1
|
Yao H, Luo L, Li R, Zhao Y, Zhang L, Pešić M, Cai L, Li L. New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas. Biochim Biophys Acta Rev Cancer 2024; 1879:189220. [PMID: 39571764 DOI: 10.1016/j.bbcan.2024.189220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. SMAD4 gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.
Collapse
Affiliation(s)
- Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lin Cai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China..
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
2
|
Erasimus H, Kolnik V, Lacroix F, Sidhu S, D'Agostino S, Lemaitre O, Rohaut A, Sanchez I, Thill G, Didier M, Debussche L, Marcireau C. Genome-wide CRISPR Screen Reveals RAB10 as a Synthetic Lethal Gene in Colorectal and Pancreatic Cancers Carrying SMAD4 Loss. CANCER RESEARCH COMMUNICATIONS 2023; 3:780-792. [PMID: 37377893 PMCID: PMC10158796 DOI: 10.1158/2767-9764.crc-22-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/01/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023]
Abstract
The TGFβ signaling mediator SMAD4 is frequently mutated or deleted in colorectal and pancreatic cancers. SMAD4 acts as a tumor suppressor and its loss is associated with poorer patient outcomes. The purpose of this study was to find synthetic lethal interactions with SMAD4 deficiency to find novel therapeutic strategies for the treatment of patients with SMAD4-deficient colorectal or pancreatic cancers. Using pooled lentiviral single-guide RNA libraries, we conducted genome-wide loss-of-function screens in Cas9-expressing colorectal and pancreatic cancer cells harboring altered or wild-type SMAD4. The small GTPase protein RAB10 was identified and validated as a susceptibility gene in SMAD4-altered colorectal and pancreatic cancer cells. Rescue assays showed that RAB10 reintroduction reversed the antiproliferative effects of RAB10 knockout in SMAD4-negative cell lines. Further investigation is necessary to shed light on the mechanism by which RAB10 inhibition decreases cell proliferation of SMAD4-negative cells. Significance This study identified and validated RAB10 as new synthetic lethal gene with SMAD4. This was achieved by conducting a whole-genome CRISPR screens in different colorectal and pancreatic cell lines. A future RAB10 inhibitors could correspond to a new therapeutic solution for patients with cancer with SMAD4 deletion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilbert Thill
- Sanofi, Translational Sciences, Chilly-Mazarin, France
| | - Michel Didier
- Sanofi, Translational Sciences, Chilly-Mazarin, France
| | | | | |
Collapse
|
3
|
Hurwitz E, Parajuli P, Ozkan S, Prunier C, Nguyen TL, Campbell D, Friend C, Bryan AA, Lu TX, Smith SC, Razzaque MS, Xu K, Atfi A. Antagonism between Prdm16 and Smad4 specifies the trajectory and progression of pancreatic cancer. J Cell Biol 2023; 222:e202203036. [PMID: 36828547 PMCID: PMC9999015 DOI: 10.1083/jcb.202203036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/28/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023] Open
Abstract
The transcription factor Prdm16 functions as a potent suppressor of transforming growth factor-beta (TGF-β) signaling, whose inactivation is deemed essential to the progression of pancreatic ductal adenocarcinoma (PDAC). Using the KrasG12D-based mouse model of human PDAC, we surprisingly found that ablating Prdm16 did not block but instead accelerated PDAC formation and progression, suggesting that Prdm16 might function as a tumor suppressor in this malignancy. Subsequent genetic experiments showed that ablating Prdm16 along with Smad4 resulted in a shift from a well-differentiated and confined neoplasm to a highly aggressive and metastatic disease, which was associated with a striking deviation in the trajectory of the premalignant lesions. Mechanistically, we found that Smad4 interacted with and recruited Prdm16 to repress its own expression, therefore pinpointing a model in which Prdm16 functions downstream of Smad4 to constrain the PDAC malignant phenotype. Collectively, these findings unveil an unprecedented antagonistic interaction between the tumor suppressors Smad4 and Prdm16 that functions to restrict PDAC progression and metastasis.
Collapse
Affiliation(s)
- Eric Hurwitz
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Parash Parajuli
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Seval Ozkan
- Cancer Institute, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Celine Prunier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Thien Ly Nguyen
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Cancer Institute, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Deanna Campbell
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Creighton Friend
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Allyn Austin Bryan
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Ting-Xuan Lu
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Keli Xu
- Cancer Institute, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
4
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
5
|
Zhang J, Li R, Huang S. The immunoregulation effect of tumor microenvironment in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:951019. [PMID: 35965504 PMCID: PMC9365986 DOI: 10.3389/fonc.2022.951019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer has the seventh highest death rate of all cancers. The absence of any serious symptoms, coupled with a lack of early prognostic and diagnostic markers, makes the disease untreatable in most cases. This leads to a delay in diagnosis and the disease progresses so there is no cure. Only about 20% of cases are diagnosed early. Surgical removal is the preferred treatment for cancer, but chemotherapy is standard for advanced cancer, although patients can eventually develop drug resistance and serious side effects. Chemoresistance is multifactorial because of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment (TME). Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. This review focuses on the immune-related components of TME and the interactions between tumor cells and TME during the development and progression of pancreatic cancer, including immunosuppression, tumor dormancy and escape. Finally, we discussed a variety of immune components-oriented immunotargeting drugs in TME from a clinical perspective.
Collapse
Affiliation(s)
| | - Renfeng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuai Huang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
7
|
Wang L, Liu Z, Zhu R, Liang R, Wang W, Li J, Zhang Y, Guo C, Han X, Sun Y. Multi-omics landscape and clinical significance of a SMAD4-driven immune signature: Implications for risk stratification and frontline therapies in pancreatic cancer. Comput Struct Biotechnol J 2022; 20:1154-1167. [PMID: 35317237 PMCID: PMC8908051 DOI: 10.1016/j.csbj.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
SMAD4 mutation was recently implicated in promoting invasion and poor prognosis of pancreatic cancer (PACA) by regulating the tumor immune microenvironment. However, SMAD4-driven immune landscape and clinical significance remain elusive. In this study, we applied the consensus clustering and weighted correlation network analysis (WGCNA) to identify two heterogeneous immune subtypes and immune genes. Combined with SMAD4-driven genes determined by SMAD4 mutation status, a SMAD4-driven immune signature (SDIS) was developed in ICGC-AU2 (microarray data) via machine learning algorithm, and then was validated by RNA-seq data (TCGA, ICGC-AU and ICGC-CA) and microarray data (GSE62452 and GSE85916). The high-risk group displayed a worse prognosis, and multivariate Cox regression indicated that SDIS was an independent prognostic factor. In six cohorts, SDIS also displayed excellent accuracy in predicting prognosis. Moreover, the high-risk group was characterized by higher frequencies of TP53/CDKN2A mutations and SMAD4 deletion, superior immune checkpoint molecules expression and more sensitive to chemotherapy and immunotherapy. Meanwhile, the low-risk group was significantly enriched in metabolism-related pathways and suggested the potential to target tumor metabolism to develop specific drugs. Overall, SDIS could robustly predict prognosis in PACA, which might serve as an attractive platform to further tailor decision-making in chemotherapy and immunotherapy in clinical settings.
Collapse
Affiliation(s)
- Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Rongtao Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Weijie Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| | - Jian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, Zhengzhou, China
| |
Collapse
|
8
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
9
|
Ye Y, Zheng S. Successful Immunotherapy for Pancreatic Cancer in a Patient With TSC2 and SMAD4 Mutations: A Case Report. Front Immunol 2021; 12:785400. [PMID: 34880877 PMCID: PMC8645965 DOI: 10.3389/fimmu.2021.785400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pancreatic cancer has a poor prognosis, and it is traditionally treated with chemotherapy. Fortunately, immunotherapy has rapidly changed the landscape of solid tumor treatment, and improving the survival of cancer patients. However, pancreatic cancer is non-immunogenic, and single agent immunotherapies are unfavorable to its prognosis. Case Presentation Here, we report a case of stage IV pancreatic cancer in a patient with TSC2 and SMAD4 mutations treated with immunotherapy when the disease progressed after multi-line chemotherapy. Next generation sequencing (NGS) confirmed the presence of TSC2 and SMAD4 mutations and microsatellite stability (MSS). When the disease progressed after chemotherapy, a combination strategy was devised consisting of chemotherapy (S-1) and sintilimab. The patient had a partial response to therapy with this regimen, the lesions were significantly reduced and nearly disappeared. In metastatic pancreatic cancer, responses of this magnitude are rarely seen. Conclusions This outcome reveals that this combination can be effective in treating metastatic pancreatic cancer, especially in pancreatic cancer patients with SMAD4 and TSC2 mutations. This may help increase the use of this therapy in large-scale clinical research.
Collapse
Affiliation(s)
- Yanghui Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Zheng
- Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Sabbadini F, Bertolini M, De Matteis S, Mangiameli D, Contarelli S, Pietrobono S, Melisi D. The Multifaceted Role of TGF-β in Gastrointestinal Tumors. Cancers (Basel) 2021; 13:cancers13163960. [PMID: 34439114 PMCID: PMC8391793 DOI: 10.3390/cancers13163960] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The transforming growth factor β signaling pathway elicits a broad range of physiological re-sponses, and its misregulation has been related to cancer. The secreted cytokine TGFβ exerts a tumor-suppressive effect that counteracts malignant transformation. However, once tumor has developed, TGFβ can support tumor progression regulating epithelial to mesenchymal transition, invasion and metastasis, stimulating fibrosis, angiogenesis and immune suppression. Here we review the dichotomous role of TGF-β in the progression of gastrointestinal tumors, as well as its intricate crosstalk with other signaling pathways. We also discuss about the therapeutic strate-gies that are currently explored in clinical trials to counteract TGF-β functions. Abstract Transforming growth factor-beta (TGF-β) is a secreted cytokine that signals via serine/threonine kinase receptors and SMAD effectors. Although TGF-β acts as a tumor suppressor during the early stages of tumorigenesis, it supports tumor progression in advanced stages. Indeed, TGF-β can modulate the tumor microenvironment by modifying the extracellular matrix and by sustaining a paracrine interaction between neighboring cells. Due to its critical role in cancer development and progression, a wide range of molecules targeting the TGF-β signaling pathway are currently under active clinical development in different diseases. Here, we focused on the role of TGF-β in modulating different pathological processes with a particular emphasis on gastrointestinal tumors.
Collapse
Affiliation(s)
- Fabio Sabbadini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Monica Bertolini
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena De Matteis
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Department of Experimental, Diagnostic and Specialty Medicine, AlmaMater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Domenico Mangiameli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Serena Contarelli
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Silvia Pietrobono
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Research Unit, Department of Medicine, University of Verona, 37134 Verona, Italy; (F.S.); (M.B.); (S.D.M.); (D.M.); (S.C.); (S.P.)
- Experimental Cancer Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
11
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
12
|
Zhao S, Nan L, Wang Y, Wei L, Mo S. Effects of Smad4 on the expression of caspase‑3 and Bcl‑2 in human gingival fibroblasts cultured on 3D PLGA scaffolds induced by compressive force. Int J Mol Med 2021; 47:25. [PMID: 33495811 PMCID: PMC7846422 DOI: 10.3892/ijmm.2021.4858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 01/13/2023] Open
Abstract
Human gingival fibroblasts (HGFs) are the main cells that comprise gingival tissue, where they transfer mechanical signals under physiological and pathological conditions. The exact mechanism underlying gingival tissue reconstruction under compressive forces remains unclear. The present study aimed to explore the effects of Smad4, caspase-3 and Bcl-2 on the proliferation of HGFs induced by compressive force. HGFs were cultured on poly(lactide-co-glycolide) (PLGA) scaffolds under an optimal compressive force of 25 g/cm2. Cell viability was determined via Cell Counting Kit-8 assays at 0, 12, 24, 48 and 72 h. The expression levels of Smad4, caspase-3 and Bcl-2 were measured via reverse transcription-quantitative PCR and western blotting. The application of compressive force on HGFs for 24 h resulted in a significant increase in cell proliferation and Bcl-2 expression, but a significant decrease in the expression of Smad4 and caspase-3; however, inverse trends were observed by 72 h. Subsequently, a lentivirus was used to overexpress Smad4 in HGFs, which attenuated the effects of compressive force on HGF proliferation and Bcl-2 expression, but enhanced caspase-3 expression, suggesting that Smad4 may regulate compressive force-induced apoptosis in HGFs. In conclusion, these findings increased understanding regarding the mechanisms of compressive force-induced HGF proliferation and apoptosis, which may provide further insight for improving the efficacy and stability of orthodontic treatment.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yao Wang
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
13
|
Par-4 mediated Smad4 induction in PDAC cells restores canonical TGF-β/ Smad4 axis driving the cells towards lethal EMT. Eur J Cell Biol 2020; 99:151076. [PMID: 32439219 DOI: 10.1016/j.ejcb.2020.151076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Deregulation of TGF-β signaling is intricately engrossed in the pathophysiology of pancreatic adenocarcinomas (PDACs). The role of TGF-β all through pancreatic cancer initiation and progression is multifarious and somewhat paradoxical. TGF-β plays a tumor suppressive role in early-stage pancreatic cancer by promoting apoptosis and inhibiting epithelial cell cycle progression, but incites tumor promotion in late-stage by modulating genomic instability, neo-angiogenesis, immune evasion, cell motility, and metastasis. Here, we provide evidences that Par-4 acts as one of the vital mediators to regulate TGF-β/Smad4 pathway, wherein, Par-4 induction/over-expression induced EMT which was later culminated in to apoptosis in presence of TGF-β via positive regulation of Smad4. Intriguingly, Par-4-/- cells were devoid of significant Smad4 induction compared to Par-4+/+ cells in presence of TGF-β and ectopic Par-4 steadily augmented Smad4 expression by restoring TGF-β/Smad4 axis in Panc-1 cells. Further, our FACS and western blotting results unveiled that Par-4 dragged the PDAC cells to G1 arrest in presence of TGF-β byelevating p21 and p27 levels while attenuating Cyclin E and A levels and augmenting caspase 3 cleavage triggering lethal EMT. Through restoration of Smad4, we further establish that in BxPC3 cell line (Smad4-/-), Smad4 is essential for Par-4 to indulge TGF-β dependent lethal EMT program. The mechanistic relevance of Par-4 mediated Smad4 activation was additionally validated by co-immunoprecipitation wherein disruption of NM23H1-STRAP interaction by Par-4 rescues TGF-β/Smad4 pathway in PDAC and mediates the tumor suppressive role of TGF-β, therefore serving as a vital cog to restore the apoptotic functions of TGF-β pathway.
Collapse
|
14
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
15
|
Wang JD, Jin K, Chen XY, Lv JQ, Ji KW. Clinicopathological significance of SMAD4 loss in pancreatic ductal adenocarcinomas: a systematic review and meta-analysis. Oncotarget 2017; 8:16704-16711. [PMID: 28053288 PMCID: PMC5369995 DOI: 10.18632/oncotarget.14335] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer mortality. Although advances have been made in understanding the pathogenesis of PDAC, the outcome still remains poor. The aim of this study is to conduct a meta-analysis to evaluate the precise association between SMAD4 loss and clinicopathological significance in PDAC. A literature search was made in PubMed, Web of Science, Google scholar, and EMBASE for related publications. The data were extracted and assessed by two reviewers independently. Analysis of pooled data was performed, Odds Ratio or Hazard Ratio with corresponding confidence intervals was calculated and summarized. 12 relevant articles were included for full review in detail and meta-analysis. The frequency of SMAD4 protein loss was significantly increased in PDAC than in nonmalignant pancreatic tissue, Odd Ratio was 0.05 with 95% confidence interval 0.01-0.23, p<0.0001. SMAD4 loss was significantly associated with poor overall survival in patients with PDAC, Hazard Ratio was 0.61 with 95% confidence interval 0.38-0.99, p=0.05. SMAD4 loss was not correlated with the size, grades, and lymph node metastasis of PDAC. In conclusion, SMAD4 is a biomarker for the diagnosis of PDAC. SMAD4 loss is significantly related to poor prognosis in patients with PDAC.
Collapse
Affiliation(s)
- Jin-Dao Wang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing City, Zhejiang Province, China
| | - Ketao Jin
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing City, Zhejiang Province, China
| | - Xiao-Ying Chen
- Psychosomatic Second Division, Shaoxing 7th People's Hospital, Shaoxing City, Zhejiang Province, China
| | - Jie-Qing Lv
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing City, Zhejiang Province, China
| | - Ke-Wei Ji
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing City, Zhejiang Province, China
| |
Collapse
|
16
|
Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition. Biochem Soc Trans 2017; 44:1117-34. [PMID: 27528760 DOI: 10.1042/bst20160069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) family signalling pathway. Similar to TGF-β, the complex roles of BMPs in development and disease are demonstrated by their dichotomous roles in various cancers and cancer stages. Although early studies implicated BMP signalling in tumour suppressive phenotypes, the results of more recent experiments recognize BMPs as potent tumour promoters. Many of these complexities are becoming illuminated by understanding the role of BMPs in their contextual role in unique cell types of cancer and the impact of their surrounding tumour microenvironment. Here we review the emerging roles of BMP signalling in cancer, with a focus on the molecular underpinnings of BMP signalling in individual cancers as a valid therapeutic target for cancer prevention and treatment.
Collapse
|
17
|
miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep 2017. [PMID: 28638102 PMCID: PMC5479822 DOI: 10.1038/s41598-017-04191-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) contributes to various processes in cancer progression, such as metastasis and drug resistance. Since we have already established a cell-based reporter system for identifying EMT-suppressive microRNAs (miRNAs) in the pancreatic cancer cell line Panc1, we performed a function-based screening assay by combining this reporter system and a miRNA library composed of 1,090 miRNAs. As a result, we identified miR-509-5p and miR-1243 as EMT-suppressive miRNAs, although the mechanisms for EMT-suppression induced by these miRNAs have yet to be clarified. Herein, we demonstrated that overexpression of miR-509-5p and miR-1243 increased the expression of E-cadherin through the suppression of EMT-related gene expression and that drug sensitivity increased with a combination of each of these miRNAs and gemcitabine. Moreover, miR-509-5p was associated with worse overall survival in patients with pancreatic cancer and was identified as an independently selected predictor of mortality. Our findings suggest that miR-509-5p and miR-1243 might be novel chemotherapeutic targets and serve as biomarkers in pancreatic cancer.
Collapse
|
18
|
Li X, Li X, Lv X, Xiao J, Liu B, Zhang Y. Smad4 Inhibits VEGF-A and VEGF-C Expressions via Enhancing Smad3 Phosphorylation in Colon Cancer. Anat Rec (Hoboken) 2017; 300:1560-1569. [DOI: 10.1002/ar.23610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 12/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xuemei Li
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Xinlei Li
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Xiaohong Lv
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Jianbing Xiao
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Baoquan Liu
- Department of Anatomy; Harbin Medical University; Harbin China
| | - Yafang Zhang
- Department of Anatomy; Harbin Medical University; Harbin China
| |
Collapse
|
19
|
Ahmed S, Bradshaw AD, Gera S, Dewan MZ, Xu R. The TGF-β/Smad4 Signaling Pathway in Pancreatic Carcinogenesis and Its Clinical Significance. J Clin Med 2017; 6:jcm6010005. [PMID: 28067794 PMCID: PMC5294958 DOI: 10.3390/jcm6010005] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/07/2016] [Accepted: 12/27/2016] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal human cancers due to its complicated genomic instability. PDAC frequently presents at an advanced stage with extensive metastasis, which portends a poor prognosis. The known risk factors associated with PDAC include advanced age, smoking, long-standing chronic pancreatitis, obesity, and diabetes. Its association with genomic and somatic mutations is the most important factor for its aggressiveness. The most common gene mutations associated with PDAC include KRas2, p16, TP53, and Smad4. Among these, Smad4 mutation is relatively specific and its inactivation is found in more than 50% of invasive pancreatic adenocarcinomas. Smad4 is a member of the Smad family of signal transducers and acts as a central mediator of transforming growth factor beta (TGF-β) signaling pathways. The TGF-β signaling pathway promotes many physiological processes, including cell growth, differentiation, proliferation, fibrosis, and scar formation. It also plays a major role in the development of tumors through induction of angiogenesis and immune suppression. In this review, we will discuss the molecular mechanism of TGF-β/Smad4 signaling in the pathogenesis of pancreatic adenocarcinoma and its clinical implication, particularly potential as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Sunjida Ahmed
- Department of Pathology, New York University School of Medicine, and Langone Medical Center, New York, NY 10016, USA.
| | - Azore-Dee Bradshaw
- Department of Pathology, New York University School of Medicine, and Langone Medical Center, New York, NY 10016, USA.
| | - Shweta Gera
- Department of Pathology, New York University School of Medicine, and Langone Medical Center, New York, NY 10016, USA.
| | - M Zahidunnabi Dewan
- Department of Pathology, New York University School of Medicine, and Langone Medical Center, New York, NY 10016, USA.
| | - Ruliang Xu
- Department of Pathology, New York University School of Medicine, and Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
20
|
Zhang J, Yamada O, Kida S, Matsushita Y, Murase S, Hattori T, Kubohara Y, Kikuchi H, Oshima Y. Identification of brefelamide as a novel inhibitor of osteopontin that suppresses invasion of A549 lung cancer cells. Oncol Rep 2016; 36:2357-64. [DOI: 10.3892/or.2016.5006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
|
21
|
Abstract
The outcomes for treatment of pancreatic cancer have not improved dramatically in many decades. However, the recent promising results with combination chemotherapy regimens for metastatic disease increase optimism for future treatments. With greater control of overt or occult metastatic disease, there will likely be an expanding role for local treatment modalities, especially given that nearly a third of pancreatic cancer patients have locally destructive disease without distant metastatic disease at the time of death. Technical advances have allowed for the safe delivery of dose-escalated radiation therapy, which can then be combined with chemotherapy, targeted agents, immunotherapy, and nanoparticulate drug delivery techniques to produce novel and improved synergistic effects. Here we discuss recent advances and future directions for multimodality therapy in pancreatic cancer.
Collapse
|
22
|
David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Donahue CA, Massagué J. TGF-β Tumor Suppression through a Lethal EMT. Cell 2016; 164:1015-30. [PMID: 26898331 DOI: 10.1016/j.cell.2016.01.009] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/06/2015] [Accepted: 01/07/2016] [Indexed: 01/06/2023]
Abstract
TGF-β signaling can be pro-tumorigenic or tumor suppressive. We investigated this duality in pancreatic ductal adenocarcinoma (PDA), which, with other gastrointestinal cancers, exhibits frequent inactivation of the TGF-β mediator Smad4. We show that TGF-β induces an epithelial-mesenchymal transition (EMT), generally considered a pro-tumorigenic event. However, in TGF-β-sensitive PDA cells, EMT becomes lethal by converting TGF-β-induced Sox4 from an enforcer of tumorigenesis into a promoter of apoptosis. This is the result of an EMT-linked remodeling of the cellular transcription factor landscape, including the repression of the gastrointestinal lineage-master regulator Klf5. Klf5 cooperates with Sox4 in oncogenesis and prevents Sox4-induced apoptosis. Smad4 is required for EMT but dispensable for Sox4 induction by TGF-β. TGF-β-induced Sox4 is thus geared to bolster progenitor identity, whereas simultaneous Smad4-dependent EMT strips Sox4 of an essential partner in oncogenesis. Our work demonstrates that TGF-β tumor suppression functions through an EMT-mediated disruption of a lineage-specific transcriptional network.
Collapse
Affiliation(s)
- Charles J David
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yun-Han Huang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mo Chen
- The Rockefeller University, New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Xia X, Zhang K, Cen G, Jiang T, Cao J, Huang K, Huang C, Zhao Q, Qiu Z. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget 2015; 6:21046-63. [PMID: 26019136 PMCID: PMC4673249 DOI: 10.18632/oncotarget.4124] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/02/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Aim to determine the clinicopathological and prognostic role of miR-301a-3p in pancreatic ductal adenocarcinoma(PDAC), to investigate the biological mechanism of miR-301a-3p in vitro and in vivo. METHODS By tissue microarray analysis, we studied miR-301a-3p expression in PDAC patients and its clinicopathological correlations as well as prognostic significance. qRT-PCR was used to test miR-301a-3p expression in PDAC tissues and cell lines. Functional experiments including in vitro and in vivo were performed. RESULTS Significantly higher expression of miR-301a-3p were found in PDAC patients with lymph node metastasis and advanced pathological stages and identified as an independent prognostic factor for worse survival. In PDAC samples and cell lines, miR-301a-3p was significantly up-regulated compared with matched non-tumor tissues and normal pancreatic ductal cells, respectively. Overexpression of miR-301a-3p enhanced PDAC cells colony, invasion and migration abilities in vitro as well as tumorigenicity in vivo. Furthermore, SMAD4 was identified as a target gene of miR-301a-3p by cell as well as mice xenograft experiments. In PDAC tissue microarray, a significantly inverse correlation between miR-301a-3p ISH scores and SMAD4 IHC scores were observed in both tumor and corresponding non-tumor tissues. CONCLUSIONS MiR-301a-3p functions as a novel oncogene in PDAC and the oncogenic activity may involve its inhibition of the target gene SMAD4.
Collapse
Affiliation(s)
- Xiang Xia
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Kundong Zhang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Gang Cen
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Tao Jiang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Jun Cao
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Kejian Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis and National Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| |
Collapse
|
24
|
Fullerton PT, Creighton CJ, Matzuk MM. Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF-β Signaling. Mol Endocrinol 2015; 29:1440-53. [PMID: 26284758 DOI: 10.1210/me.2015-1102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer death in the United States. The TGF-β signaling protein SMAD family member 4 is lost in 60% of PDAC, and this has been associated with poorer prognosis. However, the mechanisms by which SMAD4 loss promotes PDAC development are not fully understood. We expressed SMAD4 in human PDAC cell lines BxPC3 and CFPAC1 by selection of stable clones containing an inducible SMAD4 tetracycline inducible expression system construct. After 24 hours of SMAD4 expression, TGF-β signaling-dependent G1 arrest was observed in BxPC3 cells with an increase in the G1 phase fraction from 48.9% to 71.5%. Inhibition of cyclin-dependent kinase inhibitor 1A by small interfering RNA eliminated the antiproliferative effect, indicating that up-regulation of cyclin-dependent kinase inhibitor 1A/p21 by TGF-β signaling is necessary for the phenotype. SMAD4 expression had no impact on invasion in BxPC3 cells, but reduced migration. Microarray analysis of gene expression at 8, 24, and 48 hours after SMAD4 expression characterized the regulatory impact of SMAD4 expression in a SMAD4-null PDAC cell line and identified novel targets of TGF-β signaling. Among the novel TGF-β targets identified are anthrax toxin receptor 2 (3.58× at 8 h), tubulin, β-3 class III (7.35× at 8 h), cell migration inducing protein, hyaluronan binding (8.07× at 8 h), IL-1 receptor-like 1 (0.403× at 8 h), regulator of G protein signaling 4 (0.293× at 8 h), and THAP domain containing 11 (0.262× at 8 h). The gene expression changes we observed upon restoration of TGF-β signaling provide numerous new targets for future investigations into PDAC biology and progression.
Collapse
Affiliation(s)
- Paul T Fullerton
- Departments of Molecular and Human Genetics (P.T.F., M.M.M.), Pathology and Immunology (P.T.F., M.M.M.), Molecular and Cellular Biology (M.M.M.), Pharmacology (M.M.M.), and Medicine (C.J.C.); the Center for Drug Discovery (P.T.F., M.M.M.); and the Dan L. Duncan Cancer Center (P.T.F., C.J.C., M.M.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Chad J Creighton
- Departments of Molecular and Human Genetics (P.T.F., M.M.M.), Pathology and Immunology (P.T.F., M.M.M.), Molecular and Cellular Biology (M.M.M.), Pharmacology (M.M.M.), and Medicine (C.J.C.); the Center for Drug Discovery (P.T.F., M.M.M.); and the Dan L. Duncan Cancer Center (P.T.F., C.J.C., M.M.M.), Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Departments of Molecular and Human Genetics (P.T.F., M.M.M.), Pathology and Immunology (P.T.F., M.M.M.), Molecular and Cellular Biology (M.M.M.), Pharmacology (M.M.M.), and Medicine (C.J.C.); the Center for Drug Discovery (P.T.F., M.M.M.); and the Dan L. Duncan Cancer Center (P.T.F., C.J.C., M.M.M.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
25
|
Abstract
Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis.
Collapse
Affiliation(s)
- Dacheng Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keping Xie
- Department of Medical Oncology and Tumor Institute, Tongji University School of Medicine, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
26
|
Li D, Kang N, Ji J, Zhan Q. BRCA1 regulates transforming growth factor-β (TGF-β1) signaling through Gadd45a by enhancing the protein stability of Smad4. Mol Oncol 2015; 9:1655-66. [PMID: 26022109 DOI: 10.1016/j.molonc.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/25/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023] Open
Abstract
BRCA1 is a well established tumor suppressor gene, which is involved in many cellular processes, including DNA damage repair, cell cycle control, apoptosis, as well as transcriptional control. In this work, we have found that BRCA1 is involved in regulating TGF-β1/Smad pathway. The loss of endogenous BRCA1 greatly attenuated TGF-β1-induced growth inhibition and cell cycle G1 arrest. BRCA1 greatly maintains stability of Smad4 protein, and the loss of BRCA1 results in Smad4 down-regulation, which is likely related to its downstream gene Gadd45a. Gadd45a is able to interact with β-Trcp1, a-F-box protein of SCF E3 ligase, and consequently suppresses the ubiquitin-degradation of Smad4 by SCF(β-trcp1), as reflected by the observations that the induction of Gadd45a substantially stabilizes Smad4 protein. In addition, exogenous expression of Gadd45a can largely rescue the protein level of Smad4 in BRCA1 deficient cells. These results further demonstrate that BRCA1 may act as an important negative regulator in cell cycle progression and tumorigenesis through regulating the stability of Smad4, and define a novel link that connects BRCA1 to TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Nan Kang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Junfang Ji
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
27
|
Ji L, Xu J, Liu J, Amjad A, Zhang K, Liu Q, Zhou L, Xiao J, Li X. Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of the transforming growth factor β (TGF-β) pathway. J Biol Chem 2015; 290:11729-40. [PMID: 25767119 DOI: 10.1074/jbc.m115.639351] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Indexed: 11/06/2022] Open
Abstract
Specific p53 mutations abrogate tumor-suppressive functions by gaining new abilities to promote tumorigenesis. Inactivation of p53 is known to distort TGF-β signaling, which paradoxically displays both tumor-suppressive and pro-oncogenic functions. The molecular mechanisms of how mutant p53 simultaneously antagonizes the tumor-suppressive and synergizes the tumor-promoting function of the TGF-β pathway remain elusive. Here we demonstrate that mutant p53 differentially regulates subsets of TGF-β target genes by enhanced binding to the MH2 domain in Smad3 upon the integration of ERK signaling, therefore disrupting Smad3/Smad4 complex formation. Silencing Smad2, inhibition of ERK, or introducing a phosphorylation-defective mutation at Ser-392 in p53 abrogates the R175H mutant p53-dependent regulation of these TGF-β target genes. Our study shows a mechanism to reconcile the seemingly contradictory observations that mutant p53 can both attenuate and cooperate with the TGF-β pathway to promote cancer cell malignancy in the same cell type.
Collapse
Affiliation(s)
- Lei Ji
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jinjin Xu
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Liu
- the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Ali Amjad
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Kun Zhang
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Qingwu Liu
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhou
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Jianru Xiao
- the Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Xiaotao Li
- From the Shanghai Key Laboratory of Regulatory Biology, Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China, the Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, and
| |
Collapse
|
28
|
Hoshino Y, Nishida J, Katsuno Y, Koinuma D, Aoki T, Kokudo N, Miyazono K, Ehata S. Smad4 Decreases the Population of Pancreatic Cancer-Initiating Cells through Transcriptional Repression of ALDH1A1. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1457-70. [PMID: 25769430 DOI: 10.1016/j.ajpath.2015.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 12/16/2022]
Abstract
Cancer progression involves a rare population of undifferentiated cancer-initiating cells that have stem cell-like properties for self-renewal capacity and high tumorigenicity. We investigated how maintenance of pancreatic cancer-initiating cells is influenced by Smad4, which is frequently deleted or mutated in pancreatic cancers cells. Smad4 silencing up-regulated the expression of aldehyde dehydrogenase 1A1 (ALDH1A1) mRNA, whereas forced expression of Smad4 in pancreatic cancer cells down-regulated it. Smad4 and ALDH1 expression inversely correlated in some human clinical pancreatic adenocarcinoma tissues, suggesting that ALDH1 in pancreatic cancer cells was associated with decreased Smad4 expression. We then examined whether ALDH1 served as a marker of pancreatic cancer-initiating cells. Pancreatic cancer cells contained ALDH1(hi) cells in 3% to 10% of total cells, with high tumorigenic potential. Because Smad4 is a major mediator of transforming growth factor (TGF)-β family signaling, we investigated the regulatory mechanism of ALDH activity by TGF-β and bone morphogenetic proteins. Treatment with TGF-β attenuated ALDH1(hi) cells in several pancreatic cancer cells, whereas bone morphogenetic protein-4 was not as potent. Biochemical experiments revealed that TGF-β regulated ALDH1A1 mRNA transcription through binding of Smad4 to its regulatory sequence. It appears that TGF-β negatively regulates ALDH1 expression in pancreatic cancer cells in a Smad-dependent manner and in turn impairs the activity of pancreatic cancer-initiating cells.
Collapse
Affiliation(s)
- Yukari Hoshino
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Nishida
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Katsuno
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Aoki
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, Huang K, Qiu Z. SMAD4 and its role in pancreatic cancer. Tumour Biol 2014; 36:111-9. [PMID: 25464861 DOI: 10.1007/s13277-014-2883-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-β (TGF-β) regulates cell functions and has key roles in pancreatic cancer development. SMAD4, as one of the Smads family of signal transducer from TGF-β, mediates pancreatic cell proliferation and apoptosis and is specifically inactivated in half of advanced pancreatic cancers. In recent years, many advances concerning SMAD4 had tried to unravel the complex signaling mechanisms of TGF-β and its dual role of tumor-suppressive and tumor-promoting efforts in pancreatic cancer initiation and progression through SMAD4-dependent TGF-β signaling and SMAD4-independent TGF-β signaling pathways. Meanwhile, its potential prognostic value based on immunohistochemical expression in surgical sample was variably reported by several studies and short of a systematic analysis. This review aimed to discuss the structure, functions, and regulation of this principal protein and its effects in determining the progression and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Xiang Xia
- Department of General Surgery, Shanghai Jiaotong University Affiliated First People's Hospital, 100 Hai Ning Road, Shanghai, 200080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Li C, Wang Z, Chen Y, Zhou M, Zhang H, Chen R, Shi F, Wang C, Rui Z. Transcriptional silencing of ETS-1 abrogates epithelial-mesenchymal transition resulting in reduced motility of pancreatic cancer cells. Oncol Rep 2014; 33:559-65. [PMID: 25421630 PMCID: PMC4306275 DOI: 10.3892/or.2014.3613] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
v-ets erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays crucial roles in a spectrum of malignancies. ETS-1 has gained attention in cancer research for its importance in cell migration, invasion and proliferation. In the present study, we focused on the effect of ETS-1 on epithelial-mesenchymal transition (EMT), which is characterized by reduced E-cadherin expression and increased N-cadherin expression. We found that ETS-1 mRNA expression was positively correlated with N-cadherin and negatively correlated with E-cadherin mRNA expression in five pancreatic cancer cell lines. To elucidate the functionality of ETS-1 on EMT in pancreatic cancer cells, we constructed a green fluorescent protein (GFP)-expressing plasmid carrying ETS-1 short hairpin RNA (shRNA), and transfected Panc-1 cells with the plasmid. We detected reduced N-cadherin and vascular endothelial growth factor yet higher E-cadherin expression in the ETS-1-silenced cells compared with the control group. In addition, we observed reduced cell migration and increased adhesion in these cells. Our data showed that ETS-1 actively functioned as a regulator of EMT in Panc-1 cells, and provide additional evidence supporting a fundamental role for ETS-1 in metastatic pancreatic cancer cells. These results suggest that analysis of ETS-1 expression levels may provide an avenue for evaluating prognosis in pancreatic cancer.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhonghan Wang
- Department of Internal Medicine, Nanjing Government Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Yan Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Min Zhou
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rong Chen
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Cailian Wang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zongdao Rui
- Department of General Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
31
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
32
|
Leung L, Radulovich N, Zhu CQ, Wang D, To C, Ibrahimov E, Tsao MS. Loss of canonical Smad4 signaling promotes KRAS driven malignant transformation of human pancreatic duct epithelial cells and metastasis. PLoS One 2013; 8:e84366. [PMID: 24386371 PMCID: PMC3873993 DOI: 10.1371/journal.pone.0084366] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/22/2013] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death in North America. Activating KRAS mutations and Smad4 loss occur in approximately 90% and 55% of PDAC, respectively. While their roles in the early stages of PDAC development have been confirmed in genetically modified mouse models, their roles in the multistep malignant transformation of human pancreatic duct cells have not been directly demonstrated. Here, we report that Smad4 represents a barrier in KRAS-mediated malignant transformation of the near normal immortalized human pancreatic duct epithelial (HPDE) cell line model. Marked Smad4 downregulation by shRNA in KRASG12V expressing HPDE cells failed to cause tumorigenic transformation. However, KRAS-mediated malignant transformation occurred in a new HPDE-TGF-β resistant (TβR) cell line that completely lacks Smad4 protein expression and is resistant to the mito-inhibitory activity of TGF-β. This transformation resulted in tumor formation and development of metastatic phenotype when the cells were implanted orthotopically into the mouse pancreas. Smad4 restoration re-established TGF-β sensitivity, markedly increased tumor latency by promoting apoptosis, and decreased metastatic potential. These results directly establish the critical combination of the KRAS oncogene and complete Smad4 inactivation in the multi-stage malignant transformation and metastatic progression of normal human HPDE cells.
Collapse
Affiliation(s)
- Lisa Leung
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Chang-Qi Zhu
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Wang
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Christine To
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Emin Ibrahimov
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute/Princess Margaret Hospital, and University Health Network, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
33
|
Voorneveld PW, Stache V, Jacobs RJ, Smolders E, Sitters AI, Liesker A, Korkmaz KS, Lam SM, De Miranda NFCC, Morreau H, Kodach LL, Hardwick JCH. Reduced expression of bone morphogenetic protein receptor IA in pancreatic cancer is associated with a poor prognosis. Br J Cancer 2013; 109:1805-12. [PMID: 23969729 PMCID: PMC3790157 DOI: 10.1038/bjc.2013.486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 02/07/2023] Open
Abstract
Background: The expression of SMAD4, the central component of the transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signalling pathways, is lost in 50% of pancreatic cancers and is associated with a poor survival. Although the TGF-β pathway has been extensively studied and characterised in pancreatic cancer, there is very limited data on BMP signalling, a well-known tumour-suppressor pathway. BMP signalling can be lost not only at the level of SMAD4 but also at the level of BMP receptors (BMPRs), as has been described in colorectal cancer. Methods: We performed immunohistochemical analysis of the expression levels of BMP signalling components in pancreatic cancer and correlated these with survival. We also manipulated the activity of BMP signalling in vitro. Results: Reduced expression of BMPRIA is associated with a significantly worse survival, primarily in a subset of SMAD4-positive cancers. In vitro inactivation of SMAD4-dependent BMP signalling increases proliferation and invasion of pancreatic cancer cells, whereas inactivation of BMP signalling in SMAD4-negative cells does not change the proliferation and invasion or leads to an opposite effect. Conclusion: Our data suggest that BMPRIA expression is a good prognostic marker and that the BMP pathway is a potential target for future therapeutic interventions in pancreatic cancer.
Collapse
Affiliation(s)
- P W Voorneveld
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kong X, Li L, Li Z, Xie K. Targeted destruction of the orchestration of the pancreatic stroma and tumor cells in pancreatic cancer cases: molecular basis for therapeutic implications. Cytokine Growth Factor Rev 2012; 23:343-56. [PMID: 22749856 PMCID: PMC3505269 DOI: 10.1016/j.cytogfr.2012.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/07/2012] [Indexed: 12/16/2022]
Abstract
Pancreatic cancer is one of the most lethal malignancies, with a prominent desmoplastic reaction as its defining hallmark. The past several decades have seen dramatic progress in understanding of pancreatic cancer pathogenesis, including identification of precursor lesions, sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and corresponding signature genetic events, and the biological impact of these events on malignant behavior. However, the currently used therapeutic strategies for epithelial tumor cells, which have exhibited potent antitumor activity in cell culture and animal models, have failed to produce significant effects in the clinic. The desmoplastic stroma surrounding pancreatic cancer cells, which accounts for about 90% of a tumor's mass, clearly is not a passive scaffold for cancer cells but an active contributor to carcinogenesis. Improved understanding of the dynamic interaction between cancer cells and the stroma will be important to designing effective therapeutic strategies for pancreatic cancer. This review focuses on the origin of stromal molecular and cellular components in pancreatic tumors, their biological effects on pancreatic cancer cells, and the orchestration of these two components.
Collapse
Affiliation(s)
- Xiangyu Kong
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Lei Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, The People’s Republic of China
| | - Keping Xie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Ali NA, Molloy MP. Quantitative phosphoproteomics of transforming growth factor-β signaling in colon cancer cells. Proteomics 2011; 11:3390-401. [PMID: 21751366 DOI: 10.1002/pmic.201100036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF-β signaling pathway; however, reports suggest that TGF-β can activate other cellular pathways independent of Smad4. By investigating the TGF-β-regulated phosphoproteome, we aimed to uncover new functions controlled by TGF-β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)-labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF-β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF-β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin-dependent kinases substrate, hepatoma-derived growth factor and cell division kinases amongst others were induced following TGF-β stimulation, while the phosphorylation of TRAF2 and NCK-interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF-β-modulated phosphorylation responses in colon carcinoma cells.
Collapse
Affiliation(s)
- Naveid A Ali
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | |
Collapse
|
36
|
TGF-β1 inhibits the growth and metastasis of tongue squamous carcinoma cells through Smad4. Gene 2011; 485:160-6. [PMID: 21726607 DOI: 10.1016/j.gene.2011.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/03/2011] [Accepted: 06/18/2011] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is a multifunctional cytokine that regulates cell growth, differentiation, migration, apoptosis and extracellular matrix remodeling. TGF-β1 transduces signals from the cell membrane to the cell nucleus through serine/threonine kinase receptors and their downstream effectors, Smad molecules. Although many studies have been focused on TGF-β1-Smad signaling pathway, the role of TGF-β1/Smad in tongue squamous cell carcinoma is not fully understood. In the present study, we used a series of cell function assays to examine the role of TGF-β-Smad4 signaling in tongue squamous cell carcinoma. We observed the effects of TGF-β1 on the growth and metastatic potential of the tongue squamous cell carcinoma cell line Ts, which expresses lower level of Smad4 protein. We found that Smad4 could decrease TGF-β1-induced cell proliferation, and that Smad4 overexpression promoted Ts cell apoptosis. In Ts vector control cells, TGF-β1 increased the expression of TβRII, as well as MMP-2, and enhanced cell invasion through the basement membrane, and then induced cell metastasis. However in Ts cells stably expressing Smad4, Smad4 mediated TGF-β1-induced p21 expression promoted cell apoptosis and inhibited cell proliferation, delayed MMP-2 expression, and decreased cell metastasis. Therefore, TGF-β1 plays distinct roles in the Smad4-dependent and -independent signaling pathways.
Collapse
|
37
|
Papageorgis P, Cheng K, Ozturk S, Gong Y, Lambert AW, Abdolmaleky HM, Zhou JR, Thiagalingam S. Smad4 inactivation promotes malignancy and drug resistance of colon cancer. Cancer Res 2011; 71:998-1008. [PMID: 21245094 DOI: 10.1158/0008-5472.can-09-3269] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SMAD4 is localized to chromosome 18q21, a frequent site for loss of heterozygosity in advanced stage colon cancers. Although Smad4 is regarded as a signaling mediator of the TGFβ signaling pathway, its role as a major suppressor of colorectal cancer progression and the molecular events underlying this phenomenon remain elusive. Here, we describe the establishment and use of colon cancer cell line model systems to dissect the functional roles of TGFβ and Smad4 inactivation in the manifestation of a malignant phenotype. We found that loss of function of Smad4 and retention of intact TGFβ receptors could synergistically increase the levels of VEGF, a major proangiogenic factor. Pharmacologic inhibition studies suggest that overactivation of the TGFβ-induced MEK-Erk and p38-MAPK (mitogen-activated protein kinase) auxiliary pathways are involved in the induction of VEGF expression in SMAD4 null cells. Overall, SMAD4 deficiency was responsible for the enhanced migration of colon cancer cells with a corresponding increase in matrix metalloprotease 9 enhanced hypoxia-induced GLUT1 expression, increased aerobic glycolysis, and resistance to 5'-fluoruracil-mediated apoptosis. Interestingly, Smad4 specifically interacts with hypoxia-inducible factor (HIF) 1α under hypoxic conditions providing a molecular basis for the differential regulation of target genes to suppress a malignant phenotype. In summary, our results define a molecular mechanism that explains how loss of the tumor suppressor Smad4 promotes colorectal cancer progression. These findings are also consistent with targeting TGFβ-induced auxiliary pathways, such as MEK-ERK, and p38-MAPK and the glycolytic cascade, in SMAD4-deficient tumors as attractive strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Panagiotis Papageorgis
- Department of Medicine, Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ali NA, McKay MJ, Molloy MP. Proteomics of Smad4 regulated transforming growth factor-beta signalling in colon cancer cells. MOLECULAR BIOSYSTEMS 2010; 6:2332-8. [PMID: 20862427 DOI: 10.1039/c0mb00016g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TGF-β signalling can play a paradoxical cell type specific role in cancer progression. Smad4 is a key mediator of the TGF-β pathway, and is mutated and/or deleted in many cancers. To investigate Smad4 regulated TGF-β signalling in colon cancer we conducted an iTRAQ mass spectrometry quantitative screen using wild type SW480 (Smad4 negative) colon carcinoma cells and stably restored Smad4 positive SW480 cells. In cells possessing a restored canonical TGF-β signalling pathway, 48 h TGF-β stimulation induced the expression of 15 proteins and repressed 1 protein, while in Smad4 wild type cells, TGF-β induced 7 proteins and repressed 2 proteins. The expression of several S100 protein family members (A2, A4, A10, and A11), transgelin-2 and AKAP12, amongst others, were shown to be regulated by TGF-β in a Smad4 dependent manner. We observed that S100 A4 could be repressed by TGF-β, independently of Smad4 expression, while other Smad4 independent TGF-β responses were restricted to induction of ribosomes and cytoskeletal proteins. Our proteomic screen has identified new Smad4 dependent and independent TGF-β responses in colon carcinoma cells.
Collapse
Affiliation(s)
- Naveid Ahmad Ali
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
39
|
Yang G, Yang X. Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci 2010; 6:1-8. [PMID: 20087440 PMCID: PMC2808050 DOI: 10.7150/ijbs.6.1] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 12/23/2009] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β (TGF-β) family members exert their function via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors, including the common mediator Smad4. The dual effects of TGF-β signaling on tumor initiation and progression are cell-specific and yet to be determined under distinct contexts. A number of genetically manipulated mouse models with alterations in the TGF-β pathway genes, particularly the pivotal Smad4, revealed that these genes play crucial functions in maintaining tissue homeostasis and suppressing tumorigenesis. Loss of Smad4 plays a causal role in initiating squamous cell carcinomas of skin and upper digestive tract as well as adenocarcinomas of gastrointestinal tract. However, for some cancers like pancreatic and cholangiocellular carcinomas, Smad4 deficiency does not initiate the tumorigenesis but acts as a promoter to accelerate or synergize the development and progression of cancers that are started by other oncogenic pathways. Intriguingly, emerging evidences from mouse models have highlighted the important roles of non-cell autonomous effects of Smad4-mediated TGF-β signaling in the inhibition of oncogenesis. All these data have greatly deepened our understanding of molecular mechanisms of cell-autonomous and non-cell autonomous effect of Smad4-mediated TGF-β signaling in suppressing carcinogenesis, which may facilitate the development of successful therapies targeting TGF-β signaling for the treatment of human cancers.
Collapse
Affiliation(s)
- Guan Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, AMMS, Beijing, P.R. China
| | | |
Collapse
|
40
|
Buchholz M, Gress TM. Molecular changes in pancreatic cancer. Expert Rev Anticancer Ther 2009; 9:1487-97. [PMID: 19828010 DOI: 10.1586/era.09.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As with many human malignancies, pancreatic cancer is a complex genetic disorder. Several thousand disease-associated alterations on the DNA, mRNA, miRNA and protein levels have been reported to date. Some of these alterations, including a number of gatekeeper mutations, which are of pre-eminent importance for the onset and progression of the disease, have been extensively studied in primary tissues, in vitro experiments and transgenic mouse models. For the vast majority of alterations, however, data about the functional significance are lacking. The situation is complicated by the fact that no certainty exists concerning the identity of the cells that originally undergo malignant transformation nor about the precise nature and fate of premalignant lesions that are observed in pancreatic tissues.
Collapse
Affiliation(s)
- Malte Buchholz
- Klinik f. Innere Medizin, SP Gastroenterologie, Universitätsklinikum Marburg, Baldingerstrasse 35043 Marburg, Germany.
| | | |
Collapse
|
41
|
Furukawa T. Molecular pathology of pancreatic cancer: implications for molecular targeting therapy. Clin Gastroenterol Hepatol 2009; 7:S35-9. [PMID: 19896096 DOI: 10.1016/j.cgh.2009.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/01/2009] [Accepted: 07/02/2009] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer develops through ductal dysplastic lesions or pancreatic intraepithelial neoplasia (PanIN). The origin of pancreatic cancer remains controversial. Some of the molecular origins of pancreatic cancer have been described. For example, KRAS, SHH, CDKN2A, TP53, SMAD4, and DUSP6 are crucial molecules in the development and progression of pancreatic cancer. Understanding the mechanisms of carcinogenesis could help researchers find the Achilles' heel of pancreatic cancer. Molecular targeting is a promising strategy for curing this devastating disease.
Collapse
Affiliation(s)
- Toru Furukawa
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|
42
|
Sakurai T, Kondoh N, Arai M, Hamada JI, Yamada T, Kihara-Negishi F, Izawa T, Ohno H, Yamamoto M, Oikawa T. Functional roles of Fli-1, a member of the Ets family of transcription factors, in human breast malignancy. Cancer Sci 2009; 98:1775-84. [PMID: 17727680 DOI: 10.1111/j.1349-7006.2007.00598.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Ets family of transcription factors is implicated in malignant transformation and tumor progression, including invasion, metastasis and neo-angiogenesis. In the present study, we found that the Fli-1 gene, a member of the Ets family, was highly expressed in several breast cancer cell lines (MDA-MB231, MDA-MB436, BT-549 and HCC1395). To investigate the functional roles of Fli-1 in breast cancer malignancy, we introduced an expression plasmid containing full-length Fli-1 cDNA into MCF7 breast cancer cells in which endogenous expression of Fli-1 was barely detectable.Overexpression of Fli-1 in MCF7 cells led to inhibition of apoptosis induced by serum depletion or ultraviolet irradiation, although it did not affect cell growth rate in liquid media, colony formation in soft agar or the in vitro invasion capacity of the cells. Expression of Fli-1 and antiapoptotic bcl-2 was coordinately upregulated by serum depletion in MCF7 cells, and the upregulation was inhibited by treatment of the cells with a c-Jun-NH(2)-terminal kinase-specific inhibitor. Furthermore, expression of the bcl-2 gene and protein was enhanced in Fli-1-overexpressing MCF7 cells compared with mock-transfected cells. In addition, human bcl-2 promoter activity was transactivated by Fli-1. These results suggest that Fli-1 contributes to the malignancy of human breast cancer by inhibiting apoptosis through upregulated expression of the bcl-2 gene.
Collapse
Affiliation(s)
- Takuya Sakurai
- Department of Cell Genetics, Sasaki Institute, Kanda-Surugadai, Tokoyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li YY, Wu Y, Tsuneyama K, Baba T, Mukaida N. Essential contribution of Ets-1 to constitutive Pim-3 expression in human pancreatic cancer cells. Cancer Sci 2009; 100:396-404. [PMID: 19154409 PMCID: PMC11158210 DOI: 10.1111/j.1349-7006.2008.01059.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We previously demonstrated that the proto-oncogene Pim-3 with serine/threonine kinase activity was aberrantly expressed in cancer cells but not in the normal cells of the pancreas. In order to elucidate the molecular mechanism underlying aberrant Pim-3 expression in pancreatic cancer cells, we constructed luciferase expression vectors linked to 5'-flanking deletion mutants of the human Pim-3 gene and transfected human pancreatic cancer cells with the resultant vectors. The region up to -264 bp was essential for constitutive Pim-3 gene expression, and the mutation in the Ets-1 binding site (between -216 and -211 bp) reduced luciferase activities. Moreover, Ets-1 mRNA and protein were constitutively expressed together with Pim-3 in human pancreatic cancer cell lines. Chromatin immunoprecipitation assay demonstrated constitutive binding of Ets-1 to the 5'-flanking region of human Pim-3 gene between -249 and -183 bp. Pim-3 promoter activity and its protein expression were induced by transfection with wild type-Ets-1 and were reduced by transfection with dominant negative-Ets-1 or Ets-1 small-interfering RNA (siRNA). Furthermore, dominant negative-Ets-1 and Ets-1 siRNA reduced the amount of Bad phosphorylated at its Ser(112) and induced apoptosis, when they were transfected into human pancreatic cancer cells. Finally, Pim-3 cDNA transfection reversed Ets-1 siRNA-induced increase in apoptosis and decrease in Bad phosphorylation at its Ser(112). These observations would indicate that the transcription factor Ets-1 can induce aberrant Pim-3 expression and subsequently prevent apoptosis in human pancreatic cancer cells.
Collapse
Affiliation(s)
- Ying-Yi Li
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
44
|
Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, Hofmann WK, Baldus CD. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 2008; 33:817-22. [PMID: 19108891 DOI: 10.1016/j.leukres.2008.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 12/31/2022]
Abstract
Expression of ERG is of prognostic significance in acute myeloid leukemia (AML) and T-lymphoblastic leukemia (T-ALL) pointing to its role in leukemogenesis. To unravel its transcriptional regulation we analyzed the expression of ERG specific isoforms. Expression of the two main isoforms ERG2 and ERG3 was found in AML and normal CD34+ cells, whereas T-ALL blasts only expressed ERG isoforms harboring exon 5 (ERG3) lacking expression of ERG2. Bisulfite sequencing revealed hypermethylation of a CpG island within the ERG2 promoter region in T-ALL. Treatment of the T-lymphoblastic cell line BE13 with decitabine led to re-expression of ERG2 and pyrosequencing showed concordant DNA hypomethylation, thus confirming a methylation regulated expression of ERG2. Moreover, the identification of a new ERG isoform (ERG3Deltaex12) suggests the association with different interaction partners and adds to the complexity of downstream pathways mediated by the expression of specific ERG transcripts in acute leukemia.
Collapse
Affiliation(s)
- Arend Bohne
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shen W, Tao GQ, Li DC, Zhu XG, Bai X, Cai B. Inhibition of pancreatic carcinoma cell growth in vitro by DPC4 gene transfection. World J Gastroenterol 2008; 14:6254-60. [PMID: 18985820 PMCID: PMC2761591 DOI: 10.3748/wjg.14.6254] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of DPC4 in malignant and non-malignant specimens of human pancreas, and observe the inhibition of retroviral pLXSN containing DPC4 on pancreatic carcinoma cells in vitro.
METHODS: The expression of DPC4 was determined in 40 pancreatic adenocarcinoma and 36 non-malignant pancreatic specimens by reverse-transcriptase polymerase chain reaction (RT-PCR) and immunohisto-chemistry. Furthermore, we constructed retroviral vectors containing DPC4, which then infected the pancreatic carcinoma cell line BxPC-3. Cell growth in vitro after being infected was observed, and the vascular endothelial growth factor (VEGF) mRNA level in the daughter cells was determined by semi-quantitative PCR assay.
RESULTS: The RT-PCR assay showed a positive rate of DPC4 mRNA in 100% (36/36) of normal specimens, compared to 40% (16/40) in adenocarcinoma specimens. The regional and intense positive cases of DPC4 expression in adenocarcinoma detected by immunohistochemistry were 10 and four, whereas it was all positive expression in normal tissues. There was a significant difference of DPC4 expression between them. The stable expression of DPC4 in the pancreatic carcinoma cells BxPC-3 could be resumed by retroviral vector pLXSN transfection, and could inhibit cell growth in vitro. Rather, DPC4 could decrease VEGF mRNA transcription levels.
CONCLUSION: The deletion of DPC4 expression in pancreatic carcinoma suggests that loss of DPC4 may be involved in the development of pancreatic carcinoma. The retroviral vector pLXSN containing DPC4 can inhibit the proliferation of pancreatic carcinoma cells, and down-regulate the level of VEGF.
Collapse
|
46
|
Transcriptional silencing of ETS-1 efficiently suppresses angiogenesis of pancreatic cancer. Cancer Gene Ther 2008; 16:137-48. [PMID: 18772901 DOI: 10.1038/cgt.2008.65] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we addressed the hypothesis that transcriptional suppression of erythroblastosis virus E26 oncogene homolog 1 (ETS-1) is an efficient therapeutic approach to pancreatic adenocarcinoma by investigating the effect of ETS-1 suppression in human pancreatic cancer cells. We accomplished this by using an adenoviral vector encoding only the DNA-binding domain of wild-type ETS-1 (ETS-1 dominant negative, ETS-1-DN). ETS-1-DN decreases ETS-1-binding by competing for its binding to DNA. Adenoviral-mediated transfer of ETS-1-DN (adenoviral ETS-1-DN construct, AdETS-1-DN) into pancreatic tumor cell lines did not affect their proliferation rate in vitro but did significantly inhibit their in vivo growth in nude mice. Furthermore, to test the efficacy of ETS-1-DN in vivo, we injected the AdETS-1-DN into established human pancreatic adenocarcinomas grown in nude mice. This treatment significantly reduced tumor size as compared to saline injection, without any detectable side effects. Microvessel density in mouse xenografts displayed significantly lower values in tumors in which ETS-1 was downregulated. In addition, expression of the ETS-1-DN in the pancreatic cancer cells resulted in downregulation of urokinase-type plasminogen activator (u-PA) and metalloproteinase-1 (MMP-1) expression. Taken together, these data suggest that transcriptional inactivation of ETS-1 is able to significantly affect angiogenesis and growth of pancreatic cancer. This effect may be due in part to downregulation of MMP-1 and u-PA expression. Our results suggest that ETS-1-DN is a promising candidate for antiangiogenic gene therapy in pancreatic cancer.
Collapse
|
47
|
Ishida M, Sunamura M, Furukawa T, Lefter LP, Morita R, Akada M, Egawa S, Unno M, Horii A. The PMAIP1 gene on chromosome 18 is a candidate tumor suppressor gene in human pancreatic cancer. Dig Dis Sci 2008; 53:2576-82. [PMID: 18231856 DOI: 10.1007/s10620-007-0154-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/26/2007] [Indexed: 12/09/2022]
Abstract
Frequent loss of heterozygosity on the long arm of chromosome 18 is observed in pancreatic cancer. Previous studies suggested the existence of one or more tumor-suppressor genes other than SMAD4 on chromosome 18. To identify the candidate tumor-suppressor gene(s), we compared gene expression by cDNA microarray analyses using a pancreatic cancer cell line Panc-1 and its hybrid cell lines showing suppressed cell growth after introduction of one normal copy of chromosome 18. The microarray analyses identified 38 genes on chromosome 18 that showed differential expressional levels. Among these genes, phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1/APR/NOXA) was identified as one of the candidates for tumor suppressor. Expression vector-mediated introduction of PMAIP1 suppressed cell proliferation, and RNAi-mediated knockdown of PMAIP1 induced recovery of cell growth. These results suggest that PMAIP1 may play an important role in the progression of pancreatic cancer.
Collapse
Affiliation(s)
- Masaharu Ishida
- Department of Molecular Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Pancreatic cancer is a lethal disease and notoriously difficult to treat. Only a small proportion is curative by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Clearly there is a need for the continual development of novel therapeutic agents to improve the current situation. Improvement of our understanding of the disease has generated a large number of studies on biological approaches targeting the molecular abnormalities of pancreatic cancer, including gene therapy and signal transduction inhibition, antiangiogenic and matrix metalloproteinase inhibition, oncolytic viral therapy and immunotherapy. This article provides a review of these approaches, both investigated in the laboratories and in subsequent clinical trials.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK.
| | | |
Collapse
|
49
|
Abstract
The genetic paradigm of cancer, focused largely on sequential molecular aberrations and associated biological impact in the neoplastic cell compartment of malignant tumors, has dominated our view of cancer pathogenesis. For the most part, this conceptualization has overlooked the dynamic and complex contributions of the surrounding microenvironment comprised of non-tumor cells (stroma) that may resist, react to, and/or foster tumor development. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease in which a prominent tumor stroma compartment is a defining characteristic. Indeed, the bulk of PDAC tumor volume consists of non-neoplastic fibroblastic, vascular, and inflammatory cells surrounded by immense quantities of extracellular matrix, far exceeding that found in most other tumor types. Remarkably, little is known about the composition and physiology of the PDAC tumor microenvironment, in particular, the role of stroma in tumor initiation and progression. This review attempts to define key challenges, opportunities and state-of-knowledge relating to the PDAC microenvironment research with an emphasis on how inflammatory processes and key cancer pathways may shape the ontogeny of the tumor stroma. Such knowledge may be used to understand the evolution and biology of this lethal cancer and may convert these insights into new points of therapeutic intervention.
Collapse
Affiliation(s)
- Gerald C Chu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | |
Collapse
|
50
|
Aspinall-O'Dea M, Costello E. The pancreatic cancer proteome - recent advances and future promise. Proteomics Clin Appl 2007; 1:1066-79. [DOI: 10.1002/prca.200700144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|