1
|
Chua XY, Aballo T, Elnemer W, Tran M, Salomon A. Quantitative Interactomics of Lck-TurboID in Living Human T Cells Unveils T Cell Receptor Stimulation-Induced Proximal Lck Interactors. J Proteome Res 2020; 20:715-726. [PMID: 33185455 DOI: 10.1021/acs.jproteome.0c00616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While Lck has been widely recognized to play a pivotal role in the initiation of the T cell receptor (TCR) signaling pathway, an understanding of the precise regulation of Lck in T cells upon TCR activation remains elusive. Investigation of protein-protein interaction (PPI) using proximity labeling techniques such as TurboID has the potential to provide valuable molecular insights into Lck regulatory networks. By expressing Lck-TurboID in Jurkat T cells, we have uncovered a dynamic, short-range Lck protein interaction network upon 30 min of TCR stimulation. In this novel application of TurboID, we detected 27 early signaling-induced Lck-proximal interactors in living T cells, including known and novel Lck interactors, validating the discovery power of this tool. Our results revealed previously unappreciated Lck PPI which may be associated with cytoskeletal rearrangement, ubiquitination of TCR signaling proteins, activation of the mitogen-activated protein kinase cascade, coalescence of the LAT signalosome, and formation of the immunological synapse. In this study, we demonstrated for the first time in immune cells and for the kinase Lck that TurboID can be utilized to unveil PPI dynamics in living cells at a time scale consistent with early TCR signaling. Data are available via ProteomeXchange with identifier PXD020759.
Collapse
Affiliation(s)
- Xien Yu Chua
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island, United States
| | - Timothy Aballo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - William Elnemer
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Melanie Tran
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| | - Arthur Salomon
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
2
|
Altered DNA methylation indicates an oscillatory flow mediated epithelial-to-mesenchymal transition signature in ascending aorta of patients with bicuspid aortic valve. Sci Rep 2018; 8:2777. [PMID: 29426841 PMCID: PMC5807320 DOI: 10.1038/s41598-018-20642-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Disturbed flow has been suggested to contribute to aneurysm susceptibility in bicuspid aortic valve (BAV) patients. Lately, flow has emerged as an important modulator of DNA methylation. Hear we combined global methylation analysis with in vitro studies of flow-sensitive methylation to identify biological processes associated with BAV-aortopathy and the potential contribution of flow. Biopsies from non-dilated and dilated ascending aortas were collected from BAV (n = 21) and tricuspid aortic valve (TAV) patients (n = 23). DNA methylation and gene expression was measured in aortic intima-media tissue samples, and in EA.hy926 and primary aortic endothelial cells (ECs) isolated from BAV and TAV exposed to oscillatory (±12 dynes/cm2) or laminar (12 dynes/cm2) flow. We show methylation changes related to epithelial-mesenchymal-transition (EMT) in the non-dilated BAV aorta, associated with oscillatory flow related to endocytosis. The results indicate that the flow-response in BAV ECs involves hypomethylation and increased expression of WNT/β-catenin genes, as opposed to an angiogenic profile in TAV ECs. The EMT-signature was exasperated in dilated BAV aortas. Aberrant EMT in BAV aortic walls could contribute to increased aneurysm susceptibility, and may be due to disturbed flow-exposure. Perturbations during the spatiotemporally related embryonic development of ascending aorta and semilunar valves can however not be excluded.
Collapse
|
3
|
Kim SS, Choi KM, Kim S, Park T, Cho IC, Lee JW, Lee CK. Whole-transcriptome analysis of mouse adipose tissue in response to short-term caloric restriction. Mol Genet Genomics 2016; 291:831-47. [PMID: 26606930 DOI: 10.1007/s00438-015-1150-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) has been shown to extend the lifespan of many species by improving cellular function and organismal health. Additionally, fat reduction by CR may play an important role in lengthening lifespan and preventing severe age-related diseases. Interestingly, CR induced the greatest transcriptome change in the epididymal fat of mice in our study. In this transcriptome analysis, we identified and categorized 446 genes that correlated with CR level. We observed down-regulation of several signaling pathways, including insulin/insulin-like growth factor 1 (insulin/IGF-1), epidermal growth factor (EGF), transforming growth factor beta (TGF-β), and canonical wingless-type mouse mammary tumor virus integration site (Wnt). Many genes related to structural features, including extracellular matrix structure, cell adhesion, and the cytoskeleton, were down-regulated, with a strong correlation to the degree of CR. Furthermore, genes related to the cell cycle and adipogenesis were down-regulated. These biological processes are well-identified targets of insulin/IGF-1, EGF, TGF-β, and Wnt signaling. In contrast, genes involved in specific metabolic processes, including the tricarboxylic acid cycle and the electron transport chain were up-regulated. We performed in silico analysis of the promoter sequences of CR-responsive genes and identified two associated transcription factors, Paired-like homeodomain 2 (Pitx2) and Paired box gene 6 (Pax6). Our results suggest that strict regulation of signaling pathways is critical for creating the optimal energy homeostasis to extend lifespan.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Kyung-Mi Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea
| | - Soyoung Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, Seoul, 120-749, Republic of Korea
| | - In-Cheol Cho
- Subtropical Animal Station, National Institute of Animal Science, Jeju, 690-150, Republic of Korea
| | - Jae-Won Lee
- Department of Statistics, Korea University, Seoul, 136-701, Republic of Korea
| | - Cheol-Koo Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Republic of Korea.
| |
Collapse
|
4
|
Wu F, Peacock SO, Rao S, Lemmon SK, Burnstein KL. Novel interaction between the co-chaperone Cdc37 and Rho GTPase exchange factor Vav3 promotes androgen receptor activity and prostate cancer growth. J Biol Chem 2012; 288:5463-74. [PMID: 23281476 DOI: 10.1074/jbc.m112.390963] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated androgen receptor (AR) activity in castration-resistant prostate cancer may occur through increased levels of AR co-activator proteins. Vav3, a guanine nucleotide exchange factor, is up-regulated following progression to castration resistance in preclinical models and is overexpressed in a significant number of human prostate cancers. Vav3 is a novel co-activator of the AR. We sought to identify Vav3 binding partners in an effort to understand the molecular mechanisms underlying Vav3 enhancement of AR activity and to identify new therapeutic targets. The cell division cycle 37 homolog (Cdc37), a protein kinase-specific co-chaperone for Hsp90, was identified as a Vav3 interacting protein by yeast two-hybrid screening. Vav3-Cdc37 interaction was confirmed by GST pulldown and, for native proteins, by co-immunoprecipitation experiments in prostate cancer cells. Cdc37 potentiated Vav3 co-activation of AR transcriptional activity and Vav3 enhancement of AR N-terminal-C-terminal interaction, which is essential for optimal receptor transcriptional activity. Cdc37 increased prostate cancer cell proliferation selectively in Vav3-expressing cells. Cdc37 did not affect Vav3 nucleotide exchange activity, Vav3 protein levels, or subcellular localization. Disruption of Vav3-Cdc37 interaction inhibited Vav3 enhancement of AR transcriptional activity and AR N-C interaction. Diminished Vav3-Cdc37 interaction also caused decreased prostate cancer cell proliferation selectively in Vav3-expressing cells. Taken together, we identified a novel Vav3 interacting protein that enhances Vav3 co-activation of AR and prostate cancer cell proliferation. Vav3-Cdc37 interaction may provide a new therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Fayi Wu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
5
|
Velazquez L. The Lnk adaptor protein: a key regulator of normal and pathological hematopoiesis. Arch Immunol Ther Exp (Warsz) 2012; 60:415-29. [PMID: 22990499 DOI: 10.1007/s00005-012-0194-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/06/2012] [Indexed: 01/24/2023]
Abstract
The development and function of blood cells are regulated by specific growth factors/cytokines and their receptors' signaling pathways. In this way, these factors influence cell survival, proliferation and differentiation of hematopoietic cells. Central to this positive and/or negative control are the adaptor proteins. Since their identification 10 years ago, members of the Lnk adaptor protein family have proved to be important activators and/or inhibitors in the hematopoietic, immune and vascular system. In particular, the generation of animal and cellular models for the Lnk and APS proteins has helped establish the physiological role of these molecules through the identification of their specific signaling pathways and the characterization of their binding partners. Moreover, the recent identification of mutations in the LNK gene in myeloproliferative disorders, as well as the correlation of a single nucleotide polymorphism on LNK with hematological, immune and vascular diseases have suggested its involvement in the pathophysiology of these malignancies. The latter findings have thus raised the possibility of addressing Lnk signaling for the treatment of certain human diseases. This review therefore describes the pathophysiological role of this adaptor protein in hematological malignancies and the potential benefits of Lnk therapeutic targeting.
Collapse
Affiliation(s)
- Laura Velazquez
- UMR U978 Inserm/Université Paris 13, UFR SMBH, Bobigny, France.
| |
Collapse
|
6
|
Knyazhitsky M, Moas E, Shaginov E, Luria A, Braiman A. Vav1 oncogenic mutation inhibits T cell receptor-induced calcium mobilization through inhibition of phospholipase Cγ1 activation. J Biol Chem 2012; 287:19725-35. [PMID: 22474331 DOI: 10.1074/jbc.m111.309799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Robust elevation of the cytosolic calcium concentration is a crucial early step for T cell activation triggered by the T cell antigen receptor. Vav1 is a proto-oncogene expressed in hematopoietic cells that is indispensable for transducing the calcium-mobilizing signal. Following T cell receptor stimulation, Vav1 facilitates formation of signaling microclusters through multiple interactions with other proteins participating in the signaling cascade. Truncation of the N terminus of Vav1 produces its oncogenic version, which is unable to support normal calcium flux following T cell activation. We show here that truncation of the N-terminal region of Vav1 alters the fine structure of protein complexes in the signaling clusters, affecting the interaction of Vav1 with phospholipase Cγ1 (PLCγ1). This alteration is accompanied by a decrease in PLCγ1 phosphorylation and inhibition of inositol 1,4,5-trisphosphate production. We suggest that the structural integrity of the N-terminal region of Vav1 is important for the proper formation of the Vav1-associated signaling complexes. The oncogenic truncation of this region elicits conformational changes that interfere with the Vav1-mediated activation of PLCγ1 and that inhibit calcium mobilization.
Collapse
Affiliation(s)
- Mira Knyazhitsky
- Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
7
|
Lazer G, Pe'er L, Farago M, Machida K, Mayer BJ, Katzav S. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity. J Biol Chem 2010; 285:23075-85. [PMID: 20457609 DOI: 10.1074/jbc.m109.094508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-gamma associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.
Collapse
Affiliation(s)
- Galit Lazer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Rider L, Tao J, Snyder S, Brinley B, Lu J, Diakonova M. Adapter protein SH2B1beta cross-links actin filaments and regulates actin cytoskeleton. Mol Endocrinol 2009; 23:1065-76. [PMID: 19342444 DOI: 10.1210/me.2008-0428] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Src homology 2 (SH2) domain-containing adapter protein SH2B1beta plays a role in severe obesity, leptin and insulin resistance, and infertility. SH2B1beta was initially identified as a Janus tyrosine kinase 2 (JAK2) substrate, and it has been implicated in cell motility and regulation of the actin rearrangement in response to GH and platelet-derived growth factor. SH2B1beta is also required for maximal actin-based motility of Listeria. Here we have used a low-speed pelleting assay and electron microscopy to demonstrate that SH2B1beta has two actin-binding sites and that it cross-links actin filaments in vitro. Wild-type SH2B1beta localized to cell ruffles and along filopodia, but deletion of amino acids 150-200 (the first actin-binding site) led to mislocalization of the protein to filopodia tip complexes where it colocalized with vasodilator-stimulated phosphoprotein (VASP). Based on studies performed in VASP-deficient MVD7(-/-) cells, with or without green fluorescent protein-VASP reconstitution, we concluded that the proper intracellular localization of native SH2B1beta required the presence of the first SH2B1beta actin-binding site and VASP. Finally, we found that both SH2B1beta actin-binding domains were required for maximal GH- and prolactin-induced cell ruffling. Together, these results suggest that SH2B1beta functions as an adapter protein that cross-links actin filaments, leading to modulation of cellular responses in response to JAK2 activation.
Collapse
Affiliation(s)
- Leah Rider
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606-3390, USA
| | | | | | | | | | | |
Collapse
|
9
|
Gorla L, Mondellini P, Cuccuru G, Miccichè F, Cassinelli G, Cremona M, Pierotti MA, Lanzi C, Bongarzone I. Proteomics study of medullary thyroid carcinomas expressing RET germ-line mutations: identification of new signaling elements. Mol Carcinog 2009; 48:220-231. [PMID: 18756447 DOI: 10.1002/mc.20474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proteomics may help to elucidate differential signaling networks underlying the effects of compounds and to identify new therapeutic targets. Using a proteomic-multiplexed analysis of the phosphotyrosine signaling together with antibody-based validation techniques, we identified several candidate molecules for RET (rearranged during transfection) tyrosine kinase receptor carrying mutations responsible for the multiple endocrine neoplasia type 2A and 2B (MEN2A and MEN2B) syndromes in two human medullary thyroid carcinoma (MTC) cell lines, TT and MZ-CRC-1, which express the RET-MEN2A and RET-MEN2B oncoproteins, respectively. Signaling elements downstream of these oncoproteins were identified after treating cells with the indolinone tyrosine kinase inhibitor RPI-1 to knock down RET phosphorylation activity. We detected 23 and 18 affinity-purified phosphotyrosine proteins in untreated TT and MZ-CRC-1 cells, respectively, most of which were shared and sensitive to RPI-1 treatment. However, our data clearly point to specific signaling features of the RET-MEN2A and RET-MEN2B oncogenic pathways. Moreover, the detection of high-level expression of minimally phosphorylated epidermal growth factor receptor (EGFR) in both TT and MZ-CRC-1 cells, together with our data on the effects of EGF stimulation on the proteomic profiles and the response to Gefitinib treatment, suggest the relevance of EGFR signaling in these cell lines, especially since analysis of 14 archival MTC specimens revealed EGFR mRNA expression in all samples. Together, our data suggest that RET/EGFR multi-target inhibitors might be beneficial for therapy of MTC.
Collapse
Affiliation(s)
- L Gorla
- Proteomics Laboratory, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - P Mondellini
- Proteomics Laboratory, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - G Cuccuru
- Preclinical Chemotherapy and Pharmacology Unit, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - F Miccichè
- Proteomics Laboratory, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - G Cassinelli
- Preclinical Chemotherapy and Pharmacology Unit, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M Cremona
- Proteomics Laboratory, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - M A Pierotti
- Proteomics Laboratory, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.,The Firc Institute of Molecular Oncology (IFOM), Milan, Italy
| | - C Lanzi
- Preclinical Chemotherapy and Pharmacology Unit, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - I Bongarzone
- Proteomics Laboratory, Department of Experimental Oncology and Laboratories, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
10
|
The CHMP4b- and Src-docking sites in the Bro1 domain are autoinhibited in the native state of Alix. Biochem J 2009; 418:277-84. [PMID: 19016654 DOI: 10.1042/bj20081388] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Bro1 domain of Alix [ALG-2 (apoptosis-linked gene 2)-interacting protein X], which plays important roles in endosomal sorting and multiple ESCRT (endosomal sorting complex required for transport)-linked processes, contains the docking sites for the ESCRT-III component CHMP4b (charged multivesicular body protein 4b) and the regulatory tyrosine kinase, Src. Although the structural bases for these docking sites have been defined by crystallography studies, it has not been determined whether these sites are available in the native state of Alix. In the present study, we demonstrate that these two docking sites are unavailable in recombinant Alix under native conditions and that their availabilities can be induced by detergents. In HEK (human embryonic kidney)-293 cell lysates, these two docking sites are not available in cytosolic Alix, but are available in membrane-bound Alix. These findings show that the native state of Alix does not have a functional Bro1 domain and predict that Alix's involvement in endosomal sorting and other ESCRT-linked processes requires an activation step that relieves the autoinhibition of the Bro1 domain.
Collapse
|
11
|
Takaki S. [Sh2b3/Lnk family adaptor proteins in the regulation of lymphohematopoiesis]. NIHON RINSHO MEN'EKI GAKKAI KAISHI = JAPANESE JOURNAL OF CLINICAL IMMUNOLOGY 2009; 31:440-7. [PMID: 19122374 DOI: 10.2177/jsci.31.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sh2b3/Lnk consisting of an N-terminal proline-rich region, PH-, SH2-domains and a tyrosine phosphorylation site, forms an intracellular adaptor protein family conserved from drosophila to mammals, together with Sh2b1/SH2-B and Sh2b2/APS (adaptor protein with PH and SH2 domains). Lnk negatively regulates lymphopoiesis and early hematopoiesis. The lnk-deficiency results in enhanced production of B cells, and expansion as well as enhanced function of hematopoietic stem cells (HSCs), demonstrating negative regulatory functions of Sh2b3/Lnk in cytokine signaling. Our recent studies also revealed that Sh2b3/Lnk functions in responses controlled by cell adhesion and in crosstalk between integrin- and cytokine-mediated signaling. Importantly, recent genome-wide association studies of the autoimmune type 1 diabetes or celiac disease identified risk variants in the SH2B3/LNK region, indicating possible unrevealed functions mediated by this adaptor molecule. This review summarizes roles of Sh2b3/Lnk in the regulation of B-lymphopoiesis and HSCs expansion and function, and briefly introduces our approach for modulating HSCs function by targeting Sh2b3/Lnk-mediated pathways.
Collapse
Affiliation(s)
- Satoshi Takaki
- Research Institute, International Medical Center of Japan
| |
Collapse
|
12
|
Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 2008; 112:4039-47. [DOI: 10.1182/blood-2008-05-154849] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractStem cell factor (SCF) plays critical roles in proliferation, survival, migration, and function of hematopoietic progenitor and mast cells through binding to Kit receptor. Previous studies have implicated the adaptor protein Lnk as an important negative regulator of SCF signaling. However, the molecular mechanism underlying this regulation is unclear. Here, we showed that the Src homology 2 domain (SH2) of Lnk binds directly and preferentially to phosphorylated tyrosine 567 in Kit juxtamembrane domain. Using Lnk−/− bone marrow mast cells (BMMCs) transduced with different Lnk proteins, we demonstrated that Lnk down-regulates SCF-induced proliferation with attenuation of mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase signaling. Furthermore, we showed that Lnk−/− BMMCs displayed increased SCF-dependent migration compared with wild-type cells, revealing a novel Lnk-mediated inhibitory function. This correlated with enhanced Rac and p38 MAPK activation. Finally, we found that Lnk domains and carboxy-terminal tyrosine contribute differently to inhibition of in vitro expansion of hematopoietic progenitors. Altogether, our results demonstrate that Lnk, through its binding to Kit tyrosine 567, negatively modulates specific SCF-dependent signaling pathways involved in the proliferation and migration of primary hematopoietic cells.
Collapse
|
13
|
Maures TJ, Kurzer JH, Carter-Su C. SH2B1 (SH2-B) and JAK2: a multifunctional adaptor protein and kinase made for each other. Trends Endocrinol Metab 2007; 18:38-45. [PMID: 17140804 DOI: 10.1016/j.tem.2006.11.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/13/2006] [Accepted: 11/20/2006] [Indexed: 12/28/2022]
Abstract
Src homology 2 (SH2) B adaptor protein 1 (SH2B1; originally named SH2-B) is a member of a family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase (JAK) and receptor tyrosine kinases. Although SH2B1 performs classical adaptor functions, such as recruitment of specific proteins to activated receptors, it also demonstrates a unique ability to enhance the kinase activity of the cytokine receptor-associated tyrosine kinase JAK2, as well as that of several receptor tyrosine kinases. SH2B1 is also among a small number of adaptor proteins shown to undergo nucleocytoplasmic shuttling, although its exact role within the nucleus is not yet clear. Deletion of the SH2B1 gene results in severe obesity and both leptin and insulin resistance, as well as infertility, which might be a consequence of resistance to insulin-like growth factor I. Thus, knockout mice support a role for SH2B1 as a positive regulator of JAK2 signaling pathways initiated by leptin, as well as of pathways initiated by insulin and, potentially, by insulin-like growth factor I.
Collapse
Affiliation(s)
- Travis J Maures
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109-0662, USA
| | | | | |
Collapse
|
14
|
Miletic AV, Sakata-Sogawa K, Hiroshima M, Hamann MJ, Gomez TS, Ota N, Kloeppel T, Kanagawa O, Tokunaga M, Billadeau DD, Swat W. Vav1 acidic region tyrosine 174 is required for the formation of T cell receptor-induced microclusters and is essential in T cell development and activation. J Biol Chem 2006; 281:38257-65. [PMID: 17050525 PMCID: PMC1876972 DOI: 10.1074/jbc.m608913200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vav proteins are multidomain signaling molecules critical for mediating signals downstream of several surface receptors, including the antigen receptors of T and B lymphocytes. The catalytic guanine nucleotide exchange factor (GEF) activity of the Vav Dbl homology (DH) domain is thought to be controlled by an intramolecular autoinhibitory mechanism involving an N-terminal extension and phosphorylation of tyrosine residues in the acidic region (AC). Here, we report that the sequences surrounding the Vav1 AC: Tyr(142), Tyr(160), and Tyr(174) are evolutionarily conserved, conform to consensus SH2 domain binding motifs, and bind several proteins implicated in TCR signaling, including Lck, PI3K p85alpha, and PLCgamma1, through direct interactions with their SH2 domains. In addition, the AC tyrosines regulate tyrosine phosphorylation of Vav1. We also show that Tyr(174) is required for the maintenance of TCR-signaling microclusters and for normal T cell development and activation. In this regard, our data demonstrate that while Vav1 Tyr(174) is essential for maintaining the inhibitory constraint of the DH domain in both developing and mature T cells, constitutively activated Vav GEF disrupts TCR-signaling microclusters and leads to defective T cell development and proliferation.
Collapse
Affiliation(s)
- Ana V. Miletic
- From the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, the
| | - Kumiko Sakata-Sogawa
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan, the
| | - Michio Hiroshima
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan, the
| | - Michael J. Hamann
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, the
| | - Timothy S. Gomez
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, the
| | - Naruhisa Ota
- Laboratory for Autoimmune Regulation, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan, and the
| | - Tracie Kloeppel
- From the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, the
| | - Osami Kanagawa
- Laboratory for Autoimmune Regulation, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan, and the
| | - Makio Tokunaga
- Research Unit for Single Molecule Immunoimaging, RIKEN Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan, the
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Daniel D. Billadeau
- Department of Immunology and Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, the
| | - Wojciech Swat
- From the Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, the
- To whom correspondence should be addressed: Dept. of Pathology and Immunology, WA University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110. Tel.: 314-747-8886; Fax: 314-362-4096; E-mail:
| |
Collapse
|
15
|
Okino K, Nagai H, Nakayama H, Doi D, Yoneyama K, Konishi H, Takeshita T. Inactivation of Crk SH3 domain-binding guanine nucleotide-releasing factor (C3G) in cervical squamous cell carcinoma. Int J Gynecol Cancer 2006; 16:763-71. [PMID: 16681758 DOI: 10.1111/j.1525-1438.2006.00352.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
C3G, a Crk SH3 domain-binding guanine nucleotide-releasing factor functions as a guanine nucleotide exchange factor for Rap1. It is activated via the Crk adaptor protein and plays an important role in transducing signals from receptors on the cell surface to the nucleus via the Ras/Raf/MAPK signal transduction pathway. However, since the experimental data result in pleiotropic effects in the cascade manner, its precise function remains unclear. Here we examined the C3G expression in cervical squamous cell carcinomas and found a marked decrease in the expression of C3G in a high incidence of said samples. In addition, we also demonstrated frequent hypermethylation of C3G, which resulted in an inactivation mechanism of the gene. Clinical and pathologic data failed to show any relationship between the human papillomavirus infection and the down-regulation of C3G. These results indicate that inactivation of C3G by de novo methylation plays an important role in the development of cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- K Okino
- Department of Obstetrics and Gynecology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Takizawa H, Kubo-Akashi C, Nobuhisa I, Kwon SM, Iseki M, Taga T, Takatsu K, Takaki S. Enhanced engraftment of hematopoietic stem/progenitor cells by the transient inhibition of an adaptor protein, Lnk. Blood 2005; 107:2968-75. [PMID: 16332975 DOI: 10.1182/blood-2005-05-2138] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are the key elements responsible for maintaining blood-cell production throughout life and for lymphohematopoietic reconstitution following bone marrow (BM) transplantation. Enhancement of the engrafting potential and expansion capabilities of HSCs as well as hematopoietic progenitor cells (HPCs) has been a long-time desire as a means of reducing the risks and difficulties that accompany BM transplantation. The ability of HSCs/HPCs to reconstitute the hematopoietic system of irradiated hosts is negatively regulated by an intracellular adaptor protein, Lnk. Here we have identified the functional domains of Lnk and developed a dominant-negative (DN) Lnk mutant that inhibits the functions of Lnk endogenously expressed in the HSCs/HPCs and thereby potentiates the HSCs/HPCs for engraftment. Importantly, even transient expression of DN-Lnk in HSCs/HPCs facilitated their engraftment under nonmyeloablative conditions and fully reconstituted the lymphoid compartments of immunodeficient host animals. HPCs expressing DN-Lnk were efficiently trapped by immobilized vascular cell adhesion molecule-1 (VCAM-1) in a transwell migration assay, suggesting involvement of Lnk in the regulation of cell mobility or cellular interaction in microenvironments. Transient inhibition of Lnk or Lnk-mediated pathways could be a potent approach to augment engraftment of HSCs/HPCs without obvious side effects.
Collapse
Affiliation(s)
- Hitoshi Takizawa
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Barrès R, Gonzalez T, Le Marchand-Brustel Y, Tanti JF. The interaction between the adaptor protein APS and Enigma is involved in actin organisation. Exp Cell Res 2005; 308:334-44. [PMID: 15946664 DOI: 10.1016/j.yexcr.2005.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/17/2022]
Abstract
APS (adaptor protein with PH and SH2 domains) is an adaptor protein phosphorylated by several tyrosine kinase receptors including the insulin receptor. To identify novel binding partners of APS, we performed yeast two-hybrid screening. We identified Enigma, a PDZ and LIM domain-containing protein that was previously shown to be associated with the actin cytoskeleton. In HEK 293 cells, Enigma interacted specifically with APS, but not with the APS-related protein SH2-B. This interaction required the NPTY motif of APS and the LIM domains of Enigma. In NIH-3T3 cells that express the insulin receptor, Enigma and APS were partially co-localised with F-actin in small ruffling structures. Insulin increased the complex formation between APS and Enigma and their co-localisation in large F-actin containing ruffles. While in NIH-3T3 and HeLa cells the co-expression of both Enigma and APS did not modify the actin cytoskeleton organisation, expression of Enigma alone led to the formation of F-actin clusters. Similar alteration in actin cytoskeleton organisation was observed in cells expressing both Enigma and APS with a mutation in the NPTY motif. These results identify Enigma as a novel APS-binding protein and suggest that the APS/Enigma complex plays a critical role in actin cytoskeleton organisation.
Collapse
Affiliation(s)
- Romain Barrès
- INSERM U568 and IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice Cedex 02, France
| | | | | | | |
Collapse
|
18
|
Abstract
The Vav family proteins (Vav1, Vav2, Vav3) are cytoplasmic guanine nucleotide exchange factors (GEFs) for Rho-family GTPases. T-cell antigen receptor (TCR) signalling results in the tyrosine phosphorylation of Vav proteins and hence their activation. Results from mice deficient in one or more Vav proteins has shown that they play critical roles in T-cell development and activation. Vav1 is required for TCR-induced calcium flux, activation of the ERK MAP kinase pathway, activation of the NF-kappaB transcription factor, inside-out activation of the integrin LFA-1, TCR clustering, and polarisation of the T cell. Although many of these processes may require the GEF activity of Vav1, it is possible that Vav1 also has adaptor-like functions. Recent evidence suggests that Vav1 might also function in the nucleus, where it undergoes arginine methylation. An emerging theme is that Vav proteins may have important functions downstream of receptors other than the TCR, such as integrins and chemokine receptors.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
19
|
Iseki M, Kubo-Akashi C, Kwon SM, Yamaguchi A, Takatsu K, Takaki S. APS, an adaptor molecule containing PH and SH2 domains, has a negative regulatory role in B cell proliferation. Biochem Biophys Res Commun 2005; 330:1005-13. [PMID: 15809095 DOI: 10.1016/j.bbrc.2005.03.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Indexed: 11/18/2022]
Abstract
Adaptor molecule containing PH and SH2 domains (APS) is an intracellular adaptor protein that forms part of an adaptor family along with Lnk and SH2-B. APS transcripts are expressed in various tissues including brain, kidney, and muscle, as well as in splenic B cells but not in T cells. We investigated the functions of APS in B cell development and activation by generating APS-transgenic (APS-Tg) mice that overexpressed APS in lymphocytes. The number of B-1 cells in the peritoneal cavity was reduced in APS-Tg mice, as were B-2 cells in the spleen. B cell development in the bone marrow was partially impaired at the transition stage from proliferating large pre-B to small pre-B cells. B cell proliferation induced by B cell receptor (BCR) crosslinking but not by other B cell mitogens was also impaired in APS-Tg mice. APS co-localized with BCR complexes and filamentous actin in activated APS-Tg B cells. Thus, APS appears to play novel negative regulatory roles in BCR signaling, actin reorganization pathways, and control of compartment sizes of B-lineage cells.
Collapse
Affiliation(s)
- Masanori Iseki
- Division of Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Iseki M, Kubo C, Kwon SM, Yamaguchi A, Kataoka Y, Yoshida N, Takatsu K, Takaki S. Increased numbers of B-1 cells and enhanced responses against TI-2 antigen in mice lacking APS, an adaptor molecule containing PH and SH2 domains. Mol Cell Biol 2004; 24:2243-50. [PMID: 14993264 PMCID: PMC355841 DOI: 10.1128/mcb.24.6.2243-2250.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
APS (adaptor molecule containing PH and SH2 domains) is an intracellular adaptor protein that forms an adaptor family along with Lnk and SH2-B. While experiments using cultured cell lines have demonstrated that APS is phosphorylated in response to various stimuli, its in vivo functions remain unclear. We attempted to determine the physiological roles of APS by generating APS-deficient (APS(-/-)) mice. APS(-/-) mice were viable and fertile and showed no abnormalities or growth retardation. Immunologically, APS(-/-) mice showed normal development and distribution of lymphocytes and myeloid cells, except for increased numbers of B-1 cells in the peritoneal cavity. APS(-/-) mice exhibited an enhanced humoral immune response against trinitrophenol-Ficoll, a thymus-independent type 2 antigen, while APS(-/-) B-2 cells exhibited normal proliferative responses and tyrosine phosphorylation of intracellular proteins upon B-cell receptor (BCR) cross-linking. APS colocalized with filamentous actin (F-actin) accumulated during the capping of BCRs in APS-transgenic B cells. After BCR stimulation, F-actin contents were lower in APS(-/-) B-1 cells than in wild-type B-1 cells. Our results indicate that APS might have a novel regulatory role in actin reorganization and control of B-1 cell compartment size.
Collapse
MESH Headings
- Actins/metabolism
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/chemistry
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Antigens, T-Independent
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Lymphocyte Activation
- Lymphocyte Count
- Mice
- Mice, Knockout
- Mice, Transgenic
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Growth Factor/metabolism
- Signal Transduction
- src Homology Domains
Collapse
Affiliation(s)
- Masanori Iseki
- Division of Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|