1
|
Fan Y, Chen S, Chu C, Yin X, Jin J, Zhang L, Yan H, Cao Z, Liu R, Xin M, Li L, Yin C. TP63 truncating mutation causes increased cell apoptosis and premature ovarian insufficiency by enhanced transcriptional activation of CLCA2. J Ovarian Res 2024; 17:67. [PMID: 38528613 PMCID: PMC10962206 DOI: 10.1186/s13048-024-01396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a severe disorder leading to female infertility. Genetic mutations are important factors causing POI. TP63-truncating mutation has been reported to cause POI by increasing germ cell apoptosis, however what factors mediate this apoptosis remains unclear. METHODS Ninety-three patients with POI were recruited from Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Whole-exome sequencing (WES) was performed for each patient. Sanger sequencing was used to confirm potential causative genetic variants. A minigene assay was performed to determine splicing effects of TP63 variants. A TP63-truncating plasmid was constructed. Real-time quantitative PCR, western blot analyses, dual luciferase reporter assays, immunofluorescence staining, and cell apoptosis assays were used to study the underlying mechanism of a TP63-truncating mutation causing POI. RESULTS By WES of 93 sporadic patients with POI, we found a 14-bp deletion covering the splice site in the TP63 gene. A minigene assay demonstrated that the 14-bp deletion variant led to exon 13 skipping during TP63 mRNA splicing, resulting in the generation of a truncated TP63 protein (TP63-mut). Overexpression of TP63-mut accelerated cell apoptosis. Mechanistically, the TP63-mut protein could bind to the promoter region of CLCA2 and activate the transcription of CLCA2 several times compared to that of the TP63 wild-type protein. Silencing CLCA2 using a specific small interfering RNA (siRNA) or inhibiting the Ataxia Telangiectasia Mutated (ATM) pathway using the KU55933 inhibitor attenuated cell apoptosis caused by TP63-mut protein expression. CONCLUSION Our findings revealed a crucial role for CLCA2 in mediating apoptosis in POI pathogenesis, and suggested that CLCA2 is a potential therapeutic target for POI.
Collapse
Affiliation(s)
- Yali Fan
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Shuya Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Chunfang Chu
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Xiaodan Yin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Jing Jin
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Lingyan Zhang
- Department of Gynaecology and Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huihui Yan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zheng Cao
- Department of Laboratory Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Mingwei Xin
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China.
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China.
| |
Collapse
|
2
|
Epigenetic Regulation of MAP3K8 in EBV-Associated Gastric Carcinoma. Int J Mol Sci 2023; 24:ijms24031964. [PMID: 36768307 PMCID: PMC9916342 DOI: 10.3390/ijms24031964] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Super-enhancers (SEs) regulate gene expressions, which are critical for cell type-identity and tumorigenesis. Although genome wide H3K27ac profiling have revealed the presence of SE-associated genes in gastric cancer (GC), their roles remain unclear. In this study, ChIP-seq and HiChIP-seq experiments revealed mitogen-activated protein kinase 8 (MAP3K8) to be an SE-associated gene with chromosome interactions in Epstein-Barr virus-associated gastric carcinoma (EBVaGC) cells. CRISPRi mediated repression of the MAP3K8 SEs attenuated MAP3K8 expression and EBVaGC cell proliferation. The results were validated by treating EBVaGC cells with bromodomain and the extra-terminal motif (BET) inhibitor, OTX015. Further, functional analysis of MAP3K8 in EBVaGC revealed that silencing MAP3K8 could inhibit the cell proliferation, colony formation, and migration of EBVaGC cells. RNA-seq and pathway analysis indicated that knocking down MAP3K8 obstructed the notch signaling pathway and epithelial-mesenchymal transition (EMT) in EBVaGC cells. Further, analysis of the cancer genome atlas (TCGA) and GSE51575 databases exhibited augmented MAP3K8 expression in gastric cancer and it was found to be inversely correlated with the disease-free progression of GC. Moreover, Spearman's correlation revealed that MAP3K8 expression was positively correlated with the expressions of notch pathway and EMT related genes, such as, Notch1, Notch2, C-terminal binding protein 2 (CTBP2), alpha smooth muscle actin isotype 2 (ACTA2), transforming growth factor beta receptor 1 (TGFβR1), and snail family transcriptional repressors 1/2 (SNAI1/SNAI2) in GC. Taken together, we are the first to functionally interrogate the mechanism of SE-mediated regulation of MAP3K8 in EBVaGC cell lines.
Collapse
|
3
|
Athira K, Gopakumar G. Breast cancer stage prediction: a computational approach guided by transcriptome analysis. Mol Genet Genomics 2022; 297:1467-1479. [PMID: 35922530 DOI: 10.1007/s00438-022-01932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the second leading cancer among women in terms of mortality rate. In recent years, its incidence frequency has been continuously rising across the globe. In this context, the new therapeutic strategies to manage the deadly disease attracts tremendous research focus. However, finding new prognostic predictors to refine the selection of therapy for the various stages of breast cancer is an unattempted issue. Aberrant expression of genes at various stages of cancer progression can be studied to identify specific genes that play a critical role in cancer staging. Moreover, while many schemes for subtype prediction in breast cancer have been explored in the literature, stage-wise classification remains a challenge. These observations motivated the proposed two-phased method: stage-specific gene signature selection and stage classification. In the first phase, meta-analysis of gene expression data is conducted to identify stage-wise biomarkers that were then used in the second phase of cancer classification. From the analysis, 118, 12 and 4 genes respectively in stage I, stage II and stage III are determined as potential biomarkers. Pathway enrichment, gene network and literature analysis validate the significance of the identified genes in breast cancer. In this study, machine learning methods were combined with principal component and posterior probability analysis. Such a scheme offers a unique opportunity to build a meaningful model for predicting breast cancer staging. Among the machine learning models compared, Support Vector Machine (SVM) is found to perform the best for the selected datasets with an accuracy of 92.21% during test data evaluation. Perhaps, biomarker identification performed here for stage-specific cancer treatment would be a meaningful step towards predictive medicine. Significantly, the determination of correct cancer stage using the proposed 134 gene signature set can possibly act as potential target for breast cancer therapeutics.
Collapse
Affiliation(s)
- K Athira
- Department of Computer Science and Engineering, NIT Campus PO, National Institute of Technology Calicut, Calicut, Kerala, India.
| | - G Gopakumar
- Department of Computer Science and Engineering, NIT Campus PO, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
4
|
Gambardella G, Viscido G, Tumaini B, Isacchi A, Bosotti R, di Bernardo D. A single-cell analysis of breast cancer cell lines to study tumour heterogeneity and drug response. Nat Commun 2022; 13:1714. [PMID: 35361816 PMCID: PMC8971486 DOI: 10.1038/s41467-022-29358-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer cells within a tumour have heterogeneous phenotypes and exhibit dynamic plasticity. How to evaluate such heterogeneity and its impact on outcome and drug response is still unclear. Here, we transcriptionally profile 35,276 individual cells from 32 breast cancer cell lines to yield a single cell atlas. We find high degree of heterogeneity in the expression of biomarkers. We then train a deconvolution algorithm on the atlas to determine cell line composition from bulk gene expression profiles of tumour biopsies, thus enabling cell line-based patient stratification. Finally, we link results from large-scale in vitro drug screening in cell lines to the single cell data to computationally predict drug responses starting from single-cell profiles. We find that transcriptional heterogeneity enables cells with differential drug sensitivity to co-exist in the same population. Our work provides a framework to determine tumour heterogeneity in terms of cell line composition and drug response.
Collapse
Affiliation(s)
- G Gambardella
- Telethon Institute of Genetics and Medicine, Naples, Italy.,University of Naples Federico II, Department of Chemical, Materials and Industrial Engineering, Naples, Italy
| | - G Viscido
- Telethon Institute of Genetics and Medicine, Naples, Italy.,University of Naples Federico II, Department of Chemical, Materials and Industrial Engineering, Naples, Italy
| | - B Tumaini
- Telethon Institute of Genetics and Medicine, Naples, Italy
| | - A Isacchi
- NMSsrl, Nerviano Medical Sciences, 20014, Nerviano, Milan, Italy
| | - R Bosotti
- NMSsrl, Nerviano Medical Sciences, 20014, Nerviano, Milan, Italy
| | - D di Bernardo
- Telethon Institute of Genetics and Medicine, Naples, Italy. .,University of Naples Federico II, Department of Chemical, Materials and Industrial Engineering, Naples, Italy.
| |
Collapse
|
5
|
Liu Y, Ye X, Yu CY, Shao W, Hou J, Feng W, Zhang J, Huang K. TPSC: a module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery. BMC Bioinformatics 2021; 22:111. [PMID: 34689740 PMCID: PMC8543836 DOI: 10.1186/s12859-021-03964-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene co-expression networks are widely studied in the biomedical field, with algorithms such as WGCNA and lmQCM having been developed to detect co-expressed modules. However, these algorithms have limitations such as insufficient granularity and unbalanced module size, which prevent full acquisition of knowledge from data mining. In addition, it is difficult to incorporate prior knowledge in current co-expression module detection algorithms. RESULTS In this paper, we propose a novel module detection algorithm based on topology potential and spectral clustering algorithm to detect co-expressed modules in gene co-expression networks. By testing on TCGA data, our novel method can provide more complete coverage of genes, more balanced module size and finer granularity than current methods in detecting modules with significant overall survival difference. In addition, the proposed algorithm can identify modules by incorporating prior knowledge. CONCLUSION In summary, we developed a method to obtain as much as possible information from networks with increased input coverage and the ability to detect more size-balanced and granular modules. In addition, our method can integrate data from different sources. Our proposed method performs better than current methods with complete coverage of input genes and finer granularity. Moreover, this method is designed not only for gene co-expression networks but can also be applied to any general fully connected weighted network.
Collapse
Affiliation(s)
- Yusong Liu
- Collage of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China.,Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiufen Ye
- Collage of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China.
| | - Christina Y Yu
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Wei Shao
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Hou
- Collage of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China
| | - Weixing Feng
- Collage of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, China
| | - Jie Zhang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kun Huang
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Regenstrief Institute, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Kharrati-Koopaee H, Ebrahimie E, Dadpasand M, Niazi A, Tian R, Esmailizadeh A. Gene network analysis to determine the effect of hypoxia-associated genes on brain damages and tumorigenesis using an avian model. J Genet Eng Biotechnol 2021; 19:100. [PMID: 34236536 PMCID: PMC8266987 DOI: 10.1186/s43141-021-00184-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hypoxia refers to the condition of low oxygen pressure in the atmosphere and characterization of response to hypoxia as a biological complex puzzle, is challenging. Previously, we carried out a comparative genomic study by whole genome resequencing of highland and lowland Iranian native chickens to identify genomic variants associated with hypoxia conditions. Based on our previous findings, we used chicken as a model and the identified hypoxia-associated genes were converted to human's orthologs genes to construct the informative gene network. The main goal of this study was to visualize the features of diseases due to hypoxia-associated genes by gene network analysis. RESULTS It was found that hypoxia-associated genes contained several gene networks of disorders such as Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and cancers. We found that biological pathways are involved in mitochondrion dysfunctions including peroxynitrous acid production denoted in brain injuries. Lewy body and neuromelanin were reported as key symptoms in Parkinson disease. Furthermore, calmodulin, and amyloid precursor protein were detected as leader proteins in Alzheimer's diseases. Dexamethasone was reported as the candidate toxic drug under the hypoxia condition that implicates diabetes, osteoporosis, and neurotoxicity. Our results suggested DNA damages caused by the high doses of UV radiation in high-altitude conditions, were associated with breast cancer, ovarian cancer, and colorectal cancer. CONCLUSIONS Our results showed that hypoxia-associated genes were enriched in several gene networks of disorders including Parkinson, Alzheimer, cardiomyopathy, drug toxicity, and different types of cancers. Furthermore, we suggested, UV radiation and low oxygen conditions in high-altitude regions may be responsible for the variety of human diseases.
Collapse
Affiliation(s)
- Hamed Kharrati-Koopaee
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Esmaeil Ebrahimie
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, Australia
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Mohammad Dadpasand
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Rugang Tian
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
7
|
Soleymani L, Zarrabi A, Hashemi F, Hashemi F, Zabolian A, Banihashemi SM, Moghadam SS, Hushmandi K, Samarghandian S, Ashrafizadeh M, Khan H. Role of ZEB family members in proliferation, metastasis and chemoresistance of prostate cancer cells: Revealing signaling networks. Curr Cancer Drug Targets 2021; 21:749-767. [PMID: 34077345 DOI: 10.2174/1568009621666210601114631] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/19/2021] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is one of the leading causes of death worldwide. A variety of strategies including surgery, chemotherapy, radiotherapy and immunotherapy are applied for PCa treatment. PCa cells are responsive towards therapy at early stages, but they can obtain resistance in the advanced stage. Furthermore, their migratory ability is high in advanced stages. It seems that genetic and epigenetic factors play an important in this case. Zinc finger E-box-binding homeobox (ZEB) is a family of transcription with two key members including ZEB1 and ZEB2. ZEB family members are known due to their involvement in promoting cancer metastasis via EMT induction. Recent studies have shown their role in cancer proliferation and inducing therapy resistance. In the current review, we focus on revealing role of ZEB1 and ZEB2 in PCa. ZEB family members that are able to significantly promote proliferation and viability of cancer cells. ZEB1 and ZEB2 enhance migration and invasion of PCa cells via EMT induction. Overexpression of ZEB1 and ZEB2 is associated with poor prognosis of PCa. ZEB1 and ZEB2 upregulation occurs during PCa progression and can provide therapy resistance to cancer cells. PRMT1, Smad2, and non-coding RNAs can function as upstream mediators of the ZEB family. Besides, Bax, Bcl-2, MRP1, N-cadherin and E-cadherin can be considered as downstream targets of ZEB family in PCa.
Collapse
Affiliation(s)
- Leyla Soleymani
- Department of biology, school of science, Urmia university, Urmia, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shirin Sabouhi Moghadam
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite -Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200. Pakistan
| |
Collapse
|
8
|
Zhang P, Lin Y, Liu Y. CLCA2 suppresses the proliferation, migration and invasion of cervical cancer. Exp Ther Med 2021; 22:776. [PMID: 34055075 DOI: 10.3892/etm.2021.10208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 01/28/2021] [Indexed: 11/06/2022] Open
Abstract
Ca2+-activated Cl- channel A2 (CLCA2), a tumor suppressor, is associated with the development of several cancers. However, little is known about CLCA2 in human cervical cancer. Therefore, the aim of the present study was to investigate the effects of CLCA2 on cervical cancer. Reverse transcription-quantitative (RT-q)PCR was used to examine the mRNA expression levels of CLCA2 in eight pairs of cervical cancer tissues. Immunohistochemistry was used to investigate CLCA2 protein expression in 144 archived cervical cancer specimens. The association of the CLCA2 with clinicopathological parameters was statistically evaluated. Cell proliferation and invasion capability were examined by MTT and Transwell assays, respectively. RT-qPCR analysis revealed that CLCA2 expression was decreased in cervical cancer compared with that in adjacent normal tissues. The expression levels of CLCA2 in patients were correlated with tumor stage (P=0.028), tumor size (P=0.009), and human papillomavirus (HPV) infection status (P=0.041). In addition, CLCA2 upregulation was associated with longer overall and recurrence-free survival time after surgery (P=0.016 and P=0.009, respectively). Multivariate Cox regression analysis demonstrated that CLCA2 expression had a predictive value for overall survival of patients with cervical cancer (P=0.017 and P=0.025, respectively). Knockdown of CLCA2 by small interfering RNA suppressed tumor cell proliferation and migration. Mechanistically, CLCA2 was involved in Wnt/β-catenin signaling. In conclusion, the results of the present study demonstrated that CLCA2 suppressed the proliferation, migration and invasion of cervical cancer cells, and that CLCA2 may be a potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Peijin Zhang
- Department of Gynecology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, P.R. China
| | - Yang Lin
- Department of Gynecology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, P.R. China
| | - Yaqiong Liu
- Department of Gynecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
9
|
Hämäläinen L, Bart G, Takabe P, Rauhala L, Deen A, Pasonen-Seppänen S, Kärkkäinen E, Kärnä R, Kumlin T, Tammi MI, Tammi RH. The calcium-activated chloride channel-associated protein rCLCA2 is expressed throughout rat epidermis, facilitates apoptosis and is downmodulated by UVB. Histochem Cell Biol 2021; 155:605-615. [PMID: 33486586 PMCID: PMC8134295 DOI: 10.1007/s00418-021-01962-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 12/19/2022]
Abstract
The rodent chloride channel regulatory proteins mCLCA2 and its porcine and human homologues pCLCA2 and hCLCA2 are expressed in keratinocytes but their localization and significance in the epidermis have remained elusive. hCLCA2 regulates cancer cell migration, invasion and apoptosis, and its loss predicts poor prognosis in many tumors. Here, we studied the influences of epidermal maturation and UV-irradiation (UVR) on rCLCA2 (previous rCLCA5) expression in cultured rat epidermal keratinocytes (REK) and correlated the results with mCLCA2 expression in mouse skin in vivo. Furthermore, we explored the influence of rCLCA2 silencing on UVR-induced apoptosis. rClca2 mRNA was strongly expressed in REK cells, and its level in organotypic cultures remained unchanged during the epidermal maturation process from a single cell layer to fully differentiated, stratified cultures. Immunostaining confirmed its uniform localization throughout the epidermal layers in REK cultures and in rat skin. A single dose of UVR modestly downregulated rClca2 expression in organotypic REK cultures. The immunohistochemical staining showed that CLCA2 localized in basal and spinous layers also in mouse skin, and repeated UVR induced its partial loss. Interestingly, silencing of rCLCA2 reduced the number of apoptotic cells induced by UVR, suggesting that by facilitating apoptosis, CLCA2 may protect keratinocytes against the risk of malignancy posed by UVB-induced corrupt DNA.
Collapse
Affiliation(s)
- L Hämäläinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland.
| | - G Bart
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - P Takabe
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - L Rauhala
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - A Deen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - S Pasonen-Seppänen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - E Kärkkäinen
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - R Kärnä
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - T Kumlin
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - M I Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| | - R H Tammi
- Institute of Biomedicine/Anatomy, University of Eastern Finland, P.O. Box 1627, N70211, Kuopio, Finland
| |
Collapse
|
10
|
Ribeiro Reily Rocha C, Reily Rocha A, Molina Silva M, Rodrigues Gomes L, Teatin Latancia M, Andrade Tomaz M, de Souza I, Karolynne Seregni Monteiro L, Frederico Martins Menck C. Revealing Temozolomide Resistance Mechanisms via Genome-Wide CRISPR Libraries. Cells 2020; 9:cells9122573. [PMID: 33271924 PMCID: PMC7760831 DOI: 10.3390/cells9122573] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is a severe type of brain tumor with a poor prognosis and few therapy options. Temozolomide (TMZ) is one of these options, however, with limited success, and failure is mainly due to tumor resistance. In this work, genome-wide CRISPR-Cas9 lentiviral screen libraries for gene knockout or activation were transduced in the human glioblastoma cell line, aiming to identify genes that modulate TMZ resistance. The sgRNAs enriched in both libraries in surviving cells after TMZ treatment were identified by next-generation sequencing (NGS). Pathway analyses of gene candidates on knockout screening revealed several enriched pathways, including the mismatch repair and the Sonic Hedgehog pathways. Silencing three genes ranked on the top 10 list (MSH2, PTCH2, and CLCA2) confirm cell protection from TMZ-induced death. In addition, a CRISPR activation library revealed that NRF2 and Wnt pathways are involved in TMZ resistance. Consistently, overexpression of FZD6, CTNNB1, or NRF2 genes significantly increased cell survival upon TMZ treatment. Moreover, NRF2 and related genes detected in this screen presented a robust negative correlation with glioblastoma patient survival rates. Finally, several gene candidates from knockout or activation screening are targetable by inhibitors or small molecules, and some of them have already been used in the clinic.
Collapse
Affiliation(s)
- Clarissa Ribeiro Reily Rocha
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Alexandre Reily Rocha
- Institute of Theoretical Physics, State University of São Paulo (UNESP), São Paulo 01140-070, Brazil;
| | - Matheus Molina Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (M.M.S.); (M.T.L.)
| | - Luciana Rodrigues Gomes
- Laboratory of Cell Cycle, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo 05503-001, Brazil;
| | - Marcela Teatin Latancia
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (M.M.S.); (M.T.L.)
| | - Marina Andrade Tomaz
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Izadora de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Linda Karolynne Seregni Monteiro
- Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo 04037-003, Brazil; (C.R.R.R.); (M.A.T.); (I.d.S.); (L.K.S.M.)
| | - Carlos Frederico Martins Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil; (M.M.S.); (M.T.L.)
- Correspondence: ; Tel.: +55-1130917499
| |
Collapse
|
11
|
Purrington KS, Knight J, Dyson G, Ali-Fehmi R, Schwartz AG, Boerner JL, Bandyopadhyay S. CLCA2 expression is associated with survival among African American women with triple negative breast cancer. PLoS One 2020; 15:e0231712. [PMID: 32298355 PMCID: PMC7161959 DOI: 10.1371/journal.pone.0231712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Black/African American (AA) women are twice as likely to be diagnosed with triple negative breast cancer (TNBC) compared to whites, an aggressive breast cancer subtype associated with poor prognosis. There are no routinely used targeted clinical therapies for TNBC; thus there is a clear need to identify prognostic markers and potential therapeutic targets. METHODS We evaluated expression of 27,016 genes in 155 treatment-naïve TN tumors from AA women in Detroit. Associations with survival were evaluated using Cox proportional hazards models adjusting for stage and age at diagnosis, and p-values were corrected using a false discovery rate. Our validation sample consisted of 494 TN tumors using four publically available data sets. Meta-analyses were performed using summary statistics from the four validation results. RESULTS In the Detroit AA cohort, CLCA2 [Hazard ratio (HR) = 1.56, 95% confidence interval (CI) 1.31-1.86, nominal p = 5.1x10-7, FDR p = 0.014], SPIC [HR = 1.47, 95%CI 1.26-1.73, nominal p = 1.8x10-6, FDR p = 0.022], and MIR4311 [HR = 1.57, 95% CI 1.31-1.92, nominal p = 2.5x10-5, FDR p = 0.022] expression were associated with overall survival. Further adjustment for treatment and breast cancer specific survival analysis did not substantially alter effect estimates. CLCA2 was also associated with increased risk of death in the validation cohorts [HR = 1.14, 95% CI 1.05-1.24, p = 0.038, p-heterogeneity = 0.88]. CONCLUSIONS We identified CLCA2 as a potential prognostic marker for TNBC in AA women.
Collapse
Affiliation(s)
- Kristen S. Purrington
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Jimmie Knight
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Ann G. Schwartz
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Population Studies and Disparities Research Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Julie L. Boerner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| | - Sudeshna Bandyopadhyay
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, United States of America
| |
Collapse
|
12
|
Liu J, Mao R, Ren G, Liu X, Zhang Y, Wang J, Wang Y, Li M, Qiu Q, Wang L, Liu G, Jin S, Ma L, Ma Y, Zhao N, Yan J, Zhang H, Lin B. Whole Exome Sequencing Identifies Putative Predictors of Recurrent Prostate Cancer with High Accuracy. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:380-388. [PMID: 31194651 DOI: 10.1089/omi.2019.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is a highly common cancer among men but lacks robust diagnostics that can predict disease recurrence after initial treatment, for example, with radical prostatectomy. Recent advances in genomics and next-generation sequencing heralded the discovery of biomarkers such as the androgen receptor gene (AR) splice events, the TMPRSS2:EGR gene fusion, long noncoding RNA MALAT-1 and SCHLAP1 for PCa prognosis. Still, the question of why some patients experience recurrence, whereas others do not introduce marked uncertainty for both patients and physicians. We report here the whole exome sequencing of 30 recurrent and 44 nonrecurrent PCa patients. We identified 72 and 34 specific somatic single nucleotide variations in the recurrent and the nonrecurrent group, respectively, and developed a classification model to forecast PCa recurrence using a random forest model. The model displayed a sensitivity and specificity of 87.8% and 94.4%, respectively, for identifying the patients with recurrent PCa. These observations warrant further research in independent and larger clinical samples so as to inform future diagnostics innovation for PCa prognosis and recurrence.
Collapse
Affiliation(s)
- Jie Liu
- 1College of Life Science, Zhejiang University, Hangzhou, China.,2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Ruifang Mao
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Guoping Ren
- 3Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China
| | - Xiaoyan Liu
- 3Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China
| | - Yanling Zhang
- 3Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China.,4Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, China
| | - Jili Wang
- 3Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China
| | - Yan Wang
- 3Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, China
| | - Meiling Li
- 5Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Qingchong Qiu
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Lin Wang
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Guanfeng Liu
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Shanshan Jin
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Liang Ma
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Yingying Ma
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Na Zhao
- 2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China
| | - Jiajun Yan
- 6Department of Urology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Hongwei Zhang
- 5Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Biaoyang Lin
- 1College of Life Science, Zhejiang University, Hangzhou, China.,2Systems Biology Division, Zhejiang-California International Nanosystems Institute (ZCNI), Zhejiang University, Hangzhou, China.,7Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,8Department of Urology, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
14
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
15
|
Porretti J, Dalton GN, Massillo C, Scalise GD, Farré PL, Elble R, Gerez EN, Accialini P, Cabanillas AM, Gardner K, De Luca P, De Siervi A. CLCA2 epigenetic regulation by CTBP1, HDACs, ZEB1, EP300 and miR-196b-5p impacts prostate cancer cell adhesion and EMT in metabolic syndrome disease. Int J Cancer 2018. [DOI: 10.1002/ijc.31379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juliana Porretti
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Guillermo N. Dalton
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Cintia Massillo
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Georgina D. Scalise
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Paula L. Farré
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Randolph Elble
- Department of Pharmacology; Simmons Cancer Institute, Southern Illinois University School of Medicine; Springfield IL
| | - Esther N. Gerez
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Hospital de Clínicas; Argentina
| | - Paula Accialini
- Laboratorio de Fisiología y Biología Tumoral del Ovario, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Ana M. Cabanillas
- Laboratorio de Oncología Molecular, Universidad Nacional de Córdoba; Argentina
| | - Kevin Gardner
- Department of Pathology and Cell Biology; Columbia University Medical Center; New York NY
| | - Paola De Luca
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| | - Adriana De Siervi
- Laboratorio de Oncología Molecular y Nuevos Blancos Terapéuticos, Instituto de Biología y Medicina Experimental (IBYME), CONICET; Argentina
| |
Collapse
|
16
|
Li X, Hu W, Zhou J, Huang Y, Peng J, Yuan Y, Yu J, Zheng S. CLCA1 suppresses colorectal cancer aggressiveness via inhibition of the Wnt/beta-catenin signaling pathway. Cell Commun Signal 2017; 15:38. [PMID: 28974231 PMCID: PMC5627483 DOI: 10.1186/s12964-017-0192-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Background Chloride channel accessory 1 (CLCA1) belongs to the calcium-sensitive chloride conductance protein family, which is mainly expressed in the colon, small intestine and appendix. This study was conducted to investigate the functions and mechanisms of CLCA1 in colorectal cancer (CRC). Methods The CLCA1 protein expression level in CRC patients was evaluated by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and western blotting analysis. Using CRISPR/Cas9 technology, CLCA1-upregulated (CLCA1-ACT) and CLCA1-knockout cells (CLCA1-KO), as well as their respective negative controls (CLCA1-ACT-NC and CLCA1-KO-NC), were constructed from the SW620 cell line. Cell growth and metastatic ability were assessed both in vitro and in vivo. The association of CLCA1 with epithelial-mesenchymal transition (EMT) and other signaling pathways was determined by western blotting assays. Results The expression level of CLCA1 in CRC tissues was significantly decreased compared with that in adjacent normal tissue (P< 0.05). Meanwhile, the serum concentration of CLCA1 in CRC patients was also significantly lower when compared with that of healthy controls (1.48 ± 1.06 ng/mL vs 1.06 ± 0.73 ng/mL, P = 0.0018). In addition, CLCA1 serum concentration and mRNA expression level in CRC tissues were inversely correlated with CRC metastasis and tumor stage. Upregulated CLCA1 suppressed CRC growth and metastasis in vitro and in vivo, whereas inhibition of CLCA1 led to the opposite results. Increased expression levels of CLCA1 could repress Wnt signaling and the EMT process in CRC cells. Conclusions Our findings suggest that increased expression levels of CLCA1 can suppress CRC aggressiveness. CLCA1 functions as a tumor suppressor possibly via inhibition of the Wnt/beta-catenin signaling pathway and the EMT process. Electronic supplementary material The online version of this article (dio: 10.1186/s12964-017-0192-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaojiao Zhou
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaping Peng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, China), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Ion Channels in Brain Metastasis. Int J Mol Sci 2016; 17:ijms17091513. [PMID: 27618016 PMCID: PMC5037790 DOI: 10.3390/ijms17091513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation.
Collapse
|
18
|
Han MR, Long J, Choi JY, Low SK, Kweon SS, Zheng Y, Cai Q, Shi J, Guo X, Matsuo K, Iwasaki M, Shen CY, Kim MK, Wen W, Li B, Takahashi A, Shin MH, Xiang YB, Ito H, Kasuga Y, Noh DY, Matsuda K, Park MH, Gao YT, Iwata H, Tsugane S, Park SK, Kubo M, Shu XO, Kang D, Zheng W. Genome-wide association study in East Asians identifies two novel breast cancer susceptibility loci. Hum Mol Genet 2016; 25:3361-3371. [PMID: 27354352 DOI: 10.1093/hmg/ddw164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Genetic factors have been shown to play an important role in breast cancer aetiology. We conducted a two-stage genome-wide association study (GWAS) including 14 224 cases and 14 829 controls of East Asian women to search for novel genetic susceptibility loci for breast cancer. Single nucleotide polymorphisms (SNPs) in two loci were found to be associated with breast cancer risk at the genome-wide significance level. The first locus, represented by rs12118297 at 1p22.3 (near the LMO4 gene), was associated with breast cancer risk with odds ratio (OR) and (95% confidence interval (CI)) of 0.91 (0.88-0.94) and a P-value of 4.48 × 10- 8 This association was replicated in another study, DRIVE GAME-ON Consortium, including 16 003 cases and 41 335 controls of European ancestry (OR = 0.95, 95% CI = 0.91-0.99, P-value = 0.019). The second locus, rs16992204 at 21q22.12 (near the LINC00160 gene), was associated with breast cancer risk with OR (95% CI) of 1.13 (1.07-1.18) and a P-value of 4.63 × 10 - 8 The risk allele frequency for this SNP is zero in European-ancestry populations in 1000 Genomes Project and thus its association with breast cancer risk cannot be assessed in DRIVE GAME-ON Consortium. Functional annotation using the ENCODE data indicates that rs12118297 might be located in a repressed element and locus 21q22.12 may affect breast cancer risk through regulating LINC00160 expressions and interaction with oestrogen receptor signalling. Our findings provide additional insights into the genetics of breast cancer.
Collapse
Affiliation(s)
- Mi-Ryung Han
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jirong Long
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Siew-Kee Low
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 351-0198, Japan
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea.,Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun 58128, South Korea
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Qiuyin Cai
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Jiajun Shi
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xingyi Guo
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan.,Department of Epidemiology, Nagoya University Graduates School of Medicine, Nagoya 464-8681, Japan
| | - Motoki Iwasaki
- Epidemiology Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Taiwan Biobank, Academia Sinica, Taipei 115, Taiwan.,College of Public Health, China Medical University, Taichung 404, Taiwan
| | - Mi Kyung Kim
- Division of Cancer Epidemiology and Management, National Cancer Center, Gyeonggi-do 10408, South Korea
| | - Wanqing Wen
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama 351-0198, Japan
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai 200032, China
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yoshio Kasuga
- Department of Surgery, Nagano Matsushiro General Hospital, Nagano 381-1231, Japan
| | - Dong-Young Noh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.,Department of Surgery, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Koichi Matsuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, the University of Tokyo, Tokyo 108-8639, Japan
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai 200032, China
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center Central Hospital, Nagoya 464-8681, Japan
| | - Shoichiro Tsugane
- Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo 104-0045, Japan
| | - Sue K Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama 351-0198, Japan
| | - Xiao-Ou Shu
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, South Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Wei Zheng
- Department of Medicine, Division of Epidemiology, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| |
Collapse
|
19
|
Ramena G, Yin Y, Yu Y, Walia V, Elble RC. CLCA2 Interactor EVA1 Is Required for Mammary Epithelial Cell Differentiation. PLoS One 2016; 11:e0147489. [PMID: 26930581 PMCID: PMC4773014 DOI: 10.1371/journal.pone.0147489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.
Collapse
Affiliation(s)
- Grace Ramena
- Dept of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, 62794, United States of America
| | - Yufang Yin
- Dept of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, 62794, United States of America
| | - Yang Yu
- Dept of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, 62794, United States of America
| | - Vijay Walia
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, Maryland, 21702, United States of America
| | - Randolph C. Elble
- Dept of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, 62794, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, Illinois, 62794, United States of America
- * E-mail:
| |
Collapse
|
20
|
Milioli HH, Vimieiro R, Riveros C, Tishchenko I, Berretta R, Moscato P. The Discovery of Novel Biomarkers Improves Breast Cancer Intrinsic Subtype Prediction and Reconciles the Labels in the METABRIC Data Set. PLoS One 2015; 10:e0129711. [PMID: 26132585 PMCID: PMC4488510 DOI: 10.1371/journal.pone.0129711] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The prediction of breast cancer intrinsic subtypes has been introduced as a valuable strategy to determine patient diagnosis and prognosis, and therapy response. The PAM50 method, based on the expression levels of 50 genes, uses a single sample predictor model to assign subtype labels to samples. Intrinsic errors reported within this assay demonstrate the challenge of identifying and understanding the breast cancer groups. In this study, we aim to: a) identify novel biomarkers for subtype individuation by exploring the competence of a newly proposed method named CM1 score, and b) apply an ensemble learning, as opposed to the use of a single classifier, for sample subtype assignment. The overarching objective is to improve class prediction. METHODS AND FINDINGS The microarray transcriptome data sets used in this study are: the METABRIC breast cancer data recorded for over 2000 patients, and the public integrated source from ROCK database with 1570 samples. We first computed the CM1 score to identify the probes with highly discriminative patterns of expression across samples of each intrinsic subtype. We further assessed the ability of 42 selected probes on assigning correct subtype labels using 24 different classifiers from the Weka software suite. For comparison, the same method was applied on the list of 50 genes from the PAM50 method. CONCLUSIONS The CM1 score portrayed 30 novel biomarkers for predicting breast cancer subtypes, with the confirmation of the role of 12 well-established genes. Intrinsic subtypes assigned using the CM1 list and the ensemble of classifiers are more consistent and homogeneous than the original PAM50 labels. The new subtypes show accurate distributions of current clinical markers ER, PR and HER2, and survival curves in the METABRIC and ROCK data sets. Remarkably, the paradoxical attribution of the original labels reinforces the limitations of employing a single sample classifiers to predict breast cancer intrinsic subtypes.
Collapse
Affiliation(s)
- Heloisa Helena Milioli
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Environmental and Life Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Renato Vimieiro
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos Riveros
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Inna Tishchenko
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Regina Berretta
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Pablo Moscato
- Priority Research Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
21
|
Ouadid-Ahidouch H, Rodat-Despoix L, Matifat F, Morin G, Ahidouch A. DNA methylation of channel-related genes in cancers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2621-8. [PMID: 25703813 DOI: 10.1016/j.bbamem.2015.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 12/31/2022]
Abstract
DNA methylation at CpG sites is an epigenetic mechanism that regulates cellular gene expression. In cancer cells, aberrant methylation is correlated with the abnormalities in expression of genes that are known to be involved in the particular characteristics of cancer cells such as proliferation, apoptosis, migration or invasion. During the past 30 years, accumulating data have definitely convinced the scientific community that ion channels are involved in cancerogenesis and cancer properties. As they are situated at the cell surface, they might be prime targets in the development of new therapeutic strategies besides their potential use as prognostic factors. Despite the progress in our understanding of the remodeling of ion channels in cancer cells, the molecular mechanisms underlying their over- or down-expression remained enigmatic. In this review, we aimed to summarize the available data on gene promoter methylation of ion channels and to investigate their clinical significance as novel biomarkers in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Halima Ouadid-Ahidouch
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France.
| | - Lise Rodat-Despoix
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Fabrice Matifat
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Gilles Morin
- EA 4666 and Department of Molecular and Clinical Genetics, Amiens University Hospital, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, University of Picardie Jules Verne, SFR CAP-SANTE (FED 4231), Amiens, France; Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir Morocco
| |
Collapse
|
22
|
Agarwal M, Adhil M, Talukder AK. Multi-omics Multi-scale Big Data Analytics for Cancer Genomics. BIG DATA ANALYTICS 2015. [DOI: 10.1007/978-3-319-27057-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Ion channel expression as promising cancer biomarker. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2685-702. [PMID: 25542783 DOI: 10.1016/j.bbamem.2014.12.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Cancer is a disease with marked heterogeneity in both response to therapy and survival. Clinical and histopathological characteristics have long determined prognosis and therapy. The introduction of molecular diagnostics has heralded an explosion in new prognostic factors. Overall, histopathology, immunohistochemistry and molecular biology techniques have described important new prognostic subgroups in the different cancer categories. Ion channels and transporters (ICT) are a new class of membrane proteins which are aberrantly expressed in several types of human cancers. Besides regulating different aspect of cancer cell behavior, ICT can now represent novel cancer biomarkers. A summary of the data obtained so far and relative to breast, prostate, lung, colorectal, esophagus, pancreatic and gastric cancers are reported. Special emphasis is given to those studies aimed at relating specific ICT or a peculiar ICT profile with current diagnostic methods. Overall, we are close to exploit ICTs for diagnostic, prognostic or predictive purposes in cancer. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
24
|
Bart G, Hämäläinen L, Rauhala L, Salonen P, Kokkonen M, Dunlop T, Pehkonen P, Kumlin T, Tammi M, Pasonen-Seppänen S, Tammi R. rClca2is associated with epidermal differentiation and is strongly downregulated by ultraviolet radiation. Br J Dermatol 2014; 171:376-87. [DOI: 10.1111/bjd.13038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Affiliation(s)
- G. Bart
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - L. Hämäläinen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - L. Rauhala
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - P. Salonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - M. Kokkonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - T.W. Dunlop
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - P. Pehkonen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - T. Kumlin
- Department of Environmental Science; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - M.I. Tammi
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - S. Pasonen-Seppänen
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| | - R.H. Tammi
- Institute of Biomedicine; University of Eastern Finland; P.O. Box 1627 FI-70211 Kuopio Finland
| |
Collapse
|
25
|
Zhao C, Qiao Y, Jonsson P, Wang J, Xu L, Rouhi P, Sinha I, Cao Y, Williams C, Dahlman-Wright K. Genome-wide profiling of AP-1-regulated transcription provides insights into the invasiveness of triple-negative breast cancer. Cancer Res 2014; 74:3983-94. [PMID: 24830720 DOI: 10.1158/0008-5472.can-13-3396] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive clinical subtype accounting for up to 20% of all breast cancers, but its malignant determinants remain largely undefined. Here, we show that in TNBC the overexpression of Fra-1, a component of the transcription factor AP-1, offers prognostic potential. Fra-1 depletion or its heterodimeric partner c-Jun inhibits the proliferative and invasive phenotypes of TNBC cells in vitro. Similarly, RNAi-mediated attenuation of Fra-1 or c-Jun reduced cellular invasion in vivo in a zebrafish tumor xenograft model. Exploring the AP-1 cistrome and the AP-1-regulated transcriptome, we obtained insights into the transcriptional regulatory networks of AP-1 in TNBC cells. Among the direct targets identified for Fra-1/c-Jun involved in proliferation, adhesion, and cell-cell contact, we found that AP-1 repressed the expression of E-cadherin by transcriptional upregulation of ZEB2 to stimulate cell invasion. Overall, this work illuminates the pathways through which TNBC cells acquire invasive and proliferative properties.
Collapse
Affiliation(s)
- Chunyan Zhao
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge;
| | - Yichun Qiao
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge
| | - Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas; and
| | - Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm
| | - Li Xu
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge
| | - Pegah Rouhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm
| | - Indranil Sinha
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm; Department of Medicine and Health Sciences, Linköping University, Linköping; Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas; and
| | - Karin Dahlman-Wright
- Authors' Affiliations: Department of Biosciences and Nutrition, Novum, Karolinska Institute, Huddinge; Science for Life Laboratory, Karolinska Institute, Solna, Sweden;
| |
Collapse
|
26
|
Abstract
BACKGROUND A remarkable correspondence exists between the cytogenetic locations of the known fragile sites and frequently reported sites of hypermethylation. The best-known features of fragile sites are sequence motifs that are prone to the spontaneous formation of a non-B DNA structure. These facts, coupled with the known enzymological specificities of DNA methyltransferase 1 (DNMT1), the ATP-dependent and actin-dependent helicases, and the ten-eleven translocation (TET) dioxygenases, suggest that these enzymes are involved in an epigenetic cycle that maintains the unmethylated state at these sites by resolving non-B structure, preventing both the sequestration of DNA methyltransferases (DNMTs) and hypermethylation in normal cells. PRESENTATION OF THE HYPOTHESIS The innate tendency of DNA sequences present at fragile sites to form non-B DNA structures results in de novo methylation of DNA at these sites that is held in check in normal cells by the action of ATP-dependent and actin-dependent helicases coupled with the action of TET dioxygenases. This constitutes a previously unrecognized epigenetic repair cycle in which spontaneously forming non-B DNA structures formed at fragile sites are methylated by DNMTs as they are removed by the action of ATP-dependent and actin-dependent helicases, with the resulting nascent methylation rendered non-transmissible by TET dioxygenases. TESTING THE HYPOTHESIS A strong prediction of the hypothesis is that knockdown of ATP-dependent and actin-dependent helicases will result in enhanced bisulfite sensitivity and hypermethylation at non-B structures in multiple fragile sites coupled with global hypomethylation. IMPLICATIONS OF THE HYPOTHESIS A key implication of the hypothesis is that helicases, like the lymphoid-specific helicase and alpha thalassemia/mental retardation syndrome X-linked helicase, passively promote accurate maintenance of DNA methylation by preventing the sequestration of DNMTs at sites of unrepaired non-B DNA structure. When helicase action is blocked due to mutation or downregulation of the respective genes, DNMTs stall at unrepaired non-B structures in fragile sites after methylating them and are unable to methylate other sites in the genome, resulting in hypermethylation at non-B DNA-forming sites, along with hypomethylation elsewhere.
Collapse
Affiliation(s)
- Steven S Smith
- City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
27
|
Sasaki Y, Koyama R, Maruyama R, Hirano T, Tamura M, Sugisaka J, Suzuki H, Idogawa M, Shinomura Y, Tokino T. CLCA2, a target of the p53 family, negatively regulates cancer cell migration and invasion. Cancer Biol Ther 2012; 13:1512-21. [PMID: 22990203 DOI: 10.4161/cbt.22280] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor p53 transcriptionally regulates a number of genes that are involved in cell-cycle inhibition, apoptosis and the maintenance of genetic stability. Recent studies suggest that p53 also contributes to the regulation of cell migration and invasion. Here, we show that human chloride channel accessory-2 (CLCA2) is a target gene of the p53 family (p53, p73 and p63). CLCA2 is induced by DNA damage in a p53-dependent manner. The p53 family proteins activate the CLCA2 promoter by binding directly to the conserved consensus p53-binding site present in the CLCA2 promoter. In terms of function, ectopic expression of CLCA2 inhibited cancer cell migration. In contrast, silencing CLCA2 with siRNA stimulated cancer cell migration and invasion. We also found that inactivation of CLCA2 enhanced the expression of focal adhesion kinase (FAK), as well as its promoter activation. A small-molecule FAK inhibitor reduced the effect of CLCA2 siRNA on cell migration and invasion, suggesting that CLCA2 inhibits cancer cell migration and invasion through suppression of the FAK signaling pathway. Furthermore, there was an inverse correlation between CLCA2 and FAK expression in 251 human breast cancer tissues. These results strongly suggest that CLCA2 is involved in the p53 tumor suppressor network and has a significant effect on cell migration and invasion.
Collapse
Affiliation(s)
- Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
CLCA2 as a p53-inducible senescence mediator. Neoplasia 2012; 14:141-9. [PMID: 22431922 DOI: 10.1593/neo.111700] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/06/2012] [Accepted: 02/10/2012] [Indexed: 11/18/2022] Open
Abstract
p53 is a tumor suppressor gene that is frequently mutated in multiple cancer tissues. Activated p53 protein regulates its downstream genes and subsequently inhibits malignant transformation by inducing cell cycle arrest, apoptosis, DNA repair, and senescence. However, genes involved in the p53-mediated senescence pathway are not yet fully elucidated. Through the screening of two genome-wide expression profile data sets, one for cells in which exogenous p53 was introduced and the other for senescent fibroblasts, we have identified chloride channel accessory 2 (CLCA2) as a p53-inducible senescence-associated gene. CLCA2 was remarkably induced by replicative senescence as well as oxidative stress in a p53-dependent manner. We also found that ectopically expressed CLCA2 induced cellular senescence, and the down-regulation of CLCA2 by small interfering RNA caused inhibition of oxidative stress-induced senescence. Interestingly, the reduced expression of CLCA2 was frequently observed in various kinds of cancers including prostate cancer, whereas its expression was not affected in precancerous prostatic intraepithelial neoplasia. Thus, our findings suggest a crucial role of p53/CLCA2-mediated senescence induction as a barrier for malignant transformation.
Collapse
|
29
|
Muranen TA, Greco D, Fagerholm R, Kilpivaara O, Kämpjärvi K, Aittomäki K, Blomqvist C, Heikkilä P, Borg A, Nevanlinna H. Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications. Breast Cancer Res 2011; 13:R90. [PMID: 21542898 PMCID: PMC3262202 DOI: 10.1186/bcr3015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 04/04/2011] [Accepted: 09/20/2011] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. METHODS In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. RESULTS We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels.Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. CONCLUSIONS We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation.
Collapse
Affiliation(s)
- Taru A Muranen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, FI-00029, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Walia V, Yu Y, Cao D, Sun M, McLean JR, Hollier BG, Cheng J, Mani SA, Rao K, Premkumar L, Elble RC. Loss of breast epithelial marker hCLCA2 promotes epithelial-to-mesenchymal transition and indicates higher risk of metastasis. Oncogene 2011; 31:2237-46. [PMID: 21909135 PMCID: PMC4154589 DOI: 10.1038/onc.2011.392] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Transition between epithelial and mesenchymal states is a feature of both normal development and tumor progression. We report that expression of chloride channel accessory protein hCLCA2 is a characteristic of epithelial differentiation in the immortalized MCF10A and HMLE models, while induction of EMT by cell dilution, TGFbeta, or mesenchymal transcription factors sharply reduces hCLCA2 levels. Attenuation of hCLCA2 expression by lentiviral shRNA caused cell overgrowth and focus formation, enhanced migration and invasion, and increased mammosphere formation in methylcellulose. These changes were accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers such as vimentin and fibronectin. Moreover, hCLCA2 expression is greatly downregulated in breast cancer cells with a mesenchymal or claudin-low profile. These observations suggest that loss of hCLCA2 may promote metastasis. We find that higher-than-median expression of hCLCA2 is associated with a one-third lower rate of metastasis over an 18 year period among breast cancer patients compared to lower-than-median (n=344, unfiltered for subtype). Thus, hCLCA2 is required for epithelial differentiation, and its loss during tumor progression contributes to metastasis. Overexpression of hCLCA2 has been reported to inhibit cell proliferation and is accompanied by increases in chloride current at the plasma membrane and reduced intracellular pH (pHi). We found that knockdown cells have sharply reduced chloride current and higher pHi, both characteristics of tumor cells. These results suggest a mechanism for the effects on differentiation. Loss of hCLCA2 may allow escape from pHi homeostatic mechanisms, permitting the higher intracellular and lower extracellular pH that are characteristic of aggressive tumor cells.
Collapse
Affiliation(s)
- V Walia
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 19629, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhao G, Chen J, Deng Y, Gao F, Zhu J, Feng Z, Lv X, Zhao Z. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells. Biochem Biophys Res Commun 2011; 408:154-9. [DOI: 10.1016/j.bbrc.2011.03.140] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 12/22/2022]
|
32
|
Zhang Z, Furge KA, Yang XJ, Teh BT, Hansel DE. Comparative gene expression profiling analysis of urothelial carcinoma of the renal pelvis and bladder. BMC Med Genomics 2010; 3:58. [PMID: 21159190 PMCID: PMC3022544 DOI: 10.1186/1755-8794-3-58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 12/15/2010] [Indexed: 12/11/2022] Open
Abstract
Background Urothelial carcinoma (UC) can arise at any location along the urothelial tract, including the urethra, bladder, ureter, or renal pelvis. Although tumors arising in these various locations have similar morphology, it is unclear whether the gene expression profiles are similar between the upper-tract (ureter and renal pelvis) and lower-tract (bladder and urethra) carcinomas. Because differences may facilitate different screening and treatment modalities, we sought to examine the relationship between urothelial carcinoma of the renal pelvis (rUC) and urothelial carcinoma of the bladder (bUC). Methods Fresh tumor tissue was collected from patients with bUC (n = 10) and benign mucosa from the bladder of individuals undergoing resection for non-UC conditions (n = 7). Gene expression profiles from these samples were determined using high-throughput Affymetrix gene expression microarray chips. Bioinformatic approaches were used to compare the gene expression profiles of these samples with those of rUC samples and normal kidney samples that had been described previously. Results Using unsupervised analytic approaches, rUC and bUC were indistinguishable. Yet when a supervised analytic approach was used, a small number of differentially expressed genes were identified; these differences were most likely limited to a single pathway--the chloride ion binding activity pathway--which was more frequently activated in rUC than in bUC. Conclusions We found that the gene expression profiles of UCs from the upper and lower tract were extremely similar, suggesting that similar pathogenic mechanisms likely function in the development of these tumors. The differential expression of genes in the identified pathway may represent a new avenue for detection of upper-tract tumors.
Collapse
Affiliation(s)
- Zhongfa Zhang
- Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | | | | | | | | |
Collapse
|
33
|
Zhang K, Gray JW, Parvin B. Sparse multitask regression for identifying common mechanism of response to therapeutic targets. Bioinformatics 2010; 26:i97-105. [PMID: 20529943 PMCID: PMC2881366 DOI: 10.1093/bioinformatics/btq181] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation: Molecular association of phenotypic responses is an important step in hypothesis generation and for initiating design of new experiments. Current practices for associating gene expression data with multidimensional phenotypic data are typically (i) performed one-to-one, i.e. each gene is examined independently with a phenotypic index and (ii) tested with one stress condition at a time, i.e. different perturbations are analyzed separately. As a result, the complex coordination among the genes responsible for a phenotypic profile is potentially lost. More importantly, univariate analysis can potentially hide new insights into common mechanism of response. Results: In this article, we propose a sparse, multitask regression model together with co-clustering analysis to explore the intrinsic grouping in associating the gene expression with phenotypic signatures. The global structure of association is captured by learning an intrinsic template that is shared among experimental conditions, with local perturbations introduced to integrate effects of therapeutic agents. We demonstrate the performance of our approach on both synthetic and experimental data. Synthetic data reveal that the multi-task regression has a superior reduction in the regression error when compared with traditional L1-and L2-regularized regression. On the other hand, experiments with cell cycle inhibitors over a panel of 14 breast cancer cell lines demonstrate the relevance of the computed molecular predictors with the cell cycle machinery, as well as the identification of hidden variables that are not captured by the baseline regression analysis. Accordingly, the system has identified CLCA2 as a hidden transcript and as a common mechanism of response for two therapeutic agents of CI-1040 and Iressa, which are currently in clinical use. Contact:b_parvin@lbl.gov
Collapse
Affiliation(s)
- Kai Zhang
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
34
|
Giguère A, Hébert J. CLCA2, a novel RUNX1 partner gene in a therapy-related leukemia with t(1;21)(p22;q22). ACTA ACUST UNITED AC 2010; 202:94-100. [PMID: 20875871 DOI: 10.1016/j.cancergencyto.2010.07.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/16/2010] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
Abstract
The RUNX1 gene is frequently rearranged in de novo and therapy-related leukemia. In the present study, we identified the CLCA2 gene as a novel fusion partner of RUNX1 in a case of therapy-related acute myeloid leukemia associated with t(1;21)(p22;q22). Reverse transcriptase-polymerase chain reaction analysis and sequencing revealed that the t(1;21) results in out-of-frame RUNX1-CLCA2 fusions. Alternative splicing generates at least six fusion transcripts, including a major transcript fusing RUNX1 exon 6 with CLCA2 exon 2. These out-of-frame fusions produce putative truncated RUNX1 isoforms retaining the DNA binding Runt domain but not the transcriptional regulatory domain of RUNX1. No mutations were found in the exons encoding the Runt and C-terminal domains of the nonrearranged RUNX1 gene. Similar to truncated RUNX1 isoforms previously described, these shortened products could act as dominant negative inhibitors of RUNX1-dependent transactivation. CLCA2 is a breast tumor suppressor gene that encodes a member of the calcium-activated chloride channel family and is involved for the first time in a chromosomal translocation. The RUNX1-CLCA2 fusion is another example of out-of-frame fusion generating truncated RUNX1 isoforms that represent a recurrent molecular mechanism in RUNX1-related leukemias.
Collapse
Affiliation(s)
- Amélie Giguère
- Quebec Leukemia Cell Bank and Hematology-Oncology Division, Maisonneuve-Rosemont Hospital, Montréal, Canada
| | | |
Collapse
|
35
|
Orta ML, Domínguez I, Pastor N, Cortés F, Mateos S. The role of the DNA hypermethylating agent Budesonide in the decatenating activity of DNA topoisomerase II. Mutat Res 2010; 694:45-52. [PMID: 20883705 DOI: 10.1016/j.mrfmmm.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022]
Abstract
Catenations between sister chromatids result from DNA replication and must be resolved to ensure proper chromatid segregation in mitosis. Functionally active Topoisomerase II (Topo II), through its mechanism of concerted breaking and rejoining of double stranded DNA, is required to carry out this fundamental process. In previous studies we have shown that modifications in DNA sequence by halogenated pyrimidines and by the demethylating agent 5-azacytidine leads to malfunction of Topo II that results in an increased yield of endorreduplicated cells as a result of segregation failure. In the present work we have evaluated the possible influence of the methylating agent Budesonide to modify the frequency of endoreduplicated cells in AA8 Chinese hamster cell population. Our results seem to indicate that when Budesonide was administered for two consecutive cell cycles did induce an increase in the yield of endoreduplicated cells, as previously observed for the hypomethylating agent 5-azaC. We have also examined the possible relationship between extensive hypermethylation induced by Budesonide in DNA and stabilization of cleavable complexes by m-AMSA. Taken as a whole, our results show that the degree of methylation in DNA correlates with the effectiveness of m-AMSA to stabilize the Topo II-DNA complexes and to induce DNA cleavage. These findings evidence for the first time the functional importance of DNA hyper- and hypomethylation changes as epigenetic factors able to modulate Topo II activity for proper chromosome segregation.
Collapse
Affiliation(s)
- Manuel Luis Orta
- Department of Cell Biology, Faculty of Biology, University of Seville, Avda. Reina Mercedes 6, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
36
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
37
|
Walia V, Ding M, Kumar S, Nie D, Premkumar L, Elble RC. hCLCA2 Is a p53-Inducible Inhibitor of Breast Cancer Cell Proliferation. Cancer Res 2009; 69:6624-32. [PMID: 19654313 PMCID: PMC2745301 DOI: 10.1158/0008-5472.can-08-4101] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
hCLCA2 is frequently down-regulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours postinfection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl(-) channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl(-) current in breast cancer cells and reduces pH to approximately 6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its down-regulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications.
Collapse
Affiliation(s)
- Vijay Walia
- SimmonsCooper Cancer Institute, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Ming Ding
- SimmonsCooper Cancer Institute, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Sumit Kumar
- SimmonsCooper Cancer Institute, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Daotai Nie
- SimmonsCooper Cancer Institute, Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Louis Premkumar
- SimmonsCooper Cancer Institute, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Randolph C. Elble
- SimmonsCooper Cancer Institute, Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| |
Collapse
|
38
|
Zhao X, Lu L, Pokhriyal N, Ma H, Duan L, Lin S, Jafari N, Band H, Band V. Overexpression of RhoA induces preneoplastic transformation of primary mammary epithelial cells. Cancer Res 2009; 69:483-91. [PMID: 19147561 PMCID: PMC2792911 DOI: 10.1158/0008-5472.can-08-2907] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rho family small GTPases serve as molecular switches in the regulation of diverse cellular functions, including actin cytoskeleton remodeling, cell migration, gene transcription, and cell proliferation. Importantly, Rho overexpression is frequently seen in many carcinomas. However, published studies have almost invariably used immortal or tumorigenic cell lines to study Rho GTPase functions and there are no studies on the potential of Rho small GTPase to overcome senescence checkpoints and induce preneoplastic transformation of human mammary epithelial cells (hMEC). We show here that ectopic expression of wild-type (WT) RhoA as well as a constitutively active RhoA mutant (G14V) in two independent primary hMEC strains led to their immortalization and preneoplastic transformation. These cells have continued to grow over 300 population doublings (PD) with no signs of senescence, whereas cells expressing the vector or dominant-negative RhoA mutant (T19N) senesced after 20 PDs. Significantly, RhoA-T37A mutant, known to be incapable of interacting with many well-known Rho effectors including Rho kinase, PKN, mDia1, and mDia2, was also capable of immortalizing hMECs. Notably, similar to parental normal cells, Rho-immortalized cells have WT p53 and intact G(1) cell cycle arrest on Adriamycin treatment. Rho-immortalized cells were anchorage dependent and were unable to form tumors when implanted in nude mice. Lastly, microarray expression profiling of Rho-immortalized versus parental cells showed altered expression of several genes previously implicated in immortalization and breast cancer progression. Taken together, these results show that RhoA can induce the preneoplastic transformation of hMECs by altering multiple pathways linked to cellular transformation and breast cancer.
Collapse
Affiliation(s)
- Xiangshan Zhao
- Department of Genetics, Eppley Institute for Cancer and Allied Diseases and UNMC-Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Cimino D, Fuso L, Sfiligoi C, Biglia N, Ponzone R, Maggiorotto F, Russo G, Cicatiello L, Weisz A, Taverna D, Sismondi P, De Bortoli M. Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 2008; 123:1327-38. [DOI: 10.1002/ijc.23660] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Hinshelwood RA, Clark SJ. Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med (Berl) 2008; 86:1315-28. [PMID: 18716754 DOI: 10.1007/s00109-008-0386-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/17/2008] [Accepted: 06/25/2008] [Indexed: 12/23/2022]
Abstract
DNA hypermethylation and histone modifications are two critical players involved in epigenetic regulation and together play an important role in silencing tumor-suppressor genes in all cancers, including breast cancer. One of the major challenges facing breast cancer researchers is the problem of how to identify critical genes that are epigenetically silenced early in cancer initiation as these genes provide potential early diagnostic and/or therapeutic targets for breast cancer management. This review will focus on compelling evidence that normal Human Mammary Epithelial Cells (HMECs) that escape senescence in culture mimic genetic and epigenetic events occurring in early breast cancer, and provide a valuable system to delineate the early steps in epigenetic deregulation that often occur during transition of a normal breast cell to a premalignant cell. In particular, this model system has been used to investigate the relationship between gene silencing, DNA methylation, histone modifications, and polycomb association that may occur early in oncogenic transformation.
Collapse
Affiliation(s)
- Rebecca A Hinshelwood
- The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia
| | | |
Collapse
|
41
|
Rodenhiser DI. Epigenetic contributions to cancer metastasis. Clin Exp Metastasis 2008; 26:5-18. [PMID: 18386135 DOI: 10.1007/s10585-008-9166-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/13/2008] [Indexed: 12/31/2022]
Abstract
The molecular basis of cancer encompasses both genetic and epigenetic alterations. These epigenetic changes primarily involve global DNA methylation changes in the form of widespread loss of methylation along with concurrent hypermethylation events in gene regulatory regions that can repress tissue-specific gene expression. Increasingly, the importance of these epigenetic changes to the metastatic process is being realized. Cells may acquire an epi-genotype that permits their dissemination from the primary tumour mass or the ability to survive and proliferate at a secondary tissue site. These epigenetic changes may be cancer-type specific, or in some cases may involve a common target gene providing a selective advantage to multiple metastatic cell types. In this review, I examine the growing volume of literature related to the epigenetic contributions to cancer metastasis. I discuss the functional importance of these epigenetic phenomena and how new epigenetic biomarkers may permit the identification of diagnostic signatures of metastasis and the development of new cancer therapies.
Collapse
Affiliation(s)
- David I Rodenhiser
- Departments of Biochemistry, Oncology and Paediatrics, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
42
|
Balakrishnan A, von Neuhoff N, Rudolph C, Kamphues K, Schraders M, Groenen P, van Krieken JHJM, Callet-Bauchu E, Schlegelberger B, Steinemann D. Quantitative microsatellite analysis to delineate the commonly deleted region 1p22.3 in mantle cell lymphomas. Genes Chromosomes Cancer 2006; 45:883-92. [PMID: 16830336 DOI: 10.1002/gcc.20352] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular pathogenesis of mantle cell lymphomas (MCL), a subset of B-cell non-Hodgkin's lymphomas with a poor prognosis, is still poorly understood. In addition to the characteristic primary genetic alteration t(11;14)(q13;q32), several further genetic changes are present in most cases. One of the most frequent genomic imbalances is the deletion of 1p22.1-p31.1 observed in nearly one-third of MCL cases. This might indicate the presence of tumor suppressor gene(s) in this critical region of deletion. Quantitative microsatellite analysis (QuMA) is a real-time PCR-based method to detect DNA copy number changes. Since QuMA has the resolving power to detect subtle genomic alterations, including homozygous deletions, this may help to identify candidate tumor suppressor genes from deleted regions. To gain more insight into the molecular pathogenesis of MCL, QuMA was performed on genomic DNA from 57 MCL cases. Eight microsatellite loci mapping to the chromosomal region 1p22.3 were analyzed. Losses were observed in 51 of the 57 ( approximately 89.5%) samples. Two cases showed a homozygous deletion at the locus containing the gene SH3GLB1, which plays a key role in Bax-mediated apoptosis. Two hotspots with copy number losses were detected at chromosomal localizations 85.4 and 86.6 Mb encompassing BCL10 and CLCA2. Both the genes seem to be attractive candidates to study tumor suppressor function in MCL.
Collapse
Affiliation(s)
- Asha Balakrishnan
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Connon CJ, Kawasaki S, Liles M, Koizumi N, Yamasaki K, Nakamura T, Quantock AJ, Kinoshita S. Gene expression and immunolocalisation of a calcium-activated chloride channel during the stratification of cultivated and developing corneal epithelium. Cell Tissue Res 2005; 323:177-82. [PMID: 16158324 DOI: 10.1007/s00441-005-0059-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022]
Abstract
The spatial and temporal localisation of a calcium-activated chloride channel (CLCA) and its mRNA was investigated, during the in vivo and in vitro development of stratified epithelia, by fluorescence immunohistochemistry and quantitative polymerase chain reaction in embryonic chicken corneas and the expansion of excised human corneal stem cells on amniotic membrane. Single-layered human epithelial cultures on amniotic membrane and early day embryonic chicken corneas expressed relatively little human CLCA2 or its chicken homologue. However, as the epithelium in both models matured and the number of cell-layers increased, the gene expression level and protein staining intensity increased, primarily within the basal cells of both the cultured and embryonic tissues. These results demonstrate that human CLCA2 protein and mRNA expression are elevated during epithelial stratification, suggesting that this protein plays a role in the growth of multi-layered corneal epithelia during both natural development and tissue cultivation.
Collapse
Affiliation(s)
- Che J Connon
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Varga AE, Stourman NV, Zheng Q, Safina AF, Quan L, Li X, Sossey-Alaoui K, Bakin AV. Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene 2005; 24:5043-52. [PMID: 15897890 DOI: 10.1038/sj.onc.1208688] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Loss of actin stress fibers has been associated with cell transformation and metastasis. TGF-beta induction of stress fibers in epithelial cells requires high molecular weight tropomyosins encoded by TPM1 and TPM2 genes. Here, we investigated the mechanism underlying the failure of TGF-beta to induce stress fibers and inhibit cell migration in metastatic cells. RT-PCR analysis in carcinoma cell lines revealed a significant reduction in TPM1 transcripts in metastatic MDA-MB-231, MDA-MB-435 and SW620 cell lines. Treatment of these cells with demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) increased mRNA levels of TPM1 with no effect on TPM2. Importantly, 5-aza-dC treatment of MDA-MB-231 cells restored TGF-beta induction of TPM1 and formation of stress fibers. Forced expression of TPM1 by using Tet-Off system increased stress fibers in MDA-MB-231 cells and reduced cell migration. A potential CpG island spanning the TPM1 proximal promoter, exon 1, and the beginning of intron 1 was identified. Bisulfite sequencing showed significant cytosine methylation in metastatic cell lines that correlated with a reduced expression of TPM1. Together these results suggest that epigenetic suppression of TPM1 may alter TGF-beta tumor suppressor function and contribute to metastatic properties of tumor cells.
Collapse
Affiliation(s)
- Andrea E Varga
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
CLCA proteins were discovered in bovine trachea and named for a calcium-dependent chloride conductance found in trachea and in other secretory epithelial tissues. At least four closely located gene loci in the mouse and the human code for independent isoforms of CLCA proteins. Full-length CLCA proteins have an unprocessed mass ratio of approximately 100 kDa. Three of the four human loci code for the synthesis of membrane-associated proteins. CLCA proteins affect chloride conductance, epithelial secretion, cell-cell adhesion, apoptosis, cell cycle control, mucus production in asthma, and blood pressure. There is a structural and probable functional divergence between CLCA isoforms containing or not containing beta4-integrin binding domains. Cell cycle control and tumor metastasis are affected by isoforms with the binding domains. These isoforms are expressed prominently in smooth muscle, in some endothelial cells, in the central nervous system, and also in secretory epithelial cells. The isoform with disrupted beta4-integrin binding (hCLCA1, pCLCA1, mCLCA3) alters epithelial mucus secretion and ion transport processes. It is preferentially expressed in secretory epithelial tissues including trachea and small intestine. Chloride conductance is affected by the expression of several CLCA proteins. However, the dependence of the resulting electrical signature on the expression system rather than the CLCA protein suggests that these proteins are not independent Ca2+-dependent chloride channels, but may contribute to the activity of chloride channels formed by, or in conjunction with, other proteins.
Collapse
Affiliation(s)
- Matthew E Loewen
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|