1
|
Li X, Jiang Y, Qian H. Lymphoma dissemination is a pathological hallmark for malignant progression of B-cell lymphoma. Front Immunol 2023; 14:1286411. [PMID: 38077394 PMCID: PMC10703179 DOI: 10.3389/fimmu.2023.1286411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Extranodal lymphoma occurs in one-third of lymphoma patients and is a key indicator of the international prognostic index, associated with unfavorable outcomes. Due to the lack of ideal models, the causes and characteristics of extranodal lymphoma are greatly underexplored. Recently, we observed a high incidence of extranodal lymphoma in two types of mouse models with tropism for the brain and kidneys. These findings prompt us to rethink the pathological progression of lymphoma colonization in lymph nodes and non-lymphoid organs. Nodal lymphoma, primary extranodal lymphoma and secondary extranodal lymphoma should be biologically and clinically distinctive scenarios. Based on the observations in mouse models with extranodal lymphoma, we propose that lymphoma dissemination can be seen as lymphoma losing the ability to home to lymph nodes. The pathological process of nodal lymphoma should be referred to as lymphoma homing to distinguish it from benign hyperplasia. Lymphoma dissemination, defined as a pathological process that lymphoma can occur in almost any part of the body, is a key pathological hallmark for malignant progression of B-cell lymphoma. Reshaping cellular plasticity is a promising strategy to allow transformed cells to homing back to lymph nodes and re-sensitize tumor cells to treatment. From this perspective, we provide new insights into the pathological progression of lymphoma dissemination and its inspiration on therapeutic interventions. We believe that establishing extranodal lymphoma mouse models, identifying molecular mechanism governing lymphoma dissemination, and developing therapies to prevent lymphoma dissemination will become emerging topics for fighting relapsed and refractory lymphoma.
Collapse
Affiliation(s)
- Xiaoxi Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Hui Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Li D, Tavana O, Sun SC, Gu W. Peli1 Modulates the Subcellular Localization and Activity of Mdmx. Cancer Res 2018; 78:2897-2910. [PMID: 29523541 PMCID: PMC5984691 DOI: 10.1158/0008-5472.can-17-3531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/12/2018] [Accepted: 03/05/2018] [Indexed: 12/21/2022]
Abstract
Mdm2 and Mdmx, both major repressors of p53 in human cancers, are predominantly localized to the nucleus and cytoplasm, respectively. The mechanism by which subcellular localization of Mdmx is regulated remains unclear. In this study, we identify the E3 ligase Peli1 as a major binding partner and regulator of Mdmx in human cells. Peli1 bound Mdmx in vitro and in vivo and promoted high levels of ubiquitination of Mdmx. Peli1-mediated ubiquitination was degradation-independent, promoting cytoplasmic localization of Mdmx, which in turn resulted in p53 activation. Consistent with this, knockdown or knockout Peli1 in human cancer cells induced nuclear localization of Mdmx and suppressed p53 activity. Myc-induced tumorigenesis was accelerated in Peli1-null mice and associated with downregulation of p53 function. Clinical samples of human cutaneous melanoma had decreased Peli1 expression, which was associated with poor overall survival. Together, these results demonstrate that Peli1 acts as a critical factor for the Mdmx-p53 axis by modulating the subcellular localization and activity of Mdmx, thus revealing a novel mechanism of Mdmx deregulation in human cancers.Significance: Peli1-mediated regulation of Mdmx, a major inhibitor of p53, provides critical insight into activation of p53 function in human cancers. Cancer Res; 78(11); 2897-910. ©2018 AACR.
Collapse
Affiliation(s)
- Dawei Li
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Omid Tavana
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Shao-Cong Sun
- Department of Immunology, the University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Wei Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York.
| |
Collapse
|
3
|
Nikolic N, Carkic J, Ilic Dimitrijevic I, Eljabo N, Radunovic M, Anicic B, Tanic N, Falk M, Milasin J. P14 methylation: an epigenetic signature of salivary gland mucoepidermoid carcinoma in the Serbian population. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:52-58. [DOI: 10.1016/j.oooo.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 12/28/2022]
|
4
|
Ben‐Dayan MM, Ow TJ, Belbin TJ, Wetzler J, Smith RV, Childs G, Diergaarde B, Hayes DN, Grandis JR, Prystowsky MB, Schlecht NF. Nonpromoter methylation of the CDKN2A gene with active transcription is associated with improved locoregional control in laryngeal squamous cell carcinoma. Cancer Med 2017; 6:397-407. [PMID: 28102032 PMCID: PMC5313649 DOI: 10.1002/cam4.961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
We previously reported a novel association between CDKN2A nonpromoter methylation and transcription (ARF/INK4a) in human papillomavirus associated oropharyngeal tumors. In this study we assessed whether nonpromoter CDKN2A methylation in laryngeal squamous cell carcinomas (LXSCC) conferred a similar association with transcription that predicted patient outcome. We compared DNA methylation and ARF/INK4a RNA expression levels for the CDKN2A locus using the Illumina HumanMethylation27 beadchip and RT-PCR in 43 LXSCC tumor samples collected from a prospective study of head and neck cancer patients treated at Montefiore Medical Center (MMC). Validation was performed using RNAseq data on 111 LXSCC tumor samples from the Cancer Genome Atlas (TCGA). The clinical relevance of combined nonpromoter CDKN2A methylation and transcription was assessed by multivariate Cox regression for locoregional recurrence on a subset of 69 LXSCC patients with complete clinicopathologic data from the MMC and TCGA cohorts. We found evidence of CDKN2A nonpromoter hypermethylation in a third of LXSCC from our MMC cohort, which was significantly associated with increased ARF and INK4a RNA expression (Wilcoxon rank-sum, P = 0.007 and 0.003, respectively). A similar association was confirmed in TCGA samples (Wilcoxon rank-sum test P < 0.0001 for ARF and INK4a). Patients with CDKN2A hypermethylation or high ARF/INK4a expression were significantly less likely to develop a locoregional recurrence compared to those with neither of the features, independent of other clinicopatholgic risk factors (adjusted hazard ratio=0.21, 95% confidence interval:0.05-0.81). These results support the conclusion that CDKN2A nonpromoter methylation is associated with increased ARF and INK4a RNA expression, and improved locoregional control in LXSCC.
Collapse
Affiliation(s)
- Miriam M. Ben‐Dayan
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
| | - Thomas J. Ow
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
- Department of Otorhinolaryngology‐Head and Neck SurgeryAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
| | - Thomas J. Belbin
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
- Dicipline of OncologyFaculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundland
| | - Joshua Wetzler
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
| | - Richard V. Smith
- Department of Otorhinolaryngology‐Head and Neck SurgeryAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
| | - Geoffrey Childs
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
| | - Brenda Diergaarde
- Department of EpidemiologyUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvania
| | - D. Neil Hayes
- Department of Otolaryngology/Head and Neck Cancer SurgeryUniversity of North CarolinaChapel HillNorth Carolina
| | - Jennifer R. Grandis
- Departments of Otolaryngology Head and Neck SurgeryUniversity of CaliforniaSan FranciscoCalifornia
- Department of Clinical and Translational Science InstituteUniversity of CaliforniaSan FranciscoCalifornia
| | - Michael B. Prystowsky
- Department of PathologyAlbert Einstein College of MedicineMontefiore Medical CenterBronxNew York
| | - Nicolas F. Schlecht
- Departments of Epidemiology & Population Health and MedicineAlbert Einstein College of MedicineBronxNew York
| |
Collapse
|
5
|
Nikolic N, Anicic B, Carkic J, Simonovic J, Toljic B, Tanic N, Tepavcevic Z, Vukadinovic M, Konstantinovic VS, Milasin J. High frequency of p16 and p14 promoter hypermethylation and marked telomere instability in salivary gland tumors. Arch Oral Biol 2015; 60:1662-6. [DOI: 10.1016/j.archoralbio.2015.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/18/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022]
|
6
|
Meng X, Carlson NR, Dong J, Zhang Y. Oncogenic c-Myc-induced lymphomagenesis is inhibited non-redundantly by the p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways. Oncogene 2015; 34:5709-17. [PMID: 25823025 DOI: 10.1038/onc.2015.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 01/14/2015] [Indexed: 01/01/2023]
Abstract
The multifaceted oncogene c-Myc plays important roles in the development and progression of human cancer. Recent in vitro and in vivo studies have shown that the p19Arf-Mdm2-p53 and the ribosomal protein (RP)-Mdm2-p53 pathways are both essential in preventing oncogenic c-Myc-induced tumorigenesis. Disruption of each pathway individually by p19Arf deletion or by Mdm2(C305F) mutation, which disrupts RP-Mdm2 binding, accelerates Eμ-myc transgene-induced pre-B/B-cell lymphoma in mice at seemingly similar paces with median survival around 10 and 11 weeks, respectively, compared to 20 weeks for Eμ-myc transgenic mice. Because p19Arf can inhibit ribosomal biogenesis through its interaction with nucleophosmin (NPM/B23), RNA helicase DDX5 and RNA polymerase I transcription termination factor (TTF-I), it has been speculated that the p19Arf-Mdm2-p53 and the RP-Mdm2-p53 pathways might be a single p19Arf-RP-Mdm2-p53 pathway, in which p19Arf activates p53 by inhibiting RP biosynthesis; thus, p19Arf deletion or Mdm2(C305F) mutation would result in similar consequences. Here, we generated mice with concurrent p19Arf deletion and Mdm2(C305F) mutation and investigated the compound mice for tumorigenesis in the absence and the presence of oncogenic c-Myc overexpression. In the absence of Eμ-myc transgene, the Mdm2(C305F) mutation did not elicit spontaneous tumors in mice, nor did it accelerate spontaneous tumors in mice with p19Arf deletion. In the presence of Eμ-myc transgene, however, Mdm2(C305F) mutation significantly accelerated p19Arf deletion-induced lymphomagenesis and promoted rapid metastasis. We found that when p19Arf-Mdm2-p53 and RP-Mdm2-p53 pathways are independently disrupted, oncogenic c-Myc-induced p53 stabilization and activation is only partially attenuated. When both pathways are concurrently disrupted, however, c-Myc-induced p53 stabilization and activation are essentially obliterated. Thus, the p19Arf-Mdm2-p53 and the RP-Mdm2-p53 are non-redundant pathways possessing similar capabilities to activate p53 upon c-Myc overexpression.
Collapse
Affiliation(s)
- X Meng
- Department of Radiation Oncology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| | - N R Carlson
- Department of Radiation Oncology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - J Dong
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China
| | - Y Zhang
- Department of Radiation Oncology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, China.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| |
Collapse
|
7
|
Eischen CM, Lozano G. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat 2014; 35:728-37. [PMID: 24488925 DOI: 10.1002/humu.22524] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/31/2014] [Indexed: 11/07/2022]
Abstract
The potent transcriptional activity of p53 (Trp53, TP53) must be kept in check for normal cell growth and survival. Tumors, which drastically deviate from these parameters, have evolved multiple mechanisms to inactivate TP53, the most prevalent of which is the emergence of TP53 missense mutations, some of which have gain-of-function activities. Another important mechanism by which tumors bypass TP53 functions is via increased levels of two TP53 inhibitors, MDM2, and MDM4. Studies in humans and in mice reveal the complexity of TP53 regulation and the exquisite sensitivity of this pathway to small changes in regulation. Here, we summarize the factors that impinge on TP53 activity and thus cell death/arrest or tumor development.
Collapse
Affiliation(s)
- Christine M Eischen
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee
| | | |
Collapse
|
8
|
Chaar I, Amara S, Elamine OE, Khiari M, Ounissi D, Khalfallah T, Ben Hmida A, Mzabi S, Bouraoui S. Biological significance of promoter hypermethylation of p14/ARF gene: relationships to p53 mutational status in Tunisian population with colorectal carcinoma. Tumour Biol 2013; 35:1439-49. [PMID: 24065196 PMCID: PMC3932170 DOI: 10.1007/s13277-013-1198-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/11/2013] [Indexed: 11/26/2022] Open
Abstract
One of the most important pathways which are frequently affected in colorectal cancer is p53/ (MDM2)/p14ARF pathway. We aim to determine the methylation pattern of p14/ARF in relation to mutation of p53. This correlation was studied to investigate whether their alterations could be considered as a predictor factor of prognosis in colorectal cancer and whether it can be useful in early-stage diagnosis. Statistical analyses show that p14/ARF hypermethylation was correlated with rectum location (p = 0.004), primary TNM stage (p = 0.016), and advanced Astler–Coller stage (p = 0.024). The RT-PCR that revel 31 % of patients did not express p14/ARF mRNA or at very low level. A high concordance between CpG hypermethylation and the low levels (p < 0.005) was shown. In addition, our analyses demonstrate that patients with mutation in the p53 gene have a lack of the protein expression (p < 0.005). This category with negative expression of p53 had a shorter survival rate (p < 0.005). On the one hand, MSP pattern of p14/ARF were correlated with a lack of p53 expression (p = 0.007). We found that p53/p14ARF pathway was frequently deregulated among our patients. In our study, we demonstrate that hypermethylation of p14/ARF occurs early during CRC tumorogenesis. However, we did not find correlation between p14/ARF and survival. These results suggest that p14/ARF methylation pattern may constitute a predictor factor of CRC in early stage but it could not be considered as a prognostic factor. On the other hand and because of the reversibility of the methylation mechanism, it may be appropriate to target the demethylation of p14/ARF to develop new drogues for CRC.
Collapse
Affiliation(s)
- Ines Chaar
- Laboratory of Colorectal Cancer Research UR03ES04, Science University Tunis, Tunis, Tunisia,
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jin L, Xu L, Song X, Wei Q, Sturgis EM, Li G. Genetic variation in MDM2 and p14ARF and susceptibility to salivary gland carcinoma. PLoS One 2012; 7:e49361. [PMID: 23145162 PMCID: PMC3492289 DOI: 10.1371/journal.pone.0049361] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/08/2012] [Indexed: 12/11/2022] Open
Abstract
Background The p14ARF/MDM2/p53 pathway plays an important role in modulation of DNA damage and oxidative stress responses. The aim of this study was to determine whether genetic variants in MDM2 and p14ARF are associated with risk of salivary gland carcinoma (SGC). Methods Four single nucleotide polymorphisms (SNPs) in MDM2 and p14ARF (MDM2-rs2279744, MDM2-rs937283, p14ARF-rs3731217, and p14ARF-rs3088440) were genotyped in 156 patients with SGC and 511 cancer-free controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results MDM2-rs2279744 was significantly associated with a moderately increased risk of SGC (OR, 1.5, 95% CI, 1.1–2.2). There was a trend toward significantly increased SGC risk with increasing number of risk genotypes of the four polymorphisms (Ptrend = 0.004). Individuals carrying 3–4 risk genotypes in MDM2 and p14ARF were at increased SGC risk (OR, 2.0, 95% CI, 1.1–2.7) compared with individuals carrying 0–2 risk genotypes. Moreover, the combined effect of risk genotypes of MDM2 and p14ARF was more pronounced among young subjects (≤45 years), female subjects, subjects with race/ethnicity other than non-Hispanic white, ever-smokers, and ever-drinkers. Conclusion Our results support the involvement of SNPs of MDM2 and p14ARF, either alone or more likely in combination, in susceptibility to SGC. Larger studies are needed to validate our findings.
Collapse
Affiliation(s)
- Lei Jin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Stomatology, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, China
| | - Li Xu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xicheng Song
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Otorhinolaryngology and Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Erich M. Sturgis
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Eischen CM, Boyd K. Decreased Mdm2 expression inhibits tumor development and extends survival independent of Arf and dependent on p53. PLoS One 2012; 7:e46148. [PMID: 23029416 PMCID: PMC3461014 DOI: 10.1371/journal.pone.0046148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/27/2012] [Indexed: 11/22/2022] Open
Abstract
Inactivation of the Arf-Mdm2-p53 tumor suppressor pathway is a necessary event for tumorigenesis. Arf controls Mdm2, which in turn regulates p53, but Arf and Mdm2 also have p53-independent functions that affect tumor development. Moreover, inhibition of oncogene-induced tumorigenesis relies on Arf and p53, but the requirements of Arf and p53 in tumor development initiated in the absence of overt oncogene overexpression and the role of Mdm2 in this process remain unclear. In a series of genetic experiments in mice with defined deficiencies in Arf, Mdm2 and/or p53, we show Mdm2 haploinsufficiency significantly delayed tumorigenesis in mice deficient in Arf and p53. Mdm2 heterozygosity significantly inhibited tumor development in the absence of Arf, and in contrast to Myc oncogene-driven cancer, this delay in tumorigenesis could not be rescued with the presence of one allele of Arf. Notably, Mdm2 haploinsufficieny blocked the accelerated tumor development in Arf deficient mice caused by p53 heterozygosity. However, tumorigenesis was not inhibited in Mdm2 heterozygous mice lacking both alleles of p53 regardless of Arf status. Surprisingly, loss of Arf accelerated tumor development in p53-null mice. Tumor spectrum was largely dictated by Arf and p53 status with Mdm2 haploinsufficiency only modestly altering the tumor type in some of the genotypes and not the number of primary tumors that arose. Therefore, the significant effects of Mdm2 haploinsufficiency on tumor latency were independent of Arf and required at least one allele of p53, and an Mdm2 deficiency had minor effects on the types of tumors that developed. These data also demonstrate that decreased levels of Mdm2 are protective in the presence of multiple genetic events in Arf and p53 genes that normally accelerate tumorigenesis.
Collapse
Affiliation(s)
- Christine M Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
| | | |
Collapse
|
11
|
Abstract
Hematopoiesis is a dynamic and highly complex developmental process that gives rise to a multitude of the cell types that circulate in the blood of multicellular organisms. These cells provide tissues with oxygen, guard against infection, prevent bleeding by clotting, and mediate inflammatory reactions. Because the hematopoietic system plays such a central role in human diseases such as infections, cancer, autoimmunity, and anemia, it has been intensely studied for more than a century. This scrutiny has helped to shape many of the developmental paradigms that exist today and has identified specific protein factors that serve as master regulators of blood cell lineage specification. Despite this progress, many aspects of blood cell development remain obscure, suggesting that novel layers of regulation must exist. Consequently, the emergence of regulatory noncoding RNAs, such as the microRNAs (miRNAs), is beginning to provide new insights into the molecular control networks underlying hematopoiesis and diseases that stem from aberrations in this process. This review will discuss how miRNAs fit into our current understanding of hematopoietic development in mammals and how breakdowns in these pathways can trigger disease.
Collapse
Affiliation(s)
- Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
12
|
Schuetz JM, Daley D, Graham J, Berry BR, Gallagher RP, Connors JM, Gascoyne RD, Spinelli JJ, Brooks-Wilson AR. Genetic variation in cell death genes and risk of non-Hodgkin lymphoma. PLoS One 2012; 7:e31560. [PMID: 22347493 PMCID: PMC3274532 DOI: 10.1371/journal.pone.0031560] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/13/2012] [Indexed: 12/18/2022] Open
Abstract
Background Non-Hodgkin lymphomas are a heterogeneous group of solid tumours that constitute the 5th highest cause of cancer mortality in the United States and Canada. Poor control of cell death in lymphocytes can lead to autoimmune disease or cancer, making genes involved in programmed cell death of lymphocytes logical candidate genes for lymphoma susceptibility. Materials and Methods We tested for genetic association with NHL and NHL subtypes, of SNPs in lymphocyte cell death genes using an established population-based study. 17 candidate genes were chosen based on biological function, with 123 SNPs tested. These included tagSNPs from HapMap and novel SNPs discovered by re-sequencing 47 cases in genes for which SNP representation was judged to be low. The main analysis, which estimated odds ratios by fitting data to an additive logistic regression model, used European ancestry samples that passed quality control measures (569 cases and 547 controls). A two-tiered approach for multiple testing correction was used: correction for number of tests within each gene by permutation-based methodology, followed by correction for the number of genes tested using the false discovery rate. Results Variant rs928883, near miR-155, showed an association (OR per A-allele: 2.80 [95% CI: 1.63–4.82]; pF = 0.027) with marginal zone lymphoma that is significant after correction for multiple testing. Conclusions This is the first reported association between a germline polymorphism at a miRNA locus and lymphoma.
Collapse
Affiliation(s)
- Johanna M. Schuetz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Daley
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jinko Graham
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Brian R. Berry
- Department of Pathology, Royal Jubilee Hospital, Victoria, British Columbia, Canada
| | | | - Joseph M. Connors
- Division of Medical Oncology and Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Randy D. Gascoyne
- Department of Pathology and Centre for Lymphoid Cancer, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - John J. Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Angela R. Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
13
|
A pathway for the control of anoikis sensitivity by E-cadherin and epithelial-to-mesenchymal transition. Mol Cell Biol 2011; 31:4036-51. [PMID: 21746881 DOI: 10.1128/mcb.01342-10] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Detachment of epithelial cells from matrix or attachment to an inappropriate matrix engages an apoptotic response known as anoikis, which prevents metastasis. Cellular sensitivity to anoikis is compromised during the oncogenic epithelial-to-mesenchymal transition (EMT), through unknown mechanisms. We report here a pathway through which EMT confers anoikis resistance. NRAGE (neurotrophin receptor-interacting melanoma antigen) interacted with a component of the E-cadherin complex, ankyrin-G, maintaining NRAGE in the cytoplasm. Oncogenic EMT downregulated ankyrin-G, enhancing the nuclear localization of NRAGE. The oncogenic transcriptional repressor protein TBX2 interacted with NRAGE, repressing the tumor suppressor gene p14ARF. P14ARF sensitized cells to anoikis; conversely, the TBX2/NRAGE complex protected cells against anoikis by downregulating this gene. This represents a novel pathway for the regulation of anoikis by EMT and E-cadherin.
Collapse
|
14
|
Arrate MP, Vincent T, Odvody J, Kar R, Jones SN, Eischen CM. MicroRNA biogenesis is required for Myc-induced B-cell lymphoma development and survival. Cancer Res 2010; 70:6083-92. [PMID: 20587524 PMCID: PMC2906119 DOI: 10.1158/0008-5472.can-09-4736] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many tumor cells express globally reduced levels of microRNAs (miRNA), suggesting that decreased miRNA expression in premalignant cells contributes to their tumorigenic phenotype. In support of this, Dicer, an RNase III-like enzyme that controls the maturation of miRNA, was recently shown to function as a haploinsufficient tumor suppressor in nonhematopoietic cells. Because the Myc oncoprotein, a critical inducer of B-cell lymphomas, was reported to suppress the expression of multiple miRNAs in lymphoma cells, it was presumed that a deficiency of Dicer and subsequent loss of miRNA maturation would accelerate Myc-induced lymphoma development. We report here that, surprisingly, a haploinsufficiency of Dicer in B cells failed to promote B-cell malignancy or accelerate Myc-induced B-cell lymphomagenesis in mice. Moreover, deletion of Dicer in B cells of CD19-cre(+)/Emicro-myc mice significantly inhibited lymphomagenesis, and all lymphomas that did arise in these mice lacked functional Cre expression and retained at least one functional Dicer allele. Uncharacteristically, the lymphomas that frequently developed in the CD19-cre(+)/Dicer(fl/fl)/Emicro-myc mice were of very early precursor B-cell origin, a stage of B-cell development prior to Cre expression. Therefore, loss of Dicer function was not advantageous for lymphomagenesis, but rather, Dicer ablation was strongly selected against during Myc-induced B-cell lymphoma development. Moreover, deletion of Dicer in established B-cell lymphomas resulted in apoptosis, revealing that Dicer is required for B-cell lymphoma survival. Thus, Dicer does not function as a haploinsufficient tumor suppressor in B cells and is required for B-cell lymphoma development and survival.
Collapse
Affiliation(s)
- Maria Pia Arrate
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Tiffaney Vincent
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Jessica Odvody
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Rekha Kar
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, Worchester, Massachusetts 01655
| | - Christine M. Eischen
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| |
Collapse
|
15
|
Odvody J, Vincent T, Arrate MP, Grieb B, Wang S, Garriga J, Lozano G, Iwakuma T, Haines DS, Eischen CM. A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene 2010; 29:3287-96. [PMID: 20305689 PMCID: PMC2880662 DOI: 10.1038/onc.2010.82] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 12/31/2022]
Abstract
Mdm2 binding protein (MTBP) has been implicated in cell-cycle arrest and the Mdm2/p53 tumor suppressor pathway through its interaction with Mdm2. To determine the function of MTBP in tumorigenesis and its potential role in the Mdm2/p53 pathway, we crossed Mtbp-deficient mice to Emu-myc transgenic mice, in which overexpression of the oncogene c-Myc induces B-cell lymphomas primarily through inactivation of the Mdm2/p53 pathway. We report that Myc-induced B-cell lymphoma development in Mtbp heterozygous mice was profoundly delayed. Surprisingly, reduced levels of Mtbp did not lead to an increase in B-cell apoptosis or affect Mdm2. Instead, an Mtbp deficiency inhibited Myc-induced proliferation and the upregulation of Myc target genes necessary for cell growth. Consistent with a role in proliferation, Mtbp expression was induced by Myc and other factors that promote cell-cycle progression and was elevated in lymphomas from humans and mice. Therefore, Mtbp functioned independent of Mdm2 and was a limiting factor for the proliferative and transforming functions of Myc. Thus, Mtbp is a previously unrecognized regulator of Myc-induced tumorigenesis.
Collapse
Affiliation(s)
- Jessica Odvody
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Tiffaney Vincent
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Maria Pia Arrate
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Brian Grieb
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| | - Shuo Wang
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Judit Garriga
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Guillermina Lozano
- Department of Molecular Genetics Section of Cancer Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030
| | - Tomoo Iwakuma
- Department of Genetics, Louisiana State University Health Science Center, New Orleans, Louisiana 70112
| | - Dale S. Haines
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Christine M. Eischen
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, 37232
| |
Collapse
|
16
|
Sluss HK, Gannon H, Coles AH, Shen Q, Eischen CM, Jones SN. Phosphorylation of p53 serine 18 upregulates apoptosis to suppress Myc-induced tumorigenesis. Mol Cancer Res 2010; 8:216-22. [PMID: 20145032 PMCID: PMC2829875 DOI: 10.1158/1541-7786.mcr-09-0324] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ATM and p53 are critical regulators of the cellular DNA damage response and function as potent tumor suppressors. In cells undergoing ionizing radiation, ATM is activated by double-strand DNA breaks and phosphorylates the NH(2) terminus of p53 at serine residue 18. We have previously generated mice bearing an amino acid substitution at this position (p53S18A) and documented a role for p53 phosphorylation in DNA damage-induced apoptosis. In this present study, we have crossed E mu myc transgenic mice with our p53S18A mice to explore a role for ATM-p53 signaling in response to oncogene-induced tumorigenesis. Similar to DNA damage induced by ionizing radiation, expression of c-Myc in pre-B cells induces p53 serine 18 phosphorylation and Puma expression to promote apoptosis. E mu myc transgenic mice develop B-cell lymphoma more rapidly when heterozygous or homozygous for p53S18A alleles. However, E mu myc-induced tumorigenesis in p53S18A mice is slower than that observed in E mu myc mice deficient for either p53 or ATM, indicating that both p53-induced apoptosis and p53-induced growth arrest contribute to the suppression of B-cell lymphoma formation in E mu myc mice. These findings further reveal that oncogene expression and DNA damage activate the same ATM-p53 signaling cascade in vivo to regulate apoptosis and tumorigenesis.
Collapse
Affiliation(s)
- Hayla K. Sluss
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655 USA
| | - Hugh Gannon
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| | - Andrew H. Coles
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| | - Qichang Shen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| | - Christine M. Eischen
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655 USA
| |
Collapse
|
17
|
Le Guezennec X, Bulavin DV. WIP1 phosphatase at the crossroads of cancer and aging. Trends Biochem Sci 2009; 35:109-14. [PMID: 19879149 DOI: 10.1016/j.tibs.2009.09.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 01/07/2023]
Abstract
The PP2C family serine/threonine phosphatase WIP1 is characterized by distinctive oncogenic properties mediated by inhibitory functions on several tumor suppressor pathways, including ATM, CHK2, p38MAPK and p53. PPM1D, the gene encoding WIP1, is aberrantly amplified in different types of human primary cancers, and its deletion in mice results in a profound tumor-resistant phenotype. Numerous downstream targets of WIP1 have been identified, and genetic studies confirm that some play a part in tumorigenesis. Recent evidence highlights a new role for WIP1 in the regulation of a cell-autonomous decline in proliferation of certain self-renewing cell types, including pancreatic beta-cells, with advancing age. These emerging functions of WIP1 make it a potent therapeutic target against cancer and aging.
Collapse
Affiliation(s)
- Xavier Le Guezennec
- Institute of Molecular and Cell Biology, Cell Cycle Control and Tumorigenesis Group, 61 Biopolis Drive, Proteos, Singapore
| | | |
Collapse
|
18
|
Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo. Neoplasia 2009; 11:753-62. [PMID: 19649205 DOI: 10.1593/neo.09466] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/26/2009] [Accepted: 04/30/2009] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-mediated tumor suppression during pathogenesis. Amplification of the MYCN oncogene correlates with the most clinically aggressive form of the cancer, and MDM2, a primary inhibitor of the p53 tumor suppressor, is a direct transcriptional target of, and positively regulated by, both MYCN and MYCC. We hypothesize that MDM2 contributes to MYCN-driven tumorigenesis helping to ameliorate p53-dependent apoptotic oncogenic stress during tumor initiation and progression. To study the interaction of MYCN and MDM2, we generated an Mdm2 haploinsufficient transgenic animal model of neuroblastoma. In Mdm2(+/-)MYCN transgenics, tumor latency and animal survival are remarkably extended, whereas tumor incidence and growth are reduced. Analysis of the Mdm2/p53 pathway reveals remarkable p53 stabilization counter-balanced by epigenetic silencing of the p19(Arf) gene in the Mdm2 haploinsufficient tumors. In human neuroblastoma xenograft models, conditional small interfering RNA-mediated knockdown of MDM2 in cells expressing wild-type p53 dramatically suppresses tumor growth in a p53-dependent manner. In summary, we provided evidence for a crucial role for direct inhibition of p53 by MDM2 and suppression of the p19(ARF)/p53 axis in neuroblastoma tumorigenesis, supporting the development of therapies targeting these pathways.
Collapse
|
19
|
Wang YV, Leblanc M, Wade M, Jochemsen AG, Wahl GM. Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA-damage-activated kinases. Cancer Cell 2009; 16:33-43. [PMID: 19573810 PMCID: PMC2758524 DOI: 10.1016/j.ccr.2009.05.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/10/2009] [Accepted: 05/06/2009] [Indexed: 01/28/2023]
Abstract
Mdmx is a critical negative regulator of the p53 pathway that is stoichiometrically limiting in some tissues. Posttranslational modification and degradation of Mdmx after DNA damage have been proposed to be essential for p53 activation. We tested this model in vivo, where critical stoichiometric relationships are preserved. We generated an Mdmx mutant mouse in which three conserved serines (S341, S367, S402) targeted by DNA-damage-activated kinases were replaced by alanines to investigate whether modifications of these residues are important for Mdmx degradation and p53 activation. The mutant mice were remarkably resistant to radiation, and very susceptible to Myc-induced lymphomagenesis. These data demonstrate that Mdmx downregulation is crucial for effective p53-mediated radiation responses and tumor suppression in vivo.
Collapse
Affiliation(s)
- Yunyuan V. Wang
- Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Mathias Leblanc
- Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Mark Wade
- Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Aart G. Jochemsen
- Department of Molecular and Cell Biology, Leiden University Medical Center, 2300 ZA Leiden, The Netherlands
| | - Geoffrey M. Wahl
- Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
20
|
Kondo I, Iida S, Takagi Y, Sugihara K. MDM2 mRNA expression in the p53 pathway may predict the potential of invasion and liver metastasis in colorectal cancer. Dis Colon Rectum 2008; 51:1395-402. [PMID: 18607552 DOI: 10.1007/s10350-008-9382-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 12/23/2007] [Accepted: 01/05/2008] [Indexed: 02/08/2023]
Abstract
PURPOSE The p53/MDM2/p14ARF pathway is one of the major signaling cascades involved in the regulation of apoptosis. Although many tumors have been reported to show disruption of the p53/MDM2/p14ARF pathway, few studies have examined p53, MDM2, and p14ARF simultaneously in colorectal carcinoma. The present study was undertaken to clarify whether correlations exist among MDM2, p53, and p14ARF in colorectal cancer. METHODS We determined the presence of mutations in the p53 gene, MDM2 expression, and methylation status of the p14ARF in 97 primary colorectal carcinoma specimens. Associations with survival and clinicopathologic factors were investigated. RESULTS At least one abnormality of these three molecules was found in 82 (84 percent) tumors. We observed a significant inverse association between MDM2 expression and tumor invasion (P = 0.01). Furthermore, the presence of liver metastasis was also significantly associated with low MDM2 expression (P = 0.02). CONCLUSIONS The results suggest that disruption of the p53/MDM2/p14ARF pathway may frequently participate in colonic carcinogenesis and that MDM2 expression status may be a factor in the prediction of potential invasion and liver metastasis of colorectal carcinomas.
Collapse
Affiliation(s)
- Ito Kondo
- Department of Surgical Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
21
|
Wang P, Lushnikova T, Odvody J, Greiner TC, Jones SN, Eischen CM. Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 2007; 27:1590-8. [PMID: 17828300 DOI: 10.1038/sj.onc.1210788] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mdm2, a regulator of the p53 tumor suppressor, is frequently overexpressed in lymphomas, including lymphomas that have inactivated p53. However, the biological consequences of Mdm2 overexpression in lymphocytes are not fully resolved. Here, we report that increased expression of Mdm2 in B cells augmented proliferation and reduced susceptibility to p53-dependent apoptosis, which was due to inhibition of p53 and suppression of p21 expression. Notably, developing and mature B cells from Mdm2 transgenic mice had an increased frequency of chromosomal/chromatid breaks and/or aneuploidy. This Mdm2-mediated genome instability occurred at a similar frequency as that in B cells overexpressing the oncogene c-Myc, but the chromosomal instability was not further enhanced when Mdm2 and c-Myc were overexpressed together. Elevated Mdm2 expression alone increased the occurrence of B-cell transformation in vivo and cooperated with c-Myc overexpression, resulting in an acceleration of B-cell lymphomagenesis. In addition, the frequency of p53 mutations was reduced, but not eliminated, in lymphomas arising in Mdm2/Emu-myc double transgenic mice. Therefore, increased Mdm2 expression facilitated B-cell lymphomagenesis, in part, through regulation of p53 by altering B-cell proliferation and susceptibility to apoptosis, and by inducing chromosomal instability.
Collapse
Affiliation(s)
- P Wang
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
22
|
Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S, Shohet JM. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 2006; 5:2358-65. [PMID: 16985070 DOI: 10.1158/1535-7163.mct-06-0305] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Novel therapeutic approaches are urgently needed for high-stage neuroblastoma, a major therapeutic challenge in pediatric oncology. The majority of neuroblastoma tumors are p53 wild type with intact downstream p53 signaling pathways. We hypothesize that stabilization of p53 would sensitize this aggressive tumor to genotoxic chemotherapy via inhibition of MDM2, the primary negative upstream regulator of p53. We used pharmacologic inhibition of the MDM2-p53 interaction with the small-molecule inhibitor Nutlin and studied the subsequent response to chemotherapy in neuroblastoma cell lines. We did 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and terminal deoxynucleotidyl transferase assays to measure proliferation and apoptosis in several cell lines (IMR32, MYCN3, and JF) treated with combinations of cisplatin, etoposide, and Nutlin. We found consistent and robust decreases in proliferation and increases in apoptosis with the addition of Nutlin 3a to etoposide or cisplatin in all cell lines tested and no response to the inactive Nutlin 3b enantiomer. We also show a rapid and robust accumulation of p53 protein by Western blot in these cells within 1 to 2 hours of treatment. We conclude that MDM2 inhibition dramatically enhances the activity of genotoxic drugs in neuroblastoma and should be considered as an adjuvant to chemotherapy for this aggressive pediatric cancer and for possibly other p53 wild-type solid tumors.
Collapse
Affiliation(s)
- Eveline Barbieri
- Texas Children's Cancer Center and Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The discovery that the Myc oncoprotein could drive cells to undergo apoptosis in addition to its well-established role in cellular proliferation came in the early 1990s, at the beginning of a period of explosive research on cell death. Experimental evidence revealed that Myc sensitises cells to a wide range of death stimuli and abrogating this biological activity plays a profound role in tumorigenesis. Our understanding of the molecular mechanism and genetic programme of Myc-induced apoptosis remains shrouded in mystery and the focus of much attention. In this review, we will discuss established data, recent advances and future objectives regarding the regulatory processes and the functional cooperators that effect and abrogate apoptosis induced by Myc.
Collapse
Affiliation(s)
- Natalie Meyer
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute/Princess Margaret Hospital, Department of Medical Biophysics, University of Toronto, Toronto, Ont, Canada
| | | | | |
Collapse
|
24
|
Veríssimo F, Silva E, Morris JD, Pepperkok R, Jordan P. Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway. Oncogene 2006; 25:4172-82. [PMID: 16501604 DOI: 10.1038/sj.onc.1209449] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The subfamily of WNK (with no K= lysine) protein kinases has four human members and germline mutations in the WNK1 and WNK4 genes were recently found to cause pseudohypoaldosteronism type II, a familial hypertension disease. Here, we describe cloning and functional analysis of a further WNK member, human WNK3. Endogenous WNK3 protein is an active protein kinase when immunoprecipitated from cells and its overexpression increases the survival of HeLa cells by delaying the onset of apoptosis. Suppression of endogenous WNK3 protein by RNA interference accelerates the apoptotic response and promotes the activation of caspase-3. The mechanism of WNK3 action involves interaction with procaspase-3 and heat-shock protein 70. These results demonstrate a role for WNK3 in promoting cell survival and suggest a mechanism at the level of procaspase-3 activation.
Collapse
Affiliation(s)
- F Veríssimo
- Centro de Genética Humana, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
25
|
Wang P, Greiner TC, Lushnikova T, Eischen CM. Decreased Mdm2 expression inhibits tumor development induced by loss of ARF. Oncogene 2006; 25:3708-18. [PMID: 16491126 DOI: 10.1038/sj.onc.1209411] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tumor suppressor p14/p19(ARF) regulates Mdm2, which is known for controlling the p53 tumor suppressor. Here we report that loss of one allele of Mdm2 in cells that lack ARF resulted in a decreased rate of proliferation, fewer chromosomal aberrations, and suppression of Ras-induced transformation. Moreover, a haploinsufficiency of Mdm2 inhibited spontaneous tumor development in ARF-null mice. Remarkably, Mdm2(+/-)ARF(-/-) mice survived an average of 6 months longer than Mdm2(+/+)ARF(-/-) mice. The spectrum of tumors that arose in Mdm2(+/-)ARF(-/-) mice did not significantly differ from those that developed in mice lacking only ARF. However, the extended tumor latency allowed for the emergence of multiple primary tumors in a third of the Mdm2(+/-)ARF(-/-) mice, as compared to the single tumor type that arose in ARF-null only mice. Therefore, a decrease in Mdm2 levels restored regulation of critical cellular processes that are altered during transformation and that occur in the absence of ARF. Our findings also indicate that Mdm2 can function independently from ARF and imply that targeting Mdm2 in tumors that lack ARF expression should be an effective therapeutic approach.
Collapse
Affiliation(s)
- P Wang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, 68198, USA
| | | | | | | |
Collapse
|
26
|
Helmrich A, Lee S, O'Brien P, Dörken B, Lowe SW, Schröck E, Schmitt CA. Recurrent chromosomal aberrations in INK4a/ARF defective primary lymphomas predict drug responses in vivo. Oncogene 2005; 24:4174-82. [PMID: 15824738 DOI: 10.1038/sj.onc.1208600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting responsiveness to anticancer therapy based on molecular findings at diagnosis is important to optimize treatment decisions. Although clinical outcome correlates with distinct mutations in some cancer entities, treatment responses within these lesion-stratified subgroups still remain heterogeneous, underscoring the need for additional prognosticators. We previously demonstrated that defined genetic defects at the INK4a/ARF locus, which encodes the tumor suppressors p16INK4a and ARF, not only accelerated lymphomagenesis in the Emu-myc transgenic mouse but also interfered with treatment sensitivity. In this study, we take a nonbiased genome-wide approach to examine whether the responsiveness of these lymphomas can be further stratified based on cytogenetic information at diagnosis. Indeed, using spectral karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization in 38 primary lymphomas, we find recurrent cytogenetic alterations that refine the predictive value of INK4a/ARF lesions on drug responses in vivo: gain of chromosome 14, which was never detected in INK4a/ARFnull lymphomas, defined an ARFnull subgroup with superior treatment outcome. Gain of chromosome 6 was identified as a recurrent chromosomal aberration that predisposed ARFnull tumors to their subsequent INK4a loss during therapy. These data illustrate how cytogenetic information from cancer specimens might complement established prognostic markers and may improve anticancer treatment strategies.
Collapse
Affiliation(s)
- Anne Helmrich
- Institute of Clinical Genetics, Medical Faculty Carl Gustav Carus, University of Technology, 01307 Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM. Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 2005; 280:18771-81. [PMID: 15734743 DOI: 10.1074/jbc.m413387200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mdm2 directly regulates the p53 tumor suppressor. However, Mdm2 also has p53-independent activities, and the pathways that mediate these functions are unresolved. Here we report the identification of a specific association of Mdm2 with Mre11, Nbs1, and Rad50, a DNA double strand break repair complex. Mdm2 bound to the Mre11-Nbs1-Rad50 complex in primary cells and in cells containing inactivated p53 or p14/p19ARF, a regulator of Mdm2. Further analysis revealed that Mdm2 directly bound to Nbs1 but not to Mre11 or Rad50. Amino acids 198-314 of Mdm2 were required for Mdm2/Nbs1 association, and neither the N terminus forkhead-associated and breast cancer C-terminal domains nor the C terminus Mre11 binding domain of Nbs1 mediated the interaction of Nbs1 with Mdm2. Mdm2 co-localized with Nbs1 to sites of DNA damage following gamma-irradiation. Notably, Mdm2 overexpression inhibited DNA double strand break repair, and this was independent of p53 and ARF, the alternative reading frame of the Ink4alocus. The delay in DNA repair imposed by Mdm2 required the Nbs1 binding domain of Mdm2, but the ubiquitin ligase domain in Mdm2 was dispensable. Therefore, Nbs1 is a novel p53-independent Mdm2 binding protein and links Mdm2 to the Mre11-Nbs1-Rad50-regulated DNA repair response.
Collapse
Affiliation(s)
- Jodi R Alt
- Eppley Institute for Research in Cancer and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lane DP. Exploiting the p53 pathway for the diagnosis and therapy of human cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 70:489-497. [PMID: 16869788 DOI: 10.1101/sqb.2005.70.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
After 26 years of research and the publication of 38,000 papers, our knowledge of the p53 human tumor suppressor protein is impressive. Over half of all human cancers have mutations in the p53 gene, and the p53 pathway in animal models dramatically regulates the cellular response to ionizing radiation and chemotherapeutic drugs. The ability to translate this knowledge to patient benefit is, however, still in its infancy. The many approaches to determining the status of the p53 pathway in human tumor biopsy samples and the attempts to develop p53-selective therapies are described. A great deal of our knowledge of the p53 system remains incomplete, and the issue of how to best conduct translational research in cancer is debated using the difficulties around the p53 system as an example. The need for a more unified and coordinated approach to critical technological developments and clinical trial protocols is discussed.
Collapse
Affiliation(s)
- D P Lane
- Institute of Cell and Molecular Biology, Singapore
| |
Collapse
|