1
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
2
|
Thomas M, Banks L. The biology of papillomavirus PDZ associations: what do they offer papillomaviruses? Curr Opin Virol 2021; 51:119-126. [PMID: 34655911 DOI: 10.1016/j.coviro.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023]
Abstract
The high-risk α-type papillomaviruses have a C-terminal PDZ-binding motif (PBM) on one of the two major oncoproteins E6 or E7; the vast majority on E6. The PBM is essential for the high-risk HPV life cycle, for episomal maintenance of the virus genome, and for maintaining the mitotic stability of the infected cell. The question is why only these viruses have PBMs - are there specific constraints imposed by the mucosal epithelium in which these viruses replicate? However the low-risk α-HPVs, such as HPV-6 and HPV-11 replicate extremely efficiently without a PBM, while viruses of the alpha8 group, such as HPV-40, replicate well with a very primitive PBM. So what does PDZ-binding capacity contribute to the fitness of the virus?
Collapse
Affiliation(s)
- Miranda Thomas
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy.
| | - Lawrence Banks
- ICGEB, AREA Science Park, Padriciano 99, 34149, Trieste, Italy
| |
Collapse
|
3
|
Modular peptide binding: From a comparison of natural binders to designed armadillo repeat proteins. J Struct Biol 2014; 185:147-62. [DOI: 10.1016/j.jsb.2013.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/23/2022]
|
4
|
Subbaiah VK, Narayan N, Massimi P, Banks L. Regulation of the DLG tumor suppressor by β-catenin. Int J Cancer 2012; 131:2223-33. [PMID: 22392736 DOI: 10.1002/ijc.27519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/23/2012] [Indexed: 12/29/2022]
Abstract
The discs-large (DLG) tumor suppressor plays essential roles in regulating cell polarity and proliferation. It localizes at sites of cell-cell contact where it acts as a scaffold for multiple protein interactions, including with the adenomatous polyposis coli (APC) tumor suppressor, which in turn regulates β-catenin. Furthermore, many tumor types including breast and colon have increased levels of β-catenin activity with correspondingly low levels of DLG expression. Here we provide evidence of a direct functional link between these apparently separate phenomena. We show that overexpressed β-catenin can enhance the turnover of DLG in a proteosome dependent manner. This effect is specific to DLG and is not seen with two other PDZ domain-containing targets of β-catenin, MAGI-1 and Scribble. Furthermore, siRNA-mediated ablation of endogenous β-catenin expression also enhances DLG stability. β-catenin-induced degradation of DLG appears to be a consequence of a direct association between the two proteins and requires β-catenin PDZ binding potential. In contrast, the enhanced turnover of DLG requires the unique N-terminal sequences and its PDZ domains. Finally, we also show that the capacity of DLG to inhibit transformed cell growth in an oncogene cooperation assay is inhibited by β-catenin. Taken together these studies suggest that one mechanism by which deregulated β-catenin can contribute to tumorigenesis is through enhancing DLG degradation.
Collapse
|
5
|
Abstract
Over 250 PDZ (PSD95/Dlg/ZO-1) domain-containing proteins have been described in the human proteome. As many of these possess multiple PDZ domains, the potential combinations of associations with proteins that possess PBMs (PDZ-binding motifs) are vast. However, PDZ domain recognition is a highly specific process, and much less promiscuous than originally thought. Furthermore, a large number of PDZ domain-containing proteins have been linked directly to the control of processes whose loss, or inappropriate activation, contribute to the development of human malignancies. These regulate processes as diverse as cytoskeletal organization, cell polarity, cell proliferation and many signal transduction pathways. In the present review, we discuss how PBM–PDZ recognition and imbalances therein can perturb cellular homoeostasis and ultimately contribute to malignant progression.
Collapse
|
6
|
Borth N, Massier J, Franke C, Sachse K, Saluz HP, Hänel F. Chlamydial protease CT441 interacts with SRAP1 co-activator of estrogen receptor alpha and partially alleviates its co-activation activity. J Steroid Biochem Mol Biol 2010; 119:89-95. [PMID: 20079837 DOI: 10.1016/j.jsbmb.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/22/2022]
Abstract
Chlamydiae are obligate intracellular pathogens which secrete host-interactive proteins capable of directly modulating eukaryotic pathways. Using the PDZ domain of the protease CT441 of Chlamydia trachomatis as a bait in a yeast two-hybrid screen, we identified the SRAP1 co-activator of estrogen receptor alpha (ERalpha) as an interacting protein. SRAP1 is a unique modulator of steroid receptor activity, as it is able to mediate its co-regulatory effects both as a RNA and a protein. GST pull-down experiments confirmed the interaction of CT441 and SRAP1 in vitro. Furthermore, it was shown that the CT441-PDZ domain fused to a nuclear localization signal was able to bind and to target SRAP1 to the nucleus in mammalian cells. CT441 did not cleave SRAP1, but retained the protein in the cytoplasm and thereby partially alleviated its co-activation of ERalpha in a heterologous yeast system and in mammalian cells. Possible implications of chlamydial regulation of host metabolism by targeting ERalpha activity are discussed. Moreover, the property of CT441-PDZ domain to specifically sequester SRA1 protein but not SRA1 RNA may be used to distinguish between the cellular functions of the SRA1 RNA and protein. This has clinical relevance as it has been proposed that disturbance of the balance between SRAP1-coding and non-coding SRA1 RNAs in breast tumor tissues might be involved in breast tumorigenesis.
Collapse
Affiliation(s)
- Nicole Borth
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology (Hans Knoell Institute), Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Mirecka EA, Hey T, Fiedler U, Rudolph R, Hatzfeld M. Affilin Molecules Selected against the Human Papillomavirus E7 Protein Inhibit the Proliferation of Target Cells. J Mol Biol 2009; 390:710-21. [DOI: 10.1016/j.jmb.2009.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 01/18/2023]
|
8
|
Balakrishnan MP, Cilenti L, Mashak Z, Popat P, Alnemri ES, Zervos AS. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death. Am J Physiol Heart Circ Physiol 2009; 297:H643-53. [PMID: 19502560 DOI: 10.1152/ajpheart.00234.2009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Meenakshi P Balakrishnan
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | | | |
Collapse
|
9
|
Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins. Proc Natl Acad Sci U S A 2008; 105:7702-7. [PMID: 18505836 DOI: 10.1073/pnas.0803392105] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant proteins represent an extreme hazard to cells. Therefore, molecular chaperones and proteases have to carry out protein quality control in each cellular compartment. In contrast to the ATP-dependent cytosolic proteases and chaperones, the molecular mechanisms of extracytosolic factors are largely unknown. To address this question, we studied the protease function of DegP, the central housekeeping protein in the bacterial envelope. Our data reveal that DegP processively degrades misfolded proteins into peptides of defined size by employing a molecular ruler comprised of the PDZ1 domain and the proteolytic site. Furthermore, peptide binding to the PDZ domain transforms the resting protease into its active state. This allosteric activation mechanism ensures the regulated and rapid elimination of misfolded proteins upon folding stress. In comparison to the cytosolic proteases, the regulatory features of DegP are established by entirely different mechanisms reflecting the convergent evolution of an extracytosolic housekeeping protease.
Collapse
|
10
|
Binz HK, Plückthun A. Engineered proteins as specific binding reagents. Curr Opin Biotechnol 2007; 16:459-69. [PMID: 16005204 DOI: 10.1016/j.copbio.2005.06.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 06/10/2005] [Accepted: 06/24/2005] [Indexed: 11/20/2022]
Abstract
Over the past 30 years, monoclonal antibodies have become the standard binding proteins and currently find applications in research, diagnostics and therapy. Yet, monoclonal antibodies now face strong competition from synthetic antibody libraries in combination with powerful library selection technologies. More recently, an increased understanding of other natural binding proteins together with advances in protein engineering, selection and evolution technologies has also triggered the exploration of numerous other protein architectures for the generation of designed binding molecules. Valuable protein-binding scaffolds have been obtained and represent promising alternatives to antibodies for biotechnological and, potentially, clinical applications.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
11
|
Hosse RJ, Rothe A, Power BE. A new generation of protein display scaffolds for molecular recognition. Protein Sci 2006; 15:14-27. [PMID: 16373474 PMCID: PMC2242358 DOI: 10.1110/ps.051817606] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered antibodies and their fragments are invaluable tools for a vast range of biotechnological and pharmaceutical applications. However, they are facing increasing competition from a new generation of protein display scaffolds, specifically selected for binding virtually any target. Some of them have already entered clinical trials. Most of these nonimmunoglobulin proteins are involved in natural binding events and have amazingly diverse origins, frameworks, and functions, including even intrinsic enzyme activity. In many respects, they are superior over antibody-derived affinity molecules and offer an ever-extending arsenal of tools for, e.g., affinity purification, protein microarray technology, bioimaging, enzyme inhibition, and potential drug delivery. As excellent supporting frameworks for the presentation of polypeptide libraries, they can be subjected to powerful in vitro or in vivo selection and evolution strategies, enabling the isolation of high-affinity binding reagents. This article reviews the generation of these novel binding reagents, describing validated and advanced alternative scaffolds as well as the most recent nonimmunoglobulin libraries. Characteristics of these protein scaffolds in terms of structural stability, tolerance to multiple substitutions, ease of expression, and subsequent applications as specific targeting molecules are discussed. Furthermore, this review shows the close linkage between these novel protein tools and the constantly developing display, selection, and evolution strategies using phage display, ribosome display, mRNA display, cell surface display, or IVC (in vitro compartmentalization). Here, we predict the important role of these novel binding reagents as a toolkit for biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Ralf J Hosse
- Preventative Health National Research Flagship, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
12
|
Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 2005; 23:1257-68. [PMID: 16211069 DOI: 10.1038/nbt1127] [Citation(s) in RCA: 502] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.
Collapse
Affiliation(s)
- H Kaspar Binz
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
13
|
Ferrer M, Maiolo J, Kratz P, Jackowski JL, Murphy DJ, Delagrave S, Inglese J. Directed evolution of PDZ variants to generate high-affinity detection reagents. Protein Eng Des Sel 2005; 18:165-73. [PMID: 15820976 DOI: 10.1093/protein/gzi018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High-throughput protease assays are used to identify new protease inhibitors which have the potential to become valuable therapeutic products. Antibodies are of great utility as affinity reagents to detect proteolysis products in protease assays, but isolating and producing such antibodies is unreliable, slow and costly. It has been shown previously that PDZ domains can also be used to detect proteolysis products in high-throughput homogeneous assays but their limited natural repertoire restricts their use to only a few peptides. Here we show that directed evolution is an efficient way to create new PDZ domains for detection of protease activity. We report the first use of phage display to alter the specificity of a PDZ domain, yielding three variants with up to 25-fold increased affinity for a peptide cleavage product of HIV protease. Three distinct roles are assigned to the amino acid substitutions found in the selected variants of the NHERF PDZ domain: specific 'beta1-beta3' interaction with ligand residue -1, interactions with ligand residues -4 to -7 and improvement in phage display efficiency. The variants, having affinities as high as 620 nM, display improvements in assay sensitivity of over 5-fold while requiring smaller amounts of reagents. The approach demonstrated here leads the way to highly sensitive reagents for drug discovery that can be isolated more reliably and produced less expensively.
Collapse
Affiliation(s)
- Marc Ferrer
- Department of Automated Biotechnology, Merck and Co., Inc., 502-503 Louise Lane, North Wales, PA 19454, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Cilenti L, Kyriazis GA, Soundarapandian MM, Stratico V, Yerkes A, Park KM, Sheridan AM, Alnemri ES, Bonventre JV, Zervos AS. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells. Am J Physiol Renal Physiol 2005; 288:F371-9. [PMID: 15454391 DOI: 10.1152/ajprenal.00154.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omi/HtrA2 is a mitochondrial proapoptotic serine protease that is able to induce both caspase-dependent and caspase-independent cell death. After apoptotic stimuli, Omi is released to the cytoplasm where it binds and cleaves inhibitor of apoptosis proteins. In this report, we investigated the role of Omi in renal cell death following cisplatin treatment. Using primary mouse proximal tubule cells, as well as established renal cell lines, we show that the level of Omi protein is upregulated after treatment with cisplatin. This upregulation is followed by the release of Omi from mitochondria to the cytoplasm and degradation of XIAP. Reducing the endogenous level of Omi protein using RNA interference renders renal cells resistant to cisplatin-induced cell death. Furthermore, we show that the proteolytic activity of Omi is necessary and essential for cisplatin-induced cell death in this system. When renal cells are treated with Omi's specific inhibitor, ucf-101, they become significantly resistant to cisplatin-induced cell death. Ucf-101 was also able to minimize cisplatin-induced nephrotoxic injury in animals. Our results demonstrate that Omi is a major mediator of cisplatin-induced cell death in renal cells and suggest a way to limit renal injury by specifically inhibiting its proteolytic activity.
Collapse
Affiliation(s)
- Lucia Cilenti
- Biomolecular Science Center, Burnett College of Biomedical Science, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Murwantoko, Yano M, Ueta Y, Murasaki A, Kanda H, Oka C, Kawaichi M. Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Biochem J 2004; 381:895-904. [PMID: 15101818 PMCID: PMC1133901 DOI: 10.1042/bj20040435] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/17/2004] [Accepted: 04/22/2004] [Indexed: 11/17/2022]
Abstract
HtrA1, a member of the mammalian HtrA (high temperature requirement A) serine protease family, has a highly conserved protease domain followed by a PDZ domain. Accumulating evidence has indicated that PDZ domains regulate protease activity of HtrA proteins. We searched for binding partners of the PDZ domain of mouse HtrA1 by yeast two-hybrid screening, and isolated proteins that were recognized by the HtrA1 PDZ domain through their C-terminal ends with a core consensus Phi-X-Phi-[V/L/F/A]-COOH sequence (where Phi is a hydrophobic/non-polar amino acid). C-propeptides of fibrillar collagens were most frequently isolated. Type III procollagen alpha1 C-propeptide, which was used as a model protein, was digested by HtrA1. HtrA1 cleavage of the collagen C-propeptide was enhanced by reductive denaturation of the C-propeptide and partly inhibited by removal of the C-terminal four amino acids from the C-propeptide, suggesting that the substrate recognition was facilitated by the binding of the free C-terminal ends of substrates to the PDZ domain of HtrA1. The synthetic oligopeptide (GM130Pep) that fitted the consensus recognition sequence bound to HtrA1 with a high affinity (K(d)=6.0 nM). GM130Pep stimulated HtrA1 protease activity 3- to 4-fold, but did not efficiently stimulate the activity of an HtrA1 mutant lacking the PDZ domain, supporting the notion that the PDZ domain enhances protease activity upon ligand binding. The peptide derived from Type III collagen alpha1 C-propeptide specifically stimulated protease activity of HtrA1, but did not stimulate nor significantly bind to HtrA2, suggesting that the collagen C-propeptide is a specific physiological regulator of HtrA1.
Collapse
Key Words
- c-propeptide
- collagen
- htra1
- htra2/omi
- pdz domain
- serine protease
- 3-at, 3-amino-1,2,4-triazole
- cast, caz-associated structural protein
- cdyl, chromodomain protein, y chromosome-like
- col1a1, col2a1 and col3a1
- types i, ii and iii procollagen α1 respectively
- coxva, cytochrome c oxidase subunit va
- -c-pro, -c-propeptide
- dtt, dithiothreitol
- f171d, phe171→asp
- gm130, golgi auto-antigen golgin, subfamily a,2
- htra, high temperature requirement a
- lrp9, low-density-lipoprotein-receptor-related protein 9
- ni-nta, ni2+-nitrilotriacetate
- omp, outer-membrane porin
- par6b, partitioning defective 6 homologue β
- spr, surface plasmon resonance
- ssra, small stable rna
- tgf-β, transforming growth factor-β
- thlx, triple helical region
- trx, thioredoxin, tsp, tail-specific protease
Collapse
Affiliation(s)
- Murwantoko
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| | - Masato Yano
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| | - Yoshifumi Ueta
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| | - Ai Murasaki
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hidenobu Kanda
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| | - Chio Oka
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| | - Masashi Kawaichi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, 891605 Takayama, Ikoma, Nara 630-0101, Japan
| |
Collapse
|