1
|
Song Y, Zhang P, Bhushan S, Wu X, Zheng H, Yang Y. The Critical Role of Inhibitor of Differentiation 4 in Breast Cancer: From Mammary Gland Development to Tumor Progression. Cancer Med 2025; 14:e70856. [PMID: 40186425 PMCID: PMC11971571 DOI: 10.1002/cam4.70856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
Inhibitor of differentiation 4 (ID4) is a highly conserved DNA-binding inhibitory protein of mammals, and its main role is to bind basic helix-loop-helix (b-HLH) so that it loses its DNA-binding activity, which in turn regulates the transcription of key genes, regulating cell differentiation and proliferation as the physiological function. Breast tissue is a highly heterogeneous tissue organ with a strong capacity for remodeling and differentiation, and studies of breast carcinogenesis suggest that the mechanisms regulating the differentiation of breast tissue interact critically with tumorigenesis. The expression level of ID4 and its regulatory mechanism play a crucial role in the study of breast cancer, but its oncogenic or oncostatic role has not yet been unanimously identified, and its regulatory mechanism in breast cancer still needs to be further elucidated. This review summarizes and analyzes the relevant studies of ID4 and the research progress in breast cancer, integrating the development of breast tissue and tumorigenesis with the regulatory role of ID4, to provide some insights into develop new treatment strategies and diagnostic biomarkers.
Collapse
Affiliation(s)
- Yuhang Song
- Department of Breast SurgeryHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer; National key clinical specialty construction disciplineWuhanHubeiChina
| | - Panshi Zhang
- Department of Thyroid and Breast SurgeryTongji Hospital of Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell BiologyUnit of Reproductive Biology, Justus‐Liebig‐University GiessenGiessenGermany
| | - Xinhong Wu
- Department of Breast SurgeryHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer; National key clinical specialty construction disciplineWuhanHubeiChina
| | - Hongmei Zheng
- Department of Breast SurgeryHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer; National key clinical specialty construction disciplineWuhanHubeiChina
| | - Yalong Yang
- Department of Breast SurgeryHubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer; National key clinical specialty construction disciplineWuhanHubeiChina
| |
Collapse
|
2
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Qin W, Zhang J, Rong R, Zhang L, Gao H, Liu C, Ren Q, Zheng G, Wang J, Meng L, Qiao S, Qian R, Zhou C, Wang H, Zhang Y. Osteoglycin (OGN) promotes tumorigenesis of pancreatic cancer cell via targeting ID4. Tissue Cell 2022; 78:101867. [DOI: 10.1016/j.tice.2022.101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022]
|
4
|
Nasif D, Real S, Roqué M, Branham MT. CDC42 as an epigenetic regulator of ID4 in triple-negative breast tumors. Breast Cancer 2022; 29:562-573. [DOI: 10.1007/s12282-022-01334-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
|
5
|
Id4 Suppresses the Growth and Invasion of Colorectal Cancer HCT116 Cells through CK18-Related Inhibition of AKT and EMT Signaling. JOURNAL OF ONCOLOGY 2021; 2021:6660486. [PMID: 33936204 PMCID: PMC8060092 DOI: 10.1155/2021/6660486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 04/02/2021] [Indexed: 01/05/2023]
Abstract
Id4 is one of the inhibitors of DNA-binding proteins (Id) and involved in the pathogenesis of numerous cancers. The specific mechanism underlying the Id4-mediated regulation of proliferation, invasion, and metastasis of colorectal cancer (CRC) cells is still largely unclear. In the present study, results showed CRC cells had a lower baseline Id4 expression than normal intestinal epithelial NCM460 cells. In order to explore the role of Id4 in the tumorigenicity, CRC HCT116 cells with stable Id4 expression were used, and results showed Id4 overexpression arrested the cell cycle at the G0/G1 phase, inhibited the cell proliferation and the colony formation, as well as suppressed the migration and invasion. In the in vivo model, Id4 overexpression inhibited the tumor growth and metastasis in the nude mice. Furthermore, Id4 overexpression upregulated the expression of proteins associated with cell proliferation, inhibited the PI3K/AKT pathway, and suppressed epithelial-mesenchymal transition (EMT) of HCT116 cells. Moreover, Id4 significantly decreased cytokeratin 18 (CK18) expression, but CK18 overexpression in Id4 expressing HCT116-Id4 cells rescued the activation of AKT, p-AKT, MMP2, MMP7, and E-cadherin. Collectively, our study indicated Id4 may inhibit CRC growth and metastasis through inhibiting the PI3K/AKT pathway in a CK18-dependent manner and suppressing EMT. Id4 may become a target for the treatment of CRC.
Collapse
|
6
|
Li L, Li F, Xia Y, Yang X, Lv Q, Fang F, Wang Q, Bu W, Wang Y, Zhang K, Wu Y, Shen J, Jiang M. UVB induces cutaneous squamous cell carcinoma progression by de novo ID4 methylation via methylation regulating enzymes. EBioMedicine 2020; 57:102835. [PMID: 32574963 PMCID: PMC7317242 DOI: 10.1016/j.ebiom.2020.102835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about whether UVB can directly influence epigenetic regulatory pathways to induce cutaneous squamous cell carcinoma (CSCC). This study aimed to identify epigenetic-regulated signalling pathways through global methylation and gene expression profiling and to elucidate their function in CSCC development. METHODS Global DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) and genome-wide gene expression analysis by RNA sequencing (RNA-seq) in eight pairs of matched CSCC and adjacent normal skin tissues were used to investigate the potential candidate gene(s). Clinical samples, animal models, cell lines, and UVB irradiation were applied to validate the mechanism and function of the genes of interest. FINDINGS We identified the downregulation of the TGF-β/BMP-SMAD-ID4 signalling pathway in CSCC and increased methylation of inhibitor of DNA binding/differentiation 4 (ID4). In normal human and mouse skin tissues and cutaneous cell lines, UVB exposure induced ID4 DNA methylation, upregulated DNMT1 and downregulated ten-eleven translocation (TETs). Similarly, we detected the upregulation of DNMT1 and downregulation of TETs accompanying ID4 DNA methylation in CSCC tissues. Silencing of DNMT1 and overexpression of TET1 and TET2 in A431 and Colo16 cells led to increased ID4 expression. Finally, we showed that overexpression of ID4 reduced cell proliferation, migration, and invasion, and increased apoptosis in CSCC cell lines and reduced tumourigenesis in mouse models. INTERPRETATION The results indicate that ID4 is downregulated by UVB irradiation via DNA methylation. ID4 acts as a tumour suppressor gene in CSCC development. FUNDING CAMS Innovation Fund for Medical Sciences (CIFMS) (2016-I2M-3-021, 2017-I2M-1-017), the Natural Science Foundation of Jiangsu Province (BK20191136), and the Fundamental Research Funds for the Central Universities (3332019104).
Collapse
Affiliation(s)
- Liming Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fengjuan Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yudong Xia
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Xueyuan Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qun Lv
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Fang Fang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Qiang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Wenbo Bu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Ke Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China
| | - Yi Wu
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junfang Shen
- MethylGene Tech Co., Ltd. Guangzhou, Guangdong 510000, China
| | - Mingjun Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
7
|
Ma X, Liu J, Wang H, Jiang Y, Wan Y, Xia Y, Cheng W. Identification of crucial aberrantly methylated and differentially expressed genes related to cervical cancer using an integrated bioinformatics analysis. Biosci Rep 2020; 40:BSR20194365. [PMID: 32368784 PMCID: PMC7218222 DOI: 10.1042/bsr20194365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Methylation functions in the pathogenesis of cervical cancer. In the present study, we applied an integrated bioinformatics analysis to identify the aberrantly methylated and differentially expressed genes (DEGS), and their related pathways in cervical cancer. Data of gene expression microarrays (GSE9750) and gene methylation microarrays (GSE46306) were gained from Gene Expression Omnibus (GEO) databases. Hub genes were identified by 'limma' packages and Venn diagram tool. Functional analysis was conducted by FunRich. Search Tool for the Retrieval of Interacting Genes Database (STRING) was used to analyze protein-protein interaction (PPI) information. Gene Expression Profiling Interactive Analysis (GEPIA), immunohistochemistry staining, and ROC curve analysis were conducted for validation. Gene Set Enrichment Analysis (GSEA) was also performed to identify potential functions.We retrieved two upregulated-hypomethylated oncogenes and eight downregulated-hypermethylated tumor suppressor genes (TSGs) for functional analysis. Hypomethylated and highly expressed genes (Hypo-HGs) were significantly enriched in cell cycle and autophagy, and hypermethylated and lowly expressed genes (Hyper-LGs) in estrogen receptor pathway and Wnt/β-catenin signaling pathway. Estrogen receptor 1 (ESR1), Erythrocyte membrane protein band 4.1 like 3 (EPB41L3), Endothelin receptor B (EDNRB), Inhibitor of DNA binding 4 (ID4) and placenta-specific 8 (PLAC8) were hub genes. Kaplan-Meier method was used to evaluate survival data of each identified gene. Lower expression levels of ESR1 and EPB41L3 were correlated with a shorter survival time. GSEA results showed that 'cell adhesion molecules' was the most enriched item. This research inferred the candidate genes and pathways that might be used in the diagnosis, treatment, and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Xiaoling Ma
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Zhang X, Gu G, Song L, Wang D, Xu Y, Yang S, Xu B, Cao Z, Liu C, Zhao C, Zong Y, Qin Y, Xu J. ID4 Promotes Breast Cancer Chemotherapy Resistance via CBF1-MRP1 Pathway. J Cancer 2020; 11:3846-3857. [PMID: 32328189 PMCID: PMC7171490 DOI: 10.7150/jca.31988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Chemo-resistance is considered a key problem in triple negative breast cancer (TNBC) chemotherapy and as such, an urgent need exists to identify its exact mechanisms. Inhibitor of DNA binding factor 4 (ID4) was reported to play diverse roles in different breast cancer molecular phenotypes. In addition, ID4 was associated with mammary carcinoma drug resistance however its functions and contributions remain insufficiently defined. The expression of ID4 in MCF-7, MCF-7/Adr and MDA-MB-231 breast cancer cell lines and patients' tissues were detected by RT-PCR, western blot and immunohistochemistry. Furthermore, TCGA database was applied to confirm these results. Edu and CCK8 assay were performed to detect the proliferation and drug resistance in breast cancer cell lines. Transwell and scratch migration assay were used to detected metastasis. Western blot, TCGA database, Immunoprecipitation (IP), Chromatin Immunoprecipitation (ChIP) and Luciferase reporter assay were used to investigate the tumor promotion mechanisms of ID4. In this study, we report that the expression levels of ID4 appeared to correlate with breast cancers subtype differentiation biomarkers (including ER, PR) and chemo-resistance related proteins (including MRP1, ABCG2, P-gp). Down-regulation of ID4 in MCF-7/Adr and MDA-MB-231 breast cancer cell lines significantly suppressed cell proliferation and invasion, however enhanced Adriamycin sensitivity. We further demonstrated that the oncogenic and chemo-resistant effects of ID4 could be mediated by binding to CBF1 promoter region though combination with MyoD1, and then the downstream target MRP1 could be activated. We reveal for the first time that ID4 performs its function via a CBF1-MRP1 signaling axis, and this finding provides a novel perspective to find potential therapeutic targets for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Guangyan Gu
- Department of Histology and Embryology, Shandong University Cheeloo College of Medicine, Jinan, 250012, Shandong, China
| | - Lin Song
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Dan Wang
- Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Science and education, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yali Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Shuping Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Bin Xu
- Department of Pathology, Shengli Oil Field Central Hospital, Dongying, Shandong Province, 257034, P.R China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunmei Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Chunming Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Yejun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China.,Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| |
Collapse
|
9
|
Wang X, Lu Q, Fei X, Zhao Y, Shi B, Li C, Chen H. Expression and Prognostic Value of Id-4 in Patients with Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1225-1234. [PMID: 32103990 PMCID: PMC7024802 DOI: 10.2147/ott.s230678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
Background Our previous study demonstrated that Id-1 may promote the tumorigenicity of esophageal squamous cell carcinoma (ESCC). Id-4 is another member of Id family, which is rare to be studied in ESCC. In this study, we investigated the expression of Id-4 in human ESCC specimens and determined whether Id-4 expression was associated with the clinicopathologic characteristic and the prognosis of ESCC patients. Methods We examined Id-4 expression using immunohistochemistry in 92 ESCC tissues and adjacent normal tissues. The association between Id-4 expression and clinical parameters and survival was evaluated by statistical analysis. Cox regression analyses were conducted to identify prognostic factors associated with overall survival (OS). In addition, we explored the functional mechanism of Id-4 in ESCC. Results Id-4 expression was significantly downregulated in ESCC tissues compared with adjacent normal tissues. The expression of Id-4 was associated negatively with pT stage (p=0.002), AJCC stage (p=0.008) and histologic differentiation (p<0.001). OS was more unfavorable in patients with low expression of Id-4 than those with high expression of ESCC patients (p=0.007). In subgroup analysis, low expression of Id-4 could reveal unfavorable OS of patients with pT1b/T2 stage (p=0.024) or with pN0/N1 stage (p=0.004). By univariate analysis, pT stage and Id-4 expression showed statistically significant associations with OS (p=0.025, p=0.01, respectively). By multivariate analysis, Id-4 expression was an independent prognostic factor in ESCC (p =0.038). In addition, we observed that Id-4 could decrease the levels of the p-Smad2, p-Smad3 and TGF-β1 in both Eca109 and TE1 cells, indicating Id-4 may inactivate the TGF-β signaling pathway. Conclusion Low expression of Id-4 suggested unfavorable prognosis for ESCC patients and could identify the prognosis in patients of early-stage tumors. The potential mechanism for Id-4’s tumor suppressor role in ESCC may be related to its inhibitory effect on TGF-β signaling pathway. Thus, we believe that Id-4 may be a promising prognostic marker and a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Bowen Shi
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
10
|
Cheng D, Fan J, Ma Y, Zhou Y, Qin K, Shi M, Yang J. LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p. Cell Biosci 2019; 9:28. [PMID: 30949340 PMCID: PMC6431029 DOI: 10.1186/s13578-019-0290-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/15/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Small nucleolar RNA host gene 7 (SNHG7) is a novel identified oncogenic gene in tumorigenesis. However, the role that SNHG7 plays in pancreatic cancer (PC) remains unclear. In this study, we aimed to investigate the functional effects of SNHG7 on PC and the possible mechanism. METHODS The expression levels of SNHG7 in tissues and cell lines were measured by RT-qPCR. Cell viability, apoptosis, migration and invasion were examined to explore the function of SNHG7 on PC. Bioinformatics methods were used to predict the target genes. The mechanism was further investigated by transfection with specific si-RNA, miRNA mimics or miRNA inhibitor. Tumor xenograft was carried out to verify the effects of SNHG7 in vivo. RESULTS We found that SNHG7 was overexpressed in both PC tissues and cell lines. High expression level of SNHG7 was correlated with the poor prognosis. SNHG7 knockdown inhibited the proliferation, migration and invasion of PC cells. Moreover, SNHG7 was found to regulate the expression of ID4 via sponging miR-342-3p. Additionally, this finding was supported by in vivo experiments. CONCLUSIONS LncRNA SNHG7 was overexpressed in PC tissues, and knockdown of SNHG7 suppressed PC cell proliferation, migration and invasion via miR-342-3p/ID4 axis. The results indicated that SNHG7 as a potential target for clinical treatment of PC.
Collapse
Affiliation(s)
- Dongfeng Cheng
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | | | - Yang Ma
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Yiran Zhou
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Kai Qin
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| | - Minmin Shi
- Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingrui Yang
- Pancreatic Disease Center, Department of General Surgery, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197 Rui Jin Er Road, Shanghai, China
| |
Collapse
|
11
|
Amirteimouri S, Ashini M, Ramazanali F, Aflatoonian R, Afsharian P, Shahhoseini M. Epigenetic role of the nuclear factor NF-Y on ID gene family in endometrial tissues of women with endometriosis: a case control study. Reprod Biol Endocrinol 2019; 17:32. [PMID: 30876429 PMCID: PMC6419829 DOI: 10.1186/s12958-019-0476-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A predominant difference between endometrial and normal cells is higher proliferation rate in the former cells which is benign. The genes of inhibitor of differentiation (ID) family play a major role in cell proliferation regulation which might be targeted by the nuclear transcription factor Y (NF-Y) for subsequent epigenetic modifications through the CCAAT box regulatory region. The present study was designed to investigate the epigenetic role of NF-Y on ID gene family in endometrial tissue of patients with endometriosis. MATERIALS & METHODS In this case-control study, 20 patients with endometriosis and 20 normal women were examined for the relative expression of the NF-YA, NF-YB, NF-YC and ID genes by real-time PCR during the proliferative phase. The occupancy of NF-Y on CCAAT box region of ID genes was investigated using chromatin immunoprecipitation (ChIP) followed by real-time PCR. RESULTS The NF-YA was over-expressed in eutopic endometrium during the proliferative phase. Although the expression level of NF-YB and NF-YC were unchanged in eutopic samples, they were remarkably higher in ectopic group (P<0.05). The ID2 and ID3 genes were up-regulated in ectopic and eutopic tissues, however ID1 and ID4 genes were down-regulated in these samples (P<0.05). The ChIP analysis revealed significant enrichment of NF-Y on regulatory regions of ID2,3 genes in eutopic group, but reduced binding level of NF-Y to the ID1,3 promoters in ectopic specimens (P<0.05). CONCLUSION The ability of NF-Y to regulate ID genes via CCAAT box region suggests the possible role of NF-Y transcription factor in epigenetic changes in endometrial tissues which may open novel avenues in finding new therapeutic strategies.
Collapse
Affiliation(s)
- Shirin Amirteimouri
- Department of Basic Sciences and Advanced Technologies in biology, University of Science and Culture, Tehran, Iran
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
| | - Manan Ashini
- Department of Basic Sciences and Advanced Technologies in biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
| | - Fariba Ramazanali
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran
| | - Maryam Shahhoseini
- Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran.
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, P.O. Box: 19395-4644, Tehran, Iran.
| |
Collapse
|
12
|
Nasif D, Campoy E, Laurito S, Branham R, Urrutia G, Roqué M, Branham MT. Epigenetic regulation of ID4 in breast cancer: tumor suppressor or oncogene? Clin Epigenetics 2018; 10:111. [PMID: 30139383 PMCID: PMC6108146 DOI: 10.1186/s13148-018-0542-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Inhibitor of differentiation protein 4 (ID4) is a dominant negative regulator of the basic helix-loop-helix (bHLH) family of transcription factors. During tumorigenesis, ID4 may act as a tumor suppressor or as an oncogene in different tumor types. However, the role of ID4 in breast cancer is not clear where both an oncogenic and a tumor suppressor function have been attributed. Here, we hypothesize that ID4 behaves as both, but its role in breast differs according to the estrogen receptor (ER) status of the tumor. Methods ID4 expression was retrieved from TCGA database using UCSC Xena. Association between overall survival (OS) and ID4 was assessed using Kaplan–Meier plotter. Correlation between methylation and expression was analyzed using the MEXPRESS tool. In vitro experiments involved ectopic expression of ID4 in MCF-7, T47D, and MDA-MB231 breast cancer cell lines. Migration and colony formation capacity were assessed after transfection treatments. Gene expression was analyzed by ddPCR and methylation by MSP, MS-MLPA, or ddMSP. Results Data mining analysis revealed that ID4 expression is significantly lower in ER+ tumors with respect to ER− tumors or normal tissue. We also demonstrate that ID4 is significantly methylated in ER+ tumors. Kaplan–Meier analysis indicated that low ID4 expression levels were associated with poor overall survival in patients with ER+ tumors. In silico expression analysis indicated that ID4 was associated with the expression of key genes of the ER pathway only in ER+ tumors. In vitro experiments revealed that ID4 overexpression in ER+ cell lines resulted in decreased migration capacity and reduced number of colonies. ID4 overexpression induced a reduction in ER levels in ER+ cell lines, while estrogen deprivation with fulvestrant did not induce changes neither in ID4 methylation nor in ID4 expression. Conclusions We propose that ID4 is frequently silenced by promoter methylation in ER+ breast cancers and functions as a tumor suppressor gene in these tumors, probably due to its interaction with key genes of the ER pathway. Our present study contributes to the knowledge of the role of ID4 in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13148-018-0542-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Nasif
- IHEM, National University of Cuyo, CONICET, Mendoza, Argentina
| | - Emanuel Campoy
- IHEM, CONICET, Facultad de Ciencias Médicas, National University of Cuyo, Mendoza, Argentina
| | - Sergio Laurito
- IHEM, Faculty of Exact and Natural Sciences, National University of Cuyo, CONICET, Mendoza, Argentina
| | | | | | - María Roqué
- IHEM, Faculty of Exact and Natural Sciences, National University of Cuyo, CONICET, Mendoza, Argentina
| | - María T Branham
- IHEM, National University of Cuyo, CONICET, Mendoza, Argentina.
| |
Collapse
|
13
|
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
14
|
Roschger C, Cabrele C. The Id-protein family in developmental and cancer-associated pathways. Cell Commun Signal 2017; 15:7. [PMID: 28122577 PMCID: PMC5267474 DOI: 10.1186/s12964-016-0161-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 01/15/2023] Open
Abstract
Inhibitors of DNA binding and cell differentiation (Id) proteins are members of the large family of the helix-loop-helix (HLH) transcription factors, but they lack any DNA-binding motif. During development, the Id proteins play a key role in the regulation of cell-cycle progression and cell differentiation by modulating different cell-cycle regulators both by direct and indirect mechanisms. Several Id-protein interacting partners have been identified thus far, which belong to structurally and functionally unrelated families, including, among others, the class I and II bHLH transcription factors, the retinoblastoma protein and related pocket proteins, the paired-box transcription factors, and the S5a subunit of the 26 S proteasome. Although the HLH domain of the Id proteins is involved in most of their protein-protein interaction events, additional motifs located in their N-terminal and C-terminal regions are required for the recognition of diverse protein partners. The ability of the Id proteins to interact with structurally different proteins is likely to arise from their conformational flexibility: indeed, these proteins contain intrinsically disordered regions that, in the case of the HLH region, undergo folding upon self- or heteroassociation. Besides their crucial role for cell-fate determination and cell-cycle progression during development, other important cellular events have been related to the Id-protein expression in a number of pathologies. Dysregulated Id-protein expression has been associated with tumor growth, vascularization, invasiveness, metastasis, chemoresistance and stemness, as well as with various developmental defects and diseases. Herein we provide an overview on the structural properties, mode of action, biological function and therapeutic potential of these regulatory proteins.
Collapse
Affiliation(s)
- Cornelia Roschger
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria
| | - Chiara Cabrele
- Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, Salzburg, 5020, Austria.
| |
Collapse
|
15
|
Nguyen T, Shively JE. Induction of Lumen Formation in a Three-dimensional Model of Mammary Morphogenesis by Transcriptional Regulator ID4: ROLE OF CaMK2D IN THE EPIGENETIC REGULATION OF ID4 GENE EXPRESSION. J Biol Chem 2016; 291:16766-76. [PMID: 27302061 DOI: 10.1074/jbc.m115.710160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Indexed: 01/19/2023] Open
Abstract
Concomitant loss of lumen formation and cell adhesion protein CEACAM1 is a hallmark feature of breast cancer. In a three-dimensional culture model, transfection of CEACAM1 into MCF7 breast cells can restore lumen formation by an unknown mechanism. ID4, a transcriptional regulator lacking a DNA binding domain, is highly up-regulated in CEACAM1-transfected MCF7 cells, and when down-regulated with RNAi, abrogates lumen formation. Conversely, when MCF7 cells, which fail to form lumena in a three-dimensional culture, are transfected with ID4, lumen formation is restored, demonstrating that ID4 may substitute for CEACAM1. After showing the ID4 promoter is hypermethylated in MCF7 cells but hypomethylated in MCF/CEACAM1 cells, ID4 expression was induced in MCF7 cells by agents affecting chromatin remodeling and methylation. Mechanistically, CaMK2D was up-regulated in CEACAM1-transfected cells, effecting phosphorylation of HDAC4 and its sequestration in the cytoplasm by the adaptor protein 14-3-3. CaMK2D also phosphorylates CEACAM1 on its cytoplasmic domain and mutation of these phosphorylation sites abrogates lumen formation. Thus, CEACAM1 is able to maintain the active transcription of ID4 by an epigenetic mechanism involving HDAC4 and CaMK2D, and the same kinase enables lumen formation by CEACAM1. Because ID4 can replace CEACAM1 in parental MCF7 cells, it must act downstream from CEACAM1 by inhibiting the activity of other transcription factors that would otherwise prevent lumen formation. This overall mechanism may be operative in other cancers, such as colon and prostate, where the down-regulation of CEACAM1 is observed.
Collapse
Affiliation(s)
- Tung Nguyen
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - John E Shively
- From the Department of Immunology, Beckman Research Institute of City of Hope, Duarte, California 91010
| |
Collapse
|
16
|
Antonângelo L, Tuma T, Fabro A, Acencio M, Terra R, Parra E, Vargas F, Takagaki T, Capelozzi V. Id-1, Id-2, and Id-3 co-expression correlates with prognosis in stage I and II lung adenocarcinoma patients treated with surgery and adjuvant chemotherapy. Exp Biol Med (Maywood) 2016; 241:1159-68. [PMID: 26869608 DOI: 10.1177/1535370216632623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Inhibitors of DNA binding/inhibitors of differentiation (Id) protein family have been shown to be involved in carcinogenesis. However, the roles of Id during lung adenocarcinoma (ADC) progression remain unclear. Eighty-eight ADC samples were evaluated for Id-1,2,3 level and angiogenesis (CD 34 and VEGF microvessel density) by immunohistochemistry and morphometry. The impact of these markers was tested on follow-up until death or recurrence. A significant difference between tumor and normal tissue was found for Id-1,2,3 expression (P < 0.01). In addition, high levels of nuclear Id-1 were associated with higher angiogenesis in the tumor stroma (P < 0.01). Equally significant was the association between patients in T1-stage and low cytoplasmic Id-2, as well as patients in stage-IIb and low Id-3. High cytoplasm Id-3 expression was also directly associated to lymph nodes metastasis (P = 0.05). Patients at stages I to III, with low Id-1 and Id-3 cytoplasm histoscores showed significant long metastasis-free survival time than those with high Id-1 or Id-3 expression (P = 0.04). Furthermore, high MVD-CD34 and MVD-VEGF expression were associated with short recurrence-free survival compared to low MVD-CD34 and MVD-VEGF expressions (P = 0.04). Cox model analyses controlled for age, lymph node metastasis, and adjuvant treatments showed that nuclear Id-1, cytoplasmic Id-3, and MVD-CD34 were significantly associated with survival time. Median score for nuclear Id-1 and cytoplasmic Id-3 divided patients in two groups, being that those with increased Id-1 and Id-3 presented higher risk of death. Ids showed an independent prognostic value in patients with lung ADC, regardless of disease stage. Id-1 and Id-3 should be considered new target candidates in the development of personalized therapy in lung ADC.
Collapse
Affiliation(s)
- Leila Antonângelo
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Taila Tuma
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Alexandre Fabro
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Milena Acencio
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Ricardo Terra
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Edwin Parra
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Francisco Vargas
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Teresa Takagaki
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Vera Capelozzi
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| |
Collapse
|
17
|
Gao XZ, Zhao WG, Wang GN, Cui MY, Zhang YR, Li WC. Inhibitor of DNA binding 4 functions as a tumor suppressor and is targetable by 5-aza-2'-deoxycytosine with potential therapeutic significance in Burkitt's lymphoma. Mol Med Rep 2015; 13:1269-74. [PMID: 26648013 DOI: 10.3892/mmr.2015.4640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 10/23/2015] [Indexed: 11/05/2022] Open
Abstract
Epigenetic gene silencing due to promoter methylation is observed in human neoplasia, including lymphoma and certain cancer types. One important target for gene methylation analysis in non-Hodgkin lymphoma (NHL) is inhibitor of DNA binding 4 (ID4). The present study aimed to investigate the gene methylation status of ID4, the expression of ID4 protein and the effect of demethylating agent 5-aza-2'-deoxycytosine (CdR) in the Raji human Burkitt's lymphoma cell line in vitro. Following assessment of the inhibition of Raji cell growth by various concentrations of CdR, the effects of CdR on the expression of ID4 protein were assessed using the immunocytochemical streptavidin-peroxidase method and semi-quantitative analysis, while apoptosis and cell cycle were determined by flow cytometry. The ID4 gene methylation status of Raji cells was tested using methylation-specific polymerase chain reaction analysis. ID4 was methylated and its protein expression was low in the control group, while ID4 was partly or completely demethylated and its protein expression was upregulated in Raji cells treated with CdR. In addition, CdR induced apoptosis and cell cycle arrest in Raji cells in a dose- and time-dependent manner. These results demonstrated that ID4 is hypermethylated and its protein expression is low in Burkitt's lymphoma cells, while CdR reversed the abnormal DNA methylation and induced re-expression of ID4 protein. Hypermethylation of ID4 promotes the proliferation of Burkitt's lymphoma cells; ID4 may function as a tumor suppressor and can be targeted with demethylating compounds such as CdR for the treatment of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Xian-Zheng Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wu-Gan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Guan-Nan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Mei-Ying Cui
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yang-Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
18
|
Thike AA, Tan PH, Ikeda M, Iqbal J. Increased ID4 expression, accompanied by mutant p53 accumulation and loss of BRCA1/2 proteins in triple-negative breast cancer, adversely affects survival. Histopathology 2015; 68:702-12. [PMID: 26259780 DOI: 10.1111/his.12801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 08/06/2015] [Indexed: 01/08/2023]
Abstract
AIMS Breast cancer 1 (BRCA1) expression is down-regulated in a significant proportion of non-hereditary breast cancers, in the absence of any mutation. This phenomenon is more pronounced in oestrogen (ER)-negative tumours. Recent studies have suggested that inhibitor of DNA binding 4 (ID4), as well as p53, participate in the transcriptional regulation of BRCA1. METHODS Immunohistochemical expression of ID4, BRCA1, BRCA2 and p53 in 699 women with triple-negative breast cancer was investigated using tissue microarrays. The prognostic role of these biomarkers was also evaluated. Survival outcomes were estimated with the Kaplan-Meier method and compared between groups with log-rank statistics. RESULTS Loss of BRCA1 and BRCA2 expression and overexpression of ID4 and p53 was observed in 75%, 90%, 95% and 66% of tumours, respectively. ID4 expression was increased in higher tumour grade (P < 0.001) and was associated significantly with basal-like subtype (P < 0.001), BRCA2 down-regulation (P = 0.037) and p53 accumulation (P < 0.001). Patients with strong ID4 expression displayed worse disease-free survival in both triple-negative breast cancers (P = 0.041) and basal-like triple-negative breast cancers (P = 0.026). CONCLUSION There is frequent ID4 expression and concomitant loss of BRCA proteins in triple-negative breast cancer. We hypothesize that strong ID4 expression could be useful as a prognostic marker in triple-negative breast cancer, predicting early tumour recurrence.
Collapse
Affiliation(s)
- Aye A Thike
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| | - Puay H Tan
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| | - Murasaki Ikeda
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| | - Jabed Iqbal
- Department of Pathology, Singapore General Hospital, Academia, Singapore, Singapore
| |
Collapse
|
19
|
Abstract
Inhibitor of DNA binding/differentiation protein 4 (ID4) is dominant negative helix loop helix transcriptional regulator is epigenetically silenced due to promoter hyper-methylation in many cancers including prostate. However, the underlying mechanism involved in epigenetic silencing of ID4 is not known. Here, we demonstrate that ID4 promoter methylation is initiated by EZH2 dependent tri-methylation of histone 3 at lysine 27 (H3K27me3). ID4 expressing (LNCaP) and non-expressing (DU145 and C81) prostate cancer cell lines were used to investigate EZH2, H3K27me3 and DNMT1 enrichment on ID4 promoter by Chromatin immuno-precipitation (ChIP). Enrichment of EZH2, H3K27Me3 and DNMT1 in DU145 and C81 cell lines compared to ID4 expressing LNCaP cell line. Knockdown of EZH2 in DU145 cell line led to re-expression of ID4 and decrease in enrichment of EZH2, H3K27Me3 and DNMT1 demonstrating that ID4 is regulated in an EZH2 dependent manner. ChIP data on prostate cancer tissue specimens and cell lines suggested EZH2 occupancy and H3K27Me3 marks on the ID4 promoter. Collectively, our data indicate a PRC2 dependent mechanism in ID4 promoter silencing in prostate cancer through recruitment of EZH2 and a corresponding increase in H3K27Me3. Increased EZH2 but decreased ID4 expression in prostate cancer strongly supports this model.
Collapse
|
20
|
Sharma P, Chinaranagari S, Chaudhary J. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and -3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity. Biochimie 2015; 112:139-50. [PMID: 25778840 DOI: 10.1016/j.biochi.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/05/2015] [Indexed: 01/15/2023]
Abstract
The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID-interactions.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Swathi Chinaranagari
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA
| | - Jaideep Chaudhary
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. SW, Atlanta, GA, 30314, USA.
| |
Collapse
|
21
|
Patel D, Morton DJ, Carey J, Havrda MC, Chaudhary J. Inhibitor of differentiation 4 (ID4): From development to cancer. Biochim Biophys Acta Rev Cancer 2014; 1855:92-103. [PMID: 25512197 DOI: 10.1016/j.bbcan.2014.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/25/2014] [Accepted: 12/06/2014] [Indexed: 01/25/2023]
Abstract
Highly conserved Inhibitors of DNA-Binding (ID1-ID4) genes encode multi-functional proteins whose transcriptional activity is based on dominant negative inhibition of basic helix-loop-helix (bHLH) transcription factors. Initial animal models indicated a degree of compensatory overlap between ID genes such that deletion of multiple ID genes was required to generate easily recognizable phenotypes. More recently, new model systems have revealed alterations in mice harboring deletions in single ID genes suggesting complex gene and tissue specific functions for members of the ID gene family. Because ID genes are highly expressed during development and their function is associated with a primitive, proliferative cellular phenotype there has been significant interest in understanding their potential roles in neoplasia. Indeed, numerous studies indicate an oncogenic function for ID1, ID2 and ID3. In contrast, the inhibitor of differentiation 4 (ID4) presents a paradigm shift in context of well-established role of ID1, ID2 and ID3 in development and cancer. Apart from some degree of functional redundancy such as HLH dependent interactions with bHLH protein E2A, many of the functions of ID4 are distinct from ID1, ID2 and ID3: ID4 proteins a) regulate distinct developmental processes and tissue expression in the adult, b) promote stem cell survival, differentiation and/or timing of differentiation, c) epigenetic inactivation/loss of expression in several advanced stage cancers and d) increased expression in some cancers such as those arising in the breast and ovary. Thus, in spite of sharing the conserved HLH domain, ID4 defies the established model of ID protein function and expression. The underlying molecular mechanism responsible for the unique role of ID4 as compared to other ID proteins still remains largely un-explored. This review will focus on the current understanding of ID4 in context of development and cancer.
Collapse
Affiliation(s)
- Divya Patel
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Derrick J Morton
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Jason Carey
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Mathew C Havrda
- Norris Cotton Cancer Center and Geisel Medical School at Dartmouth, Lebanon, NH, USA
| | - Jaideep Chaudhary
- Department of Biological Sciences, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA.
| |
Collapse
|
22
|
Patel D, Knowell AE, Korang-Yeboah M, Sharma P, Joshi J, Glymph S, Chinaranagari S, Nagappan P, Palaniappan R, Bowen NJ, Chaudhary J. Inhibitor of differentiation 4 (ID4) inactivation promotes de novo steroidogenesis and castration-resistant prostate cancer. Mol Endocrinol 2014; 28:1239-53. [PMID: 24921661 DOI: 10.1210/me.2014-1100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer in men in the Western world. The transition of androgen-dependent PCa to castration-resistant (CRPC) is a major clinical manifestation during disease progression and presents a therapeutic challenge. Our studies have shown that genetic ablation of inhibitor of differentiation 4 (Id4), a dominant-negative helix loop helix protein, in mice results in prostatic intraepithelial neoplasia lesions and decreased Nkx3.1 expression without the loss of androgen receptor (Ar) expression. ID4 is also epigenetically silenced in the majority of PCa. However, the clinical relevance and molecular pathways altered by ID4 inactivation in PCa are not known. This study investigates the effect of loss of ID4 in PCa cell lines on tumorigenicity and addresses the underlying mechanism. Stable silencing of ID4 in LNCaP cells (L-ID4) resulted in increased proliferation, migration, invasion, and anchorage-independent growth. An increase in the rate of tumor growth, weight, and volume was observed in L-ID4 xenografts compared with that in the LNCaP cells transfected with nonspecific short hairpin RNA (L+ns) in noncastrated mice. Interestingly, tumors were also observed in castrated mice, suggesting that loss of ID4 promotes CRPC. RNA sequence analysis revealed a gene signature mimicking that of constitutively active AR in L-ID4, which was consistent with gain of de novo steroidogenesis. Prostate-specific antigen expression as a result of persistent AR activation was observed in L-ID4 cells but not in L+ns cells. The results demonstrate that ID4 acts as a tumor suppressor in PCa, and its loss, frequently observed in PCa, promotes CRPC through constitutive AR activation.
Collapse
Affiliation(s)
- Divya Patel
- Center for Cancer Research and Therapeutic Development (D.P., A.E.K., P.S., J.J., S.G., S.C., P.N., N.J.B., J.C.), Clark Atlanta University, Atlanta, Georgia 30314; and College of Pharmacy (M.K.-Y., R.P.), Mercer University, Atlanta, Georgia 30341
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rahme GJ, Israel MA. Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function. Oncogene 2014; 34:53-62. [DOI: 10.1038/onc.2013.531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
|
24
|
Harder J, Müller MJ, Fuchs M, Gumpp V, Schmitt-Graeff A, Fischer R, Frank M, Opitz O, Hasskarl J. Inhibitor of differentiation proteins do not influence prognosis of biliary tract cancer. World J Gastroenterol 2013; 19:9334-9342. [PMID: 24409060 PMCID: PMC3882406 DOI: 10.3748/wjg.v19.i48.9334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/15/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and clinical relevance of inhibitor of differentiation (ID) proteins in biliary tract cancer.
METHODS: ID protein expression was analyzed in 129 samples from patients with advanced biliary tract cancer (BTC) (45 extrahepatic, 50 intrahepatic, and 34 gallbladder cancers), compared to normal controls and correlated with clinical an pathological parameters.
RESULTS: ID1-3 proteins are frequently overexpressed in all BTC subtypes analyzed. No correlation between increased ID protein expression and tumor grading, tumor subtype or treatment response was detected. Survival was influenced primary tumor localization (extrahepatic vs intrahepatic and gall bladder cancer, OS 1.5 years vs 0.9 years vs 0.7 years, P = 0.002), by stage at diagnosis (OS 2.7 years in stage I vs 0.6 years in stage IV, P < 0.001), resection status and response to systemic chemotherapy. In a multivariate model, ID protein expression did not correlate with clinical prognosis. Nevertheless, there was a trend of shorter OS in patients with loss of cytoplasmic ID4 protein expression (P = 0.076).
CONCLUSION: ID protein expression is frequently deregulated in BTC but does not influence clinical prognosis. Their usefulness as prognostic biomarkers in BTC is very limited.
Collapse
|
25
|
Id4 dependent acetylation restores mutant-p53 transcriptional activity. Mol Cancer 2013; 12:161. [PMID: 24330748 PMCID: PMC3866570 DOI: 10.1186/1476-4598-12-161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022] Open
Abstract
Background The mechanisms that can restore biological activity of mutant p53 are an area of high interest given that mutant p53 expression is observed in one third of prostate cancer. Here we demonstrate that Id4, an HLH transcriptional regulator and a tumor suppressor, can restore the mutant p53 transcriptional activity in prostate cancer cells. Methods Id4 was over-expressed in prostate cancer cell line DU145 harboring mutant p53 (P223L and V274F) and silenced in LNCaP cells with wild type p53. The cells were used to quantitate apoptosis, p53 localization, p53 DNA binding and transcriptional activity. Immuno-precipitation/-blot studies were performed to demonstrate interactions between Id4, p53 and CBP/p300 and acetylation of specific lysine residues within p53. Results Ectopic expression of Id4 in DU145 cells resulted in increased apoptosis and expression of BAX, PUMA and p21, the transcriptional targets of p53. Mutant p53 gained DNA binding and transcriptional activity in the presence of Id4 in DU145 cells. Conversely, loss of Id4 in LNCaP cells abrogated wild type p53 DNA binding and transactivation potential. Gain of Id4 resulted in increased acetylation of mutant p53 whereas loss of Id4 lead to decreased acetylation in DU145 and LNCaP cells respectively. Id4 dependent acetylation of p53 was in part due to a physical interaction between Id4, p53 and acetyl-transferase CBP/p300. Conclusions Taken together, our results suggest that Id4 regulates the activity of wild type and mutant p53. Id4 promoted the assembly of a macromolecular complex involving CBP/P300 that resulted in acetylation of p53 at K373, a critical post-translational modification required for its biological activity.
Collapse
|
26
|
Sharma P, Knowell AE, Chinaranagari S, Komaragiri S, Nagappan P, Patel D, Havrda MC, Chaudhary J. Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN. Mol Cancer 2013; 12:67. [PMID: 23786676 PMCID: PMC3694449 DOI: 10.1186/1476-4598-12-67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022] Open
Abstract
Background Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. Methods Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was either over-expressed or silenced in prostate cancer cell lines DU145 and LNCaP respectively followed by analysis of PTEN, NKX3.1 and Sox9 expression. Results Id4-/- mice had smaller prostates with fewer tubules, smaller tubule diameters and subtle mPIN like lesions. Levels of androgen receptor were similar between wild type and Id4-/- prostate. Decreased NKX3.1 expression was in part due to decreased androgen receptor binding on NKX3.1 promoter in Id4-/- mice. The increase in the expression of Myc, Sox9, Id1, Ki67 and decrease in the expression of PTEN, Akt and phospho-AKT was associated with subtle mPIN like lesions in Id4-/- prostates. Finally, prostate cancer cell line models in which Id4 was either silenced or over-expressed confirmed that Id4 regulates NKX3.1, Sox9 and PTEN. Conclusions Our results suggest that loss of Id4 attenuates normal prostate development and promotes hyperplasia/dysplasia with subtle mPIN like lesions characterized by gain of Myc and Id1 and loss of Nkx3.1 and Pten expression. One of the mechanisms by which Id4 may regulate normal prostate development is through regulating androgen receptor binding to respective response elements such as those on NKX3.1 promoter. In spite of these complex alterations, large neoplastic lesions in Id4-/- prostates were not observed suggesting the possibility of mechanisms/pathways such as loss of Akt that could restrain the formation of significant pre-cancerous lesions.
Collapse
|
27
|
Klenke C, Janowski S, Borck D, Widera D, Ebmeyer J, Kalinowski J, Leichtle A, Hofestädt R, Upile T, Kaltschmidt C, Kaltschmidt B, Sudhoff H. Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PLoS One 2012; 7:e52718. [PMID: 23285167 PMCID: PMC3527606 DOI: 10.1371/journal.pone.0052718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/20/2012] [Indexed: 01/30/2023] Open
Abstract
Background Cholesteatoma is a gradually expanding destructive epithelial lesion within the middle ear. It can cause extensive local tissue destruction in the temporal bone and can initially lead to the development of conductive hearing loss via ossicular erosion. As the disease progresses, sensorineural hearing loss, vertigo or facial palsy may occur. Cholesteatoma may promote the spread of infection through the tegmen of the middle ear and cause meningitis or intracranial infections with abscess formation. It must, therefore, be considered as a potentially life-threatening middle ear disease. Methods and Findings In this study, we investigated differentially expressed genes in human cholesteatomas in comparison to regular auditory canal skin using Whole Human Genome Microarrays containing 19,596 human genes. In addition to already described up-regulated mRNAs in cholesteatoma, such as MMP9, DEFB2 and KRT19, we identified 3558 new cholesteatoma-related transcripts. 811 genes appear to be significantly differentially up-regulated in cholesteatoma. 334 genes were down-regulated more than 2-fold. Significantly regulated genes with protein metabolism activity include matrix metalloproteinases as well as PI3, SERPINB3 and SERPINB4. Genes like SPP1, KRT6B, PRPH, SPRR1B and LAMC2 are known as genes with cell growth and/or maintenance activity. Transport activity genes and signal transduction genes are LCN2, GJB2 and CEACAM6. Three cell communication genes were identified; one CDH19 and two from the S100 family. Conclusions This study demonstrates that the expression profile of cholesteatoma is similar to a metastatic tumour and chronically inflamed tissue. Based on the investigated profiles we present novel protein-protein interaction and signal transduction networks, which include cholesteatoma-regulated transcripts and may be of great value for drug targeting and therapy development.
Collapse
Affiliation(s)
- Christin Klenke
- Department of Otolaryngology and Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martini M, Cenci T, D'Alessandris GQ, Cesarini V, Cocomazzi A, Ricci-Vitiani L, De Maria R, Pallini R, Larocca LM. Epigenetic silencing of Id4 identifies a glioblastoma subgroup with a better prognosis as a consequence of an inhibition of angiogenesis. Cancer 2012; 119:1004-12. [PMID: 23132729 DOI: 10.1002/cncr.27821] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/16/2012] [Accepted: 07/30/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Inhibitors of DNA binding/differentiation (Id1 to Id4) are a family of helix-loop-helix transcription factors, which are highly expressed during embryogenesis and at lower levels in mature tissues. Id4 plays an important role in neuronal stem cell differentiation, and its deregulation has been implicated in glial neoplasia. METHODS The methylation status of Id4 was analyzed by methylation-specific polymerase chain reaction (PCR) in 62 glioblastoma (GBM) cases and in 20 normal brain tissues. Methylation status of Id4 was confirmed by sequencing after subcloning and messenger RNA (mRNA) and protein expression. We also evaluated the mRNA expression of MGP (matrix GLA protein), TGF-β1 (transforming growth factor beta 1), and VEGF (vascular endothelial growth factor) by real-time PCR analysis. Clinical and histological assessment of tumor angiogenesis was performed by evaluating the relative enhancing tumor ratio on magnetic resonance imaging and microvessel density on von Willebrand factor-stained sections, respectively. RESULTS The promoter of Id4 was methylated in 23 of 62 (37%) GBMs. In methylated GBMs, Id4 mRNA was significantly reduced, compared with unmethylated GBMs (P = .0002). A significant reduction of protein expression was detected in all hypermethylated cases. GBMs with methylated Id4 showed a significant reduction of MGP, TGF-β1, and VEGF mRNA expression and had significantly lower relative enhancing tumor ratio (P = .0108) and microvessel density (P = .0241) values with respect to unmethylated GBMs. Finally, Id4 methylation was significantly associated with a favorable clinical outcome (P = .0006). CONCLUSIONS These data suggest that methylation of Id4 may be involved in the pathogenesis of GBM and in the resistance of this neoplasm to conventional treatment throughout MGP-mediated neoangiogenesis.
Collapse
Affiliation(s)
- Maurizio Martini
- Institute of Anatomic Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Vanuytsel T, Senger S, Fasano A, Shea-Donohue T. Major signaling pathways in intestinal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2410-26. [PMID: 22922290 DOI: 10.1016/j.bbagen.2012.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND The discovery of markers to identify the intestinal stem cell population and the generation of powerful transgenic mouse models to study stem cell physiology have led to seminal discoveries in stem cell biology. SCOPE OF REVIEW In this review we give an overview of the current knowledge in the field of intestinal stem cells (ISCs) highlighting the most recent progress on markers defining the ISC population and pathways governing intestinal stem cell maintenance and differentiation. Furthermore we review their interaction with other stem cell related pathways. Finally we give an overview of alteration of these pathways in human inflammatory gastrointestinal diseases. MAJOR CONCLUSIONS We highlight the complex network of interactions occurring among different pathways and put in perspective the many layers of regulation that occur in maintaining the intestinal homeostasis. GENERAL SIGNIFICANCE Understanding the involvement of ISCs in inflammatory diseases can potentially lead to new therapeutic approaches to treat inflammatory GI pathologies such as IBD and celiac disease and could reveal the molecular mechanisms leading to the pathogenesis of dysplasia and cancer in inflammatory chronic conditions. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Mucosal Biology Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
30
|
Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med 2012; 1:176-86. [PMID: 23342267 PMCID: PMC3544455 DOI: 10.1002/cam4.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 02/06/2023] Open
Abstract
The inhibitor of DNA-binding (Id) proteins, Id1–4 are negative regulators of basic helix-loop-helix (bHLH) transcription factors. As key regulators of cell cycle and differentiation, expression of Id proteins are increasingly observed in many cancers and associated with aggressiveness of the disease. Of all the four Id proteins, the expression of Id1, Id2, and to a lesser extent, Id3 in prostate cancer and the underlying molecular mechanism is relatively well known. On the contrary, our previous results demonstrated that Id4 acts as a potential tumor suppressor in prostate cancer. In the present study, we extend these observations and demonstrate that Id4 is down-regulated in prostate cancer due to promoter hypermethylation. We used prostate cancer tissue microarrays to investigate Id4 expression. Methylation specific PCR on bisulfite treated DNA was used to determine methylation status of Id4 promoter in laser capture micro-dissected normal, stroma and prostate cancer regions. High Id4 expression was observed in the normal prostate epithelial cells. In prostate cancer, a stage-dependent decrease in Id4 expression was observed with majority of high grade cancers showing no Id4 expression. Furthermore, Id4 expression progressively decreased in prostate cancer cell line LNCaP and with no expression in androgen-insensitive LNCaP-C81 cell line. Conversely, Id4 promoter hypermethylation increased in LNCaP-C81 cells suggesting epigenetic silencing. In prostate cancer samples, loss of Id4 expression was also associated with promoter hypermethylation. Our results demonstrate loss of Id4 expression in prostate cancer due to promoter hypermethylation. The data strongly support the role of Id4 as a tumor suppressor.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center For Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
31
|
Claus R, Wilop S, Hielscher T, Sonnet M, Dahl E, Galm O, Jost E, Plass C. A systematic comparison of quantitative high-resolution DNA methylation analysis and methylation-specific PCR. Epigenetics 2012; 7:772-80. [PMID: 22647397 DOI: 10.4161/epi.20299] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Assessment of DNA methylation has become a critical factor for the identification, development and application of methylation based biomarkers. Here we describe a systematic comparison of a quantitative high-resolution mass spectrometry-based approach (MassARRAY), pyrosequencing and the broadly used methylation-specific PCR (MSP) technique analyzing clinically relevant epigenetically silenced genes in acute myeloid leukemia (AML). By MassARRAY and pyrosequencing, we identified significant DNA methylation differences at the ID4 gene promoter and in the 5' region of members of the SFRP gene family in 62 AML patients compared with healthy controls. We found a good correlation between data obtained by MassARRAY and pyrosequencing (correlation coefficient R(2) = 0.88). MSP-based assessment of the identical samples showed less pronounced differences between AML patients and controls. By direct comparison of MSP-derived and MassARRAY-based methylation data as well as pyrosequencing, we could determine overestimation of DNA methylation data by MSP. We found sequence-context dependent highly variable cut-off values of quantitative DNA methylation values serving as discriminator for the two MSP methylation categories. Moreover, good agreements between quantitative methods and MSP could not be achieved for all investigated loci. Significant correlation of the quantitative assessment but not of MSP-derived methylation data with clinically important characteristics in our patient cohort demonstrated clinical relevance of quantitative DNA methylation assessment. Taken together, while MSP is still the most commonly applied technique for DNA methylation assessment, our data highlight advantages of quantitative approaches for precise characterization and reliable biomarker use of aberrant DNA methylation in primary patient samples, particularly.
Collapse
Affiliation(s)
- Rainer Claus
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wen YH, Ho A, Patil S, Akram M, Catalano J, Eaton A, Norton L, Benezra R, Brogi E. Id4 protein is highly expressed in triple-negative breast carcinomas: possible implications for BRCA1 downregulation. Breast Cancer Res Treat 2012; 135:93-102. [PMID: 22538771 DOI: 10.1007/s10549-012-2070-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 01/08/2023]
Abstract
BRCA1 germline mutation carriers usually develop ER, PR and HER2 negative breast carcinoma. Somatic BRCA1 mutations are rare in sporadic breast cancers, but other mechanisms could impair BRCA1 functions in these tumors, particularly in triple-negative breast carcinomas (TNBCs). Id4, a helix-loop-helix DNA binding factor, blocks BRCA1 gene transcription in vitro and could downregulate BRCA1 in vivo. We compared Id4 immunoreactivity in 101 TNBCs versus 113 non-TNBCs, and correlated the results with tumor morphology and immunoreactivity for CK5/6, CK14, EGFR, and androgen receptor (AR). Id4 was present in 76 out of 101 (75 %) TNBCs: 40 (40 %) TNBCs displayed Id4 positivity in >50 % of neoplastic cells, 23 (23 %) in 5-50 %, and 13 (13 %) in <5 %. In contrast, only 6 (5 %) of 113 non-TNBCs showed focal Id4 positivity, limited to fewer than 5 % of the tumor (p < 0.0001). Id4 expression significantly associated with high histologic grade (p = 0.0002) and mitotic rate (p = 0.006). Id4 decorated all 12 TNBCs with large central acellular zone of necrosis in our series, with positive staining in 10-90 % of the cells. Id4 signal strongly correlated with cytokeratin CK14 reactivity (p < 0.0001), but not with CK5/6 and EGFR. All apocrine carcinomas in our series were positive for AR and most for EGFR, but they were negative for CK5/6, CK14, and Id4, with only two exceptions. Our results document substantial expression of Id4 in most TNBCs, which could result in functional downregulation of BRCA1 pathways in these tumors.
Collapse
Affiliation(s)
- Yong Hannah Wen
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Parakeratosis in skin is associated with loss of inhibitor of differentiation 4 via promoter methylation. Hum Pathol 2011; 42:1878-87. [DOI: 10.1016/j.humpath.2011.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
|
34
|
Huang J, Vogel G, Yu Z, Almazan G, Richard S. Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation. J Biol Chem 2011; 286:44424-32. [PMID: 22041901 DOI: 10.1074/jbc.m111.277046] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PRMT5 is a type II protein arginine methyltranferase that catalyzes monomethylation and symmetric dimethylation of arginine residues. PRMT5 is functionally involved in a variety of biological processes including embryo development and circadian clock regulation. However, the role of PRMT5 in oligodendrocyte differentiation and central nervous system myelination is unknown. Here we show that PRMT5 expression gradually increases throughout postnatal brain development, coinciding with the period of active myelination. PRMT5 expression was observed in neurons, astrocytes, and oligodendrocytes. siRNA-mediated depletion of PRMT5 in mouse primary oligodendrocyte progenitor cells abrogated oligodendrocyte differentiation. In addition, the PRMT5-depleted oligodendrocyte progenitor and C6 glioma cells expressed high levels of the inhibitors of differentiation/DNA binding, Id2 and Id4, known repressors of glial cell differentiation. We observed that CpG-rich islands within the Id2 and Id4 genes were bound by PRMT5 and were hypomethylated in PRMT5-deficient cells, suggesting that PRMT5 plays a role in gene silencing during glial cell differentiation. Our findings define a role of PRMT5 in glial cell differentiation and link PRMT5 to epigenetic changes during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Jinghan Huang
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Lady Davis Institute for Medical Research, Sir Mortimer B Davis Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
35
|
ID4 is frequently downregulated and partially hypermethylated in prostate cancer. World J Urol 2011; 30:319-25. [DOI: 10.1007/s00345-011-0750-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022] Open
|
36
|
Dell'Orso S, Ganci F, Strano S, Blandino G, Fontemaggi G. ID4: a new player in the cancer arena. Oncotarget 2011; 1:48-58. [PMID: 21293053 DOI: 10.18632/oncotarget.100511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Id proteins (Id-1 to 4) are dominant negative regulators of basic helix-loop-helix transcription factors. They play a key role during development, preventing cell differentiation while inducing cell proliferation. They are poorly expressed in adult life but can be reactivated in tumorigenesis. Several evidences indicate that Id proteins are associated with loss of differentiation, unrestricted proliferation and neoangiogenesis in diverse human cancers. Recently, we identified Id4 as a transcriptional target of the protein complex mutant p53/E2F1/p300 in breast cancer. Id4 protein binds, stabilizes and enhances the translation of mRNAs encoding proangiogenic cytokines, such as IL8 and GRO-alpha, increasing the angiogenic potential of cancer cells. We present here an overview of the current experimental data that links Id4 to cancer. We provide evidence also of the induction of Id4 following anticancer treatments in mutant p53- carrying cells. Indeed, mutant p53 is recruited to a specific region of the Id4 promoter upon DNA damage. Our findings indicate that Id4, besides its proangiogenic role, might also participate in the chemoresistance associated to mutant p53 proteins exerting gain of function activities.
Collapse
Affiliation(s)
- Stefania Dell'Orso
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, 00144-Rome, Italy
| | | | | | | | | |
Collapse
|
37
|
Ryan JL, Jones RJ, Kenney SC, Rivenbark AG, Tang W, Knight ER, Coleman WB, Gulley ML. Epstein-Barr virus-specific methylation of human genes in gastric cancer cells. Infect Agent Cancer 2010; 5:27. [PMID: 21194482 PMCID: PMC3023757 DOI: 10.1186/1750-9378-5-27] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/31/2010] [Indexed: 12/13/2022] Open
Abstract
Background Epstein-Barr Virus (EBV) is found in 10% of all gastric adenocarcinomas but its role in tumor development and maintenance remains unclear. The objective of this study was to examine EBV-mediated dysregulation of cellular factors implicated in gastric carcinogenesis. Methods Gene expression patterns were examined in EBV-negative and EBV-positive AGS gastric epithelial cells using a low density microarray, reverse transcription PCR, histochemical stains, and methylation-specific DNA sequencing. Expression of PTGS2 (COX2) was measured in AGS cells and in primary gastric adenocarcinoma tissues. Results In array studies, nearly half of the 96 human genes tested, representing 15 different cancer-related signal transduction pathways, were dysregulated after EBV infection. Reverse transcription PCR confirmed significant impact on factors having diverse functions such as cell cycle regulation (IGFBP3, CDKN2A, CCND1, HSP70, ID2, ID4), DNA repair (BRCA1, TFF1), cell adhesion (ICAM1), inflammation (COX2), and angiogenesis (HIF1A). Demethylation using 5-aza-2'-deoxycytidine reversed the EBV-mediated dysregulation for all 11 genes listed here. For some promoter sequences, CpG island methylation and demethylation occurred in an EBV-specific pattern as shown by bisulfite DNA sequencing. Immunohistochemistry was less sensitive than was western blot for detecting downregulation of COX2 upon EBV infection. Virus-related dysregulation of COX2 levels in vitro was not recapitulated in vivo among naturally infected gastric cancer tissues. Conclusions EBV alters human gene expression in ways that could contribute to the unique pathobiology of virus-associated cancer. Furthermore, the frequency and reversability of methylation-related transcriptional alterations suggest that demethylating agents have therapeutic potential for managing EBV-related carcinoma.
Collapse
Affiliation(s)
- Julie L Ryan
- Department of Pathology and Laboratory Medicine and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol 2010; 6:851-62. [PMID: 20465395 DOI: 10.2217/fon.10.37] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic colonization of the human stomach by Helicobacter pylori, a Gram-negative bacterium, is the major cause of chronic gastritis, peptic ulcers and gastric cancer. Recent progress has elucidated important bacterial and host factors that are responsible for H. pylori-induced gastric inflammation and gastric malignancy. H. pylori cytotoxin-associated antigen A is the major oncogenic factor injected into host cells from bacteria and it disrupts epithelial cell functions. Together with H. pylori cag pathogenicity island, it causes general inflammatory stress within gastric mucosa and activates multiple oncogenic pathways in epithelial cells. A growing list of these pathways includes NF-kappaB, activator protein-1, PI3K, signal transducers and activators of transcription 3, Wnt/beta-catenin and cyclooxygenase 2. H. pylori induces epigenetic alterations, such as DNA methylation and histone modification, which play critical roles in oncogenic transformation. In addition, investigations into gastric stem cell or progenitor cell biology have shed light on the mechanisms through which gastric cancer may originate. Continued investigation in these areas will yield novel insights and help to elucidate the mechanisms of bacteria-induced carcinogenesis.
Collapse
Affiliation(s)
- Song-Ze Ding
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
39
|
Kuzontkoski PM, Mulligan-Kehoe MJ, Harris BT, Israel MA. Inhibitor of DNA binding-4 promotes angiogenesis and growth of glioblastoma multiforme by elevating matrix GLA levels. Oncogene 2010; 29:3793-802. [PMID: 20453881 DOI: 10.1038/onc.2010.147] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 01/04/2010] [Accepted: 03/18/2010] [Indexed: 11/08/2022]
Abstract
Inhibitor of differentiation-4 is highly expressed in glioblastoma multiforme (GBM). We report a novel pro-angiogenic function for inhibitor of differentiation-4 in the growth of glioblastoma xenografts. Tumor-derived cell cultures expressing elevated levels of ID4 produced enlarged xenografts in immunosuppressed mice that were better vascularized than corresponding control tumors and expressed elevated matrix GLA protein (MGP) that mediated enhanced tumor angiogenesis. Inhibition of MGP resulted in smaller and less vascularized xenografts. Our finding shows a novel function for ID4 in tumor angiogenesis, and identifies ID4 and MGP as possible therapeutic targets for GBM.
Collapse
Affiliation(s)
- P M Kuzontkoski
- Department of Pediatrics, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
40
|
Dell'Orso S, Ganci F, Strano S, Blandino G, Fontemaggi G. ID4: a new player in the cancer arena. Oncotarget 2010; 1:48-58. [PMID: 21293053 PMCID: PMC4053547 DOI: 10.18632/oncotarget.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 04/04/2010] [Indexed: 11/25/2022] Open
Abstract
Id proteins (Id-1 to 4) are dominant negative regulators of basic helix-loop-helix transcription factors. They play a key role during development, preventing cell differentiation while inducing cell proliferation. They are poorly expressed in adult life but can be reactivated in tumorigenesis. Several evidences indicate that Id proteins are associated with loss of differentiation, unrestricted proliferation and neoangiogenesis in diverse human cancers. Recently, we identified Id4 as a transcriptional target of the protein complex mutant p53/E2F1/p300 in breast cancer. Id4 protein binds, stabilizes and enhances the translation of mRNAs encoding proangiogenic cytokines, such as IL8 and GRO-alpha, increasing the angiogenic potential of cancer cells. We present here an overview of the current experimental data that links Id4 to cancer. We provide evidence also of the induction of Id4 following anticancer treatments in mutant p53- carrying cells. Indeed, mutant p53 is recruited to a specific region of the Id4 promoter upon DNA damage. Our findings indicate that Id4, besides its proangiogenic role, might also participate in the chemoresistance associated to mutant p53 proteins exerting gain of function activities.
Collapse
Affiliation(s)
- Stefania Dell'Orso
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, 00144-Rome, Italy.
- Rome Oncogenomic Center (ROC), Regina Elena Cancer Institute, 00144-Rome, Italy.
| | - Federica Ganci
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, 00144-Rome, Italy.
| | - Sabrina Strano
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, 00144-Rome, Italy.
- Molecular Chemoprevention Group, Scientific Direction, Regina Elena Cancer Institute, 00144-Rome, Italy.
| | - Giovanni Blandino
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, 00144-Rome, Italy.
- Rome Oncogenomic Center (ROC), Regina Elena Cancer Institute, 00144-Rome, Italy.
| | - Giulia Fontemaggi
- Translational Oncogenomics Unit, Regina Elena Cancer Institute, 00144-Rome, Italy.
- Rome Oncogenomic Center (ROC), Regina Elena Cancer Institute, 00144-Rome, Italy.
- General Pathology Section, Department of Clinical and Experimental Medicine, Perugia University, Perugia, Italy.
| |
Collapse
|
41
|
Manthey C, Mern DS, Gutmann A, Zielinski AJ, Herz C, Lassmann S, Hasskarl J. Elevated endogenous expression of the dominant negative basic helix-loop-helix protein ID1 correlates with significant centrosome abnormalities in human tumor cells. BMC Cell Biol 2010; 11:2. [PMID: 20070914 PMCID: PMC2818612 DOI: 10.1186/1471-2121-11-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/14/2010] [Indexed: 01/20/2023] Open
Abstract
Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-)expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-)expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.
Collapse
Affiliation(s)
- Carolin Manthey
- Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang H, Wang XQ, Xu XP, Lin GW. ID4 methylation predicts high risk of leukemic transformation in patients with myelodysplastic syndrome. Leuk Res 2009; 34:598-604. [PMID: 19853913 DOI: 10.1016/j.leukres.2009.09.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/24/2009] [Accepted: 09/24/2009] [Indexed: 12/24/2022]
Abstract
Epigenetic gene silencing due to promoter methylation is observed in human cancers like acute myeloid leukemia (AML). Little is known about aberrant methylation in myelodysplastic syndrome (MDS), a heterogeneous clonal stem cell disorder with a approximately 30% risk of transformation into secondary AML. Recent evidence demonstrated that ID4, a negative regulator of transcription, may act as a tumor-suppressor gene. To clarify the role of ID4 in MDS, we employed methylation-specific PCR (MSP) to examine the methylation status of ID4 in 144 adult de novo MDS patients. We found that ID4 methylation was present in 35.4% (n=51) of these MDS patients and methylaiton was correlated significantly with World Health Organization (WHO) subtypes and International Prognostic Scoring System (IPSS) risk groups. Patients with advanced stages of WHO subtypes (45.8% vs. 21.3%, P=0.002) and higher risk IPSS subgroups (45.7% vs. 26.0%, P=0.014) exhibited a significantly higher frequency of ID4 methylation. The median survival of patients with ID4 methylation was shorter than patients without ID4 methylation (12.2 months vs. 26.9 months, P=0.005). Multivariate analysis indicated that ID4 methylation status was the independent factor that impacted leukemia-free survival (LFS). Disease in patients with ID4 methylation progressed more rapidly than those without ID4 methylation (P=0.047, HR=2.11). Our results suggest that ID4 may be a therapeutic target in MDS.
Collapse
Affiliation(s)
- Hong Wang
- Department of Haematology, Huashan Hospital of Fudan University, 12 Wulumuqi Road Central, 200040 Shanghai, China
| | | | | | | |
Collapse
|
43
|
Carey JPW, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J. Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer 2009; 9:173. [PMID: 19500415 PMCID: PMC2700118 DOI: 10.1186/1471-2407-9-173] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 06/07/2009] [Indexed: 01/25/2023] Open
Abstract
Background Inhibitor of differentiation 4 (Id4), a member of the Id gene family is also a dominant negative regulator of basic helix loop helix (bHLH) transcription factors. Some of the functions of Id4 appear to be unique as compared to its other family members Id1, Id2 and Id3. Loss of Id4 gene expression in many cancers in association with promoter hypermethylation has led to the proposal that Id4 may act as a tumor suppressor. In this study we provide functional evidence that Id4 indeed acts as a tumor suppressor and is part of a cancer associated epigenetic re-programming. Methods Data mining was used to demonstrate Id4 expression in prostate cancer. Methylation specific polymerase chain reaction (MSP) analysis was performed to understand molecular mechanisms associated with Id4 expression in prostate cancer cell lines. The effect of ectopic Id4 expression in DU145 cells was determined by cell cycle analysis (3H thymidine incorporation and FACS), expression of androgen receptor, p53 and cyclin dependent kinase inhibitors p27 and p21 by a combination of RT-PCR, real time-PCR, western blot and immuno-cytochemical analysis. Results Id4 expression was down-regulated in prostate cancer. Id4 expression was also down-regulated in prostate cancer line DU145 due to promoter hyper-methylation. Ectopic Id4 expression in DU145 prostate cancer cell line led to increased apoptosis and decreased cell proliferation due in part by an S-phase arrest. In addition to S-phase arrest, ectopic Id4 expression in PC3 cells also resulted in prolonged G2/M phase. At the molecular level these changes were associated with increased androgen receptor (AR), p21, p27 and p53 expression in DU145 cells. Conclusion The results suggest that Id4 acts directly as a tumor suppressor by influencing a hierarchy of cellular processes at multiple levels that leads to a decreased cell proliferation and change in morphology that is possibly mediated through induction of previously silenced tumor suppressors.
Collapse
Affiliation(s)
- Jason P W Carey
- Department of Biology, Center for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, GA 30314, USA.
| | | | | | | | | |
Collapse
|
44
|
Uhm KO, Lee ES, Lee YM, Park JS, Kim SJ, Kim BS, Kim HS, Park SH. Differential methylation pattern of ID4, SFRP1, and SHP1 between acute myeloid leukemia and chronic myeloid leukemia. J Korean Med Sci 2009; 24:493-7. [PMID: 19543515 PMCID: PMC2698198 DOI: 10.3346/jkms.2009.24.3.493] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 07/17/2008] [Indexed: 12/23/2022] Open
Abstract
To gain insight into the differential mechanism of gene promoter hypermethylation in acute and chronic leukemia, we identified the methylation status on one part of 5'CpG rich region of 8 genes, DAB2IP, DLC-1, H-cadherin, ID4, Integrin alpha4, RUNX3, SFRP1, and SHP1 in bone marrows from acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) patients. Also, we compared the methylation status of genes in AML and CML using methylation-specific PCR (MSP). The frequencies of DNA methylation of ID4, SFRP1, and SHP1 were higher in AML patients compared to those in CML patients. In contrast, no statistical difference between AML and CML was detected for other genes such as DLC-1, DAB2IP, H-cadherin, Integrin alpha4, and RUNX3. Taken together, these results suggest that these methylation-controlled genes may have different roles in AML and CML, and thus, may act as a biological marker of AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- CpG Islands
- DNA Methylation
- Female
- Humans
- Inhibitor of Differentiation Proteins/genetics
- Inhibitor of Differentiation Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Promoter Regions, Genetic
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
Collapse
Affiliation(s)
- Kyung-Ok Uhm
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Eun Soo Lee
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Yun Mi Lee
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Jeong Seon Park
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Byung Soo Kim
- Division of Hematology/Oncology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyeon Soo Kim
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Sun-Hwa Park
- Institute of Human Genetics, Department of Anatomy, Brain Korea 21 Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
[Promoter methylation of ID4. A marker for recurrence-free survival in human breast cancer]. DER PATHOLOGE 2009; 29 Suppl 2:319-27. [PMID: 18807039 DOI: 10.1007/s00292-008-1038-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to unravel the role of the transcription factor inhibitor of DNA binding 4 (ID4) in human breast carcinogenesis in more detail, especially the impact of ID4 promoter methylation on disease progression. Demethylating treatment of breast cancer cell lines was associated with ID4 reexpression. ID4 promoter methylation was frequently observed in primary breast cancer samples (68.9%, 117/170). We found a very tight correlation (p<0.001) between ID4 promoter methylation and loss of ID4 mRNA expression in these specimens. For breast tissue as the first tumour entity analyzed in detail, we could show a direct correlation between ID4 promoter methylation and loss of ID4 expression on both the mRNA and protein level. Interestingly, ID4 promoter methylation was a factor for unfavourable recurrence-free survival (p=0.036) and increased the patient's risk for lymph node metastases (p=0.030). Our data suggest that ID4 is a potential tumour suppressor gene in human breast tissues that undergoes epigenetic silencing during carcinogenesis, leading to an increased risk for tumour relapse. Thus, ID4 methylation status could serve as a prognostic biomarker in human breast cancer.
Collapse
|
46
|
Jee CD, Kim MA, Jung EJ, Kim J, Kim WH. Identification of genes epigenetically silenced by CpG methylation in human gastric carcinoma. Eur J Cancer 2009; 45:1282-1293. [DOI: 10.1016/j.ejca.2008.12.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 12/13/2022]
|
47
|
Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S, Yokota J, Gonzalez-Neira A, Benitez J, Clevers HC, Cigudosa JC, Lazo PA, Sanchez-Cespedes M. The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet 2009; 18:1343-52. [PMID: 19153074 DOI: 10.1093/hmg/ddp034] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The search for oncogenes is becoming increasingly important in cancer genetics because they are suitable targets for therapeutic intervention. To identify novel oncogenes, activated by gene amplification, we analyzed cDNA microarrays by high-resolution comparative genome hybridization and compared DNA copy number and mRNA expression levels in lung cancer cell lines. We identified several amplicons (5p13, 6p22-21, 11q13, 17q21 and 19q13) that had a concomitant increase in gene expression. These regions were also found to be amplified in lung primary tumours. We mapped the boundaries and measured expression levels of genes within the chromosome 6p amplicon. The Sry-HMG box gene SOX4 (sex-determining region Y box 4), which encodes a transcription factor involved in embryonic cell differentiation, was overexpressed by a factor of 10 in cells with amplification relative to normal cells. SOX4 expression was also stronger in a fraction of lung primary tumours and lung cancer cell lines and was associated with the presence of gene amplification. We also found variants of SOX4 in lung primary tumours and cancer cell lines, including a somatic mutation that introduced a premature stop codon (S395X) at the serine-rich C-terminal domain. Although none of the variants increased the transactivation ability of SOX4, overexpression of the wildtype and of the non-truncated variants in NIH3T3 cells significantly increased the transforming ability of the weakly oncogenic RHOA-Q63L. In conclusion, our results show that, in lung cancer, SOX4 is overexpressed due to gene amplification and provide evidence of oncogenic properties of SOX4.
Collapse
Affiliation(s)
- Pedro P Medina
- Lung Cancer Group, Molecular Pathology Programme, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Shuno Y, Tsuno NH, Okaji Y, Tsuchiya T, Sakurai D, Nishikawa T, Yoshikawa N, Sasaki K, Hongo K, Tsurita G, Sunami E, Kitayama J, Tokunaga K, Takahashi K, Nagawa H. Id1/Id3 knockdown inhibits metastatic potential of pancreatic cancer. J Surg Res 2008; 161:76-82. [PMID: 19515385 DOI: 10.1016/j.jss.2008.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND The Id (inhibitor of DNA binding/differentiation) proteins belong to the helix-loop-helix transcriptional regulatory factors, and play important roles in tumor development. Previously, we and others have shown that targeting Id in tumor cells could have important clinical implications. In the present study, we aimed to evaluate the effects of Id inhibition in human pancreatic cancer cells. MATERIALS AND METHODS Id1 and Id3 were stably double-knockdown in human pancreatic cancer cell line MIA-Paca2 by means of RNA interference. Expression of Id and integrins were analyzed by flow-cytometry. Cell proliferation was evaluated by MTS assay. Migration was measured by wound closure assay. Adhesion assay was performed to evaluate binding capacity for different extracellular matrix proteins. Finally, in vivo properties of tumor cells were observed in a mouse model of peritoneal metastasis. RESULTS Id1/Id3 double-knockdown resulted in decreased ability of pancreatic cancer cells to proliferate and migrate. In addition, Id1/Id3 double-knockdown caused decreased expression of integrins alpha3, alpha6, and beta1, and consequently reduced adhesion of tumor cells to laminin. Finally, peritoneal metastases of Id1/Id3 double-knockdown tumor cells were significantly reduced. CONCLUSIONS We concluded that the Id proteins play a pivotal role in the development of peritoneal metastasis of pancreatic cancer, and consequently, their targeting would be a novel strategy for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yasutaka Shuno
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Smith E, De Young NJ, Pavey SJ, Hayward NK, Nancarrow DJ, Whiteman DC, Smithers BM, Ruszkiewicz AR, Clouston AD, Gotley DC, Devitt PG, Jamieson GG, Drew PA. Similarity of aberrant DNA methylation in Barrett's esophagus and esophageal adenocarcinoma. Mol Cancer 2008; 7:75. [PMID: 18831746 PMCID: PMC2567345 DOI: 10.1186/1476-4598-7-75] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 10/02/2008] [Indexed: 02/06/2023] Open
Abstract
Background Barrett's esophagus (BE) is the metaplastic replacement of squamous with columnar epithelium in the esophagus, as a result of reflux. It is the major risk factor for the development of esophageal adenocarcinoma (EAC). Methylation of CpG dinucleotides of normally unmethylated genes is associated with silencing of their expression, and is common in EAC. This study was designed to determine at what stage, in the progression from BE to EAC, methylation of key genes occurs. Results We examined nine genes (APC, CDKN2A, ID4, MGMT, RBP1, RUNX3, SFRP1, TIMP3, and TMEFF2), frequently methylated in multiple cancer types, in a panel of squamous (19 biopsies from patients without BE or EAC, 16 from patients with BE, 21 from patients with EAC), BE (40 metaplastic, seven high grade dysplastic) and 37 EAC tissues. The methylation frequency, the percentage of samples that had any extent of methylation, for each of the nine genes in the EAC (95%, 59%, 76%, 57%, 70%, 73%, 95%, 74% and 83% respectively) was significantly higher than in any of the squamous groups. The methylation frequency for each of the nine genes in the metaplastic BE (95%, 28%, 78%, 48%, 58%, 48%, 93%, 88% and 75% respectively) was significantly higher than in the squamous samples except for CDKN2A and RBP1. The methylation frequency did not differ between BE and EAC samples, except for CDKN2A and RUNX3 which were significantly higher in EAC. The methylation extent was an estimate of both the number of methylated alleles and the density of methylation on these alleles. This was significantly greater in EAC than in metaplastic BE for all genes except APC, MGMT and TIMP3. There was no significant difference in methylation extent for any gene between high grade dysplastic BE and EAC. Conclusion We found significant methylation in metaplastic BE, which for seven of the nine genes studied did not differ in frequency from that found in EAC. This is also the first report of gene silencing by methylation of ID4 in BE or EAC. This study suggests that metaplastic BE is a highly abnormal tissue, more similar to cancer tissue than to normal epithelium.
Collapse
Affiliation(s)
- Eric Smith
- School of Nursing and Midwifery, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Noetzel E, Veeck J, Niederacher D, Galm O, Horn F, Hartmann A, Knüchel R, Dahl E. Promoter methylation-associated loss of ID4 expression is a marker of tumour recurrence in human breast cancer. BMC Cancer 2008; 8:154. [PMID: 18513385 PMCID: PMC2435120 DOI: 10.1186/1471-2407-8-154] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 05/30/2008] [Indexed: 02/07/2023] Open
Abstract
Background Inhibitor of DNA binding/Inhibitor of differentiation 4 (ID4) is a critical factor for cell proliferation and differentiation in normal vertebrate development. ID4 has regulative functions for differentiation and growth of the developing brain. The role of ID1, ID2 and ID3 are expected to be oncogenic due to their overexpression in pancreatic cancer and colorectal adenocarcinomas, respectively. Aside from these findings, loss of ID3 expression was demonstrated in ovarian cancer. The aim of the present study was to reveal the factual role of ID4 in carcinogenesis in more detail, since its role for the pathogenesis of human breast cancer has been discussed controversially, assigning both oncogenic and tumour suppressive functions. Methods ID4 promoter methylation, ID4 mRNA expression and ID4 protein expression were analysed in primary human breast cancer specimens using methylation-specific PCR (MSP) (n=170), semiquantitative realtime RT-PCR (n=46) and immunhistochemistry (n=3), respectively. In order to demonstrate a functional association of ID4 promoter methylation with its gene silencing, we performed DNA demethylation analysis with four human breast cell lines using MSP and semiquantitative realtime RT-PCR. In addition, we performed correlations of ID4 promoter methylation with ID4 mRNA and ID4 protein expression in matched samples of breast tumour and corresponding normal tissue. We carried out statistical analyses in order to find correlations between ID4 promoter methylation and clinicopathological parameters. Results Frequent ID4 promoter methylation was observed in primary breast cancer samples (69%, 117/170). We found a tight correlation (P<0.0001) between ID4 promoter methylation and loss of ID4 expression in primary breast cancer 3 specimens. Demethylating treatment with breast cancer cell lines was associated with clear ID4 mRNA re-expression. Tumours with ID4 promoter methylation showed distinct loss of ID4 expression on both transcription and protein level. Interestingly, ID4 promoter methylation was a factor for unfavourable recurrence-free survival (P=0.036) and increased risk for lymph node metastasis (P=0.030). Conclusion ID4 is indeed a novel tumour suppressor gene in normal human breast tissue and is epigenetically silenced during cancer development, indicating increased risk for tumour relapse. Thus, ID4 methylation status could serve as a prognostic biomarker in human breast cancer.
Collapse
Affiliation(s)
- Erik Noetzel
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Aachen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|