1
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
2
|
McDermott A, Windeln LM, Valentine JSD, Baldassarre L, Foster AD, Tavassoli A. Next Generation SICLOPPS Screening for the Identification of Inhibitors of the HIF-1α/HIF-1β Protein-Protein Interaction. ACS Chem Biol 2024; 19:2232-2239. [PMID: 39312747 PMCID: PMC11494503 DOI: 10.1021/acschembio.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Split-intein circular ligation of proteins and peptides (SICLOPPS) is a method for generating intracellular libraries of cyclic peptides that has yielded several first-in-class inhibitors. Here, we detail a revised high-content, high-throughput SICLOPPS screening protocol that utilizes next-generation sequencing, biopanning, and computational tools to identify hits against a given protein-protein interaction. We used this platform for the identification of inhibitors of the HIF-1α/HIF-1β protein-protein interaction. The revised platform resulted in a significantly higher positive hit rate than that previously reported for SICLOPPS screens, and the identified cyclic peptides were more active in vitro and in cells than our previously reported inhibitors. The platform detailed here may be used for the identification of inhibitors of a wide range of other targets.
Collapse
Affiliation(s)
| | - Leonie M. Windeln
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | | | - Leonardo Baldassarre
- Curve
Therapeutics, Delta House,
Southampton Science Park, Southampton SO16 7NS, U.K.
| | - Andrew D. Foster
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Ali Tavassoli
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
3
|
Ball A, Mohammed S, Doigneaux C, Gardner RM, Easton JW, Turner S, Essex JW, Pairaudeau G, Tavassoli A. Identification and Development of Cyclic Peptide Inhibitors of Hypoxia Inducible Factors 1 and 2 That Disrupt Hypoxia-Response Signaling in Cancer Cells. J Am Chem Soc 2024; 146:8877-8886. [PMID: 38503564 PMCID: PMC10996005 DOI: 10.1021/jacs.3c10508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Hypoxia inducible factor (HIF) is a heterodimeric transcription factor composed of an oxygen-regulated α subunit and a constitutively expressed β subunit that serves as the master regulator of the cellular response to low oxygen concentrations. The HIF transcription factor senses and responds to hypoxia by significantly altering transcription and reprogramming cells to enable adaptation to a hypoxic microenvironment. Given the central role played by HIF in the survival and growth of tumors in hypoxia, inhibition of this transcription factor serves as a potential therapeutic approach for treating a variety of cancers. Here, we report the identification, optimization, and characterization of a series of cyclic peptides that disrupt the function of HIF-1 and HIF-2 transcription factors by inhibiting the interaction of both HIF-1α and HIF-2α with HIF-1β. These compounds are shown to bind to HIF-α and disrupt the protein-protein interaction between the α and β subunits of the transcription factor, resulting in disruption of hypoxia-response signaling by our lead molecule in several cancer cell lines.
Collapse
Affiliation(s)
- Andrew
T. Ball
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Soran Mohammed
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cyrielle Doigneaux
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Reece M. Gardner
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - James W. Easton
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Steven Turner
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Garry Pairaudeau
- Discovery
Sciences IMED Biotech Unit, AstraZeneca, 310 Cambridge Science Park, Milton
Road, Cambridge CB4 0WG, U.K.
| | - Ali Tavassoli
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| |
Collapse
|
4
|
Tafech A, Stéphanou A. On the Importance of Acidity in Cancer Cells and Therapy. BIOLOGY 2024; 13:225. [PMID: 38666837 PMCID: PMC11048434 DOI: 10.3390/biology13040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
Cancer cells are associated with high glycolytic activity, which results in acidification of the tumor microenvironment. The occurrence of this stressful condition fosters tumor aggressiveness, with the outcome of invasiveness and metastasis that are linked to a poor clinical prognosis. Acidosis can be both the cause or consequence of alterations in the functions and expressions of transporters involved in intracellular acidity regulation. This review aims to explore the origin of acidity in cancer cells and the various mechanisms existing in tumors to resist, survive, or thrive in the acidic environment. It highlights the difficulties in measuring the intracellular pH evolution that impedes our understanding of the many regulatory and feedback mechanisms. It finally presents the consequences of acidity on tumor development as well as the friend or foe role of acidity in therapy.
Collapse
Affiliation(s)
| | - Angélique Stéphanou
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| |
Collapse
|
5
|
Cuesta-Borràs E, Salvans C, Arqués O, Chicote I, Ramírez L, Cabellos L, Martínez-Quintanilla J, Mur-Espinosa A, García-Álvarez A, Hernando J, Tejedor JR, Mirallas O, Élez E, Fraga MF, Tabernero J, Nuciforo P, Capdevila J, Palmer HG, Puig I. DPPA3-HIF1α axis controls colorectal cancer chemoresistance by imposing a slow cell-cycle phenotype. Cell Rep 2023; 42:112927. [PMID: 37537841 DOI: 10.1016/j.celrep.2023.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Tumor relapse is linked to rapid chemoresistance and represents a bottleneck for cancer therapy success. Engagement of a reduced proliferation state is a non-mutational mechanism exploited by cancer cells to bypass therapy-induced cell death. Through combining functional pulse-chase experiments in engineered cells and transcriptomic analyses, we identify DPPA3 as a master regulator of slow-cycling and chemoresistant phenotype in colorectal cancer (CRC). We find a vicious DPPA3-HIF1α feedback loop that downregulates FOXM1 expression via DNA methylation, thereby delaying cell-cycle progression. Moreover, downregulation of HIF1α partially restores a chemosensitive proliferative phenotype in DPPA3-overexpressing cancer cells. In cohorts of CRC patient samples, DPPA3 overexpression acts as a predictive biomarker of chemotherapeutic resistance that subsequently requires reduction in its expression to allow metastatic outgrowth. Our work demonstrates that slow-cycling cancer cells exploit a DPPA3/HIF1α axis to support tumor persistence under therapeutic stress and provides insights on the molecular regulation of disease progression.
Collapse
Affiliation(s)
- Estefania Cuesta-Borràs
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Cándida Salvans
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Irene Chicote
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain
| | - Lorena Ramírez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Laia Cabellos
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | | | - Alex Mur-Espinosa
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Alejandro García-Álvarez
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Jorge Hernando
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Oriol Mirallas
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Elena Élez
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of the Principality of Asturias (ISPA), Spanish Biomedical Research Network in Rare Diseases (CIBERER), Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33011 Oviedo, Asturias, Spain
| | - Josep Tabernero
- CIBERONC, 08029 Madrid, Spain; Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; UVic-UCC, IOB-Quiron, 08023 Barcelona, Spain
| | - Paolo Nuciforo
- CIBERONC, 08029 Madrid, Spain; Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jaume Capdevila
- Gastrointestinal and Endocrine Tumors Group, Medical Oncology Department, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; IOB-Teknon, 08023 Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| | - Isabel Puig
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain; CIBERONC, 08029 Madrid, Spain.
| |
Collapse
|
6
|
Pheochromocytomas and Abdominal Paragangliomas: A Practical Guidance. Cancers (Basel) 2022; 14:cancers14040917. [PMID: 35205664 PMCID: PMC8869962 DOI: 10.3390/cancers14040917] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pheochromocytomas and abdominal paragangliomas (PPGLs) are rare. They can be discovered incidentally by imaging with computed tomography or magnetic resonance imaging and during hormonal surveillance in patients with known genetic variants that are associated with PPGLs. As most PPGLs are functioning, a hormonal work-up evaluating for catecholamine excess is recommended. Classical symptoms, such as tachycardia, hypertension and headache, can be present, but when the PPGL is discovered as an incidentaloma, symptoms may be lacking or be more discrete. PPGLs carry malignant potential, and patients should undergo close surveillance, as recurrence of disease or metastasis may develop. Genetic susceptibility for multifocal disease has gained more attention, and germline variants are commonly detected, thus facilitating detection of hereditary cases and afflicted family members. Any patient with a PPGL should be managed by an expert multidisciplinary team consisting of endocrinologists, radiologists, surgeons, pathologists and clinical geneticists. Abstract Pheochromocytomas and abdominal paragangliomas (PPGLs) are rare tumors arising from the adrenal medulla or the sympathetic nervous system. This review presents a practical guidance for clinicians dealing with PPGLs. The incidence of PPGLs has risen. Most cases are detected via imaging and less present with symptoms of catecholamine excess. Most PPGLs secrete catecholamines, with diffuse symptoms. Diagnosis is made by imaging and tests of catecholamines. Localized disease can be cured by surgery. PPGLs are the most heritable of all human tumors, and germline variants are found in approximately 30–50% of cases. Such variants can give information regarding the risk of developing recurrence or metastases as well as the risk of developing other tumors and may identify relatives at risk for disease. All PPGLs harbor malignant potential, and current histological and immunohistochemical algorithms can aid in the identification of indolent vs. aggressive tumors. While most patients with metastatic PPGL have slowly progressive disease, a proportion of patients present with an aggressive course, highlighting the need for more effective therapies in these cases. We conclude that PPGLs are rare but increasing in incidence and management should be guided by a multidisciplinary team.
Collapse
|
7
|
Rysz J, Franczyk B, Ławiński J, Gluba-Brzózka A. Characteristics of Clear Cell Papillary Renal Cell Carcinoma (ccpRCC). Int J Mol Sci 2021; 23:ijms23010151. [PMID: 35008576 PMCID: PMC8745490 DOI: 10.3390/ijms23010151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinomas (RCCs) is a group of various malignant tumours of the renal cortex displaying distinct clinical, morphologic, and genetic features. Clear cell papillary renal cell carcinoma (ccpRCC), belonging to this group, shares morphologic features with both clear cell renal cell carcinoma (ccRCC) and papillary renal cell carcinoma (pRCC) and therefore, more strict diagnostic criteria should be developed to avoid misdiagnosis. Despite overlapping features, ccpRCC has also distinct clinical behaviour, histologic characteristics (morphologic and immunohistochemical), and genomic features. The concepts concerning this tumour are constantly developing since its biological potential and molecular basis remains to be fully unravelled. First reports indicated the presence of ccpRCC in end-stage renal disease, and they underlined the enriched development in this group of patients; however, currently, it is known that such tumours can also occur spontaneously in the normal kidney. Numerous studies have demonstrated that clinical outcomes and prognosis of ccpRCC patients is highly favourable. Till now, no convincing evidence of metastatic ccpRCC or death caused by the disease has been found. Therefore, it is of high importance to correctly differentiate ccpRCC from other subtypes of RCC with a much worse prognosis and to introduce appropriate management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Zeromskiego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Zeromskiego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Zeromskiego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
- Correspondence: or ; Tel.: +48-42-639-3750
| |
Collapse
|
8
|
Leite KRM, Borges LL, Filho LR, Chade D, Coelho RF, Cordeiro M, Srougi M, Nahas WC. Histological Variants of Urothelial Carcinoma Predict No Response to Neoadjuvant Chemotherapy. Clin Genitourin Cancer 2021; 20:e1-e6. [PMID: 34393098 DOI: 10.1016/j.clgc.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Platinum-based neoadjuvant chemotherapy (NAC) in muscle-invasive urothelial bladder cancer (MIBC) has been adopted as a standard of care related to better survival outcomes. However, there is a considerable number of patients who do not respond, experiencing toxicity and delay in the surgical treatment. Our aim is to find biomarkers of response that could be easily adopted in the clinical practice. METHODS Between January 2009 and July 2016, 52 patients with MIBC were submitted to radical cystectomy after NAC. A tissue microarray containing 25 cases, who met the inclusion criteria was built for immunohistochemical analysis of Cytokeratins 5/6, 7, and 20, GATA3, Her2, EGFR, p63, p53, Carbonic-anhydrase IX (CAIX), MLH1, MSH2, MSH6, and PMS2. The surgery was performed in a mean time of 58.7 (± 21) days after the end of the NAC. Fisher's exact test was used to analyze the relationship between response (≤pT1) and histopathological and immunohistochemical results and Kaplan-Meier curves were designed for survival analysis. RESULTS Ten (40.0%) patients presented response to NAC. Histological variants of the urothelial carcinoma characterized by squamous, sarcomatous/rhabdoid, plasmacytoid, and micropapillary was present in 36.0% and none responded to NAC (P = .002). CAIX was expressed by 53.3% and none responded to NAC (P= .005). Lymph-node metastasis, divergent differentiation, and expression of cytokeratin 5/6 were related to short cancer specific survival. CONCLUSION Histological variants and CAIX immune-expression are biomarkers of nonresponse to NAC of MIBC, and might be easily used in the clinical practice to select patients to be submitted to surgery upfront.
Collapse
Affiliation(s)
- Katia Ramos Moreira Leite
- Laboratory of Medical Investigation - LIM55, Urology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | - Leonardo Lima Borges
- Laboratory of Medical Investigation - LIM55, Urology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Instituto do Cancer do Estado de São Paulo - ICESP, São Paulo, Brazil
| | | | - Daher Chade
- Instituto do Cancer do Estado de São Paulo - ICESP, São Paulo, Brazil
| | | | - Mauricio Cordeiro
- Instituto do Cancer do Estado de São Paulo - ICESP, São Paulo, Brazil
| | - Miguel Srougi
- Laboratory of Medical Investigation - LIM55, Urology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Willian Carlos Nahas
- Laboratory of Medical Investigation - LIM55, Urology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Instituto do Cancer do Estado de São Paulo - ICESP, São Paulo, Brazil
| |
Collapse
|
9
|
Millet-Boureima C, He S, Le TBU, Gamberi C. Modeling Neoplastic Growth in Renal Cell Carcinoma and Polycystic Kidney Disease. Int J Mol Sci 2021; 22:3918. [PMID: 33920158 PMCID: PMC8070407 DOI: 10.3390/ijms22083918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) and autosomal dominant polycystic kidney disease (ADPKD) share several characteristics, including neoplastic cell growth, kidney cysts, and limited therapeutics. As well, both exhibit impaired vasculature and compensatory VEGF activation of angiogenesis. The PI3K/AKT/mTOR and Ras/Raf/ERK pathways play important roles in regulating cystic and tumor cell proliferation and growth. Both RCC and ADPKD result in hypoxia, where HIF-α signaling is activated in response to oxygen deprivation. Primary cilia and altered cell metabolism may play a role in disease progression. Non-coding RNAs may regulate RCC carcinogenesis and ADPKD through their varied effects. Drosophila exhibits remarkable conservation of the pathways involved in RCC and ADPKD. Here, we review the progress towards understanding disease mechanisms, partially overlapping cellular and molecular dysfunctions in RCC and ADPKD and reflect on the potential for the agile Drosophila genetic model to accelerate discovery science, address unresolved mechanistic aspects of these diseases, and perform rapid pharmacological screens.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
| | - Thi Bich Uyen Le
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada; (C.M.-B.); (S.H.); (T.B.U.L.)
- Haematology-Oncology Research Group, National University Cancer Institute, Singapore 119228, Singapore
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, SC 29528-6054, USA
| |
Collapse
|
10
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
11
|
Chen Y, Gu D, Wen Y, Yang S, Duan X, Lai Y, Yang J, Yuan D, Khan A, Wu W, Zeng G. Identifying the novel key genes in renal cell carcinoma by bioinformatics analysis and cell experiments. Cancer Cell Int 2020; 20:331. [PMID: 32699530 PMCID: PMC7372855 DOI: 10.1186/s12935-020-01405-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Background Although major driver gene have been identified, the complex molecular heterogeneity of renal cell cancer (RCC) remains unclear. Therefore, more relevant genes need to be identified to explain the pathogenesis of renal cancer. Methods Microarray datasets GSE781, GSE6344, GSE53000 and GSE68417 were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified by employing GEO2R tool, and function enrichment analyses were performed by using DAVID. The protein-protein interaction network (PPI) was constructed and the module analysis was performed using STRING and Cytoscape. Survival analysis was performed using GEPIA. Differential expression was verified in Oncomine. Cell experiments (cell viability assays, transwell migration and invasion assays, wound healing assay, flow cytometry) were utilized to verify the roles of the hub genes on the proliferation of kidney cancer cells (A498 and OSRC-2 cell lines). Results A total of 215 DEGs were identified from four datasets. Six hub gene (SUCLG1, PCK2, GLDC, SLC12A1, ATP1A1, PDHA1) were identified and the overall survival time of patients with RCC were significantly shorter. The expression levels of these six genes were significantly decreased in six RCC cell lines(A498, OSRC-2, 786- O, Caki-1, ACHN, 769-P) compared to 293t cell line. The expression level of both mRNA and protein of these genes were downregulated in RCC samples compared to those in paracancerous normal tissues. Cell viability assays showed that overexpressions of SUCLG1, PCK2, GLDC significantly decreased proliferation of RCC. Transwell migration, invasion, wound healing assay showed overexpression of three genes(SUCLG1, PCK2, GLDC) significantly inhibited the migration, invasion of RCC. Flow cytometry analysis showed that overexpression of three genes(SUCLG1, PCK2, GLDC) induced G1/S/G2 phase arrest of RCC cells. Conclusion Based on our current findings, it is concluded that SUCLG1, PCK2, GLDC may serve as a potential prognostic marker of RCC.
Collapse
Affiliation(s)
- Yeda Chen
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Di Gu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Yaoan Wen
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Shuxin Yang
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Xiaolu Duan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Yongchang Lai
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Jianan Yang
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Daozhang Yuan
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Aisha Khan
- Department of Family Medicine, Yunshan Medical Hospital, Shenzhen, China
| | - Wenqi Wu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Kangda Road 1#, Haizhu District, Guangzhou, 510230 Guangdong China
| |
Collapse
|
12
|
Kreuzer M, Banerjee A, Birts CN, Darley M, Tavassoli A, Ivan M, Blaydes JP. Glycolysis, via NADH-dependent dimerisation of CtBPs, regulates hypoxia-induced expression of CAIX and stem-like breast cancer cell survival. FEBS Lett 2020; 594:2988-3001. [PMID: 32618367 DOI: 10.1002/1873-3468.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Adaptive responses to hypoxia are mediated by the hypoxia-inducible factor (HIF) family of transcription factors. These responses include the upregulation of glycolysis to maintain ATP production. This also generates acidic metabolites, which require HIF-induced carbonic anhydrase IX (CAIX) for their neutralisation. C-terminal binding proteins (CtBPs) are coregulators of gene transcription and couple glycolysis with gene transcription due to their regulation by the glycolytic coenzyme NADH. Here, we find that experimental manipulation of glycolysis and CtBP function in breast cancer cells through multiple complementary approaches supports a hypothesis whereby the expression of known HIF-inducible genes, and CAIX in particular, adapts to available glucose in the microenvironment through a mechanism involving CtBPs. This novel pathway promotes the survival of stem cell-like cancer (SCLC) cells in hypoxia.
Collapse
Affiliation(s)
- Mira Kreuzer
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Arindam Banerjee
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Charles N Birts
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| | - Matthew Darley
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK
| | - Ali Tavassoli
- Institute for Life Sciences, University of Southampton, Southampton, Hants, UK.,School of Chemistry, University of Southampton, Southampton, Hants, UK
| | - Mircea Ivan
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, Hants, UK.,Institute for Life Sciences, University of Southampton, Southampton, Hants, UK
| |
Collapse
|
13
|
Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J, Pugh CW. Recent advances in the biology of tumour hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol 2020; 250:593-611. [PMID: 32086807 DOI: 10.1002/path.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Yamamoto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Byun Y, Choi YC, Jeong Y, Lee G, Yoon S, Jeong Y, Yoon J, Baek K. MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells. Cell Mol Biol Lett 2019; 24:28. [PMID: 31061665 PMCID: PMC6487019 DOI: 10.1186/s11658-019-0152-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/03/2019] [Indexed: 01/10/2023] Open
Abstract
Background Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor with a pivotal role in physiological and pathological responses to hypoxia. While HIF-1α is known to be involved in hypoxia-induced upregulation of microRNA (miRNA) expression, HIF-1α is also targeted by miRNAs. In this study, miRNAs targeting HIF-1α were identified and their effects on its expression and downstream target genes under hypoxic conditions were investigated. Cell migration under the same conditions was also assessed. Methods microRNAs that target HIF-1α were screened using 3′-untranslated region luciferase (3′-UTR-luciferase) reporter assays. The expression levels of HIF-1α and its downstream target genes after transfection with miRNA were assessed using quantitative RT-PCR and western blot analyses. The effect of the miRNAs on the transcriptional activity of HIF-1α was determined using hypoxia-responsive element luciferase (HRE-luciferase) assays. Cell migration under hypoxia was examined using the wound-healing assay. Results Several of the 19 screened miRNAs considerably decreased the luciferase activity. Transfection with miR-200c had substantial impact on the expression level and transcription activity of HIF-1α. The mRNA level of HIF-1α downstream genes decreased in response to miR-200c overexpression. MiR-200c inhibited cell migration in normoxia and, to a greater extent, in hypoxia. These effects were partly reversed by HIF-1α expression under hypoxic conditions. Conclusion miR-200c negatively affects hypoxia-induced responses by downregulating HIF-1α, a key regulator of hypoxia. Therefore, overexpression of miR-200c might have therapeutic potential as an anticancer agent that inhibits tumor hypoxia. Electronic supplementary material The online version of this article (10.1186/s11658-019-0152-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuree Byun
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Young-Chul Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Yunhui Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Gangtae Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Sena Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jaeseung Yoon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Kwanghee Baek
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
15
|
van den Heuvel CNAM, van Ewijk A, Zeelen C, de Bitter T, Huynen M, Mulders P, Oosterwijk E, Leenders WPJ. Molecular Profiling of Druggable Targets in Clear Cell Renal Cell Carcinoma Through Targeted RNA Sequencing. Front Oncol 2019; 9:117. [PMID: 30881919 PMCID: PMC6407434 DOI: 10.3389/fonc.2019.00117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) comprises more than 80% of all renal cancers and when metastasized leads to a 5-year survival rate of only 10%. The high rate of therapy failure and resistance development calls for reliable methods that provide information on the actionable biological pathways and predict optimal treatment protocols for individual patients. We here applied targeted RNA sequencing (t/RNA-NGS) using single molecule Molecular Inversion Probes on tumor nephrectomy samples of five ccRCC patients, comparing tumor with healthy kidney tissues. Transcriptome profiling focused on expression of genes with involvement in ccRCC biology that can be targeted with clinically available drugs. Results confirm high expression of vascular endothelial growth factor-A (VEGF-A) in tumor tissue relative to healthy-appearing kidney, in line with the angiogenic nature of ccRCC. PDGFRα and KIT, targets of the multi-kinase inhibitor sunitinib which is one of the current choices of first-line drug in metastasized ccRCC patients, were expressed at relatively low levels in tumor tissues, whereas significantly increased in normal kidney. Of all measured druggable tyrosine kinases, MET, AXL, or EGFR were expressed at higher levels in tumors than in normal kidney tissues, although intertumor differences were observed. Using cancer cell lines we show that t/RNA-NGS gene expression profiles can be used to predict in vitro sensitivity to targeted drugs. In conclusion, t/RNA-NGS analysis may provide insights into the (druggable) molecular make-up of individual renal cancers, and may guide personalized therapy of renal cell cancers.
Collapse
Affiliation(s)
| | - Anne van Ewijk
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Carolien Zeelen
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tessa de Bitter
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Martijn Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Peter Mulders
- Department of Urology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - William P. J. Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| |
Collapse
|
16
|
Basaco T, Pektor S, Bermudez JM, Meneses N, Heller M, Galván JA, Boligán KF, Schürch S, von Gunten S, Türler A, Miederer M. Evaluation of Radiolabeled Girentuximab In Vitro and In Vivo. Pharmaceuticals (Basel) 2018; 11:E132. [PMID: 30487460 PMCID: PMC6316122 DOI: 10.3390/ph11040132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
Girentuximab (cG250) targets carbonic anhydrase IX (CAIX), a protein which is expressed on the surface of most renal cancer cells (RCCs). cG250 labeled with 177Lu has been used in clinical trials for radioimmunotherapy (RIT) of RCCs. In this work, an extensive characterization of the immunoconjugates allowed optimization of the labeling conditions with 177Lu while maintaining immunoreactivity of cG250, which was then investigated in in vitro and in vivo experiments. cG250 was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA(SCN)) by using incubation times between 30 and 90 min and characterized by mass spectrometry. Immunoconjugates with five to ten DOTA(SCN) molecules per cG250 molecule were obtained. Conjugates with ratios less than six DOTA(SCN)/cG250 had higher in vitro antigen affinity, both pre- and postlabeling with 177Lu. Radiochemical stability increased, in the presence of sodium ascorbate, which prevents radiolysis. The immunoreactivity of the radiolabeled cG250 tested by specific binding to SK-RC-52 cells decreased when the DOTA content per conjugate increased. The in vivo tumor uptake was < 10% ID/g and independent of the total amount of protein in the range between 5 and 100 µg cG250 per animal. Low tumor uptake was found to be due to significant necrotic areas and heterogeneous CAIX expression. In addition, low vascularity indicated relatively poor accessibility of the CAIX target.
Collapse
Affiliation(s)
- Tais Basaco
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
- Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland.
| | - Stefanie Pektor
- Clinic for Nuclear Medicine, University Medical Center Mainz, 55131 Mainz, Germany.
| | - Josue M Bermudez
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Niurka Meneses
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Manfred Heller
- Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland.
| | - José A Galván
- Institute of Pathology, University of Bern, 3010 Bern, Switzerland.
| | - Kayluz F Boligán
- Institute of Pharmacology (PKI), University of Bern, 3010 Bern, Switzerland.
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Stephan von Gunten
- Institute of Pharmacology (PKI), University of Bern, 3010 Bern, Switzerland.
| | - Andreas Türler
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Matthias Miederer
- Clinic for Nuclear Medicine, University Medical Center Mainz, 55131 Mainz, Germany.
| |
Collapse
|
17
|
Yoo B, Fuchs BC, Medarova Z. New Directions in the Study and Treatment of Metastatic Cancer. Front Oncol 2018; 8:258. [PMID: 30042926 PMCID: PMC6048200 DOI: 10.3389/fonc.2018.00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/22/2018] [Indexed: 12/23/2022] Open
Abstract
Traditional cancer therapy has relied on a strictly cytotoxic approach that views non-metastatic and metastatic tumor cells as identical in terms of molecular biology and sensitivity to therapeutic intervention. Mounting evidence suggests that, in fact, non-metastatic and metastatic tumor cells differ in key characteristics that could explain the capacity of the metastatic cells to not only escape the primary organ but also to survive while in the circulation and to colonize a distant organ. Here, we lay out a framework for a new multi-pronged therapeutic approach. This approach involves modifying the local microenvironment of the primary tumor to inhibit the formation and release of metastatic cells; normalizing the microenvironment of the metastatic organ to limit the capacity of metastatic tumor cells to invade and colonize the organ; remediating the immune response to tumor neoantigens; and targeting metastatic tumor cells on a systemic level by restoring critical and unique aspects of the cell’s phenotype, such as anchorage dependence. Given the limited progress against metastatic cancer using traditional therapeutic strategies, the outlined paradigm could provide a more rational alternative to patients with metastatic cancer.
Collapse
Affiliation(s)
- Byunghee Yoo
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Bryan C Fuchs
- Division of Surgical Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, United States
| | - Zdravka Medarova
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Paolicchi E, Gemignani F, Krstic-Demonacos M, Dedhar S, Mutti L, Landi S. Targeting hypoxic response for cancer therapy. Oncotarget 2017; 7:13464-78. [PMID: 26859576 PMCID: PMC4924654 DOI: 10.18632/oncotarget.7229] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxic tumor microenvironment (HTM) is considered to promote metabolic changes, oncogene activation and epithelial mesenchymal transition, and resistance to chemo- and radio-therapy, all of which are hallmarks of aggressive tumor behavior. Cancer cells within the HTM acquire phenotypic properties that allow them to overcome the lack of energy and nutrients supply within this niche. These phenotypic properties include activation of genes regulating glycolysis, glucose transport, acidosis regulators, angiogenesis, all of which are orchestrated through the activation of the transcription factor, HIF1A, which is an independent marker of poor prognosis. Moreover, during the adaptation to a HTM cancer cells undergo deep changes in mitochondrial functions such as “Warburg effect” and the “reverse Warburg effect”. This review aims to provide an overview of the characteristics of the HTM, with particular focus on novel therapeutic strategies currently in clinical trials, targeting the adaptive response to hypoxia of cancer cells.
Collapse
Affiliation(s)
- Elisa Paolicchi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| | | | - Marija Krstic-Demonacos
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, BC Cancer Agency and Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luciano Mutti
- School of Environment and Life Sciences, College of Science and Technology, University of Salford, Salford, UK
| | - Stefano Landi
- Genetics-Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
19
|
Hypoxia activates cadherin-22 synthesis via eIF4E2 to drive cancer cell migration, invasion and adhesion. Oncogene 2017; 37:651-662. [PMID: 28991229 DOI: 10.1038/onc.2017.372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Abstract
Hypoxia is a driver of cell movement in processes such as development and tumor progression. The cellular response to hypoxia involves a transcriptional program mediated by hypoxia-inducible factors, but translational control has emerged as a significant contributor. In this study, we demonstrate that a cell-cell adhesion molecule, cadherin-22, is upregulated in hypoxia via mTORC1-independent translational control by the initiation factor eIF4E2. We identify new functions of cadherin-22 as a hypoxia-specific cell-surface molecule involved in cancer cell migration, invasion and adhesion. Silencing eIF4E2 or cadherin-22 significantly impaired MDA-MB-231 breast carcinoma and U87MG glioblastoma cell migration and invasion only in hypoxia, while reintroduction of the respective exogenous gene restored the normal phenotype. Cadherin-22 was evenly distributed throughout spheroids and required for their formation and support of a hypoxic core. Conversely, E-cadherin translation was repressed by hypoxia and only expressed in the oxygenated cells of U87MG spheroids. Furthermore, immunofluorescence on paraffin-embedded human tissue from 40 glioma and 40 invasive ductal breast carcinoma patient specimens revealed that cadherin-22 expression colocalized with areas of hypoxia and significantly correlated with tumor grade and progression-free survival or stage and tumor size, respectively. This study broadens our understanding of tumor progression and metastasis by highlighting cadherin-22 as a potential new target of cancer therapy to disable hypoxic cancer cell motility and adhesion.
Collapse
|
20
|
Preferential activation of HIF-2α adaptive signalling in neuronal-like cells in response to acute hypoxia. PLoS One 2017; 12:e0185664. [PMID: 28968430 PMCID: PMC5624621 DOI: 10.1371/journal.pone.0185664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022] Open
Abstract
Stroke causes severe neuronal damage as disrupted cerebral blood flow starves neurons of oxygen and glucose. The hypoxia inducible factors (HIF-1α and HIF-2α) orchestrate oxygen homeostasis and regulate specific aspects of hypoxic adaptation. Here we show the importance of HIF-2α dependant signalling in neuronal adaptation to hypoxic insult. PC12 and NT2 cells were differentiated into neuronal-like cells using NGF and retinoic acid, and exposed to acute hypoxia (1% O2). Gene and protein expression was analysed by qPCR and immunoblotting and the neuronal-like phenotype was examined. PC12 and NT2 differentiation promoted neurite extension and expression of neuronal markers, NSE and KCC2. Induction of HIF-1α mRNA or protein was not detected in hypoxic neuronal-like cells, however marked induction of HIF-2α mRNA and protein expression was observed. Induction of HIF-1α target genes was also not detected in response to acute hypoxia, however significant induction of HIF-2α transcriptional targets was clearly evident. Furthermore, hypoxic insult dramatically reduced both neurite number and length, and attenuated expression of neuronal markers, NSE and KCC2. This correlated with an increase in expression of the neural progenitor and stem cell-like markers, CD44 and vimentin, suggesting HIF-2α molecular mechanisms could potentially promote regression of neuronal-like cells to a stem-like state and trigger neuronal recovery following ischaemic insult. Our findings suggest the HIF-2α pathway predominates over HIF-1α signalling in neuronal-like cells following acute hypoxia.
Collapse
|
21
|
Profiling of the metabolic transcriptome via single molecule molecular inversion probes. Sci Rep 2017; 7:11402. [PMID: 28900252 PMCID: PMC5595890 DOI: 10.1038/s41598-017-11035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer-specific metabolic alterations are of high interest as therapeutic targets. These alterations vary between tumor types, and to employ metabolic targeting to its fullest potential there is a need for robust methods that identify candidate targetable metabolic pathways in individual cancers. Currently, such methods include 13C-tracing studies and mass spectrometry/ magnetic resonance spectroscopic imaging. Due to high cost and complexity, such studies are restricted to a research setting. We here present the validation of a novel technique of metabolic profiling, based on multiplex targeted next generation sequencing of RNA with single molecule molecular inversion probes (smMIPs), designed to measure activity of and mutations in genes that encode metabolic enzymes. We here profiled an isogenic pair of cell lines, differing in expression of the Von Hippel Lindau protein, an important regulator of hypoxia-inducible genes. We show that smMIP-profiling provides relevant information on active metabolic pathways. Because smMIP-based targeted RNAseq is cost-effective and can be applied in a medium high-throughput setting (200 samples can be profiled simultaneously in one next generation sequencing run) it is a highly interesting approach for profiling of the activity of genes of interest, including those regulating metabolism, in a routine patient care setting.
Collapse
|
22
|
Mistry I, Tavassoli A. Reprogramming the Transcriptional Response to Hypoxia with a Chromosomally Encoded Cyclic Peptide HIF-1 Inhibitor. ACS Synth Biol 2017; 6:518-527. [PMID: 27978620 PMCID: PMC6014682 DOI: 10.1021/acssynbio.6b00219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Indexed: 01/16/2023]
Abstract
The cellular response to hypoxia is orchestrated by HIF-1, a heterodimeric transcription factor composed of an α and a β subunit that enables cell survival under low oxygen conditions by altering the transcription of over 300 genes. There is significant evidence that inhibition of HIF-1 would be beneficial for cancer therapy. We recently reported a cyclic hexapeptide that inhibits the HIF-1α/HIF-1β protein-protein interaction in vitro and prevents HIF-1-mediated hypoxia-response signaling in cells. This cyclic peptide was identified from a library of 3.2 × 106 members generated using SICLOPPS split-intein mediated protein splicing. With a view to demonstrating the potential for encoding the production of a therapeutic agent in response to a disease marker, we have engineered human cells with an additional chromosomal control circuit that conditionally encodes the production of our cyclic peptide HIF-1 inhibitor. We demonstrate the conditional production of our HIF-1 inhibitor in response to hypoxia, and its inhibitory effect on HIF-1 dimerization and downstream hypoxia-response signaling. These engineered cells are used to illustrate the synthetic lethality of inhibiting HIF-1 dimerization and glycolysis in hypoxic cells. Our approach not only eliminates the need for the chemical synthesis and targeted delivery of our HIF-1 inhibitor to cells, it also demonstrates the wider possibility that the production machinery of other bioactive compounds may be incorporated onto the chromosome of human cells. This work demonstrates the potential of sentinel circuits that produce molecular modulators of cellular pathways in response to environmental or cellular disease stimuli.
Collapse
Affiliation(s)
- Ishna
N. Mistry
- Chemistry, University of Southampton, Southampton, SO17 1BJ, U.K.
| | - Ali Tavassoli
- Chemistry, University of Southampton, Southampton, SO17 1BJ, U.K.
- Institute
for Life Sciences, University of Southampton, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
23
|
Wang M, Li X, Zhang J, Yang Q, Chen W, Jin W, Huang YR, Yang R, Gao WQ. AHNAK2 is a Novel Prognostic Marker and Oncogenic Protein for Clear Cell Renal Cell Carcinoma. Am J Cancer Res 2017; 7:1100-1113. [PMID: 28435451 PMCID: PMC5399579 DOI: 10.7150/thno.18198] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/17/2016] [Indexed: 11/25/2022] Open
Abstract
Integrative database analysis was performed to identify novel candidate oncogene AHNAK2 overexpressed in clear cell renal cell carcinoma (ccRCC). However, the function of AHNAK2 in cancer cells is currently unknown. In this study, we first confirmed the upregulation of AHNAK2 in ccRCC tissues compared with adjacent normal tissues in 15 pairs of samples. Then we analyzed AHNAK2 expression in a large cohort of ccRCC patient samples (n = 355), and found that up-regulation of AHNAK2 was positively correlated with tumor progression and poor survival (p = 0.032). Knockdown of AHNAK2 inhibited cancer cell proliferation, colony formation and migration in vitro and tumorigenic ability in vivo. Meanwhile, knockdown of AHNAK2 impaired the cell oncologic-metabolism by inhibiting lipid synthesis. Moreover, we observed that expression of AHNAK2 was greatly upregulated, at least in part, by hypoxia in cancer cells. By using chromatin immune-precipitation (CHIP) and promoter-luciferase reporter assays, we identified that upregulation of AHNAK2 induced by hypoxia was hypoxia-inducible factor-1α (HIF1α)-dependent. Knockdown of AHNAK2 impaired hypoxia-induced epithelial-mesenchymal transition (EMT) and stem cell-like properties. Considered together, we reveal that AHNAK2 is upregulated in cancer cells and hypoxic upregulation of AHNAK2 can drive tumorigenesis and progression by supporting EMT and cancer cell stemness. Thus, AHNAK2 is a novel prognostic marker and an oncogenic protein for ccRCC.
Collapse
|
24
|
Li G, Feng G, Zhao A, Péoc’h M, Cottier M, Mottet N. CA9 as a biomarker in preoperative biopsy of small solid renal masses for diagnosis of clear cell renal cell carcinoma. Biomarkers 2016; 22:123-126. [DOI: 10.1080/1354750x.2016.1252948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guorong Li
- Department of Urology, CHU de Saint-Etienne, Saint-Etienne, France
| | - Gang Feng
- Clinical Genetics Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - An Zhao
- Laboratory of Cancer Research, Zhejiang Cancer Research Institute, Zhejiang Province Cancer Hospital, Hangzhou, China
| | - Michel Péoc’h
- Laboratory of Pathology, CHU Saint-Etienne, Saint-Etienne, France
| | - Michèle Cottier
- Inserm U1059, F-42055, Saint-Etienne, France
- Laboratory of Cytopathology, CHU Saint-Etienne, Saint-Etienne, France
| | - Nicolas Mottet
- Department of Urology, CHU de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
25
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA (AUCKLAND, N.Z.) 2016. [PMID: 27774485 DOI: 10.2147/hp.s93413.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
26
|
Abd-Aziz N, Stanbridge EJ, Shafee N. Newcastle disease virus degrades HIF-1α through proteasomal pathways independent of VHL and p53. J Gen Virol 2016; 97:3174-3182. [PMID: 27902314 PMCID: PMC5203671 DOI: 10.1099/jgv.0.000623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Newcastle disease virus (NDV) is a candidate agent for oncolytic virotherapy. Despite its potential, the exact mechanism of its oncolysis is still not known. Recently, we reported that NDV exhibited an increased oncolytic activity in hypoxic cancer cells. These types of cells negatively affect therapeutic outcome by overexpressing pro-survival genes under the control of the hypoxia-inducible factor (HIF). HIF-1 is a heterodimeric transcriptional factor consisting of a regulated α (HIF-1α) and a constitutive β subunit (HIF-1β). To investigate the effects of NDV infection on HIF-1α in cancer cells, the osteosarcoma (Saos-2), breast carcinoma (MCF-7), colon carcinoma (HCT116) and fibrosarcoma (HT1080) cell lines were used in the present study. Data obtained showed that a velogenic NDV infection diminished hypoxia-induced HIF-1α accumulation, leading to a decreased activation of its downstream target gene, carbonic anhydrase 9. This NDV-induced downregulation of HIF-1α occurred post-translationally and was partially abrogated by proteasomal inhibition. The process appeared to be independent of the tumour suppressor protein p53. These data revealed a correlation between NDV infection and HIF-1α downregulation, which highlights NDV as a promising agent to eliminate hypoxic cancer cells.
Collapse
Affiliation(s)
- Noraini Abd-Aziz
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| | - Eric J Stanbridge
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Norazizah Shafee
- Institute of Biosciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia
| |
Collapse
|
27
|
Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumour Biol 2016; 37:14851-14861. [PMID: 27644243 DOI: 10.1007/s13277-016-5331-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) has crucial role in adapting cells to hypoxia through expression regulation of many genes. Identification of HIF-1α target genes (HIF-1α-TGs) is important for understanding the adapting mechanism. The aim of the present study was to collect known HIF-1α-TGs and identify their associated pathways. Targets and associated genomics data were retrieved using PubMed, WoS ( http://apps.webofknowledge.com/ ), HGNC ( http://www.genenames.org/ ), NCBI ( http://www.ncbi.nlm.nih.gov/ ), Ensemblv.84 ( http://www.ensembl.org/index.html ), DAVID Bioinformatics Resources ( https://david.ncifcrf.gov /), and Disease Ontology database ( http://disease-ontology.org/ ). From 51 papers, we collected 98 HIF-1α TGs found to be associated with 20 pathways, including metabolism of carbohydrates and pathways in cancer. Reanalysis of genomic coordinates of published HREs (hypoxia response elements) revealed six polymorphisms within HRE sites (HRE-SNPs): ABCG2, ACE, CA9, and CP. Due to large heterogeneity of results presentation in scientific literature, we also propose a first step towards reporting standardization of HIF-1α-target interactions consisting of ten relevant data types. Suggested minimal checklist for reporting will enable faster development of a complete catalog of HIF-1α-TGs, data sharing, bioinformatics analyses, and setting novel more targeted hypotheses. The proposed format for data standardization is not yet complete but presents a baseline for further optimization of the protocol with additional details, for example, regarding the experimental validation.
Collapse
|
28
|
Yang X, Minn I, Rowe SP, Banerjee SR, Gorin MA, Brummet M, Lee HS, Koo SM, Sysa-Shah P, Mease RC, Nimmagadda S, Allaf ME, Pomper MG. Imaging of carbonic anhydrase IX with an 111In-labeled dual-motif inhibitor. Oncotarget 2016; 6:33733-42. [PMID: 26418876 PMCID: PMC4741798 DOI: 10.18632/oncotarget.5254] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022] Open
Abstract
We developed a new scaffold for radionuclide-based imaging and therapy of clear cell renal cell carcinoma (ccRCC) targeting carbonic anhydrase IX (CAIX). Compound XYIMSR-01, a DOTA-conjugated, bivalent, low-molecular-weight ligand, has two moieties that target two separate sites on CAIX, imparting high affinity. We synthesized [111In]XYIMSR-01 in 73.8–75.8% (n = 3) yield with specific radioactivities ranging from 118 – 1,021 GBq/μmol (3,200–27,600 Ci/mmol). Single photon emission computed tomography of [111In]XYIMSR-01 in immunocompromised mice bearing CAIX-expressing SK-RC-52 tumors revealed radiotracer uptake in tumor as early as 1 h post-injection. Biodistribution studies demonstrated 26% injected dose per gram of radioactivity within tumor at 1 h. Tumor-to-blood, muscle and kidney ratios were 178.1 ± 145.4, 68.4 ± 29.0 and 1.7 ± 1.2, respectively, at 24 h post-injection. Retention of radioactivity was exclusively observed in tumors by 48 h, the latest time point evaluated. The dual targeting strategy to engage CAIX enabled specific detection of ccRCC in this xenograft model, with pharmacokinetics surpassing those of previously described radionuclide-based probes against CAIX.
Collapse
Affiliation(s)
- Xing Yang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sangeeta Ray Banerjee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Gorin
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hye Soo Lee
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soo Min Koo
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohamad E Allaf
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Schödel J, Grampp S, Maher ER, Moch H, Ratcliffe PJ, Russo P, Mole DR. Hypoxia, Hypoxia-inducible Transcription Factors, and Renal Cancer. Eur Urol 2016; 69:646-657. [PMID: 26298207 PMCID: PMC5012644 DOI: 10.1016/j.eururo.2015.08.007] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022]
Abstract
CONTEXT Renal cancer is a common urologic malignancy, and therapeutic options for metastatic disease are limited. Most clear cell renal cell carcinomas (ccRCC) are associated with loss of von Hippel-Lindau tumor suppressor (pVHL) function and deregulation of hypoxia pathways. OBJECTIVE This review summarizes recent evidence from genetic and biological studies showing that hypoxia and hypoxia-related pathways play critical roles in the development and progress of renal cancer. EVIDENCE ACQUISITION We used a systematic search for articles using the keywords hypoxia, HIF, renal cancer, and VHL. EVIDENCE SYNTHESIS Identification of the tumor suppressor pVHL has allowed the characterization of important ccRCC-associated pathways. pVHL targets α-subunits of hypoxia-inducible transcription factors (HIF) for proteasomal degradation. The two main HIF-α isoforms have opposing effects on RCC biology, possibly through distinct interactions with additional oncogenes. Furthermore, HIF-1α activity is commonly diminished by chromosomal deletion in ccRCCs, and increased HIF-1 activity reduces tumor burden in xenograft tumor models. Conversely, polymorphisms at the HIF-2α gene locus predispose to the development of ccRCCs, and HIF-2α promotes tumor growth. Genetic studies have revealed a prominent role for chromatin-modifying enzyme genes in ccRCC, and these may further modulate specific aspects of the HIF response. This suggests that, rather than global activation of HIF, specific components of the response are important in promoting kidney cancer. Some of these processes are already targets for current therapeutic strategies, and further dissection of this pathway might yield novel methods of treating RCC. CONCLUSIONS In contrast to many tumor types, HIF-1α and HIF-2α have opposing effects in ccRCC biology, with HIF-1α acting as a tumor suppressor and HIF-2α acting as an oncogene. The overall effect of VHL inactivation will depend on fine-tuning of the HIF response. PATIENT SUMMARY High levels of hypoxia-inducible transcription factors (HIF) are particularly important in the clear cell type of kidney cancer, in which they are no longer properly regulated by the von Hippel-Lindau protein. The two HIF-α proteins have opposing effects on tumor evolution.
Collapse
Affiliation(s)
- Johannes Schödel
- Medizinische Klinik 4 and Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Steffen Grampp
- Medizinische Klinik 4 and Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Cambridge NIHR Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter J Ratcliffe
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| | - Paul Russo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, NY, NY, USA; Weill Medical College, Cornell University, Memorial Sloan Kettering Cancer Center, NY, NY, USA
| | - David R Mole
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer 2016; 139:396-403. [PMID: 26945902 DOI: 10.1002/ijc.30077] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/29/2016] [Indexed: 12/13/2022]
Abstract
In our study, we demonstrate that ccRCC cell lines with impaired function of pVHL to degrade HIFα express elevated levels of PD-L1. In vitro analysis provided evidence that both reconstitution of pVHL and silencing of HIF2α, but not of HIF1α, lead to reduced PD-L1 expression. The strong correlation of expression between the HIF2α-specific HIF target Glut1 and PD-L1 confirmed this finding in ccRCC cell lines and tissue. Soluble PD-L1 levels remained constant in the sera of ccRCC patients regardless of the PD-L1 expression status in their tumors. In conclusion, our data suggest PD-L1 as HIF2α target, which is upregulated in pVHL deficient ccRCC. The combination of PD-L1 targeting drugs with HIF inhibiting agents may be an additional option for the treatment of ccRCC.
Collapse
Affiliation(s)
- Melanie Ruf
- Institute of Surgical Pathology, University Hospital Zurich, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, Switzerland
| | - Peter Schraml
- Institute of Surgical Pathology, University Hospital Zurich, Switzerland
| |
Collapse
|
31
|
Meier V, Guscetti F, Roos M, Ohlerth S, Pruschy M, Rohrer Bley C. Hypoxia-Related Marker GLUT-1, CAIX, Proliferative Index and Microvessel Density in Canine Oral Malignant Neoplasia. PLoS One 2016; 11:e0149993. [PMID: 26906567 PMCID: PMC4764341 DOI: 10.1371/journal.pone.0149993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/08/2016] [Indexed: 11/25/2022] Open
Abstract
For various types of tumor therapy, it is suggested that co-targeting of tumor microenvironment, mainly tumor vasculature, mediates tumor response mechanisms. Immunohistochemistry for glucose transporter-1 (GLUT-1), carbonic anhydrase-IX (CAIX), Ki-67, and von Willebrand factor VIII for microvessel density (MVD) were performed on formalin-fixed paraffin-embedded samples of canine oral malignant neoplasms. Polarographic oxygen measurements (median pO2) and perfusion data via contrast-enhanced power Doppler ultrasound (median vascularity, median blood volume) provided additional information. Ninety-two samples were analyzed: sarcomas (n = 32), carcinomas (n = 30), and malignant melanomas (n = 30). Polarographic oxygen and perfusion data was available in 22.8% (sarcomas n = 9, carcinomas n = 7, melanomas n = 5), and 27.1% (sarcomas n = 10, carcinomas n = 8, melanomas n = 7) of cases, respectively. GLUT-1 expression was detected in 46.7% of all samples, and was generally weak. CAIX expression was found in 34.8% of all samples. Median Ki-67 score and MVD count was 19% and 17, respectively. The evaluation of the GLUT-1 score and continuous data showed significantly lower GLUT-1 levels in sarcomas (mean 5.1%, SD 6.2) versus carcinomas and melanomas (mean 16.5%/ 19.0%, SD 17.3/ 20.9, p = 0.001). The expression of CAIX correlated mildly positively with GLUT-1 (p = 0.018, rho = 0.250) as well as with Ki-67 (p = 0.014, rho = 0.295). MVD showed a significantly lower level in melanomas (mean 12.6, SD 7.7) versus sarcomas and carcinomas (mean 21.8/ 26.9, SD 13.0/20.4, p = 0.001). Median vascularity and blood volume were significantly lower in sarcomas (mean 10.4%, SD 11.0, and mean 6.3%, SD 6.5, respectively) versus carcinomas (mean 39.2%, SD 16.4 and mean 33.0%, SD 25.6, respectively) and melanomas (mean 36.0%, SD 18.3, and 31.5%, SD 24.5). Between the 3 histological groups, there was neither a significant difference in the GLUT-1 and CAIX score and continuous data, nor the Ki67 score, or polarographic oxygen measurements. GLUT-1 continuous data and Ki-67 (p<0.001, rho = 0.403), as well as Ki-67 and MVD (p = 0.029, rho = 0.228) correlated positively and a mild correlation was found between vascularity and GLUT-1 (p = 0.043, rho = 0.408). GLUT-1, CAIX, proliferative index and MVD levels were established as microenvironmental descriptors with the purpose of creating a baseline in order to follow changes seen in the tumor microenvironment after hypofractionated radiation with high doses.
Collapse
Affiliation(s)
- Valeria Meier
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Malgorzata Roos
- Department of Biostatistics, Epidemiology Biostatistics and Prevention Institute, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Stefanie Ohlerth
- Clinic of Diagnostic Imaging, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Molecular Radiobiology, Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Brown-Glaberman U, Marron M, Chalasani P, Livingston R, Iannone M, Specht J, Stopeck AT. Circulating Carbonic Anhydrase IX and Antiangiogenic Therapy in Breast Cancer. DISEASE MARKERS 2016; 2016:9810383. [PMID: 26941473 PMCID: PMC4749816 DOI: 10.1155/2016/9810383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/29/2015] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Carbonic anhydrase IX (CAIX) is a hypoxia regulated metalloenzyme integral to maintaining cellular pH. Increased CAIX expression is associated with poor prognosis in breast cancer. To explore CAIX as a biomarker for breast cancer therapies, we measured plasma CAIX levels in healthy control subjects and in breast cancer patients. METHODS In control subjects we evaluated plasma CAIX stability via commercially available ELISA. We then similarly quantified plasma CAIX levels in (1) locally advanced breast cancer (LABC) patients treated with neoadjuvant paclitaxel + sunitinib (T + S) followed by doxorubicin and cyclophosphamide (AC); (2) metastatic breast cancer (MBC) patients treated with systemic chemotherapy. RESULTS Plasma CAIX levels were stable at room temperature for at least 48 hours in control subjects. Mean baseline plasma CAIX levels were lower in controls compared to patients with LABC or MBC. In LABC, CAIX levels rose significantly in response to administration of antiangiogenic therapy (T + S) (p = 0.02) but not AC (p = 0.37). In patients with MBC treated without an antiangiogenic agent CAIX levels did not change with therapy. CONCLUSIONS Our results suggest that CAIX may be an easily obtained, stable measure of tumor associated hypoxia as well as a useful pharmacodynamic biomarker for antiangiogenic therapy.
Collapse
Affiliation(s)
| | - Marilyn Marron
- University of Arizona Cancer Center, Tucson, AZ 85719, USA
| | | | | | - Maria Iannone
- University of Arizona Cancer Center, Tucson, AZ 85719, USA
| | - Jennifer Specht
- Fred Hutchinson University of Washington Cancer Consortium, Seattle, WA 98019, USA
| | - Alison T. Stopeck
- Stony Brook Cancer Center, SUNY Stony Brook, Stony Brook, NY 11794, USA
| |
Collapse
|
33
|
Diverse Mechanisms of Sp1-Dependent Transcriptional Regulation Potentially Involved in the Adaptive Response of Cancer Cells to Oxygen-Deficient Conditions. Cancers (Basel) 2015; 8:cancers8010002. [PMID: 26703734 PMCID: PMC4728449 DOI: 10.3390/cancers8010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
The inside of a tumor often contains a hypoxic area caused by a limited supply of molecular oxygen due to aberrant vasculature. Hypoxia-inducible factors (HIFs) are major transcription factors that are required for cancer cells to adapt to such stress conditions. HIFs, complexed with the aryl hydrocarbon receptor nuclear translocator, bind to and activate target genes as enhancers of transcription. In addition to this common mechanism, the induction of the unfolded protein response and mTOR signaling in response to endoplasmic reticulum stress is also known to be involved in the adaptation to hypoxia conditions. Sp1 is a ubiquitously-expressed transcription factor that plays a vital role in the regulation of numerous genes required for normal cell function. In addition to the well-characterized stress response mechanisms described above, increasing experimental evidence suggests that Sp1 and HIFs collaborate to drive gene expression in cancer cells in response to hypoxia, thereby regulating additional adaptive responses to cellular oxygen deficiency. However, these characteristics of Sp1 and their biological merits have not been summarized. In this review, we will discuss the diverse mechanisms of transcriptional regulation by Sp1 and their potential involvement in the adaptive response of cancer cells to hypoxic tumor microenvironments.
Collapse
|
34
|
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. HYPOXIA 2015; 3:83-92. [PMID: 27774485 PMCID: PMC5045092 DOI: 10.2147/hp.s93413] [Citation(s) in RCA: 1379] [Impact Index Per Article: 137.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a non-physiological level of oxygen tension, a phenomenon common in a majority of malignant tumors. Tumor-hypoxia leads to advanced but dysfunctional vascularization and acquisition of epithelial-to-mesenchymal transition phenotype resulting in cell mobility and metastasis. Hypoxia alters cancer cell metabolism and contributes to therapy resistance by inducing cell quiescence. Hypoxia stimulates a complex cell signaling network in cancer cells, including the HIF, PI3K, MAPK, and NFĸB pathways, which interact with each other causing positive and negative feedback loops and enhancing or diminishing hypoxic effects. This review provides background knowledge on the role of tumor hypoxia and the role of the HIF cell signaling involved in tumor blood vessel formation, metastasis, and development of the resistance to therapy. Better understanding of the role of hypoxia in cancer progression will open new windows for the discovery of new therapeutics targeting hypoxic tumor cells and hypoxic microenvironment.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
35
|
Park I, Cho YM, Lee JL, Ahn JH, Lee DH. Prognostic tissue biomarker exploration for patients with metastatic renal cell carcinoma receiving vascular endothelial growth factor receptor tyrosine kinase inhibitors. Tumour Biol 2015; 37:4919-27. [PMID: 26526582 DOI: 10.1007/s13277-015-4339-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/28/2015] [Indexed: 01/04/2023] Open
Abstract
In metastatic renal cell carcinoma (mRCC), the prognostic role of several tumor tissue biomarkers has been evaluated, but the results were controversial. This study aims to verify the prognostic importance of selected tumor tissue biomarkers in patients with mRCC. The clinicopathological features, immunohistochemical staining and scoring for select tissue biomarkers, treatment, and outcome of patients with mRCC treated with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs) between July 2006 and March 2011 at Asan Medical Center in Seoul, South Korea, were reviewed. In total, 123 patients met the inclusion criteria. Most patients had clear-cell carcinoma (107 patients, 87.0 %). First-line VEGFR TKIs were sunitinib (97 patients, 78.9 %), sorafenib (23 patients, 18.7 %), and pazopanib (3 patients, 2.4 %). With a median follow-up period of 60.0 months (95 % confidence interval (CI), 56.3-63.6), median overall survival (OS) and progression-free survival (PFS) were 25.6 months (95 % CI, 19.2-32.0) and 12.2 months (95 % CI, 8.1-16.3), respectively. In the multivariable analysis for OS, carbonic anhydrase IX (CAIX; 47.5 % or less vs. more than 47.5 %, p = 0.014), sarcomatoid change (40 % or less vs. more than 40 %, p < 0.001), tumor necrosis (20 % or less vs. more than 20 %, p = 0.006), and Heng's risk group (good vs. intermediate vs. poor, p = 0.011) were identified as independent prognostic factors. In the multivariable analysis for PFS, CAIX (p < 0.001), phosphatase and tensin homolog (PTEN; 45 % or less vs. more than 45 %, p = 0.004), sarcomatoid change (p = 0.002), and tumor necrosis (p = 0.001) were identified as independent factors affecting PFS. CAIX and PTEN had prognostic importance for mRCC patients receiving first-line VEGFR TKI. Future validation and mechanistic studies are required.
Collapse
Affiliation(s)
- Inkeun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Republic of Korea.,Department of Internal Medicine, Gachon University Gil Medical Centre, 1198, Guwol-Dong, Namdong-Gu, Incheon, 405-760, Republic of Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Lyun Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Republic of Korea.
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Republic of Korea
| | - Dae-Ho Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, Republic of Korea
| |
Collapse
|
36
|
DUIVENVOORDEN WILHELMINAC, HOPMANS SARAHN, GALLINO DANIEL, FARRELL THOMAS, GERDES CARRIE, GLENNIE DIANA, LUKKA HIMU, PINTHUS JEHONATHANH. Inhibition of carbonic anhydrase IX (CA9) sensitizes renal cell carcinoma to ionizing radiation. Oncol Rep 2015; 34:1968-76. [DOI: 10.3892/or.2015.4184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022] Open
|
37
|
Aoun F, Kourie HR, Artigas C, Roumeguère T. Next revolution in molecular theranostics: personalized medicine for urologic cancers. Future Oncol 2015; 11:2205-19. [DOI: 10.2217/fon.15.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extensive lists of molecular biomarkers are currently evaluated as potential targets for directed cancer therapies. We reviewed three potential candidate biomarkers to play a role in the near future as molecular theranostics for urologic malignancies. Carbonic anhydrase type IX is a surrogate marker of hypoxia highly expressed in cancer cells. Their expression and clinical significance in kidney and urothelial bladder cancer are discussed as well as the main therapeutic approaches that are currently under evaluation. For prostate cancer, available evidence on the use of prostate-specific membrane antigen and neuropeptide receptors radiolabeled analog and the undergoing clinical studies are also analyzed and discussed at different stages of prostate cancer.
Collapse
Affiliation(s)
- Fouad Aoun
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
- Jules Bordet Institute, 121 Boulevard de Waterloo, 1000 Brussels, Belgium
| | - Hampig Raphael Kourie
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
- Jules Bordet Institute, 121 Boulevard de Waterloo, 1000 Brussels, Belgium
| | - Carlos Artigas
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
- Jules Bordet Institute, 121 Boulevard de Waterloo, 1000 Brussels, Belgium
| | - Thierry Roumeguère
- Université Libre de Bruxelles, 50 Franklin Roosevelt Avenue, 1050 Brussels, Belgium
| |
Collapse
|
38
|
Huber AR, Tan D, Sun J, Dean D, Wu T, Zhou Z. High expression of carbonic anhydrase IX is significantly associated with glandular lesions in gastroesophageal junction and with tumorigenesis markers BMI1, MCM4 and MCM7. BMC Gastroenterol 2015; 15:80. [PMID: 26156831 PMCID: PMC4495619 DOI: 10.1186/s12876-015-0310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Background Carbonic anhydrase IX (CA9) is a transmembrane glycoprotein related to hypoxia. Increased CA9 expression has been associated with decreased survival and cancer progression and has been targeted as a potential therapy for several cancers, including esophageal cancer. The reported percentages of expression of CA9 in esophageal adenocarcinoma vary, and CA9 expression in precancerous esophageal lesions has not been well studied. Methods In this study, we investigated CA9 expression in esophageal cancers and in precancerous lesions and explored the association of CA9 expression with prognostic factors and with stem cell and tumorigenesis-related markers including BMI1, cyclin E, ki67, MCM4 and MCM7 expression. Previously constructed tissue microarrays consisting of samples of 7 tissue types (columnar cell metaplasia, Barrett esophagus, low- and high-grade dysplasia, esophageal adenocarcinoma, squamous epithelium, and squamous cell carcinoma) were used for the immunostaining of CA9, BMI1, cyclin E, Ki67, MCM4 and MCM7. Results and discussion CA9 high expression occurred more frequently in glandular mucosa with or without dysplasia than in squamous epithelium or squamous cell carcinoma. Survival duration of esophageal adenocarcinoma did not significantly differ between patients with high CA9 expression and those with low expression. High CA9 expression is significantly associated with BMI1, cyclin E, Ki67, MCM4 and MCM7 expression. Conclusions High CA9 expression may be related to the acidic environment caused by gastroesophageal reflux disease in the gastroesophageal junction and associated with tumorigenesis through BMI1, MCM4 and MCM7.
Collapse
Affiliation(s)
- Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY, 14642, USA.
| | - Dongfeng Tan
- Department of Pathology, MD Anderson Cancer Institute, Houston, TX, USA.
| | - Jun Sun
- Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | - David Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| | - Tongtong Wu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA.
| | - Zhongren Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY, 14642, USA.
| |
Collapse
|
39
|
Combe P, de Guillebon E, Thibault C, Granier C, Tartour E, Oudard S. Trial Watch: Therapeutic vaccines in metastatic renal cell carcinoma. Oncoimmunology 2015; 4:e1001236. [PMID: 26155388 PMCID: PMC4485845 DOI: 10.1080/2162402x.2014.1001236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
Despite the renaissance of cancer immunotherapy, no novel immunotherapy has been approved for the treatment of renal cell cancer (RCC) since the availability of recombinant cytokines (interleukin-2, interferon-α). All vaccine trials have failed to meet their endpoints although they have highlighted potential predictive biomarkers (e.g., pre-existing immune response, hematological parameters, tumor burden). Recent advances in immunomodulatory therapies have prompted the study of combination treatments targeting the tumor immunosuppressive microenvironment consisting of regulatory T-cells (Treg), myeloid suppressor cells, and cytokines. Approaches under investigation are use of inhibitors to curb the overexpression of immune checkpoint ligands by tumor cells (e.g., anti-CTLA-4, anti-PD-1/PD-L1) and exploiting the immunomodulatory effects of anti-angiogenic agents that are the current standard of metastatic RCC care. Phase III trials are focusing on the possible synergy between therapeutic vaccines (e.g., IMA-901 and AGS-003) and anti-angiogenic agents.
Collapse
Affiliation(s)
- Pierre Combe
- Department of Medical Oncology; Hôpital Européen Georges Pompidou (AP-HP); Paris, France
- INSERM; PARCC (Paris Cardiovascular Research Center); Université Paris Descartes – Sorbonne Paris Cité; Paris, France
| | - Eleonore de Guillebon
- Department of Medical Oncology; Hôpital Européen Georges Pompidou (AP-HP); Paris, France
- INSERM; PARCC (Paris Cardiovascular Research Center); Université Paris Descartes – Sorbonne Paris Cité; Paris, France
| | - Constance Thibault
- Department of Medical Oncology; Hôpital Européen Georges Pompidou (AP-HP); Paris, France
| | - Clémence Granier
- INSERM; PARCC (Paris Cardiovascular Research Center); Université Paris Descartes – Sorbonne Paris Cité; Paris, France
- Department of Biological Immunology; Hôpital Européen Georges-Pompidou (AP-HP); Paris, France
| | - Eric Tartour
- INSERM; PARCC (Paris Cardiovascular Research Center); Université Paris Descartes – Sorbonne Paris Cité; Paris, France
- Department of Biological Immunology; Hôpital Européen Georges-Pompidou (AP-HP); Paris, France
| | - Stéphane Oudard
- Department of Medical Oncology; Hôpital Européen Georges Pompidou (AP-HP); Paris, France
- INSERM; PARCC (Paris Cardiovascular Research Center); Université Paris Descartes – Sorbonne Paris Cité; Paris, France
| |
Collapse
|
40
|
Sunkari VG, Lind F, Botusan IR, Kashif A, Liu ZJ, Ylä-Herttuala S, Brismar K, Velazquez O, Catrina SB. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair Regen 2015; 23:98-103. [PMID: 25532619 DOI: 10.1111/wrr.12253] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Affiliation(s)
| | - Folke Lind
- Department of Anesthesiology Surgical Services and Intensive Care; Karolinska Hospital; Stockholm Sweden
| | | | - Abad Kashif
- Department of Surgery; Miller School of Medicine; University of Miami; Miami Florida
| | - Zhao-Jun Liu
- Department of Surgery; Miller School of Medicine; University of Miami; Miami Florida
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery; Karolinska Institute; Stockholm Sweden
| | - Omaida Velazquez
- Department of Surgery; Miller School of Medicine; University of Miami; Miami Florida
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery; Karolinska Institute; Stockholm Sweden
| |
Collapse
|
41
|
Abstract
The reduction or cessation of the blood supply to an organ results in tissue ischemia. Ischemia can cause significant tissue damage, and is observed as a result of a thrombosis, as part of a disease process, and during surgery. However, the restoration of the blood supply often causes more damage to the tissue than the ischemic episode itself. Research is therefore focused on identifying the cellular pathways involved in the protection of organs from the damage incurred by this process of ischemia reperfusion (I/R). The hypoxia-inducible factors (HIFs) are a family of heterodimeric transcription factors that are stabilized during ischemia. The genes that are expressed downstream of HIF activity enhance oxygen-independent ATP generation, cell survival, and angiogenesis, amongst other phenotypes. They are, therefore, important factors in the protection of tissues from I/R injury. Interestingly, a number of the mechanisms already known to induce organ protection against I/R injury, including preconditioning, postconditioning, and activation of signaling pathways such as adenosine receptor signaling, converge on the HIF system. This review describes the evidence for HIFs playing a role in I/R protection mediated by these factors, highlights areas that require further study, and discuss whether HIFs themselves are good therapeutic targets for protecting tissues from I/R injury.
Collapse
Affiliation(s)
- Neil J Howell
- Department of Cardiothoracic Surgery, University Hospital Birmingham, Edgbaston, Birmingham, UK
| | - Daniel A Tennant
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Aomatsu N, Yashiro M, Kashiwagi S, Kawajiri H, Takashima T, Ohsawa M, Wakasa K, Hirakawa K. Carbonic anhydrase 9 is associated with chemosensitivity and prognosis in breast cancer patients treated with taxane and anthracycline. BMC Cancer 2014; 14:400. [PMID: 24893880 PMCID: PMC4058694 DOI: 10.1186/1471-2407-14-400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/29/2014] [Indexed: 11/21/2022] Open
Abstract
Background Neoadjuvant chemotherapy (NAC) is one of the standard care regimens for patients with resectable early-stage breast cancer. It would be advantageous to determine the chemosensitivity of tumors before initiating NAC. One of the parameters potentially compromising such chemosensitivity would be a hypoxic microenvironment of cancer cells. The aim of this study was thus to clarify the correlation between expression of the hypoxic marker carbonic anhydrase-9 (CA9) and chemosensitivity to NAC as well as prognosis of breast cancer patients. Methods A total of 102 patients with resectable early-stage breast cancer was treated with NAC consisting of FEC (5-fluorouracil, epirubicin, and cyclophosphamide) followed by weekly paclitaxel before surgery. Core needle biopsy (CNB) specimens and resected tumors were obtained from all patients before and after NAC, respectively. Chemosensitivity to NAC and the prognostic potential of CA9 expression were evaluated by immunohistochemistry. Results CA9 positivity was detected in the CNB specimens from 47 (46%) of 102 patients. The CA9 expression in CNB specimens was significantly correlated with pathological response, lymph node metastasis, and lymph-vascular invasion. Multivariate analysis revealed that the CA9 expression in CNB specimens was an independent predictive factor for pathological response. The Kaplan-Meier survival curve revealed a significant negative correlation (p = 0.013) between the disease-free survival (DFS) and the CA 9 expression in resected tissues after NAC. Multivariate regression analyses indicated that the CA9 expression in resected tissues was an independent prognostic factor for DFS. Conclusions CA9 expression in CNB specimens is a useful marker for predicting chemosensitivity, and CA9 expression in resected tissue is prognostic of DFS in patients with resectable early-stage breast cancer treated by sequential FEC and weekly paclitaxel prior to resection.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The metabolism of cancer cells differs substantially from normal cells, including ion transport. Although this phenomenon has been long recognized, ion transporters have not been viewed as suitable therapeutic targets. However, the acidic pH values present in tumours which are well outside of normal limits are now becoming recognized as an important therapeutic target. Carbonic anhydrase IX (CAIX) is fundamental to tumour pH regulation. CAIX is commonly expressed in cancer, but lowly expressed in normal tissues and that presents an attractive target. Here, we discuss the possibilities of exploiting the acidic, hypoxic tumour environment as possible target for therapy. Additionally, clinical experience with CAIX targeting in cancer patients is discussed.
Collapse
Affiliation(s)
- E Oosterwijk
- Department of Urology, 267 Experimental Urology, Radboud University Medical Center, , PO Box 9101, Nijmegen 6500 HB, The Netherlands
| | | |
Collapse
|
44
|
Rini BI. Molecularly targeted therapy in renal cell carcinoma: where do we go from here? Expert Rev Anticancer Ther 2014; 6:1753-60. [PMID: 17181489 DOI: 10.1586/14737140.6.12.1753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The angiogenic phenotype of renal cell carcinoma results from vascular endothelial growth factor pathway activation. Several different strategies targeting various aspects of the pathway have emerged as clinically relevant therapeutics in metastatic renal cell carcinoma. Key clinical data regarding these approaches are presented in this article. Furthermore, there are several considerations as to the further development of these agents and their appropriate application in metastatic renal cell carcinoma, such as timing of therapy, choice of initial therapy, continued role of debulking nephrectomy and toxicity concerns. These issues are discussed in light of current data and strategies for further drug development are presented.
Collapse
Affiliation(s)
- Brian I Rini
- Cleveland Clinic Taussig Cancer Center, Department of Solid Tumor Oncology and Urology, 9500 Euclid Avenue/Desk R35, Cleveland, OH 44195, USA.
| |
Collapse
|
45
|
Abstract
A hallmark of renal cell carcinoma is its variable prognosis. Surgical resection of primary renal cell carcinoma can be curative when the disease is localized. However, approximately 20% of patients with early stages of localized renal cell carcinomas subsequently develop metastasis after the primary tumor is removed. The median survival for patients with metastatic disease is approximately 13 months. Therefore, there is a great need for biomarkers to predict metastasis and prognosis. Many prognostic biomarkers were studied in the past decade. In recent years, several promising biomarkers, including CAIX, B7-H1 and IMP3, have also been identified by large retrospective studies. Further validation of these biomarkers is essential to transfer the research data into clinical practice. Eventually, an outcome prediction model with biomarkers, staging system and other risk factors will identify high-risk patients with likelihood of progression and formulate different follow-up protocols or systematic treatments for these patients.
Collapse
Affiliation(s)
- Zhong Jiang
- University of Massachusetts Medical School, Department of Pathology, Three Biotech, Worcester, MA 01605, USA.
| |
Collapse
|
46
|
Shareef MM, Udayakumar TS, Sinha VK, Saleem SM, Griggs WW. Interaction of HIF-1α and Notch3 Is Required for the Expression of Carbonic Anhydrase 9 in Breast Carcinoma Cells. Genes Cancer 2014; 4:513-23. [PMID: 24386511 DOI: 10.1177/1947601913481670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/06/2013] [Indexed: 01/16/2023] Open
Abstract
Expression of carbonic anhydrase 9 (CA9) is associated with poor prognosis and increased tumor aggressiveness and does not always correlate with HIF-1α expression. Presently, we analyzed the regulation of CA9 expression during hypoxia by HIF-1α, Notch3, and the von Hippel-Lindau (VHL) in breast carcinoma cells. Both HIF-1α and Notch3 were absolutely required for the expression of CA9 mRNA, protein, and reporter. Reciprocal co-immunoprecipitation of HIF-1α, Notch3 intracellular domain (NICD3), and pVHL demonstrated their association. The presence of common consensus prolyl hydroxylation and pVHL binding motifs (L(XY)LAP);LLPLAP(2191) suggested an oxygen-dependent regulation for NICD3. However, unlike the HIF-1α protein, NICD3 protein levels were not modulated with hypoxia or hypoxia-mimetic agents. Surprisingly, mutations of the common prolyl hydroxylation and pVHL binding domain lead to the loss of CA9 mRNA, protein, and reporter activity. Chromatin immunoprecipitation assay demonstrated the association of NICD3, HIF-1α, and pVHL at the CA9 promoter. Further, the NICD3 mutant defective in prolyl hydroxylation and subsequent pVHL binding caused a reduction in cell proliferation of breast carcinoma cells. We show here for the first time that the interaction of HIF-1α with NICD3 is important for the regulation of CA9 expression. These findings suggest that although CA9 is a hypoxia-responsive gene, its expression is modulated by the interaction of HIF-1α, Notch3, and VHL proteins. Targeting the expression of CA9 by targeting upstream regulators could be useful in cancer/stem cell therapy.
Collapse
Affiliation(s)
- Mohammed M Shareef
- Department of Radiation Oncology, University of Miami, Miami, FL, USA ; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thirupandiyur S Udayakumar
- Department of Radiation Oncology, University of Miami, Miami, FL, USA ; Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Vishal K Sinha
- Department of Radiation Oncology, University of Miami, Miami, FL, USA ; Miller School of Medicine, University of Miami, Miami, FL, USA ; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Shahid M Saleem
- Department of Computer Sciences, University of Kentucky, Lexington, KY, USA
| | - Wendy W Griggs
- Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| |
Collapse
|
47
|
Tafreshi NK, Lloyd MC, Bui MM, Gillies RJ, Morse DL. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Subcell Biochem 2014; 75:221-54. [PMID: 24146382 DOI: 10.1007/978-94-007-7359-2_12] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbonic anhydrase IX (CAIX) which is a zinc containing metalloprotein, efficiently catalyzes the reversible hydration of carbon dioxide. It is constitutively up-regulated in several cancer types and has an important role in tumor progression, acidification and metastasis. High expression of CAIX generally correlates with poor prognosis and is related to a decrease in the disease-free interval following successful therapy. Therefore, it is considered as a prognostic indicator in oncology.In this review, we describe CAIX regulation and its role in tumor hypoxia, acidification and metastasis. In addition, the molecular imaging of CAIX and its potential for use in cancer detection, diagnosis, staging, and for use in following therapy response is discussed. Both antibodies and small molecular weight compounds have been used for targeted imaging of CAIX expression. The use of CAIX expression as an attractive and promising candidate marker for systemic anticancer therapy is also discussed.
Collapse
Affiliation(s)
- Narges K Tafreshi
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA,
| | | | | | | | | |
Collapse
|
48
|
Oosterwijk E. Carbonic anhydrase expression in kidney and renal cancer: implications for diagnosis and treatment. Subcell Biochem 2014; 75:181-98. [PMID: 24146380 DOI: 10.1007/978-94-007-7359-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four different carbonic anhydrases are expressed in the human nephron, the functional unit of the kidney. These are specifically expressed in different nephron segments, emphasizing the critical role carbonic anhydrases play in maintaining the homeostasis of this crucial organ.Whereas the localization of carbonic anhydrases in the kidney has been long established, interest in carbonic anhydrases has increased dramatically for renal cancer, in particular for the clear cell variant of renal cell carcinoma (ccRCC) because carbonic anhydrase IX is specifically expressed in ccRCC. Therefore carbonic anhydrase IX is being studied as potential diagnostic and therapeutic target, despite carbonic anhydrase IX expression in non-renal tissues.
Collapse
Affiliation(s)
- Egbert Oosterwijk
- Department of Urology, University Medical Center St Radboud, Nijmegen, The Netherlands,
| |
Collapse
|
49
|
|
50
|
Rana S, Nissen F, Lindner T, Altmann A, Mier W, Debus J, Haberkorn U, Askoxylakis V. Screening of a Novel Peptide Targeting the Proteoglycan-Like Region of Human Carbonic Anhydrase IX. Mol Imaging 2013; 12. [DOI: 10.2310/7290.2013.00066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shoaib Rana
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Felix Nissen
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Thomas Lindner
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Annette Altmann
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Walter Mier
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Juergen Debus
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Uwe Haberkorn
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| | - Vasileios Askoxylakis
- From the Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, INF 280, Heidelberg, Germany; Department of Radiation Oncology, University of Heidelberg, INF 400, Heidelberg, Germany; and Department of Nuclear Medicine, University of Heidelberg, INF 400, Heidelberg, Germany
| |
Collapse
|