1
|
Zhang J, Yan C, He W, Wang M, Liu J. Inhibition against p38/MEF2C pathway by Pamapimod protects osteoarthritis chondrocytes hypertrophy. Panminerva Med 2024; 66:365-371. [PMID: 33263251 DOI: 10.23736/s0031-0808.20.04170-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The p38 mitogen-activated protein kinase pathway plays an important role in the pathogenesis of osteoarthritis (OA) involving in hypertrophy, calcification, and apoptosis of chondrocytes (CHs). In this study, we focused on a p38 inhibitor named Pamapimod (PAM) in the effect of CH hypertrophy degeneration. METHODS CHs were isolated from the cartilage collected from OA patients. Insulin-Transferrin-Selenium (ITS) medium was used as a hypertrophic inducer to establish CH hypertrophy model. Asiatic acid (AA) was used to activate p38 phosphorylation. We transfected CHs with myocyte enhancer factor 2C (MEF2C)-plasmid to upregulate MEF2C expression. Chondrogenic gene expression such as type II collagen and SOX-9, and hypertrophic genes such as type X collagen, MMP-13, and Runx-2 were analyzed by western blot, real-time polymerase chain reaction or immunofluorescence. RESULTS ITS and AA all contributed to the CHs hypertrophy with an upregulation of p-p38 and MEF2C protein expression. PAM treatments significantly inhibited p-p38 and MEF2C expression, down-regulated type X collagen, MMP-13, and Runx-2 expression and upregulated type II collagen and SOX-9 levels. PAM indirectly affected MEF2C expression and resulted in CHs hypertrophy suppression. CONCLUSIONS PAM protects CHs hypertrophy by the inhibition of the p38/MEF2C pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Chen Yan
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Weidong He
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Min Wang
- Department of Medicine, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Jian Liu
- Department of Orthopedics, The First People's Hospital of Lianyungang, Lianyungang, China -
| |
Collapse
|
2
|
Castro-Torres RD, Olloquequi J, Etchetto M, Caruana P, Steele L, Leighton KM, Ureña J, Beas-Zarate C, Camins A, Verdaguer E, Auladell C. Dual Mkk4 and Mkk7 Gene Deletion in Adult Mouse Causes an Impairment of Hippocampal Immature Granule Cells. Int J Mol Sci 2021; 22:ijms22179545. [PMID: 34502457 PMCID: PMC8430506 DOI: 10.3390/ijms22179545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/-), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/-), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7-JNK pathway has a role in adult neurogenic activity.
Collapse
Affiliation(s)
- Rubén Darío Castro-Torres
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Laboratory of Neurobiotechnology CUCBA, Department of Cell and Molecular Biology, Universidad de Guadalajara, Jalisco 45200, Mexico;
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Health Sciences Faculty, Biomedical Sciences Institute, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Miren Etchetto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Pablo Caruana
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
| | - Luke Steele
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
| | - Kyra-Mae Leighton
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
| | - Jesús Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carlos Beas-Zarate
- Laboratory of Neurobiotechnology CUCBA, Department of Cell and Molecular Biology, Universidad de Guadalajara, Jalisco 45200, Mexico;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacy and Food Sciences Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (R.D.C.-T.); (P.C.); (L.S.); (K.-M.L.); (J.U.); (E.V.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence:
| |
Collapse
|
3
|
Liu S, Huang J, Zhang Y, Liu Y, Zuo S, Li R. MAP2K4 interacts with Vimentin to activate the PI3K/AKT pathway and promotes breast cancer pathogenesis. Aging (Albany NY) 2019; 11:10697-10710. [PMID: 31761784 PMCID: PMC6914392 DOI: 10.18632/aging.102485] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023]
Abstract
Mitogen-activated protein kinase kinase 4 (MAP2K4) is a member of the mitogen-activated protein kinase (MAPK) activator family. MAPK signaling plays a significant role in cell proliferation, differentiation, transcriptional regulation, and development. However, specific function and mechanism of MAP2K4 in breast cancer have not been clarified. According to our study, overexpressed MAP2K4 in breast cancer cells increased proliferation, migration, and invasion in vivo and in vitro, while MAP2K4 knockdown restored the effects. Subsequent mechanistic analyses demonstrated that MAP2K4 promoted cell proliferation, migration, and invasion by activating phosphoinositide-3-kinase (PI3K)/AKT signaling, the downstream proteins, c-JUN, the G1/S cell cycle, and the epithelial-to-mesenchymal transition (EMT). Meanwhile, MAP2K4 interacted with Vimentin and further propagated the malignant phenotype. Furthermore, patients with high MAP2K4 and Vimentin expression levels had poorer overall survival rates than those with low expression levels of both proteins. Our studies demonstrated that MAP2K4 has the potential to serve as an oncogene in breast cancer and it activates the phosphorylated PI3K/AKT signaling pathway to activate downstream cycle-associated proteins and EMT signals while interacting with Vimentin to promote breast cancer cells proliferation, migration, and invasion. In our study, MAP2K4 and Vimentin co-expression is confirmed to be an unfavorable factor in breast cancer.
Collapse
Affiliation(s)
- Shu Liu
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China.,Guizhou Maternity and Child Health Hospital, Guiyang 550003, Guizhou, P. R. China
| | - Juan Huang
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China
| | - Yewei Zhang
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, P. R. China
| | - Yiyi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, Guangdong, P. R. China
| | - Shi Zuo
- Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, Guizhou, P. R. China
| | - Rong Li
- Southern Medical University, Nanfang Hospital, Department of Oncology, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
4
|
McLean LS, Watkins CN, Campbell P, Zylstra D, Rowland L, Amis LH, Scott L, Babb CE, Livingston WJ, Darwanto A, Davis WL, Senthil M, Sowers LC, Brantley E. Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells. Chem Res Toxicol 2015; 28:855-71. [PMID: 25781201 DOI: 10.1021/tx500485v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Lawrence C Sowers
- ⊥Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555, United States
| | | |
Collapse
|
5
|
Haeusgen W, Tueffers L, Herdegen T, Waetzig V. Map2k4δ — Identification and functional characterization of a novel Map2k4 splice variant. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:875-84. [DOI: 10.1016/j.bbamcr.2014.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/20/2023]
|
6
|
Anti-tumor effect of paeonol via regulating NF-κB, AKT and MAPKs activation: A quick review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2013.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
MacNeil AJ, Jiao SC, McEachern LA, Yang YJ, Dennis A, Yu H, Xu Z, Marshall JS, Lin TJ. MAPK kinase 3 is a tumor suppressor with reduced copy number in breast cancer. Cancer Res 2013; 74:162-72. [PMID: 24233520 DOI: 10.1158/0008-5472.can-13-1310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancers are initiated as a result of changes that occur in the genome. Identification of gains and losses in the structure and expression of tumor-suppressor genes and oncogenes lies at the root of the understanding of cancer cell biology. Here, we show that the mitogen-activated protein kinase (MAPK) MKK3 suppresses the growth of breast cancer, in which it varies in copy number. A pervasive loss of MKK3 gene copy number in patients with breast cancer is associated with an impairment of MKK3 expression and protein level in malignant tissues. To assess the functional role of MKK3 in breast cancer, we showed in an animal model that MKK3 activity is required for suppression of tumor growth. Active MKK3 enhanced expression of the cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1), leading to increased cell-cycle arrest in G1 phase of the cell cycle. Our results reveal the functional significance of MKK3 as a tumor suppressor and improve understanding of the dynamic role of the MAPK pathway in tumor progression.
Collapse
Affiliation(s)
- Adam J MacNeil
- Authors' Affiliations: Departments of Microbiology and Immunology, Pediatrics, Physiology and Biophysics, and Pathology, Dalhousie University; Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada; Department of Medical Oncology, General Hospital of the People's Liberation Army, Beijing; and Institute of Zoonosis, College of Animal Sciences and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang L, Wu C, Yu D, Wang C, Che X, Miao X, Zhai K, Chang J, Jiang G, Yang X, Cao G, Hu Z, Zhou Y, Zuo C, Wang C, Zhang X, Zhou Y, Yu X, Dai W, Li Z, Shen H, Liu L, Chen Y, Zhang S, Wang X, Liu Y, Sun M, Cao W, Gao J, Ma Y, Zheng X, Cheung ST, Jia Y, Tan W, Wu T, Lin D. Identification of common variants in BRCA2 and MAP2K4 for susceptibility to sporadic pancreatic cancer. Carcinogenesis 2013; 34:1001-5. [PMID: 23299404 DOI: 10.1093/carcin/bgt004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Germline mutations in genes that cause hereditary syndromes are highly predisposed to familial pancreatic cancer. However, genetic susceptibility to sporadic pancreatic cancer is largely uncovered. We conducted a two-stage association study on pancreatic cancer that included 981 cases and 1991 controls in the first stage followed by a second stage (2603 cases and 2877 controls). Using an approach based on candidate genes whose roles in pancreatic cancer have been well known, we identified two new susceptibility loci. rs11571836 located in the BRCA2 3'-untranslated region was significantly associated with lower expression of BRCA2 transcript and increased pancreatic cancer risk [odds ratio = 1.30, 95% confidence interval = 1.14-1.47, P = 7.64 × 10(-5)] in a recessive manner. rs12939944 located in the MAP2K4 intron was associated with decreased risk (odds ratio = 0.82, 95% confidence interval = 0.74-0.91, P = 0.0001) in a dominant manner. Our results demonstrate for the first time that common variants in BRCA2 and MAP2K4 are susceptibility to sporadic pancreatic cancer.
Collapse
Affiliation(s)
- Liming Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Engler DA, Gupta S, Growdon WB, Drapkin RI, Nitta M, Sergent PA, Allred SF, Gross J, Deavers MT, Kuo WL, Karlan BY, Rueda BR, Orsulic S, Gershenson DM, Birrer MJ, Gray JW, Mohapatra G. Genome wide DNA copy number analysis of serous type ovarian carcinomas identifies genetic markers predictive of clinical outcome. PLoS One 2012; 7:e30996. [PMID: 22355333 PMCID: PMC3280266 DOI: 10.1371/journal.pone.0030996] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/28/2011] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is the fifth leading cause of cancer death in women. Ovarian cancers display a high degree of complex genetic alterations involving many oncogenes and tumor suppressor genes. Analysis of the association between genetic alterations and clinical endpoints such as survival will lead to improved patient management via genetic stratification of patients into clinically relevant subgroups. In this study, we aim to define subgroups of high-grade serous ovarian carcinomas that differ with respect to prognosis and overall survival. Genome-wide DNA copy number alterations (CNAs) were measured in 72 clinically annotated, high-grade serous tumors using high-resolution oligonucleotide arrays. Two clinically annotated, independent cohorts were used for validation. Unsupervised hierarchical clustering of copy number data derived from the 72 patient cohort resulted in two clusters with significant difference in progression free survival (PFS) and a marginal difference in overall survival (OS). GISTIC analysis of the two clusters identified altered regions unique to each cluster. Supervised clustering of two independent large cohorts of high-grade serous tumors using the classification scheme derived from the two initial clusters validated our results and identified 8 genomic regions that are distinctly different among the subgroups. These 8 regions map to 8p21.3, 8p23.2, 12p12.1, 17p11.2, 17p12, 19q12, 20q11.21 and 20q13.12; and harbor potential oncogenes and tumor suppressor genes that are likely to be involved in the pathogenesis of ovarian carcinoma. We have identified a set of genetic alterations that could be used for stratification of high-grade serous tumors into clinically relevant treatment subgroups.
Collapse
Affiliation(s)
- David A. Engler
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Sumeet Gupta
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Whitfield B. Growdon
- Department of Vincent Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Ronny I. Drapkin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Mai Nitta
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Petra A. Sergent
- Department of Vincent Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Serena F. Allred
- Department of Statistics, Brigham Young University, Provo, Utah, United States of America
| | - Jenny Gross
- Women's Cancer Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Michael T. Deavers
- Department of Pathology and Gynecology Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Wen-Lin Kuo
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Beth Y. Karlan
- Women's Cancer Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Bo R. Rueda
- Department of Vincent Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sandra Orsulic
- Women's Cancer Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David M. Gershenson
- Department of Pathology and Gynecology Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael J. Birrer
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Joe W. Gray
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Gayatry Mohapatra
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
A novel function of p38-regulated/activated kinase in endothelial cell migration and tumor angiogenesis. Mol Cell Biol 2011; 32:606-18. [PMID: 22124154 DOI: 10.1128/mcb.06301-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway has been implicated in both suppression and promotion of tumorigenesis. It remains unclear how these 2 opposite functions of p38 operate in vivo to impact cancer development. We previously reported that a p38 downstream kinase, p38-regulated/activated kinase (PRAK), suppresses tumor initiation and promotion by mediating oncogene-induced senescence in a murine skin carcinogenesis model. Here, using the same model, we show that once the tumors are formed, PRAK promotes the growth and progression of skin tumors. Further studies identify PRAK as a novel host factor essential for tumor angiogenesis. In response to tumor-secreted proangiogenic factors, PRAK is activated by p38 via a vascular endothelial growth factor receptor 2 (VEGFR2)-dependent mechanism in host endothelial cells, where it mediates cell migration toward tumors and incorporation of these cells into tumor vasculature, at least partly by regulating the phosphorylation and activation of focal adhesion kinase (FAK) and cytoskeletal reorganization. These findings have uncovered a novel signaling circuit essential for endothelial cell motility and tumor angiogenesis. Moreover, we demonstrate that the tumor-suppressing and tumor-promoting functions of the p38-PRAK pathway are temporally and spatially separated during cancer development in vivo, relying on the stimulus, and the tissue type and the stage of cancer development in which it is activated.
Collapse
|
11
|
Qian Y, Takeuchi S, Dugu L, Tsuji G, Xie L, Nakahara T, Takahara M, Moroi Y, Tu YT, Furue M. Hematopoietic Progenitor Kinase 1, Mitogen-Activated Protein/Extracellular Signal-Related Protein Kinase Kinase Kinase 1, and phosphoMitogen-Activated Protein Kinase Kinase 4 are Overexpressed in Extramammary Paget Disease. Am J Dermatopathol 2011; 33:681-6. [DOI: 10.1097/dad.0b013e318215c3fb] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466:869-73. [PMID: 20668451 DOI: 10.1038/nature09208] [Citation(s) in RCA: 815] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 05/27/2010] [Indexed: 12/24/2022]
Abstract
The systematic characterization of somatic mutations in cancer genomes is essential for understanding the disease and for developing targeted therapeutics. Here we report the identification of 2,576 somatic mutations across approximately 1,800 megabases of DNA representing 1,507 coding genes from 441 tumours comprising breast, lung, ovarian and prostate cancer types and subtypes. We found that mutation rates and the sets of mutated genes varied substantially across tumour types and subtypes. Statistical analysis identified 77 significantly mutated genes including protein kinases, G-protein-coupled receptors such as GRM8, BAI3, AGTRL1 (also called APLNR) and LPHN3, and other druggable targets. Integrated analysis of somatic mutations and copy number alterations identified another 35 significantly altered genes including GNAS, indicating an expanded role for galpha subunits in multiple cancer types. Furthermore, our experimental analyses demonstrate the functional roles of mutant GNAO1 (a Galpha subunit) and mutant MAP2K4 (a member of the JNK signalling pathway) in oncogenesis. Our study provides an overview of the mutational spectra across major human cancers and identifies several potential therapeutic targets.
Collapse
|
13
|
Xie CX, Ren JL. Cumulating researches on the relationship between P38 MAPK signaling pathway and gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2008; 16:3427-3432. [DOI: 10.11569/wcjd.v16.i30.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cascade reaction of mitogen-activated protein kinases (MAPKs) is one of the vital intracellular signal transduction systems, participating in many physiological progressions, such as cell growth, proliferation, differentiation and apoptosis. P38 is a member of MAPKs, mediating many cell reactions induced by stress, inflammatory cytokines or bacterial products and playing a key role in the regulation of cell cycle. For different cell lines of gastric carcinoma, P38 has different functions. The same phenomenon can be seen when the cells are presented under different stimulus. P38 pathway may be one candidate target of cancer therapy.
Collapse
|
14
|
Durmuş Tekir S, Yalçin Arga K, Ulgen KO. Drug targets for tumorigenesis: insights from structural analysis of EGFR signaling network. J Biomed Inform 2008; 42:228-36. [PMID: 18790083 DOI: 10.1016/j.jbi.2008.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 07/15/2008] [Accepted: 08/17/2008] [Indexed: 02/01/2023]
Abstract
Deciphering the complex network structure is crucial in drug target identification. This study presents a framework incorporating graph theoretic and network decomposition methods to analyze system-level properties of the comprehensive map of the epidermal growth factor receptor (EGFR) signaling, which is a good candidate model system to study the general mechanisms of signal transduction. The graph theoretic analysis of the EGFR network indicates that it has small-world characteristics with scale-free topology. The employment of network decomposition analysis enlightened the system-level properties, such as network cross-talk, specific molecules in each pathway and participation of molecules in the network. Participating in a significant fraction of the fundamental paths connecting the ligands to the phenotypes, cofactor GTP and complex Gbeta/Ggamma were identified as "housekeeping" molecules, through which all pathways of EGFR network are cross-talking. c-Src-Shc complex is identified as important due to its role in all fundamental paths through tumorigenesis and being specific to this phenotype. Inhibitors of this complex may be good anti-cancer agents having very little or no effect on other phenotypes.
Collapse
Affiliation(s)
- Saliha Durmuş Tekir
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek-Istanbul, Turkey.
| | | | | |
Collapse
|
15
|
Paulis M, Bensi M, Orioli D, Mondello C, Mazzini G, D'Incalci M, Falcioni C, Radaelli E, Erba E, Raimondi E, De Carli L. Transfer of a Human Chromosomal Vector from a Hamster Cell Line to a Mouse Embryonic Stem Cell Line. Stem Cells 2007; 25:2543-50. [PMID: 17615268 DOI: 10.1634/stemcells.2007-0052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two transchromosomic mouse embryonic stem (ES) sublines (ESMClox1.5 and ESMClox2.1) containing a human minichromosome (MC) were established from a sample of hybrid colonies isolated in fusion experiments between a normal diploid mouse ES line and a Chinese hamster ovary line carrying the MC. DNA cytometric and chromosome analyses of ESMClox1.5 and ESMClox2.1 indicated a mouse chromosome complement with a heteroploid constitution in a subtetraploid range; the karyotypes showed various degrees of polysomy for different chromosomes. A single copy of the MC was found in the majority of cells in all the isolated hybrid colonies and was stably maintained in the established sublines for more than 100 cell generations either with or without the selective agent. No significant differences from the ES parental cells were observed in growth characteristics of the transchromosomic ES sublines. ESMClox1.5 cells were unable to grow in soft agar; when cultured in hanging drops, they formed embryoid bodies, and when inoculated in nude mice, they produced teratomas. They were able to express the early development markers Oct4 and Nanog, as demonstrated by reverse transcription-polymerase chain reaction assay. All these features are in common with the ES parental line. Further research using the transchromosomic ES sublines described here may allow gene expression studies on transferred human minichromosomes and could shed light on the relationships among ploidy, pluripotency, cell transformation, and tumorigenesis. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Marianna Paulis
- Dipartimento di Genetica e Microbiologia Adriano Buzzati Traverso Università degli Studi di Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sethi G, Ahn KS, Xia D, Kurie JM, Aggarwal BB. Targeted Deletion of MKK4 Gene Potentiates TNF-Induced Apoptosis through the Down-Regulation of NF-κB Activation and NF-κB-Regulated Antiapoptotic Gene Products. THE JOURNAL OF IMMUNOLOGY 2007; 179:1926-33. [PMID: 17641059 DOI: 10.4049/jimmunol.179.3.1926] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MAPK kinase 4 (MKK4) is a dual-specificity kinase that activates both JNK and p38 MAPK. However, the mechanism by which MKK4 regulates TNF-induced apoptosis is not fully understood. Therefore, we used fibroblasts derived from MKK4 gene-deleted (MKK4-KO) mice to determine the role of this kinase in TNF signaling. We found that when compared with the wild-type cells, deletion of MKK4 gene enhanced TNF-induced apoptosis, and this correlated with down-regulation of TNF-induced cell-proliferative (COX-2 and cyclin D1) and antiapoptotic (survivin, IAP1, XIAP, Bcl-2, Bcl-x(L), and cFLIP) gene products, all regulated by NF-kappaB. Indeed we found that TNF-induced NF-kappaB activation was abrogated in MKK4 gene-deleted cells, as determined by DNA binding. Further investigation revealed that TNF-induced I kappaB alpha kinase activation, I kappaB alpha phosphorylation, I kappaB alpha degradation, and p65 nuclear translocation were all suppressed in MKK4-KO cells. NF-kappaB reporter assay revealed that NF-kappaB activation induced by TNF, TNFR1, TRADD, TRAF2, NIK, and I kappaB alpha kinase was modulated in gene-deleted cells. Overall, our results indicate that MKK4 plays a central role in TNF-induced apoptosis through the regulation of NF-kappaB-regulated gene products.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Cell Line
- Cyclin D1/biosynthesis
- Cyclin D1/genetics
- Cyclooxygenase 2/biosynthesis
- Cyclooxygenase 2/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Fibroblasts/cytology
- Fibroblasts/enzymology
- Fibroblasts/immunology
- Gene Deletion
- Gene Targeting
- MAP Kinase Kinase 4/deficiency
- MAP Kinase Kinase 4/genetics
- MAP Kinase Kinase 4/physiology
- Matrix Metalloproteinase 9/biosynthesis
- Matrix Metalloproteinase 9/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- NF-kappa B/physiology
- Receptors, Tumor Necrosis Factor, Type I/biosynthesis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/biosynthesis
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Han J, Sun P. The pathways to tumor suppression via route p38. Trends Biochem Sci 2007; 32:364-71. [PMID: 17624785 DOI: 10.1016/j.tibs.2007.06.007] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/21/2007] [Accepted: 06/20/2007] [Indexed: 12/13/2022]
Abstract
Besides its well-known functions in inflammation and other stresses, the p38 mitogen-activated protein kinase pathway also negatively regulates cell proliferation and tumorigenesis. Inactivation of the p38 pathway enhances cellular transformation and renders mice prone to tumor development with concurrent disruption of the induction of senescence. Conversely, persistent activation of p38 inhibits tumorigenesis. Mechanistic insights into this additional p38 function are starting to emerge. For example, p38 has been shown to have a crucial role in oncogene-induced senescence, replicative senescence, DNA-damage responses and contact-inhibition. In addition, the role of the p38 pathway in proliferative control and tumor suppression is mediated by its impact on several cell-cycle regulators. These findings reveal a tumor-suppressing function of the p38 pathway, and indicate that components of the p38 pathway are potential targets for novel cancer therapies.
Collapse
Affiliation(s)
- Jiahuai Han
- Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| | | |
Collapse
|
18
|
Abstract
Mitogen-activated protein (MAP) kinase kinase 4 (MKK4) is a component of stress activated MAP kinase signaling modules. It directly phosphorylates and activates the c-Jun N-terminal kinase (JNK) and p38 families of MAP kinases in response to environmental stress, pro-inflammatory cytokines and developmental cues. MKK4 is ubiquitously expressed and the targeted deletion of the Mkk4 gene in mice results in early embryonic lethality. Further studies in mice have indicated a role for MKK4 in liver formation, the immune system and cardiac hypertrophy. In humans, it is reported that loss of function mutations in the MKK4 gene are found in approximately 5% of tumors from a variety of tissues, suggesting it may have a tumor suppression function. Furthermore, MKK4 has been identified as a suppressor of metastasis of prostate and ovarian cancers. However, the role of MKK4 in cancer development appears complex as other studies support a pro-oncogenic role for MKK4 and JNK. Here we review the biochemical and functional properties of MKK4 and discuss the likely mechanisms by which it may regulate the steps leading to the formation of cancers.
Collapse
Affiliation(s)
- A J Whitmarsh
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
19
|
Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bioessays 2007; 28:923-34. [PMID: 16937364 DOI: 10.1002/bies.20458] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family. In mammalian genomes, three genes encode the JNK family. To evaluate JNK function, mice have been created with deletions in one or more of three Jnk genes. Initial studies on jnk1(-/-) or jnk2(-/-) mice have shown roles for these JNKs in the immune system whereas studies on jnk3(-/-) mice have highlighted roles for JNK3 in the nervous system. Further studies have highlighted the contributions of JNK1 and/or JNK2 to a range of biological and pathological processes. These include bone remodelling and joint disease, inflammatory and autoimmune diseases, obesity, diabetes, cardiovascular disease, liver disease and tumorigenesis in addition to effects in neurons. These results emphasise the differences in the roles played by JNK isoforms in vivo and suggest that the design of JNK inhibitors for subsequent therapeutic uses may benefit from selective inhibition of individual JNK isoforms.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
20
|
Guo YL, Yang B. Altered cell adhesion and cell viability in a p38alpha mitogen-activated protein kinase-deficient mouse embryonic stem cell line. Stem Cells Dev 2007; 15:655-64. [PMID: 17105401 DOI: 10.1089/scd.2006.15.655] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
p38 mitogen-activated protein (MAP) kinase alpha (p38alpha) is a broadly expressed protein kinase that regulates growth and development. Most studies of p38alpha have been in somatic cells. Little is known about its function in embryonic stem (ES) cells. Using a ES cell line isolated from p38alpha knockout mouse embryos (p38alpha (-/-) ES cells), we investigated roles of p38alpha in the regulation of ES cell activities. p38alpha (-/-) ES cells displayed several altered features different from wild-type cells. The major findings are that p38alpha (-/-) ES cells have significantly increased cell adhesion to several extracelluar matrix proteins, correlating with elevated phosphorylation of focal adhesion kinase and paxillin. p38alpha (-/-) ES cells also showed increased cell viability, correlating with increased expression of survivin and activation of AKT (protein kinase B), two molecules that are known to improve cell viability. p38alpha (-/-) ES cells reach confluence faster than wild-type cells in routine cell culture. However, this is not due to a higher cell proliferation rate in p38alpha (-/-) ES cells, but rather is likely a result of improved cell adhesion and/or cell viability. Together our results indicated that p38alpha may negatively regulate mouse ES cell adhesion and viability.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | |
Collapse
|
21
|
Lotan TL, Lyon M, Huo D, Taxy JB, Brendler C, Foster BA, Stadler W, Rinker-Schaeffer CW. Up-regulation of MKK4, MKK6 and MKK7 during prostate cancer progression: an important role for SAPK signalling in prostatic neoplasia. J Pathol 2007; 212:386-94. [PMID: 17577251 DOI: 10.1002/path.2194] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Identification of the signalling cascades that are differentially activated during prostatic tumourigenesis is a crucial step in the search for future molecular targets in this disease. The stress-activated protein kinase (SAPK) signalling cascade culminates in the phosphorylation of the JNK and p38 mitogen-activated protein kinases (MAPKs). Recently, the upstream activators of these proteins, the MAPK kinases (MKKs), have been implicated as inhibitors of tumour progression in a variety of clinical and experimental tumour models. This study evaluates MKK4, MKK6 and MKK7 expression during prostate cancer progression in humans and in the transgenic adenocarcinoma of a mouse prostate (TRAMP) model of prostate tumourigenesis. Benign prostate, prostatic intraepithelial neoplasia (PIN) lesions and tumour tissues were collected from 37 TRAMP mice. Additionally, six tissue microarrays were constructed with tumours from a matched group of 102 men who underwent radical prostatectomy. Tissues from 20 patients with extensive high-grade prostatic intraepithelial neoplasia (HGPIN) were also analysed. For all samples, immunohistochemical staining for MKK4, MKK6 and MKK7 was scored in normal and neoplastic glands. Staining intensities of MKK4, MKK6 and MKK7 were significantly increased in HGPIN and prostate cancer compared to surrounding normal glands in both the TRAMP and human samples (p < 0.0001 for all markers). Increased levels of MKK4 or MKK7 correlated with higher pathological stage at prostatectomy (p = 0.01 and p = 0.04). Using multivariate analysis, there was no association between protein levels and time to biochemical recurrence in the human samples. The up-regulation of MKK4, MKK6 and MKK7 during prostate cancer progression in both TRAMP and human tissues highlights an important role for the SAPK signalling cascade in prostatic neoplasia. The finding that higher MKK4 and MKK7 expression is associated with higher-stage prostatic tumours underscores the dynamic regulation of these proteins during prostatic tumourigenesis.
Collapse
Affiliation(s)
- T L Lotan
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Khatlani TS, Wislez M, Sun M, Srinivas H, Iwanaga K, Ma L, Hanna AE, Liu D, Girard L, Kim YH, Pollack JR, Minna JD, Wistuba II, Kurie JM. c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene 2006; 26:2658-66. [PMID: 17057737 DOI: 10.1038/sj.onc.1210050] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
c-Jun N-terminal kinase (JNK) has been reported to either potentiate or inhibit oncogenesis, depending upon the cellular context, but its role in lung neoplasia is unclear. Here we sought to define the role of JNK in lung neoplasia by examining evidence of JNK phosphorylation in non-small-cell lung cancer (NSCLC) biopsy samples and by using genetic and pharmacologic approaches to modulate JNK expression and activity in cultured cells. Immunohistochemical staining for JNK phosphorylation was detected in 114 (45%) of 252 NSCLC biopsy samples and was predominantly nuclear, providing evidence of JNK activation in a subset of NSCLC cases. Introduction of a doxycycline-inducible, constitutively active, mutant mitogen-activated protein kinase kinase 4 (MKK4) into the human bronchial epithelial cell lines BEAS-2B and HB56B increased the cells' proliferation, migration, invasion and clonogenicity. Depletion of JNK in MKK4 mutant-transformed BEAS-2B cells by introduction of JNK1/2 short hairpin RNA reversed the transformed phenotype, indicating that JNK activation is oncogenic and MKK4 confers neoplastic properties in these cells. The proliferation of NSCLC cell lines HCC827 and H2009, in which JNK and its substrate c-Jun are constitutively phosphorylated, was inhibited by SP600125, a JNK kinase inhibitor. We conclude that JNK is activated in a subset of NSCLC biopsy samples and promotes oncogenesis in the bronchial epithelium, suggesting that strategies to inhibit the JNK pathway should be considered for the prevention and treatment of NSCLC.
Collapse
Affiliation(s)
- T S Khatlani
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Boehrer S, Nowak D, Puccetti E, Ruthardt M, Sattler N, Trepohl B, Schneider B, Hoelzer D, Mitrou PS, Chow KU. Prostate-apoptosis-response-gene-4 increases sensitivity to TRAIL-induced apoptosis. Leuk Res 2006; 30:597-605. [PMID: 16513168 DOI: 10.1016/j.leukres.2005.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 09/12/2005] [Indexed: 12/17/2022]
Abstract
The capacity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) to preferentially induce apoptosis in malignant cells while sparing normal tissues renders it an attractive therapeutic agent. Nevertheless, the molecular determinants governing sensitivity towards TRAIL remain to be defined. Acknowledging the previously demonstrated deregulation of prostate-apoptosis-response-gene-4 (par-4) in ex vivo cells of patients suffering from acute and chronic lymphatic leukemia, we here tested the hypothesis that expression of par-4 influences sensitivity to TRAIL. Evaluating this hypothesis we show, that par-4-transfected T-lymphoblastic Jurkat cells exhibit a considerably increased rate of apoptosis upon incubation with an agonistic TRAIL-antibody as compared to their mock-transfected counterparts. Defining the underlying molecular mechanisms we provide evidence, that par-4 enhances sensitivity towards TRAIL by employing crucial members of the extrinsic pathway. Thus, par-4-overexpressing Jurkat clones show an enforced cleavage of c-Flip(L) together with an increased activation of the initiator caspases-8 and -10. In addition, expression of par-4 enables cells to down-regulate the inhibitor-of-apoptosis proteins cIAP-1, cIAP-2, XIAP and survivin with a concomitantly enhanced activation of the executioner caspases-6 and -7. Supporting the crucial role of caspase-8 in par-4-promoted apoptosis we demonstrate that inhibition of caspase-8 considerably reduces TRAIL-induced apoptosis in par-4 and mock-transfected Jurkat clones and reverses the described molecular changes. In conclusion, we here provide first evidence that expression of par-4 in neoplastic lymphocytes augments sensitivity to TRAIL-induced cell death and outline the responsible molecular mechanisms, in particular the crucial role of caspase-8 activation.
Collapse
Affiliation(s)
- Simone Boehrer
- Department of Medicine II, Johann Wolfgang Goethe-University Hospital, Theodor-Stern-Kai-7, 60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wayne J, Sielski J, Rizvi A, Georges K, Hutter D. ERK regulation upon contact inhibition in fibroblasts. Mol Cell Biochem 2006; 286:181-9. [PMID: 16467968 DOI: 10.1007/s11010-005-9089-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Despite the understanding of the importance of mitogen-activated protein (MAP) kinase activation in the stimulation of growth, little is known about the role of MAP kinase regulation during contact inhibited growth control. To investigate the role of the MAP kinase extracellular signal-regulated kinase (ERK) during the transition to a contact inhibited state, cultures of normal fibroblasts (BJ) were grown to different stages of confluency. The levels of MAP kinase phosphatase (MKP) expression and the amount of active ERK and MAP ERK kinase (MEK) in these cultures were assessed through western blot analysis and were compared to fibrosarcoma cell cultures (HT-1080), which lack contact inhibition. In normal fibroblasts, the amounts of active MEK and ERK decline at contact inhibition, concurrently with a rise in MKP-1, MKP-2, and MKP-3 protein levels. In contrast, fibrosarcoma cells appear to lack density-dependent regulation of the ERK pathway. Additionally, altering the redox environment of fibrosarcoma cells to a less reducing state, as seen during contact inhibition, results in increased MKP-1 expression. Taken together, these results suggest that the altered redox environment upon contact inhibition may contribute to the regulation of ERK inactivation by MKPs.
Collapse
Affiliation(s)
- Joshua Wayne
- Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA
| | | | | | | | | |
Collapse
|
26
|
Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST, Paschal BM, Weber MJ. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 2005; 20:503-15. [PMID: 16282370 DOI: 10.1210/me.2005-0351] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Activation of signal transduction kinase cascades is known to alter androgen receptor (AR) activity, but the molecular mechanisms are still poorly defined. Here we show that stress kinase signaling regulates Ser 650 phosphorylation and AR nuclear export. In LNCaP prostate cancer cells, activation of either MAPK kinase (MKK) 4:c-Jun N-terminal kinase (JNK) or MKK6:p38 signaling pathways increased Ser 650 phosphorylation, whereas pharmacologic inhibition of JNK or p38 signaling led to a reduction of AR Ser 650 phosphorylation. Both p38alpha and JNK1 phosphorylated Ser 650 in vitro. Small interfering RNA-mediated knockdown of either MKK4 or MKK6 increased endogenous prostate-specific antigen (PSA) transcript levels, and this increase was blocked by either bicalutamide or AR small interfering RNA. Stress kinase inhibition of PSA transcription is, therefore, dependent on the AR. Similar experiments involving either activation or inhibition of MAPK/ERK kinase:ERK signaling had little effect on Ser 650 phosphorylation or PSA mRNA levels. Ser 650 is proximal to the DNA binding domain that contains a nuclear export signal. Mutation of Ser 650 to alanine reduced nuclear export of the AR, whereas mutation of Ser 650 to the phosphomimetic amino acid aspartate restored AR nuclear export. Pharmacologic inhibition of stress kinase signaling reduced wild-type AR nuclear export equivalent to the S650A mutant without affecting nuclear export of the S650D mutant. Our data suggest that stress kinase signaling and nuclear export regulate AR transcriptional activity.
Collapse
Affiliation(s)
- Daniel Gioeli
- Department of Microbiology, P.O. Box 800734, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen PN, Chu SC, Chiou HL, Chiang CL, Yang SF, Hsieh YS. Cyanidin 3-Glucoside and Peonidin 3-Glucoside Inhibit Tumor Cell Growth and Induce Apoptosis In Vitro and Suppress Tumor Growth In Vivo. Nutr Cancer 2005; 53:232-43. [PMID: 16573384 DOI: 10.1207/s15327914nc5302_12] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Dietary polyphenols, including anthocyanins, are suggested to be involved in the protective effects of fruits and vegetables against cancer. However, anticancer effects of peonidin 3-glucoside have not been clearly demonstrated, with only limited studies being available concerning the inhibitory effect of cyanidin 3-glucoside for tumor cell growth. Therefore, in this study, we have isolated and identified the two bioactive compounds, peonidin 3-glucoside and cyanidin 3-glucoside, from Oryza sativa L. indica, to treat various cancer cells. The results showed that, among analyzed cell lines, HS578T was the most sensitive to peonidin 3-glucoside and cyanidin 3-glucoside. Treatment with peonidin 3-glucoside or cyanidin 3-glucoside resulted in a strong inhibitory effect on cell growth via G2/M arrest. Regarding cell cyclerelated proteins, peonidin 3-glucoside treatment resulted in down-regulation of protein levels of cyclin-dependent kinase (CDK)-1, CDK-2, cyclin B1, and cyclin E, whereas cyanidin 3-glucoside could decrease the protein levels of CDK-1, CDK-2, cyclin B1, and cyclin D1. In addition, cyanidin 3-glucoside or peonidin 3-glucoside also induced caspase-3 activation, chromatin condensation, and cell death. Furthermore, anthocyanins from O. sativa L. indica were evidenced by their inhibition on the growth of Lewis lung carcinoma cells in vivo.
Collapse
Affiliation(s)
- Pei-Ni Chen
- Institute of Biochemistry, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- V P Kale
- National Center for Cell Science, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
29
|
Togame H, Fuchikami K, Sagara A, Inbe H, Ziegelbauer K. Development of a Non-Radioactive, 384-Well Format Assay to Detect Inhibitors of the Mitogen-Activated Protein Kinase Kinase 4. Assay Drug Dev Technol 2005; 3:65-76. [PMID: 15798397 DOI: 10.1089/adt.2005.3.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) kinases (MKKs, also called MAPK/extracellular signal-regulated kinase [ERK] kinase [MEK]) are constituents of numerous signal transduction pathways involved in growth, differentiation, and stress response. One of its members, MKK4, directly phosphorylates and activates the c-Jun terminal kinases (also called stress-activated protein kinase [SAPK]) in response to stress and pro-inflammatory cytokines. Recent evidence suggest that control of MKK4 activity may provide a novel approach for the treatment of cancer or as anti-inflammatory therapy. To screen for novel low-molecular-weight inhibitors of MKK4, we established a quantitative, non-radioactive in vitro kinase assay. Human MKK4 was expressed as fusion protein with glutathione S-transferase (GST) in Escherichia coli. Co-expression of a constitutive active fragment of the MAPK/ERK kinase kinase-1 yielded active GST-MKK4 using GST-SAPK alpha-kinase-negative (KN) mutant as substrate. We determined the kinetic constants for ATP and GST-SAPK alpha-KN. The apparent Km value for GST-SAPKalpha-KN was 3.7 microM, while the apparent Km value for ATP was 0.17 microM. Staurosporine inhibited GST-MKK4 with an IC50 of 70 nM. The kinase assay was adapted to a 384-well non-radioactive format. After the kinase reaction the phosphorylated product was captured onto a streptavidin-coated microtiter plate, and phosphorylation was detected with a europium-labeled anti-phosphotyrosine antibody, which allowed time-resolved fluorescence measurement.
Collapse
Affiliation(s)
- H Togame
- Bayer Yakuhin, Ltd., Research Center, Kyoto, Japan
| | | | | | | | | |
Collapse
|