01/27/2023]
Abstract
Embryonic stem cells (ESCs) have tremendous potential for research and future therapeutic purposes. However, the calcium handling mechanism in ESCs is not fully elucidated. Aims of this study are (1) to investigate if transient receptor potential vanilloid-3 (TRPV3) channels are present in mouse ESCs (mESCs) and their subcellular localization; (2) to investigate the role of TRPV3 in maintaining the characteristics of mESCs. Western blot and immunocytochemistry showed that TRPV3 was present at the endoplasmic reticulum (ER) of mESCs. Calcium imaging showed that, in the absence of extracellular calcium, TRPV3 activators camphor and 6-tert-butyl-m-cresol increased the cytosolic calcium. However, depleting the ER store in advance of activator addition abolished the calcium increase, suggesting that TRPV3 released calcium from the ER. To dissect the functional role of TRPV3, TRPV3 was activated and mESC proliferation was measured by trypan blue exclusion and MTT assays. The results showed that TRPV3 activation led to a decrease in mESC proliferation. Cell cycle analysis revealed that TRPV3 activation increased the percentage of cells in G2 /M phase; consistently, Western blot also revealed a concomitant increase in the expression of inactive form of cyclin-dependent kinase 1, suggesting that TRPV3 activation arrested mESCs at G2 /M phase. TRPV3 activation did not alter the expression of pluripotency markers Oct-4, Klf4 and c-Myc, suggesting that the pluripotency was preserved. Our study is the first study to show the presence of TRPV3 at ER. Our study also reveals the novel role of TRPV3 in controlling the cell cycle and preserving the pluripotency of ESCs.
Collapse
Affiliation(s)
- Iek Chi Lo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hing Chung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kwun Lam Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Chun So
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR.,Centre of Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
24
|
Lai SS, Zhao DD, Cao P, Lu K, Luo OY, Chen WB, Liu J, Jiang EZ, Yu ZH, Lee G, Li J, Yu DC, Xu XJ, Zhu MS, Gao X, Li CJ, Xue B. PP2Acα positively regulates the termination of liver regeneration in mice through the AKT/GSK3β/Cyclin D1 pathway. J Hepatol 2016; 64:352-360. [PMID: 26456844 DOI: 10.1016/j.jhep.2015.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND & AIMS Liver injury triggers a highly organized and ordered liver regeneration (LR) process. Once regeneration is complete, a stop signal ensures that the regenerated liver is an appropriate functional size. The inhibitors and stop signals that regulate LR are unknown, and only limited information is available about these mechanisms. METHODS A 70% partial hepatectomy (PH) was performed in hepatocyte-specific PP2Acα-deleted (PP2Acα(-/-)) and control (PP2Acα(+/+)) mice. LR was estimated by liver weight, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and cell proliferation, and the related cellular signals were analyzed. RESULTS We found that the catalytic subunit of PP2A was markedly upregulated during the late stage of LR. PP2Acα(-/-) mice showed prolonged LR termination, an increased liver size compared to the original mass and lower levels of serum ALT and AST compared with control mice. In these mice, cyclin D1 protein levels, but not mRNA levels, were increased. Mechanistically, AKT activated by the loss of PP2Acα inhibited glycogen synthase kinase 3β (GSK3β) activity, which led to the accumulation of cyclin D1 protein and accelerated hepatocyte proliferation at the termination stage. Treatment with the PI3K inhibitor wortmannin at the termination stage was sufficient to inhibit cyclin D1 accumulation and hepatocyte proliferation. CONCLUSIONS PP2Acα plays an essential role in the proper termination of LR via the AKT/GSK3β/Cyclin D1 pathway. Our findings enrich the understanding of the molecular mechanism that controls the termination of LR and provides a potential therapeutic target for treating liver injury.
Collapse
Affiliation(s)
- Shan-Shan Lai
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Dan-Dan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Peng Cao
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Institute of Chinese Medicine, Nanjing 210028, China
| | - Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Ou-Yang Luo
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Wei-Bo Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - En-Ze Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Zi-Han Yu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Gina Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Jing Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - De-Cai Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiao-Jun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China.
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China.
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center and School of Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
25
|
Erk signaling is indispensable for genomic stability and self-renewal of mouse embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E5936-43. [PMID: 26483458 DOI: 10.1073/pnas.1516319112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibition of Mek/Erk signaling by pharmacological Mek inhibitors promotes self-renewal and pluripotency of mouse embryonic stem cells (ESCs). Intriguingly, Erk signaling is essential for human ESC self-renewal. Here we demonstrate that Erk signaling is critical for mouse ESC self-renewal and genomic stability. Erk-depleted ESCs cannot be maintained. Lack of Erk leads to rapid telomere shortening and genomic instability, in association with misregulated expression of pluripotency genes, reduced cell proliferation, G1 cell-cycle arrest, and increased apoptosis. Erk signaling is also required for the activation of differentiation genes but not for the repression of pluripotency genes during ESC differentiation. Furthermore, we find an Erk-independent function of Mek, which may explain the diverse effects of Mek inhibition and Erk knockout on ESC self-renewal. Together, in contrast to the prevailing view, Erk signaling is required for telomere maintenance, genomic stability, and self-renewal of mouse ESCs.
Collapse
|
26
|
Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression. PLoS One 2015; 10:e0132566. [PMID: 26162091 PMCID: PMC4498831 DOI: 10.1371/journal.pone.0132566] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 06/16/2015] [Indexed: 01/09/2023] Open
Abstract
Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.
Collapse
|
27
|
Mühl B, Hägele J, Tasdogan A, Loula P, Schuh K, Bundschu K. SPREDs (Sprouty related proteins with EVH1 domain) promote self-renewal and inhibit mesodermal differentiation in murine embryonic stem cells. Dev Dyn 2015; 244:591-606. [PMID: 25690936 DOI: 10.1002/dvdy.24261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/11/2015] [Accepted: 01/23/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Pluripotency, self-renewal, and differentiation are special features of embryonic stem (ES) cells, thereby providing valuable perspectives in regenerative medicine. Developmental processes require a fine-tuned organization, mainly regulated by the well-known JAK/STAT, PI3K/AKT, and ERK/MAPK pathways. SPREDs (Sprouty related proteins with EVH1 domain) were discovered as inhibitors of the ERK/MAPK signaling pathway, whereas nothing was known about their functions in ES cells and during early differentiation, so far. RESULTS We generated SPRED1 and SPRED2 overexpressing and SPRED2 knockout murine ES cells to analyze the functions of SPRED proteins in ES cells and during early differentiation. Overexpression of SPREDs increases significantly the self-renewal and clonogenicity of murine ES cells, whereas lack of SPRED2 reduces proliferation and increases apoptosis. During early differentiation in embryoid bodies, SPREDs promote the pluripotent state and inhibit differentiation whereby mesodermal differentiation into cardiomyocytes is considerably delayed and inhibited. LIF- and growth factor-stimulation revealed that SPREDs inhibit ERK/MAPK activation in murine ES cells. However, no effects were detectable on LIF-induced activation of the JAK/STAT3, or PI3K/AKT signaling pathway by SPRED proteins. CONCLUSIONS We show that SPREDs promote self-renewal and inhibit mesodermal differentiation of murine ES cells by selective suppression of the ERK/MAPK signaling pathway in pluripotent cells.
Collapse
Affiliation(s)
- Bastian Mühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Ulm, Germany; Laboratory for Human Genetics, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Diekmann U, Lenzen S, Naujok O. A Reliable and Efficient Protocol for Human Pluripotent Stem Cell Differentiation into the Definitive Endoderm Based on Dispersed Single Cells. Stem Cells Dev 2015; 24:190-204. [DOI: 10.1089/scd.2014.0143] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ulf Diekmann
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ortwin Naujok
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Choi HS, Lee HM, Jang YJ, Kim CH, Ryu CJ. Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition. Stem Cells 2015; 31:2647-58. [PMID: 23495120 DOI: 10.1002/stem.1366] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/15/2013] [Indexed: 01/15/2023]
Abstract
Self-renewal and pluripotency of human embryonic stem cells (hESCs) are a complex biological process for maintaining hESC stemness. However, the molecular mechanisms underlying these special properties of hESCs are not fully understood. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a multifunctional RNA-binding protein whose expression is related to cell proliferation and carcinogenesis. In this study, we found that hnRNP A2/B1 expression was localized to undifferentiated hESCs and decreased upon differentiation of hESCs. hnRNP A2/B1 knockdown reduced the number of alkaline phosphatase-positive colonies in hESCs and led to a decrease in the expression of pluripotency-associated transcription factors OCT4, NANOG, and SOX2, indicating that hnRNP A2/B1 is essential for hESC self-renewal and pluripotency. hnRNP A2/B1 knockdown increased the expression of gene markers associated with the early development of three germ layers, and promoted the process of epithelial-mesenchymal transition, suggesting that hnRNP A2/B1 is required for maintaining the undifferentiated and epithelial phenotypes of hESCs. hnRNP A2/B1 knockdown inhibited hESC proliferation and induced cell cycle arrest in the G0/G1 phase before differentiation via degradation of cyclin D1, cyclin E, and Cdc25A. hnRNP A2/B1 knockdown increased p27 expression and induced phosphorylation of p53 and Chk1, suggesting that hnRNP A2/B1 also regulates the G1/S transition of hESC cell cycle through the control of p27 expression and p53 and Chk1 activity. Analysis of signaling molecules further revealed that hnRNP A2/B1 regulated hESC proliferation in a PI3K/Akt-dependent manner. These findings provide for the first time mechanistic insights into how hnRNP A2/B1 regulates hESC self-renewal and pluripotency.
Collapse
Affiliation(s)
- Hong Seo Choi
- Department of Bioscience and Biotechnology, Institute of Bioscience, Sejong University, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
Wang H, Wang X, Archer TK, Zwaka TP, Cooney AJ. GCNF-dependent activation of cyclin D1 expression via repression of Mir302a during ESC differentiation. Stem Cells 2015; 32:1527-37. [PMID: 24578347 DOI: 10.1002/stem.1689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/17/2014] [Accepted: 02/11/2014] [Indexed: 11/06/2022]
Abstract
Cyclin D1 plays an important role in the regulation of cellular proliferation and its expression is activated during gastrulation in the mouse; however, it remains unknown how cyclin D1 expression is regulated during early embryonic development. Here, we define the role of germ cell nuclear factor (GCNF) in the activation of cyclin D1 expression during embryonic stem cell (ESC) differentiation as a model of early development. During our study of GCNF knockout (GCNF(-) (/) (-) ) ESC, we discovered that loss of GCNF leads to the repression of cyclin D1 activation during ESC differentiation. This was determined to be an indirect effect of deregulation Mir302a, which is a cyclin D1 suppressor via binding to the 3'UTR of cyclin D1 mRNA. Moreover, we showed that Mir302 is a target gene of GCNF that inhibits Mir302 expression by binding to a DR0 element within its promoter. Inhibition of Mir302a using Mir302 inhibitor during differentiation of GCNF(-) (/) (-) ESCs restored cyclin D1 expression. Similarly over-expression of GCNF during differentiation of GCNF(-) (/) (-) ESCs rescued the inhibition of Mir302a expression and the activation of cyclin D1. These results reveal that GCNF plays a key role in regulating activation of cyclin D1 expression via inhibition of Mir302a.
Collapse
Affiliation(s)
- Hongran Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA; Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
31
|
Voskas D, Ling LS, Woodgett JR. Signals controlling un-differentiated states in embryonic stem and cancer cells: role of the phosphatidylinositol 3' kinase pathway. J Cell Physiol 2014; 229:1312-22. [PMID: 24604594 PMCID: PMC4258093 DOI: 10.1002/jcp.24603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/23/2022]
Abstract
The capacity of embryonic stem (ES) cells to differentiate into cell lineages comprising the three germ layers makes them powerful tools for studying mammalian early embryonic development in vitro. The human body consists of approximately 210 different somatic cell types, the majority of which have limited proliferative capacity. However, both stem cells and cancer cells bypass this replicative barrier and undergo symmetric division indefinitely when cultured under defined conditions. Several signal transduction pathways play important roles in regulating stem cell development, and aberrant expression of components of these pathways is linked to cancer. Among signaling systems, the critical role of leukemia inhibitory factor (LIF) coupled to the Jak/STAT3 (signal transduction and activation of transcription-3) pathway in maintaining stem cell self-renewal has been extensively reviewed. This pathway additionally plays multiple roles in tumorigenesis. Likewise, the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) pathway has been determined to play an important role in both stem cell maintenance and tumor development. This pathway is often induced in cancer with frequent mutational activation of the catalytic subunit of PI3K or loss of a primary PI3K antagonist, phosphatase and tensin homolog deleted on chromosome ten (PTEN). This review focusses on roles of the PI3K signal transduction pathway components, with emphasis on functions in stem cell maintenance and cancer. Since the PI3K pathway impinges on and collaborates with other signaling pathways in regulating stem cell development and/or cancer, aspects of the canonical Wnt, Ras/mitogen-activated protein kinase (MAPK), and TGF-β signaling pathways are also discussed.
Collapse
Affiliation(s)
- Daniel Voskas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Contrasting transcriptome landscapes of rabbit pluripotent stem cells in vitro and in vivo. Anim Reprod Sci 2014; 149:67-79. [DOI: 10.1016/j.anireprosci.2014.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/26/2014] [Indexed: 01/25/2023]
|
33
|
von der Heyde S, Bender C, Henjes F, Sonntag J, Korf U, Beißbarth T. Boolean ErbB network reconstructions and perturbation simulations reveal individual drug response in different breast cancer cell lines. BMC SYSTEMS BIOLOGY 2014; 8:75. [PMID: 24970389 PMCID: PMC4087127 DOI: 10.1186/1752-0509-8-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/10/2014] [Indexed: 12/19/2022]
Abstract
Background Despite promising progress in targeted breast cancer therapy, drug resistance remains challenging. The monoclonal antibody drugs trastuzumab and pertuzumab as well as the small molecule inhibitor erlotinib were designed to prevent ErbB-2 and ErbB-1 receptor induced deregulated protein signalling, contributing to tumour progression. The oncogenic potential of ErbB receptors unfolds in case of overexpression or mutations. Dimerisation with other receptors allows to bypass pathway blockades. Our intention is to reconstruct the ErbB network to reveal resistance mechanisms. We used longitudinal proteomic data of ErbB receptors and downstream targets in the ErbB-2 amplified breast cancer cell lines BT474, SKBR3 and HCC1954 treated with erlotinib, trastuzumab or pertuzumab, alone or combined, up to 60 minutes and 30 hours, respectively. In a Boolean modelling approach, signalling networks were reconstructed based on these data in a cell line and time course specific manner, including prior literature knowledge. Finally, we simulated network response to inhibitor combinations to detect signalling nodes reflecting growth inhibition. Results The networks pointed to cell line specific activation patterns of the MAPK and PI3K pathway. In BT474, the PI3K signal route was favoured, while in SKBR3, novel edges highlighted MAPK signalling. In HCC1954, the inferred edges stimulated both pathways. For example, we uncovered feedback loops amplifying PI3K signalling, in line with the known trastuzumab resistance of this cell line. In the perturbation simulations on the short-term networks, we analysed ERK1/2, AKT and p70S6K. The results indicated a pathway specific drug response, driven by the type of growth factor stimulus. HCC1954 revealed an edgetic type of PIK3CA-mutation, contributing to trastuzumab inefficacy. Drug impact on the AKT and ERK1/2 signalling axes is mirrored by effects on RB and RPS6, relating to phenotypic events like cell growth or proliferation. Therefore, we additionally analysed RB and RPS6 in the long-term networks. Conclusions We derived protein interaction models for three breast cancer cell lines. Changes compared to the common reference network hint towards individual characteristics and potential drug resistance mechanisms. Simulation of perturbations were consistent with the experimental data, confirming our combined reverse and forward engineering approach as valuable for drug discovery and personalised medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Tim Beißbarth
- Statistical Bioinformatics, Department of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany.
| |
Collapse
|
34
|
New Proteomic Insights on the Role of NPR-A in Regulating Self-Renewal of Embryonic Stem Cells. Stem Cell Rev Rep 2014; 10:561-72. [DOI: 10.1007/s12015-014-9517-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Kim SH, Kim MO, Cho YY, Yao K, Kim DJ, Jeong CH, Yu DH, Bae KB, Cho EJ, Jung SK, Lee MH, Chen H, Kim JY, Bode AM, Dong Z. ERK1 phosphorylates Nanog to regulate protein stability and stem cell self-renewal. Stem Cell Res 2014; 13:1-11. [PMID: 24793005 DOI: 10.1016/j.scr.2014.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022] Open
Abstract
Nanog regulates human and mouse embryonic stem (ES) cell self-renewal activity. Activation of ERKs signaling negatively regulates ES cell self-renewal and induces differentiation, but the mechanisms are not understood. We found that ERK1 binds and phosphorylates Nanog. Activation of MEK/ERKs signaling and phosphorylation of Nanog inhibit Nanog transactivation, inducing ES cell differentiation. Conversely, suppression of MEK/ERKs signaling enhances Nanog transactivation to inhibit ES cell differentiation. We observed that phosphorylation of Nanog by ERK1 decreases Nanog stability through ubiquitination-mediated protein degradation. Further, we found that this phosphorylation induces binding of FBXW8 with Nanog to reduce Nanog protein stability. Overall, our results demonstrated that ERKs-mediated Nanog phosphorylation plays an important role in self-renewal of ES cells through FBXW8-mediated Nanog protein stability.
Collapse
Affiliation(s)
- Sung-Hyun Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA; Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Myoung Ok Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA; Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Yong-Yeon Cho
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Ke Yao
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Dong Joon Kim
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Chul-Ho Jeong
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Ki Beom Bae
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Eun Jin Cho
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Mee Hyun Lee
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Jae Young Kim
- Kyungpook National University, Center for Laboratory Animal Resources, School of Animal BT Science, Department of Biochemistry, School of Dentistry, Dae-gu, Republic of Korea
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801, 16th AVE, NE, Austin, MN 55912, USA.
| |
Collapse
|
36
|
Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PRJ, Wolvetang EJ. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 2014; 23:1515-23. [PMID: 24555755 DOI: 10.1089/scd.2013.0461] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.
Collapse
Affiliation(s)
- Deanne J Whitworth
- 1 School of Veterinary Science, University of Queensland , Gatton, Queensland, Australia
| | | | | | | | | |
Collapse
|
37
|
Kim DK, Cha Y, Ahn HJ, Kim G, Park KS. Lefty1 and lefty2 control the balance between self-renewal and pluripotent differentiation of mouse embryonic stem cells. Stem Cells Dev 2013; 23:457-66. [PMID: 24147624 DOI: 10.1089/scd.2013.0220] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lefty expression has been recognized as a stemness marker because Lefty is enriched both in undifferentiated embryonic stem cells (ESCs) and in blastocysts. Here, we examined the function of Lefty1 and Lefty2 in the maintenance of self-renewal and pluripotency of mouse ESCs (mESCs). Suppression of Lefty1 or Lefty2 expression in mESCs did not alter the self-renewal properties of mESCs under nondifferentiating conditions, but suppression of these genes did affect Smad2 phosphorylation and differentiation. Lefty1 knockdown mESCs showed enhanced phosphorylation of Smad2 and increased differentiation potential, whereas Lefty2 knockdown mESCs exhibited reduced phosphorylation of Smad2 and enhanced self-renewal in the presence of a differentiation signal. In vivo, teratomas developed from Lefty2 knockdown mESCs contained massive expansions of immature neuroepithelium, a marker of malignant teratomas. Taken together, these results suggest that optimal expression of Lefty1 and Lefty2 is critical for the balanced differentiation of mESCs into three germ layers.
Collapse
Affiliation(s)
- Dae-Kwan Kim
- 1 Department of Biomedical Science, College of Life Science, CHA University , Seoul, Korea
| | | | | | | | | |
Collapse
|
38
|
Losino N, Waisman A, Solari C, Luzzani C, Espinosa DF, Sassone A, Muro AF, Miriuka S, Sevlever G, Barañao L, Guberman A. EDA-containing fibronectin increases proliferation of embryonic stem cells. PLoS One 2013; 8:e80681. [PMID: 24244705 PMCID: PMC3828241 DOI: 10.1371/journal.pone.0080681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/04/2013] [Indexed: 01/02/2023] Open
Abstract
Embryonic stem cells (ESC) need a set of specific factors to be propagated. They can also grow in conditioned medium (CM) derived from a bovine granulosa cell line BGC (BGC-CM), a medium that not only preserves their main features but also increases ESC´s proliferation rate. The mitogenic properties of this medium were previously reported, ascribing this effect to an alternative spliced generated fibronectin isoform that contains the extra domain A (FN EDA+). Here, we investigated if the FN EDA+ isoform increased proliferation of mouse and human ES cells. We analyzed cell proliferation using conditioned media produced by different mouse embryonic fibroblast (MEF) lines genetically engineered to express FN constitutively including or excluding the EDA domain (FN EDA-), and in media supplemented with recombinant peptides containing or not the EDA. We found that the presence of EDA in the medium increased mouse and human ESC’s proliferation rate. Here we showed for the first time that this FN isoform enhances ESC’s proliferation. These findings suggest a possible conserved behavior for regulation of ES cells proliferation by this FN isoform and could contribute to improve their culturing conditions both for research and cell therapy.
Collapse
Affiliation(s)
- Noelia Losino
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN), UBA/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN), UBA/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Claudia Solari
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN), UBA/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Carlos Luzzani
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN), UBA/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Darío Fernández Espinosa
- Laboratorio de Biología del Desarrollo Celular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Alina Sassone
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Santiago Miriuka
- Laboratorio de Biología del Desarrollo Celular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Gustavo Sevlever
- Laboratorio de Biología del Desarrollo Celular, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Buenos Aires, Argentina
| | - Lino Barañao
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN), UBA/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
| | - Alejandra Guberman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina
- Instituto de Química Biológica - Ciencias Exactas y Naturales (IQUIBICEN), UBA/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad de Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
39
|
Stellzig J, Chariot A, Shostak K, Ismail Göktuna S, Renner F, Acker T, Pagenstecher A, Schmitz ML. Deregulated expression of TANK in glioblastomas triggers pro-tumorigenic ERK1/2 and AKT signaling pathways. Oncogenesis 2013; 2:e79. [PMID: 24217713 PMCID: PMC3849693 DOI: 10.1038/oncsis.2013.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/03/2013] [Indexed: 12/21/2022] Open
Abstract
Signal transmission by the noncanonical IkappaB kinases (IKKs), TANK-binding kinase 1 (TBK1) and IKKɛ, requires interaction with adapter proteins such as TRAF associated NF-κB activator (TANK). Although increased expression or dysregulation of both kinases has been described for a variety of human cancers, this study shows that deregulated expression of the TANK protein is frequently occurring in glioblastomas (GBMs). The functional relevance of TANK was analyzed in a panel of GBM-derived cell lines and revealed that knockdown of TANK arrests cells in the S-phase and prohibits tumor cell migration. Deregulated TANK expression affects several signaling pathways controlling cell proliferation and the inflammatory response. Interference with stoichiometrically assembled signaling complexes by overexpression or silencing of TANK prevented constitutive interferon-regulatory factor 3 (IRF3) phosphorylation. Knockdown of TANK frequently prevents constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). TANK-mediated ERK1/2 activation is independent from the canonical MAP kinase or ERK kinase (MEK) 1/2-mediated pathway and utilizes an alternative pathway that uses a TBK1/IKKɛ/Akt signaling axis, thus identifying a novel pathway suitable to block constitutive ERK1/2 activity.
Collapse
Affiliation(s)
- J Stellzig
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - A Chariot
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
- WELBIO, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - K Shostak
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - S Ismail Göktuna
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - F Renner
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| | - T Acker
- Institute of Neuropathology, Justus-Liebig-University, Aulweg 123, Gießen, Germany
| | - A Pagenstecher
- Department of Neuropathology, University of Marburg, Baldingerstraße, Marburg, Germany
| | - M L Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Medical Faculty, Friedrichstraße 24, Gießen, Germany
| |
Collapse
|
40
|
|
41
|
Miyazaki T, Miyazaki S, Ashida M, Tanaka T, Tashiro F, Miyazaki JI. Functional analysis of Tcl1 using Tcl1-deficient mouse embryonic stem cells. PLoS One 2013; 8:e71645. [PMID: 23940776 PMCID: PMC3733782 DOI: 10.1371/journal.pone.0071645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 07/03/2013] [Indexed: 12/31/2022] Open
Abstract
Tcl1 is highly expressed in embryonic stem (ES) cells, but its expression rapidly decreases following differentiation. To assess Tcl1’s roles in ES cells, we generated Tcl1-deficient and -overexpressing mouse ES cell lines. We found that Tcl1 was neither essential nor sufficient for maintaining the undifferentiated state. Tcl1 is reported to activate Akt and to enhance cell proliferation. We found that Tcl1 expression levels correlated positively with the proliferation rate and negatively with the apoptosis of ES cells, but did not affect Akt phosphorylation. On the other hand, the phosphorylation level of β-catenin decreased in response to Tcl1 overexpression. We measured the β-catenin activity using the TOPflash reporter assay, and found that wild-type ES cells had low activity, which Tcl1 overexpression enhanced 1.8-fold. When the canonical Wnt signaling is activated by β-catenin stabilization, it reportedly helps maintain ES cells in the undifferentiated state. We then performed DNA microarray analyses between the Tcl1-deficient and -expressing ES cells. The results revealed that Tcl1 expression downregulated a distinct group of genes, including Ndp52, whose expression is very high in blastocysts but reduced in the primitive ectoderm. Based on these results, we discuss the possible roles of Tcl1 in ES cells.
Collapse
Affiliation(s)
- Tatsushi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masafumi Ashida
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomofumi Tanaka
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun-ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
42
|
Stimulation of α1-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways. Eur J Pharmacol 2013; 714:202-9. [DOI: 10.1016/j.ejphar.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 11/22/2022]
|
43
|
Park KS, Cha Y, Kim CH, Ahn HJ, Kim D, Ko S, Kim KH, Chang MY, Ko JH, Noh YS, Han YM, Kim J, Song J, Kim JY, Tesar PJ, Lanza R, Lee KA, Kim KS. Transcription elongation factor Tcea3 regulates the pluripotent differentiation potential of mouse embryonic stem cells via the Lefty1-Nodal-Smad2 pathway. Stem Cells 2013; 31:282-92. [PMID: 23169579 DOI: 10.1002/stem.1284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023]
Abstract
Self-renewal and pluripotency are hallmark properties of pluripotent stem cells, including embryonic stem cells (ESCs) and iPS cells. Previous studies revealed the ESC-specific core transcription circuitry and showed that these core factors (e.g., Oct3/4, Sox2, and Nanog) regulate not only self-renewal but also pluripotent differentiation. However, it remains elusive how these two cell states are regulated and balanced during in vitro replication and differentiation. Here, we report that the transcription elongation factor Tcea3 is highly enriched in mouse ESCs (mESCs) and plays important roles in regulating the differentiation. Strikingly, altering Tcea3 expression in mESCs did not affect self-renewal under nondifferentiating condition; however, upon exposure to differentiating cues, its overexpression impaired in vitro differentiation capacity, and its knockdown biased differentiation toward mesodermal and endodermal fates. Furthermore, we identified Lefty1 as a downstream target of Tcea3 and showed that the Tcea3-Lefty1-Nodal-Smad2 pathway is an innate program critically regulating cell fate choices between self-replication and differentiation commitment. Together, we propose that Tcea3 critically regulates pluripotent differentiation of mESCs as a molecular rheostat of Nodal-Smad2/3 signaling.
Collapse
Affiliation(s)
- Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ahn HJ, Kim G, Park KS. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway. Biochem Biophys Res Commun 2013; 437:557-64. [PMID: 23850691 DOI: 10.1016/j.bbrc.2013.06.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 01/16/2023]
Abstract
Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven-nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK-extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Hee-Jin Ahn
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Republic of Korea
| | | | | |
Collapse
|
45
|
XIE GUANLI, YANG SHANLI, CHEN AZHEN, LAN LAN, LIN ZHICHENG, GAO YANLIN, HUANG JIA, LIN JIUMAO, PENG JUN, TAO JING, CHEN LIDIAN. Electroacupuncture at Quchi and Zusanli treats cerebral ischemia-reperfusion injury through activation of ERK signaling. Exp Ther Med 2013; 5:1593-1597. [PMID: 23837037 PMCID: PMC3702718 DOI: 10.3892/etm.2013.1030] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/21/2013] [Indexed: 01/21/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway, a critical mediator of cell proliferation, is activated in cerebral ischemia/reperfusion (I/R) injury and is therefore a key target in the treatment of ischemic stroke. Acupuncture has long been used in China to clinically treat stroke. However, the precise mechanism of its neuroprotective activities remains largely unknown. In the present study, a focal cerebral I/R-injured rat model was used to evaluate the in vivo therapeutic efficacy of electroacupuncture (EA) and investigate the underlying molecular mechanisms. EA significantly ameliorated neurological deficits and cerebral infarction in cerebral I/R-injured rats. Moreover, EA significantly increased the phosphorylation levels of ERK, as well as the protein expression levels of Ras, cyclin D1 and cyclin-dependent kinase (CDK)4. Consequently, EA-mediated activation of the ERK pathway resulted in the stimulation of cerebral cell proliferation. The present data suggest that EA at the Quchi and Zusanli acupoints exerts a neuroprotective effect in ischemic stroke via the activation of ERK signaling.
Collapse
Affiliation(s)
- GUANLI XIE
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - SHANLI YANG
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - AZHEN CHEN
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - LAN LAN
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - ZHICHENG LIN
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - YANLIN GAO
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JIA HUANG
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JIUMAO LIN
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JUN PENG
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - JING TAO
- MOE Key Laboratory of Traditional Chinese Medicine on Osteology and Traumatology and Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| | - LIDIAN CHEN
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108,
P.R. China
| |
Collapse
|
46
|
Ogony JW, Malahias E, Vadigepalli R, Anni H. Ethanol alters the balance of Sox2, Oct4, and Nanog expression in distinct subpopulations during differentiation of embryonic stem cells. Stem Cells Dev 2013; 22:2196-210. [PMID: 23470161 DOI: 10.1089/scd.2012.0513] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The transcription factors Sox2, Oct4, and Nanog regulate within a narrow dose-range embryonic stem (ES) cell pluripotency and cell lineage commitment. Excess of Oct4 relative to Sox2 guides cells to mesoendoderm (ME), while abundance of Sox2 promotes neuroectoderm (NE) formation. Literature does not address whether ethanol interferes with these regulatory interactions during neural development. We hypothesized that ethanol exposure of ES cells in early differentiation causes an imbalance of Oct4 and Sox2 that diverts cells away from NE to ME lineage, consistent with the teratogenesis effects caused by prenatal alcohol exposure. Mouse ES cells were exposed to ethanol (0, 25, 50, and 100 mM) during retinoic acid (10 nM)-directed differentiation to NE for 0-6 days, and the expression of Sox2, Oct4, and Nanog was measured in single live cells by multiparametric flow cytometry, and the cellular phenotype was characterized by immunocytochemistry. Our data showed an ethanol dose- and time-dependent asymmetric modulation of Oct4 and Sox2 expression, as early as after 2 days of exposure. Single-cell analysis of the correlated expression of Sox2, Oct4, and Nanog revealed that ethanol promoted distinct subpopulations with a high Oct4/Sox2 ratio. Ethanol-exposed cells differentiated to fewer β-III tubulin-immunoreactive cells with an immature neuronal phenotype by 4 days. We interpret these data as suggesting that ethanol diverted cells in early differentiation from the NE fate toward the ME lineage. Our results provide a novel insight into the mode of ethanol action and opportunities for discovery of prenatal biomarkers at early stages.
Collapse
Affiliation(s)
- Joshua W Ogony
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
47
|
Kingham E, Oreffo ROC. Embryonic and induced pluripotent stem cells: understanding, creating, and exploiting the nano-niche for regenerative medicine. ACS NANO 2013; 7:1867-81. [PMID: 23414366 PMCID: PMC3610401 DOI: 10.1021/nn3037094] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/25/2013] [Indexed: 05/26/2023]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research.
Collapse
Affiliation(s)
- Emmajayne Kingham
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom.
| | | |
Collapse
|
48
|
Zhou L, Huang Y, Zhang Y, Zhao Q, Zheng B, Lou Y, Zhu D. mGluR5 stimulating Homer-PIKE formation initiates icariin induced cardiomyogenesis of mouse embryonic stem cells by activating reactive oxygen species. Exp Cell Res 2013; 319:1505-14. [PMID: 23524143 DOI: 10.1016/j.yexcr.2013.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/25/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
Icariin (ICA) has been reported to facilitate cardiac differentiation of mouse embryonic stem (ES) cells; however, the mechanism by which ICA induced cardiomyogenesis has not been fully elucidated yet. Here, an underlying signaling network including metabotropic glutamate receptor 5 (mGluR5), Homer, phosphatidylinositol 3-Kinase Enhancer (PIKE), phosphatidylinositol 3-Kinase (PI3K), reactive oxygen species (ROS) and nuclear factor-kappaB (NF-κB) was investigated in ICA induced cardiomyogenesis. Our results showed that the co-expression of mGluR5 together with α-actinin or Troponin T in embryoid bodies (EBs) treated with ICA was elevated to 10.86% and 9.62%, compared with the case in the control (4.04% and 3.45%, respectively). Exposure of EBs to ICA for 2 h remarkably increased the dimeric form of mGluR5, which was inhibited by small interfering RNA targeting mGluR5 (si-mGluR5). Moreover, the extracellular glutamate concentration in ICA treatment medium was elevated to 28.9±3.5 μM. Furthermore, the activation of mGluR5 by ICA triggered the formation of Homer-PIKE complex and activated PI3K, stimulating ROS generation and NF-κB nuclear translocation. Knockdown of mGluR5 or inhibition of PI3K by LY294002 blocked ICA induced cardiomyogenesis via repressing mGluR5 pathway, reducing ROS and NF-κB activation. These results revealed that the inducible mechanisms of ICA were related to activate mGluR5 pathway.
Collapse
Affiliation(s)
- Limin Zhou
- Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, No. 866, Yu Hang Tang Road, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Ling LS, Voskas D, Woodgett JR. Activation of PDK-1 maintains mouse embryonic stem cell self-renewal in a PKB-dependent manner. Oncogene 2013; 32:5397-408. [PMID: 23455320 PMCID: PMC3898101 DOI: 10.1038/onc.2013.44] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 12/04/2012] [Accepted: 01/11/2013] [Indexed: 12/20/2022]
Abstract
The phosphatidylinositol 3′ kinase (PI3K) pathway is involved in many cellular processes including cell proliferation, survival and glucose transport, and is implicated in various disease states, such as cancer and diabetes. Although there have been numerous studies dissecting the role of PI3K signaling in different cell types and disease models, the mechanism by which PI3K signaling regulates embryonic stem (ES) cell fate remains unclear. It is believed that in addition to proliferation and tumorigenesis, PI3K activity may also be important for ES cell self-renewal. Paling et al. reported that the inhibition of PI3K led to a reduction in the ability of leukemia inhibitory factor to maintain self-renewal, causing cells to differentiate. Studies in our lab have revealed that ES cells completely lacking glycogen synthase kinase-3 (GSK-3) remain undifferentiated compared with wild-type ES cells. GSK-3 is negatively regulated by PI3K, suggesting that PI3K may have a vital role in maintaining pluripotency in ES cells through GSK-3. By using a modified Flp recombinase system, we expressed activated alleles of 3-phosphoinositide-dependent protein kinase-1 and protein kinase B to create stable, isogenic ES cell lines to further study the role of the PI3K signaling pathway in stem cell fate determination. In vitro characterization of the transgenic cell lines revealed a strong tendency toward the maintenance of pluripotency, and this phenotype was found to be independent of canonical Wnt signal transduction. In summary, PI3K signaling is sufficient to maintain the self-renewal and survival of stem cells. As this pathway is frequently mutationally activated in cancers, its effect on suppressing differentiation may contribute to its oncogenicity.
Collapse
Affiliation(s)
- L S Ling
- 1] Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada [2] Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
50
|
Brevini T, Pennarossa G, Maffei S, Gandolfi F. Pluripotency network in porcine embryos and derived cell lines. Reprod Domest Anim 2013; 47 Suppl 4:86-91. [PMID: 22827355 DOI: 10.1111/j.1439-0531.2012.02060.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Huge amounts of work have been dedicated to the establishment of embryonic stem cell lines from farm animal species since the successful isolation of embryonic stem cells from the mouse and from the human. However, no conclusive results have been obtained so far, and validated lines have yet to be established in domestic animals. Many limiting factors have been suggested and need to be studied further to isolate truly pluripotent cell lines from livestock. In this review, we will discuss the difficulties in deriving and maintaining embryonic stem cell lines from farm animal embryos and how can this lack of success be explained. We will summarize results obtained in our laboratory regarding derivation of pluripotent cells in the pigs. Problems related to the identification of standard methods for derivation, maintenance and characterization of cell lines will also be examined. We will focus our attention on the need for appropriate stemness-related marker molecules that can be used to reliably investigate pluripotency in domestic species. Finally, we will review data presently available on functional key pluripotency-maintaining pathways in farm animals.
Collapse
Affiliation(s)
- Tal Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy.
| | | | | | | |
Collapse
|