1
|
Shan W, Zhang SL, Assaraf YG, Tam KY. Combined inhibition of hexokinase 2 and pyruvate dehydrogenase surmounts SHP2 inhibitor resistance in non-small cell lung cancer with hybrid metabolic state harboring KRAS Q61H mutation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167859. [PMID: 40250775 DOI: 10.1016/j.bbadis.2025.167859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/02/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
KRAS Q61H is an aggressive oncogenic driver mutation rendering cancer cells drug resistant to SHP2 inhibitors (SHP2i). Some metastatic and chemoresistant non-small cell lung cancer (NSCLC) cells, exhibit a hybrid metabolic state in which both glycolysis and oxidative phosphorylation (OXPHOS) coexist. Hence, we evaluated the in vitro and in vivo efficacy of a combination of hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH) inhibitors, benserazide (Benz) and CPI-613, respectively, against NSCLC NCI-H460 cells harboring the driver KRAS Q61H mutation. This combination synergistically disrupted the hybrid metabolic state, inhibited NCI-H460 cell proliferation in vitro, and markedly suppressed tumor growth in NCI-H460 cell xenograft model in mice. The molecular basis underlying this antitumor activity was apparently due to suppression of SHP2/SOS1/RAS/MAPK signaling pathways, leading to enhanced apoptosis. Moreover, this drug combination restored the sensitivity to SHP2i. Consistently, SHP2 overexpression in NCI-H460 cells abrogated the antitumor activity of this drug combination. These findings reveal that the combination of Benz and CPI-613 targets the metabolic vulnerability of KRAS Q61H mutant-bearing NSCLC tumors. These results offer a combination therapeutic strategy for the possible treatment of cancer cells displaying a hybrid metabolic state, thereby surmounting chemoresistance.
Collapse
Affiliation(s)
- Wenying Shan
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
2
|
Chen Y, Yang JL, Xue ZZ, Cai QC, Hou C, Li HJ, Zhao LX, Zhang Y, Gao CW, Cong L, Wang TZ, Chen DM, Li GS, Luo SQ, Yao Q, Yang CJ, Zhu QS, Cao CH. Effects and mechanism of microRNA‑218 against lung cancer. Mol Med Rep 2020; 23:28. [PMID: 33179084 PMCID: PMC7673340 DOI: 10.3892/mmr.2020.11666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most prevalent and observed type of cancer in Xuanwei County, Yunnan, South China. Lung cancer in this area is called Xuanwei lung cancer. However, its pathogenesis remains largely unknown. To date, a number of studies have shown that microRNA (miR)‑218 functions as a tumor suppressor in multiple types of cancer. However, the role of miR‑218 and its regulatory gene network in Xuanwei lung cancer have yet to be investigated. The current study identified that the expression levels of miR‑218 in XWLC‑05 cells were markedly lower compared with those in immortalized lung epithelial BEAS‑2B cells. The present study also demonstrated that overexpression of miR‑218 could decrease cell proliferation, invasion, viability and migration in Xuanwei lung cancer cell line XWLC‑05 and NSCLC cell line NCI‑H157. Additionally, the results revealed that overexpression of miR‑218 could induce XWLC‑05 and NCI‑H157 cell apoptosis by arresting the cell cycle at G2/M phase. Finally, the present study demonstrated that overexpression of miR‑218 could lead to a significant increase in phosphatase and tensin homolog (<em>PTEN</em>) and YY1 transcription factor (<em>YY1</em>), and a decrease in B‑cell lymphoma 2 (<em>BCL‑2</em>) and BMI1 proto‑oncogene, polycomb ring finger (<em>BMI‑1</em>) at the mRNA and protein level in XWLC‑05 and NCI‑H157 cell lines. However, we did not observe any remarkable difference in the roles of miR‑218 and miR‑218‑mediated regulation of <em>BCL‑2</em>, <em>BMI‑1</em>, <em>PTEN</em> and <em>YY1</em> expression in the progression of Xuanwei lung cancer. In conclusion, miR‑218 could simultaneously suppress cell proliferation and tumor invasiveness and induce cell apoptosis by increasing <em>PTEN</em> and <em>YY1</em> expression, while decreasing <em>BCL‑2</em> and <em>BMI‑1</em> in Xuanwei lung cancer. The results demonstrated that miR‑218 might serve a vital role in tumorigenesis and progression of Xuanwei lung cancer and overexpression of miR‑218 may be a novel approach for the treatment of Xuanwei lung cancer.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Ji-Lin Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Zhen-Zhen Xue
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Chun Hou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Hong-Juan Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Liu-Xin Zhao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Yin Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Cheng-Wei Gao
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Li Cong
- YinMore Biotech Co., Ltd., Kunming, Yunnan 650224, P.R. China
| | - Tian-Zuo Wang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Dong-Mei Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Guo-Sheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Shi-Qing Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Qian Yao
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, Yunnan 650118, P.R. China
| | - Chan-Juan Yang
- YinMore Biotech Co., Ltd., Kunming, Yunnan 650224, P.R. China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Chuan-Hai Cao
- Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
3
|
Dixon JR, Xu J, Dileep V, Zhan Y, Song F, Le VT, Yardımcı GG, Chakraborty A, Bann DV, Wang Y, Clark R, Zhang L, Yang H, Liu T, Iyyanki S, An L, Pool C, Sasaki T, Rivera-Mulia JC, Ozadam H, Lajoie BR, Kaul R, Buckley M, Lee K, Diegel M, Pezic D, Ernst C, Hadjur S, Odom DT, Stamatoyannopoulos JA, Broach JR, Hardison RC, Ay F, Noble WS, Dekker J, Gilbert DM, Yue F. Integrative detection and analysis of structural variation in cancer genomes. Nat Genet 2018; 50:1388-1398. [PMID: 30202056 PMCID: PMC6301019 DOI: 10.1038/s41588-018-0195-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2018] [Indexed: 01/19/2023]
Abstract
Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.
Collapse
Affiliation(s)
- Jesse R Dixon
- Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Jie Xu
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Vishnu Dileep
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fan Song
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA
| | - Victoria T Le
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Darrin V Bann
- Division of Otolaryngology, Head & Neck Surgery, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Yanli Wang
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA
| | - Royden Clark
- Penn State College of Medicine, Informatics and Technology, Hershey, PA, USA
| | - Lijun Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Tingting Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Sriranga Iyyanki
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Lin An
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA
| | - Christopher Pool
- Division of Otolaryngology, Head & Neck Surgery, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bryan R Lajoie
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rajinder Kaul
- Altius institute for Biomedical Sciences, Seattle, WA, USA
| | | | - Kristen Lee
- Altius institute for Biomedical Sciences, Seattle, WA, USA
| | - Morgan Diegel
- Altius institute for Biomedical Sciences, Seattle, WA, USA
| | - Dubravka Pezic
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Christina Ernst
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics, Heidelberg, Germany
| | | | - James R Broach
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA
| | - Ross C Hardison
- Center for Comparative Genomics and Bioinformatics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, State College, PA, USA
| | - Ferhat Ay
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
- School of Medicine, University of California San Diego, La Jolla, CA, USA.
| | | | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
| | - Feng Yue
- Department of Biochemistry and Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA, USA.
- Bioinformatics and Genomics Program, The Pennsylvania State University, University Park, State College, PA, USA.
| |
Collapse
|
4
|
Flechsig P, Choyke P, Kratochwil C, Warth A, Antoch G, Holland Letz T, Rath D, Eichwald V, Huber PE, Kauczor HU, Haberkorn U, Giesel FL. Increased x-ray attenuation in malignant vs. benign mediastinal nodes in an orthotopic model of lung cancer. Diagn Interv Radiol 2017; 22:35-9. [PMID: 26611258 DOI: 10.5152/dir.2015.15220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Staging of lung cancer is typically performed with fluorodeoxyglucose-positron emission tomography-computed tomography (FDG-PET/CT); however, false positive PET scans can occur due to inflammatory disease. The CT scan is used for anatomic registration and attenuation correction. Herein, we evaluated x-ray attenuation (XRA) within nodes on CT and correlated this with the presence of malignancy in an orthotopic lung cancer model in rats. METHODS 1×10⁶ NCI-H460 cells were injected transthoracically in six National Institutes of Health nude rats and six animals served as controls. After two weeks, animals were sacrificed; lymph nodes were extracted and scanned with a micro-CT to determine their XRA prior to histologic analysis. RESULTS Median CT density in malignant lymph nodes (n=20) was significantly higher than benign lymph nodes (n=12; P = 0.018). Short-axis diameter of metastatic lymph nodes was significantly different than benign nodes (3.4 mm vs. 2.4 mm; P = 0.025). Area under the curve for malignancy was higher for density-based lymph node analysis compared with size measurements (0.87 vs. 0.7). CONCLUSION XRA of metastatic mediastinal lymph nodes is significantly higher than benign nodes in this lung cancer model. This suggests that information on nodal density may be useful when used in combination with the results of FDG-PET in determining the likelihood of malignant adenopathy.
Collapse
Affiliation(s)
- Paul Flechsig
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Flechsig P, Kratochwil C, Warth A, Rath D, Eichwald V, Huber PE, Kauczor HU, Haberkorn U, Giesel FL. A Comparison of microCT and microPET for Evaluating Lymph Node Metastasis in a Rat Model. Mol Imaging Biol 2015; 18:243-8. [DOI: 10.1007/s11307-015-0890-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Integrin α11β1 regulates cancer stromal stiffness and promotes tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 2015; 35:1899-908. [PMID: 26148229 PMCID: PMC4833874 DOI: 10.1038/onc.2015.254] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 04/23/2015] [Accepted: 05/29/2015] [Indexed: 12/18/2022]
Abstract
Integrin α11β1 is a stromal cell-specific receptor for fibrillar collagens and is overexpressed in carcinoma-associated fibroblasts (CAFs). We have investigated its direct role in cancer progression by generating severe combined immune deficient (SCID) mice deficient in integrin α11 (α11) expression. The growth of A549 lung adenocarcinoma cells and two patient-derived non-small cell lung carcinoma (NSCLC) xenografts in these α11 knockout (α11−/−) mice was significantly impeded, as compared with wild-type (α11+/+) SCID mice. Orthotopic implantation of a spontaneously metastatic NCI-H460SM cell line into the lungs of α11−/− and α11+/+ mice showed significant reduction in the metastatic potential of these cells in the α11−/− mice. We identified that collagen cross-linking is associated with stromal α11 expression, and the loss of tumor stromal α11 expression was correlated with decreased collagen reorganization and stiffness. This study shows the role of integrin α11β1, a receptor for fibrillar collagen in differentiation of fibroblasts into CAFs. Furthermore, our data support an important role for α11 signaling pathway in CAFs, promoting tumor growth and metastatic potential of NSCLC cells and being closely associated with collagen cross-linking and the organization and stiffness of fibrillar collagen matrices.
Collapse
|
7
|
Simmons JK, Hildreth BE, Supsavhad W, Elshafae SM, Hassan BB, Dirksen WP, Toribio RE, Rosol TJ. Animal Models of Bone Metastasis. Vet Pathol 2015; 52:827-41. [PMID: 26021553 DOI: 10.1177/0300985815586223] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone is one of the most common sites of cancer metastasis in humans and is a significant source of morbidity and mortality. Bone metastases are considered incurable and result in pain, pathologic fracture, and decreased quality of life. Animal models of skeletal metastases are essential to improve the understanding of the molecular pathways of cancer metastasis and growth in bone and to develop new therapies to inhibit and prevent bone metastases. The ideal animal model should be clinically relevant, reproducible, and representative of human disease. Currently, an ideal model does not exist; however, understanding the strengths and weaknesses of the available models will lead to proper study design and successful cancer research. This review provides an overview of the current in vivo animal models used in the study of skeletal metastases or local tumor invasion into bone and focuses on mammary and prostate cancer, lymphoma, multiple myeloma, head and neck squamous cell carcinoma, and miscellaneous tumors that metastasize to bone.
Collapse
Affiliation(s)
- J K Simmons
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B E Hildreth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - W Supsavhad
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - S M Elshafae
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - B B Hassan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - W P Dirksen
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - R E Toribio
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - T J Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One 2014; 9:e103698. [PMID: 25084400 PMCID: PMC4118890 DOI: 10.1371/journal.pone.0103698] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 07/07/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In South China (Gejiu City, Yunnan Province), lung cancer incidence and associated mortality rate is the most prevalent and observed forms of cancer. Lung cancer in this area is called Gejiu squamous cell lung carcinoma (GSQCLC). Research has demonstrated that overexpression of miR-21 occurs in many cancers. However, the unique relationship between miR-21 and its target genes in GSQCLC has never been investigated. The molecular mechanism involved in GSQCLC must be compared to other non-small cell lung cancers in order to establish a relation and identify potential therapeutic targets. METHODOLOGY/PRINCIPAL FINDINGS In the current study, we initially found overexpression of miR-21 occurring in non-small cell lung cancer (NSCLC) cell lines when compared to the immortalized lung epithelial cell line BEAS-2B. We also demonstrated that high expression of miR-21 could increase tumor cell proliferation, invasion, viability, and migration in GSQCLC cell line (YTMLC-90) and NSCLC cell line (NCI-H157). Additionally, our results revealed that miR-21 could suppress YTMLC-90 and NCI-H157 cell apoptosis through arresting cell-cycle at G2/M phase. Furthermore, we demonstrated that PTEN, RECK and Bcl-2 are common target genes of miR-21 in NSCLC. Finally, our studies showed that down-regulation of miR-21 could lead to a significant increase in PTEN and RECK and decrease in Bcl-2 at the mRNA and protein level in YTMLC-90 and NCI-H157 cell lines. However, we have not observed any remarkable difference in the levels of miR-21 and its targets in YTMLC-90 cells when compared with NCI-H157 cells. CONCLUSIONS/SIGNIFICANCE miR-21 simultaneously regulates multiple programs that enhance cell proliferation, apoptosis and tumor invasiveness by targeting PTEN, RECK and Bcl-2 in GSQCLC. Our results demonstrated that miR-21 may play a vital role in tumorigenesis and progression of lung squamous cell carcinoma and suppression of miR-21 may be a novel approach for the treatment of lung squamous cell carcinoma.
Collapse
|
9
|
Hai J, Zhu CQ, Bandarchi B, Wang YH, Navab R, Shepherd FA, Jurisica I, Tsao MS. L1 cell adhesion molecule promotes tumorigenicity and metastatic potential in non-small cell lung cancer. Clin Cancer Res 2012; 18:1914-24. [PMID: 22307136 DOI: 10.1158/1078-0432.ccr-11-2893] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a highly metastatic cancer with limited treatment options, thus requiring development of novel targeted therapies. Our group previously identified L1 cell adhesion molecule (L1CAM) expression as a member of a prognostic multigene expression signature for NSCLC patients. However, there is little information on the biologic function of L1CAM in lung cancer cells. This study investigates the functional and prognostic role of L1CAM in NSCLC. EXPERIMENTAL DESIGN Cox proportional hazards regression analysis was done on four independent published mRNA expression datasets of primary NSCLCs. L1CAM expression was suppressed by short-hairpin RNA (shRNA)-mediated silencing in human NSCLC cell lines. Effects were assessed by examining in vitro migration and invasion, in vivo tumorigenicity in mice, and metastatic potential using an orthotopic xenograft rat model of lung cancer. RESULTS L1CAM is an independent prognostic marker in resected NSCLC patients, with overexpression strongly associated with worse prognosis. L1CAM downregulation significantly decreased cell motility and invasiveness in lung cancer cells and reduced tumor formation and growth in mice. Cells with L1CAM downregulation were deficient in constitutive extracellular signal-regulated kinase (Erk) activation. Orthotopic studies showed that L1CAM suppression in highly metastatic lung cancer cells significantly decreases spread to distant organs, including bone and kidney. CONCLUSION L1CAM is a novel prometastatic gene in NSCLC, and its downregulation may effectively suppress NSCLC tumor growth and metastasis. Targeted inhibition of L1CAM may be a novel therapy for NSCLC.
Collapse
Affiliation(s)
- Josephine Hai
- Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Luis-Ravelo D, Antón I, Vicent S, Hernández I, Valencia K, Zandueta C, Martínez-Canarias S, Gúrpide A, Lecanda F. Tumor–stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models. Clin Exp Metastasis 2011; 28:779-91. [DOI: 10.1007/s10585-011-9409-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 07/11/2011] [Indexed: 12/01/2022]
|
11
|
Servais EL, Colovos C, Bograd AJ, White J, Sadelain M, Adusumilli PS. Animal models and molecular imaging tools to investigate lymph node metastases. J Mol Med (Berl) 2011; 89:753-69. [PMID: 21556810 DOI: 10.1007/s00109-011-0764-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/07/2011] [Accepted: 04/08/2011] [Indexed: 12/15/2022]
Abstract
Lymph node metastasis is a strong predictor of poor outcome in cancer patients. Animal studies of lymph node metastasis are constrained by difficulties in the establishment of appropriate animal models, limitations in the noninvasive monitoring of lymph node metastasis progression, and challenges in the pathologic confirmation of lymph node metastases. In this comprehensive review, we summarize available preclinical animal cancer models for noninvasive imaging and identification of lymph node metastases of non-hematogenous cancers. Furthermore, we discuss the strengths and weaknesses of common noninvasive imaging modalities used to identify tumor-bearing lymph nodes and provide guidelines for their pathological confirmation.
Collapse
Affiliation(s)
- Elliot L Servais
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dokouhaki P, Han M, Joe B, Li M, Johnston MR, Tsao MS, Zhang L. Adoptive immunotherapy of cancer using ex vivo expanded human γδ T cells: A new approach. Cancer Lett 2010; 297:126-36. [DOI: 10.1016/j.canlet.2010.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 01/07/2023]
|
13
|
Zhu CQ, Pintilie M, John T, Strumpf D, Shepherd FA, Der SD, Jurisica I, Tsao MS. Understanding prognostic gene expression signatures in lung cancer. Clin Lung Cancer 2010; 10:331-40. [PMID: 19808191 DOI: 10.3816/clc.2009.n.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In non-small-cell lung cancer (NSCLC), molecular profiling of tumors has led to the identification of gene expression patterns that are associated with specific phenotypes and prognosis. Such correlations could identify early-stage patients who are at increased risk of disease recurrence and death after complete surgical resection and who might benefit from adjuvant therapy. Profiling may also identify aberrant molecular pathways that might lead to specific molecularly targeted therapies. The technology behind the capturing and correlating of molecular profiles with clinical and biologic endpoints have evolved rapidly since microarrays were first developed a decade ago. In this review, we discuss multiple methods that have been used to derive prognostic gene expression signatures in NSCLC. Despite the diversity in the approaches used, 3 main steps are followed. First, the expression levels of several hundred to tens of thousands of genes are quantified by microarray or quantitative polymerase chain reaction techniques; the data are then preprocessed, normalized, and possibly filtered. In the second step, expression data are combined and grouped by clustering, risk score generation, or other means, to generate a gene signature that correlates with a clinical outcome, usually survival. Finally, the signature is validated in datasets of independent cohorts. This review discusses the concepts and methodologies involved in these analytical steps, primarily to facilitate the understanding of reports on large dataset gene expression studies that focus on prognostic signatures in NSCLC.
Collapse
Affiliation(s)
- Chang-Qi Zhu
- University Health Network, Ontario Cancer Institute/Princess Margaret Hospital, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Co-overexpression of Met and hepatocyte growth factor promotes systemic metastasis in NCI-H460 non-small cell lung carcinoma cells. Neoplasia 2010; 11:1292-300. [PMID: 20019837 DOI: 10.1593/neo.09622] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/29/2009] [Accepted: 09/01/2009] [Indexed: 01/22/2023] Open
Abstract
Complete resection of early-stage non-small cell lung cancer (NSCLC) is potentially curative, yet approximately 50% of patients are at risk for developing metastatic recurrence. Met, the receptor for hepatocyte growth factor (HGF) is a receptor tyrosine kinase with demonstrated roles in regulating cellular proliferation, motility, morphogenesis, and apoptosis. Met receptor and its ligand, HGF, are commonly overexpressed in NSCLC, and their overexpression has been associated with poor prognosis, which could potentially involve a paracrine and/or autocrine activation loop. However, there is as yet no direct evidence that HGF-Met signaling directly promotes metastasis in NSCLC cells. Using retroviral transduction, we overexpressed the human c-met and hgf complementary DNA, alone or in combination in the NCI-H460 human large cell carcinoma cell line. The HGF/Met co-overexpressing (H460-HGF/Met) cells demonstrated enhanced tumorigenicity in xenograft SCID mice. When these cells are implanted orthotopically into the lungs of nude rats, only the H460-HGF/Met cells showed higher spontaneous metastases to distant organs including bone, brain, and kidney. These results provide evidence that autocrine overactivation of the Met- HGF loop enhances systemic metastases in NSCLC. Targeted interference of this loop may potentially be an effective adjuvant therapy to improve survival of early-stage NSCLC patients.
Collapse
|
15
|
Kitada K, Yamasaki T, Aikawa S. Amplification of the ABCB1 region accompanied by a short sequence of 200bp from chromosome 2 in lung cancer cells. ACTA ACUST UNITED AC 2009; 194:4-11. [PMID: 19737648 DOI: 10.1016/j.cancergencyto.2009.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/28/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
Lung cancer sublines No15-80-1 and No15-80-6 were selected by treatment of cell line NCI-H460 with paclitaxel at stepwise increasing concentrations from 50 nmol/L to 800 nmol/L. The two sublines exhibited amplifications of the ABCB1 region (previously MDR1) with different copy number profiles, but shared a common amplification pattern, which has been observed in amplification mediated by the breakage-fusion-bridge (BFB) cycle. Sequence analysis of the distal ends of the amplified regions, which were probably generated in a break-and-fusion of the initial round of the BFB cycle, revealed a head-to-head fused sequence of chromosome 7. The sequence was identical in the two sublines. A short sequence of 200bp derived from chromosome 2 was incorporated, suggesting translocation between chromosomes 2 and 7. The copy number of the short sequence was comparable to that of the neighboring sequence, suggesting coamplification. The timing of the occurrence of the putative translocation and the initiation of BFB-cycle-driven amplification during the stepwise selection were determined by using the unique junction sequences specific to these events as indicators. The results demonstrated that the translocation occurred at the step of 100 nmol/L treatment and the BFB cycle initiated in the step of 400 nmol/L-treatment. It is likely that the translocation, preceding amplification by several selection steps, activated ABCB1 gene expression. The diversity in amplification profiles between the two sublines was generated by the separately operating BFB cycles, after an initial break-and-fusion that probably occurred in a single cell.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Company, 200-Kajiwara, Kamakura, Kanagawa, Japan
| | | | | |
Collapse
|
16
|
The Src inhibitor AZD0530 blocks invasion and may act as a radiosensitizer in lung cancer cells. J Thorac Oncol 2009; 4:448-54. [PMID: 19240653 DOI: 10.1097/jto.0b013e31819c78fb] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND With the emergence of Src inhibitors in clinical trials, improved knowledge of the molecular responses of cancer cells to these agents is warranted. This will facilitate the development of tests to identify patients who may benefit from these agents, allow drug activity to be monitored and rationalize the combination of these agents with other treatment modalities. METHODS This study evaluated the molecular and functional effects of Src inhibitor AZD0530 in human lung cancer cells, by Western blotting and reverse transcription-polymerase chain reaction, and by assays for cell viability, migration, and invasion. RESULTS Src was activated in four of five cell lines tested and the level corresponded with the invasive potential and the histologic subtype. Clinically relevant, submicromolar concentrations of AZD0530 blocked Src and focal adhesion kinase, resulting in significant inhibition of cell migration and Matrigel invasion. Reactivation of STAT3 and up-regulation of JAK indicated a potential mechanism of resistance. AZD0530 gave a potent and sustained blockage of AKT and enhanced the sensitivity to irradiation. CONCLUSIONS The results indicated that AZD0530, aside from being a potent inhibitor of tumor cell invasion which could translate to inhibition of disease progression in the clinic, may also lower resistance of lung cancer cells to pro-apoptotic signals.
Collapse
|
17
|
Kitada K, Yamasaki T. The complicated copy number alterations in chromosome 7 of a lung cancer cell line is explained by a model based on repeated breakage-fusion-bridge cycles. ACTA ACUST UNITED AC 2008; 185:11-9. [PMID: 18656688 DOI: 10.1016/j.cancergencyto.2008.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/31/2008] [Accepted: 04/07/2008] [Indexed: 10/21/2022]
Abstract
The drug-resistant lung cancer cell line PTX250, which has been previously established by exposure to an anti-cancer drug paclitaxel, has an increased copy number in the MDR1/ABCB1 locus region. In addition, the flanking regions also exhibit aberrant copy numbers, making the copy number profile of chromosome 7 complicated. In this study, we tested whether the breakage-fusion-bridge (BFB) cycle model can explain such copy number alterations. An analysis using fluorescence in situ hybridization (FISH) with a painting probe demonstrated that the aberrant chromosome, designated chromosome 7(amp), was derived from an intact chromosome 7. Using high-density comparative genomic hybridization arrays, we examined the copy number profile in detail and divided chromosome 7(amp) into seven segments. Based on copy numbers of each segment, which were determined using interphase- and metaphase-FISH analysis, we constructed a formation model for the complicated copy number alteration. Six-time BFB cycles and the cycle-termination by healing of broken ends were presupposed in the model. Locations and orientations of the segments observed in chromosome 7(amp) agreed well with those predicted from the model. Telomere addition was also cytogenetically confirmed. In all, it could be concluded that the complicated copy number alteration found in chromosome 7(amp) is generated from the intact chromosome 7 by the repeated BFB cycles.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., 200-Kajiwara, Kamakura, Kanagawa 247-8530, Japan.
| | | |
Collapse
|
18
|
Lau SK, Boutros PC, Pintilie M, Blackhall FH, Zhu CQ, Strumpf D, Johnston MR, Darling G, Keshavjee S, Waddell TK, Liu N, Lau D, Penn LZ, Shepherd FA, Jurisica I, Der SD, Tsao MS. Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol 2007; 25:5562-9. [PMID: 18065728 DOI: 10.1200/jco.2007.12.0352] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Several microarray studies have reported gene expression signatures that classify non-small-cell lung carcinoma (NSCLC) patients into different prognostic groups. However, the prognostic gene lists reported to date overlap poorly across studies, and few have been validated independently using more quantitative assay methods. PATIENTS AND METHODS The expression of 158 putative prognostic genes identified in previous microarray studies was analyzed by reverse transcription quantitative polymerase chain reaction in the tumors of 147 NSCLC patients. Concordance indices and risk scores were used to identify a stage-independent set of genes that could classify patients with significantly different prognoses. RESULTS We have identified a three-gene classifier (STX1A, HIF1A, and CCR7) for overall survival (hazard ratio = 3.8; 95% CI, 1.7 to 8.2; P < .001). The classifier was also able to stratify stage I and II patients and further improved the predictive ability of clinical factors such as histology and tumor stage. The predictive value of this three-gene classifier was validated in two large independent microarray data sets from Harvard and Duke Universities. CONCLUSION We have identified a new three-gene classifier that is independent of and improves on stage to stratify early-stage NSCLC patients with significantly different prognoses. This classifier may be tested further for its potential value to improve the selection of resected NSCLC patients in adjuvant therapy.
Collapse
Affiliation(s)
- Suzanne K Lau
- Princess Margaret Hospital, 610 University Ave, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HSLM, Power C. Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 2007; 13:173-84. [PMID: 17505986 DOI: 10.1080/13550280701258399] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Molecular diversity within brain-derived HIV-1 sequences is highly variable depending on the individual gene examined and the neurological status of the patient. Herein, we examined different brain-derived human immunodeficiency virus (HIV)-1 tat sequences in terms of their effects on LTR transactivation and host gene induction in neural cells. Astrocytic and monocytoid cells co-transfected with prototypic tat clones derived from non-demented (ND) (n = 3) and demented (HAD) (n = 3) AIDS patients and different HIV-LTR constructs revealed that LTR transactivation mediated by tat clones derived from HAD patients was decreased (p < 0.05). A Tat-derived peptide containing the amino acid 24-38 domain from a ND clone caused down-regulation of the LTR transactivation (p < 0.05) in contrast to peptides from other Tat regions derived from HAD and ND tat clones. Both brain-derived HAD and ND tat constructs were able to induce the host immune genes, MCP-1 and IL-1beta. Microarray analysis revealed several host genes were selectively upregulated by a HAD-derived tat clone including an enzyme mediating heparan sulphate synthesis, HS3ST3B1 (p < 0.05), which was also found to be increased in the brains of patients with HAD. Expression of the pro-apoptotic gene, PDCD7, was reduced in cells transfected with the HAD-derived tat clone and moreover, this gene was also suppressed in monocytoid cells infected with a neurotropic HIV-1 strain. Thus, mutations within the HIV-1 tat gene may exert pathogenic effects contributing to the development of HAD, which are independent of its effects on LTR transactivation.
Collapse
Affiliation(s)
- Leonie A Boven
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schrock E, Zschieschang P, O'Brien P, Helmrich A, Hardt T, Matthaei A, Stout-Weider K. Spectral karyotyping of human, mouse, rat and ape chromosomes--applications for genetic diagnostics and research. Cytogenet Genome Res 2006; 114:199-221. [PMID: 16954656 DOI: 10.1159/000094203] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 05/19/2006] [Indexed: 01/30/2023] Open
Abstract
Spectral karyotyping (SKY) is a widely used methodology to identify genetic aberrations. Multicolor fluorescence in situ hybridization using chromosome painting probes in individual colors for all metaphase chromosomes at once is combined with a unique spectral measurement and analysis system to automatically classify normal and aberrant chromosomes. Based on countless studies and investigations in many laboratories worldwide, numerous new chromosome translocations and other aberrations have been identified in clinical and tumor cytogenetics. Thus, gene identification studies have been facilitated resulting in the dissection of tumor development and progression. For example, different translocation partners of the TEL/ETV6 transcription factor that is specially required for hematopoiesis within the bone marrow were identified. Also, the correct classification of complex karyotypes of solid tumors supports the prognostication of cancer patients. Important accomplishments for patients with genetic diseases, leukemias and lymphomas, mesenchymal tumors and solid cancers are summarized and exemplified. Furthermore, studies of disease mechanisms such as centromeric DNA breakage, DNA double strand break repair, telomere shortening and radiation-induced neoplastic transformation have been accompanied by SKY analyses. Besides the hybridization of human chromosomes, mouse karyotyping has also contributed to the comprehensive characterization of mouse models of human disease and for gene therapy studies.
Collapse
Affiliation(s)
- E Schrock
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Seiden-Long IM, Brown KR, Shih W, Wigle DA, Radulovich N, Jurisica I, Tsao MS. Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer. Oncogene 2006; 25:91-102. [PMID: 16158056 DOI: 10.1038/sj.onc.1209005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both Ki-ras mutation and hepatocyte growth factor (HGF) receptor Met overexpression occur at high frequency in colon cancer. This study investigates the transcriptional changes induced by Ki-ras oncogene and HGF/Met signaling activation in colon cancer cell lines in vitro and in vivo. The model system used in these studies included the DLD-1 colon cancer cell line with a mutated Ki-ras allele, and the DKO-4 cell line generated from DLD-1, with its mutant Ki-ras allele inactivated by targeted disruption. These cell lines were transduced with cDNAs of full-length Met receptor. Microarray transcriptional profiling was conducted on cell lines stimulated with HGF, as well as on tumor xenograft tissues. Overlapping genes between in vitro and in vivo microarray data sets were selected as a subset of HGF/Met and Ki-ras oncogene-regulated targets. Using the Online Predicted Human Interaction Database, novel HGF/Met and Ki-ras regulated proteins with putative functional linkage were identified. Novel proteins identified included histone acetyltransferase 1, phosphoribosyl pyrophosphate synthetase 2, chaperonin containing TCP1, subunit 8, CSE1 chromosome segregation 1-like (yeast)/cellular apoptosis susceptibility (mammals), CCR4-NOT transcription complex, subunit 8, and cyclin H. Transcript levels for these Met-signaling targets were correlated with Met expression levels, and were significantly elevated in both primary and metastatic human colorectal cancer samples compared to normal colorectal mucosa. These genes represent novel Met and/or Ki-ras transcriptionally coregulated genes with a high degree of validation in human colorectal cancers.
Collapse
Affiliation(s)
- I M Seiden-Long
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Camphausen K, Purow B, Sproull M, Scott T, Ozawa T, Deen DF, Tofilon PJ. Influence of in vivo growth on human glioma cell line gene expression: convergent profiles under orthotopic conditions. Proc Natl Acad Sci U S A 2005; 102:8287-92. [PMID: 15928080 PMCID: PMC1142119 DOI: 10.1073/pnas.0502887102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy.
Collapse
Affiliation(s)
- Kevin Camphausen
- Radiation Oncology Branch and Molecular Radiation Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Navab R, Gonzalez-Santos JM, Johnston MR, Liu J, Brodt P, Tsao MS, Hu J. Expression of Chicken Ovalbumin Upstream Promoter-Transcription Factor II Enhances Invasiveness of Human Lung Carcinoma Cells. Cancer Res 2004; 64:5097-105. [PMID: 15289311 DOI: 10.1158/0008-5472.can-03-1185] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) plays an essential role in angiogenesis and development. It is differentially expressed in tumor cell lines, but its role in carcinogenesis is largely unknown. We demonstrate here that noninvasive human lung cancer cells become invasive when COUP-TFII was expressed. The expression of extracellular matrix degrading proteinases, such as matrix metalloproteinase 2 and urokinase-type plasminogen activator, was up-regulated in these cells. This finding was confirmed by transduction of different human lung cancer cell lines with COUP-TFII protein and also by using antisense expression. We observed disorganization of actin filaments and focal adhesion kinase phosphorylation in COUP-TFII-transfected human lung cancer cells in addition to the increase in extracellular metalloproteinase activity. These results suggest that COUP-TFII may be considered as a new target for anticancer therapies.
Collapse
Affiliation(s)
- Roya Navab
- Lung Biology Research Programme and Canadian Institutes of Health Research Group in Lung Development, The Hospital for Sick Children, 555 University Avenue, Montreal, Quebec, Canada M5G 1X8
| | | | | | | | | | | | | |
Collapse
|