1
|
KNTC1, regulated by HPV E7, inhibits cervical carcinogenesis partially through Smad2. Exp Cell Res 2023; 423:113458. [PMID: 36608837 DOI: 10.1016/j.yexcr.2023.113458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Cervical cancer is the second most common malignancy of the female reproductive tract worldwide. Although cervical cancer is caused by human papillomavirus (HPV) infection, its underlying pathogenesis requires further investigation. The present study investigated the role of kinetochore associated protein 1 (KNTC1) in cervical cancer and its association with the key virus oncoprotein, HPV E7. A series of bioinformatic analyses revealed that KNTC1 might be involved in the tumorigenesis of multiple human malignancies, including cervical cancer. Tissue microarray analysis showed that in vivo KNTC1 expression was higher in high-grade squamous intraepithelial lesions (HSILs) than in normal cervix and even higher in cervical cancer. In vitro silencing of KNTC1 increased the proliferation, invasion and migration of cervical cancer cell lines. Although not affecting apoptosis, KNTC1 silencing significantly promoted G1/S phase transition of the cell cycle. High-throughput analysis of mRNA expression showed that KNTC1 could regulate its downstream target protein Smad2 at the transcriptional level. Moreover, as the key oncoprotein of the virus, HPV E7 could inhibit the expression of KNTC1 protein, and decrease Smad2 protein expression with or without the aid of KNTC1. These results indicated that KNTC1 is a novel tumor suppressor that can impede the initiation and progression of cervical carcinoma, providing insight into the molecular mechanism by which HPV induces cervical cancer.
Collapse
|
2
|
Quiroz-Reyes AG, González-Villarreal CA, Martínez-Rodriguez H, Said-Fernández S, Salinas-Carmona MC, Limón-Flores AY, Soto-Domínguez A, Padilla-Rivas G, Montes De Oca-Luna R, Islas JF, Garza-Treviño EN. A combined antitumor strategy of separately transduced mesenchymal stem cells with soluble TRAIL and IFNβ produces a synergistic activity in the reduction of lymphoma and mice survival enlargement. Mol Med Rep 2022; 25:206. [PMID: 35485288 PMCID: PMC9073847 DOI: 10.3892/mmr.2022.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022] Open
Abstract
As the understanding of cancer grows, new therapies have been proposed to improve the well-known limitations of current therapies, whose efficiency relies mostly on early detection, surgery and chemotherapy. Mesenchymal stem cells (MSCs) have been introduced as a promissory and effective therapy. This fact is due to several useful features of MSCs, such as their accessibility and easy culture and expansion in vitro, and their remarkable ability for ‘homing’ towards tumors, allowing MSCs to exert their anticancer effects directly into tumors. Additionally, MSCs offer the practicability of being genetically engineered to carry anticancer genes, increasing their specificity and efficacy for fighting tumors. In the present study, the antitumoral efficacy and post-implant survival of mice bearing lymphomas implanted intratumorally were determined using mouse bone marrow-derived (BM)-MSCs transduced with soluble TRAIL (sTRAIL), full length TRAIL (flTRAIL), or interferon β (IFNβ), naïve BM-MSCs, or combinations of these. The percentage of surviving mice was determined once all not-implanted mice succumbed. It was found that the percentage of surviving mice implanted with the combination of MSCs-sTRAIL and MSCs-IFN-β was 62.5%. Lymphoma model achieved 100% fatality in the non-treated group by day 41. On the other hand, the percentage of surviving mice implanted with MSCs-sTRAIL was 50% and with MSCs-INFβ 25%. All the aforementioned differences were statistically significant (P<0.05). In conclusion, all implants exhibited tumor size reduction, growth delay, or apparent tumor clearance. MSCs proved to be effective anti-lymphoma agents; additionally, the combination of soluble TRAIL and IFN-β resulted in the most effective antitumor and life enlarging treatment, showing an additive antitumoral effect compared with individual treatments.
Collapse
Affiliation(s)
- Adriana G Quiroz-Reyes
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Carlos A González-Villarreal
- Laboratory of Molecular Genetics, Department of Basic Sciences, University of Monterrey, Monterrey, Nuevo León 66238, Mexico
| | - Herminia Martínez-Rodriguez
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Salvador Said-Fernández
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Mario César Salinas-Carmona
- Department of Immunology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Alberto Y Limón-Flores
- Department of Immunology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Gerardo Padilla-Rivas
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Roberto Montes De Oca-Luna
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Jose F Islas
- Department of Histology, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| | - Elsa N Garza-Treviño
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
3
|
Chen L, Luan S, Xia B, Liu Y, Gao Y, Yu H, Mu Q, Zhang P, Zhang W, Zhang S, Wei G, Yang M, Li K. Integrated analysis of HPV-mediated immune alterations in cervical cancer. Gynecol Oncol 2018; 149:248-255. [PMID: 29572030 DOI: 10.1016/j.ygyno.2018.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. METHODS 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. RESULTS Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). CONCLUSIONS We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer.
Collapse
Affiliation(s)
- Long Chen
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China.
| | - Shaohong Luan
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Baoguo Xia
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Yansheng Liu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Yuan Gao
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Hongyan Yu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Qingling Mu
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Ping Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Weina Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Shengmiao Zhang
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266011, PR China
| | - Guopeng Wei
- Gezhi Research Lab, Building T1, No.722 Yizhou Avenue, Chengdu 610000, PR China
| | - Min Yang
- Gezhi Research Lab, Building T1, No.722 Yizhou Avenue, Chengdu 610000, PR China
| | - Ke Li
- Gezhi Research Lab, Building T1, No.722 Yizhou Avenue, Chengdu 610000, PR China
| |
Collapse
|
4
|
Chiantore MV, Mangino G, Iuliano M, Zangrillo MS, De Lillis I, Vaccari G, Accardi R, Tommasino M, Fiorucci G, Romeo G. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6- and E7-transformed keratinocytes. Cytokine 2017; 89:235-238. [PMID: 26748726 DOI: 10.1016/j.cyto.2015.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/10/2015] [Accepted: 12/20/2015] [Indexed: 12/30/2022]
Abstract
Human Papilloma Viruses (HPVs) are the causative agents of cervical cancer although other types of cancers are associated with HPV infection. Type I Interferons can interfere with HPV E6- and/or E7-dependent transformation and can affect microRNA (miRNA) expression. Cancer cells show a specific pattern of miRNA expression and HPVs are able to modulate miRNAs expressed in infected cells. Keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38) were studied to analyze the involvement of HPV oncoproteins in the anti-proliferative activity of IFN-β. In view of our previous data showing senescence induction by the cytokine in K38 cells, we observe that IFN-β treatment leads to p53-indipendent apoptosis in K16 cells whereas induces senescence in K16 cells if E6 is silenced and p53 expression is restored. The levels of selected miRNAs, deregulated in K16 and K38 cells, can be modulated by IFN-β when E6 and E7 proteins of HPV-16, but not HPV-38, are expressed.
Collapse
Affiliation(s)
- Maria Vincenza Chiantore
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Maria Simona Zangrillo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Ilaria De Lillis
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Gabriele Vaccari
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Rosita Accardi
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372 Lyon, France
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 69372 Lyon, France
| | - Gianna Fiorucci
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00161 Rome, Italy
| | - Giovanna Romeo
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00161 Rome, Italy.
| |
Collapse
|
5
|
Azad AKM, Lawen A, Keith JM. Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling. BMC SYSTEMS BIOLOGY 2015; 9:2. [PMID: 25599599 PMCID: PMC4307189 DOI: 10.1186/s12918-014-0135-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/11/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Initial success of inhibitors targeting oncogenes is often followed by tumor relapse due to acquired resistance. In addition to mutations in targeted oncogenes, signaling cross-talks among pathways play a vital role in such drug inefficacy. These include activation of compensatory pathways and altered activities of key effectors in other cell survival and growth-associated pathways. RESULTS We propose a computational framework using Bayesian modeling to systematically characterize potential cross-talks among breast cancer signaling pathways. We employed a fully Bayesian approach known as the p 1-model to infer posterior probabilities of gene-pairs in networks derived from the gene expression datasets of ErbB2-positive breast cancer cell-lines (parental, lapatinib-sensitive cell-line SKBR3 and the lapatinib-resistant cell-line SKBR3-R, derived from SKBR3). Using this computational framework, we searched for cross-talks between EGFR/ErbB and other signaling pathways from Reactome, KEGG and WikiPathway databases that contribute to lapatinib resistance. We identified 104, 188 and 299 gene-pairs as putative drug-resistant cross-talks, respectively, each comprised of a gene in the EGFR/ErbB signaling pathway and a gene from another signaling pathway, that appear to be interacting in resistant cells but not in parental cells. In 168 of these (distinct) gene-pairs, both of the interacting partners are up-regulated in resistant conditions relative to parental conditions. These gene-pairs are prime candidates for novel cross-talks contributing to lapatinib resistance. They associate EGFR/ErbB signaling with six other signaling pathways: Notch, Wnt, GPCR, hedgehog, insulin receptor/IGF1R and TGF- β receptor signaling. We conducted a literature survey to validate these cross-talks, and found evidence supporting a role for many of them in contributing to drug resistance. We also analyzed an independent study of lapatinib resistance in the BT474 breast cancer cell-line and found the same signaling pathways making cross-talks with the EGFR/ErbB signaling pathway as in the primary dataset. CONCLUSIONS Our results indicate that the activation of compensatory pathways can potentially cause up-regulation of EGFR/ErbB pathway genes (counteracting the inhibiting effect of lapatinib) via signaling cross-talk. Thus, the up-regulated members of these compensatory pathways along with the members of the EGFR/ErbB signaling pathway are interesting as potential targets for designing novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- A K M Azad
- School of Mathematical Science, Monash University, Wellington Road, Clayton, VIC, Australia.
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Wellington Road, Clayton, VIC, Australia.
| | - Jonathan M Keith
- School of Mathematical Science, Monash University, Wellington Road, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Pazarentzos E, Mahul-Mellier AL, Datler C, Chaisaklert W, Hwang MS, Kroon J, Qize D, Osborne F, Al-Rubaish A, Al-Ali A, Mazarakis ND, Aboagye EO, Grimm S. IκΒα inhibits apoptosis at the outer mitochondrial membrane independently of NF-κB retention. EMBO J 2014; 33:2814-28. [PMID: 25361605 PMCID: PMC4282558 DOI: 10.15252/embj.201488183] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.
Collapse
Affiliation(s)
| | | | - Christoph Datler
- Division of Experimental Medicine, Imperial College London, London, UK
| | | | - Ming-Shih Hwang
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Jan Kroon
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Ding Qize
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Foy Osborne
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Abdullah Al-Rubaish
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | - Amein Al-Ali
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | | | - Eric O Aboagye
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Stefan Grimm
- Division of Experimental Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Interferon-β produces synergistic combinatory anti-tumor effects with cisplatin or pemetrexed on mesothelioma cells. PLoS One 2013; 8:e72709. [PMID: 23977343 PMCID: PMC3745385 DOI: 10.1371/journal.pone.0072709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/15/2013] [Indexed: 12/29/2022] Open
Abstract
Interferons (IFNs) have been tested for the therapeutic effects in various types of malignancy, but mechanisms of the anti-tumors effects and the differential biological activities among IFN members are dependent on respective cell types. In this study, we examined growth inhibitory activities of type I and III IFNs on 5 kinds of human mesothelioma cells bearing wild-type p53 gene, and showed that type I IFNs but not type III IFNs decreased the cell viabilities. Moreover, growth inhibitory activities and up-regulated expression levels of the major histocompatibility complexes class I antigens were greater with IFN-β than with IFN-α treatments. Cell cycle analyses demonstrated that type I IFNs increased S- and G2/M-phase populations, and subsequently sub-G1-phase fractions. The cell cycle changes were also greater with IFN-β than IFN-α treatments, and these data collectively showed that IFN-β had stronger biological activities than IFN-α in mesothelioma. Type I IFNs-treated cells increased p53 expression and the phosphorylation levels, and activated apoptotic pathways. A combinatory use of IFN-β and cisplatin or pemetrexed, both of which are the current first-line chemotherapeutic agents for mesothelioma, produced synergistic anti-tumor effects, which were also evidenced by increased sub-G1-phase fractions. These data demonstrated firstly to our knowledge that IFN-β produced synergistic anti-tumor effects with cisplatin or pemetrexed on mesothelioma through up-regulated p53 expression.
Collapse
|
8
|
Halim TA, Farooqi AA, Zaman F. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell Int 2013; 13:61. [PMID: 23773282 PMCID: PMC3691735 DOI: 10.1186/1475-2867-13-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials.
Collapse
Affiliation(s)
- Talha Abdul Halim
- Laboratory for Translational oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|
9
|
Type I interferons induce apoptosis by balancing cFLIP and caspase-8 independent of death ligands. Mol Cell Biol 2012; 33:800-14. [PMID: 23230268 DOI: 10.1128/mcb.01430-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferons induce a pleiotropy of responses through binding the same cell surface receptor. Here we investigated the molecular mechanism driving interferon-induced apoptosis. Using a nonbiased small interfering RNA (siRNA) screen, we show that silencing genes whose products are directly engaged in the initiation of interferon signaling completely abrogate the interferon antiproliferative response. Apoptosis-related genes such as the caspase-8, cFLIP, and DR5 genes specifically interfere with interferon-induced apoptosis, which we found to be independent of the activity of death ligands. The one gene for which silencing resulted in the strongest proapoptotic effect upon interferon signaling is the cFLIP gene, where silencing shortened the time of initiation of apoptosis from days to hours and increased dramatically the population of apoptotic cells. Thus, cFLIP serves as a regulator for interferon-induced apoptosis. A shift over time in the balance between cFLIP and caspase-8 results in downstream caspase activation and apoptosis. While gamma interferon (IFN-γ) also causes caspase-8 upregulation, we suggest that it follows a different path to apoptosis.
Collapse
|
10
|
Lau SLY, Yuen ML, Kou CYC, Au KW, Zhou J, Tsui SKW. Interferons induce the expression of IFITM1 and IFITM3 and suppress the proliferation of rat neonatal cardiomyocytes. J Cell Biochem 2012; 113:841-7. [PMID: 22021094 PMCID: PMC7166870 DOI: 10.1002/jcb.23412] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cardiovascular diseases have been one of the leading killers among the human population worldwide. During the heart development, cardiomyocytes undergo a transition from hyperplastic to hypertrophic growth with an unclear underlying mechanism. In this study, we aim to investigate how interferons differentially stimulate the interferon-inducible transmembrane (IFITM) family proteins and further be involved in the process of heart development. The expression levels of three IFITM family members, IFITM1, IFITM2, and IFITM3 were investigated during Sprague-Dawley rat myocardial development and differentiation of H9C2 cardiomyocytes. The effects of interferon-α, -β, and -γ on DNA synthesis in H9C2 cells were also characterized. Up-regulation of IFITM1 and IFITM3 were observed during the heart development of Sprague-Dawley rat and the differentiation of H9C2 cells. Moreover, interferon-α and -β induce the expression of IFITM3 while interferon-γ up-regulates IFITM1. Finally, interferon-α and -β were demonstrated to inhibit DNA synthesis during H9C2 cell differentiation. Our results indicated interferons are potentially involved in the differentiation and cell proliferation during heart development.
Collapse
Affiliation(s)
- Samantha Lai-Yee Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | | | |
Collapse
|
11
|
Interferon-β induces cellular senescence in cutaneous human papilloma virus-transformed human keratinocytes by affecting p53 transactivating activity. PLoS One 2012; 7:e36909. [PMID: 22615843 PMCID: PMC3353995 DOI: 10.1371/journal.pone.0036909] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Interferon (IFN)-β inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-β treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-β appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-β treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative ΔNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer.
Collapse
|
12
|
Development of an antibody proteomics system using a phage antibody library for efficient screening of biomarker proteins. Biomaterials 2011; 32:162-9. [DOI: 10.1016/j.biomaterials.2010.09.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
|
13
|
Schreiber G, Walter MR. Cytokine-receptor interactions as drug targets. Curr Opin Chem Biol 2010; 14:511-9. [PMID: 20619718 DOI: 10.1016/j.cbpa.2010.06.165] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/30/2010] [Accepted: 06/08/2010] [Indexed: 12/24/2022]
Abstract
Cytokines are essential proteins that exert potent control over entire cell populations to fight infections and other pathologies, but can by themselves cause disease. Therefore, cytokine-related drugs act either by stimulating or blocking their activities. Our knowledge of the structures of cytokine-receptor complexes, the biophysical basis of their binding, and their mode of biological activation has substantially increased in recent years. This knowledge has been translated into new drugs and drug candidates. This review summarizes our current understanding of the receptor-mediated activity of cytokines, their relation to health and disease, and the agents in use to activate and block their actions.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
14
|
NAGANO K, IMAI S, NAKAGAWA S, TSUNODA SI, TSUTSUMI Y. From Disease Proteomics to Biomarker Development-Establishment of Antibody Proteomics Technology and Exploration of Cancer-related Biomarkers-. YAKUGAKU ZASSHI 2010; 130:487-92. [DOI: 10.1248/yakushi.130.487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuya NAGANO
- Laboratory of Pharmaceutical Proteomics (LPP), National Institute of Biomedical Innovation (NiBio)
| | - Sunao IMAI
- Laboratory of Pharmaceutical Proteomics (LPP), National Institute of Biomedical Innovation (NiBio)
| | - Shinsaku NAKAGAWA
- Graduate School of Pharmaceutical Sciences, Osaka University
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| | - Shin-ichi TSUNODA
- Laboratory of Pharmaceutical Proteomics (LPP), National Institute of Biomedical Innovation (NiBio)
- Graduate School of Pharmaceutical Sciences, Osaka University
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| | - Yasuo TSUTSUMI
- Laboratory of Pharmaceutical Proteomics (LPP), National Institute of Biomedical Innovation (NiBio)
- Graduate School of Pharmaceutical Sciences, Osaka University
- The Center for Advanced Medical Engineering and Informatics, Osaka University
| |
Collapse
|
15
|
Ekmekcioglu S, Mumm JB, Udtha M, Chada S, Grimm EA. Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24. Cytokine 2008; 43:34-44. [PMID: 18511292 DOI: 10.1016/j.cyto.2008.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 01/28/2023]
Abstract
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.
Collapse
Affiliation(s)
- Suhendan Ekmekcioglu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 362, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
16
|
Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology 2007; 365:435-45. [PMID: 17493653 PMCID: PMC7103336 DOI: 10.1016/j.virol.2007.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/04/2007] [Accepted: 04/05/2007] [Indexed: 01/01/2023]
Abstract
Manipulation of the cell cycle and induction of apoptosis are two common strategies used by many viruses to regulate their infection cycles. In cells infected with coronaviruses, cell cycle perturbation and apoptosis were observed in several reports. However, little is known about how these effects are brought out, and how manipulation of the functions of host cells would influence the replication cycle of coronavirus. In this study, we demonstrate that infection with coronavirus infectious bronchitis virus (IBV) imposed a growth-inhibitory effect on cultured cells by inducing cell cycle arrest at S and G2/M phases in both p53-null cell line H1299 and Vero cells. This cell cycle arrest was catalyzed by the modulation of various cell cycle regulatory genes and the accumulation of hypophosphorylated RB, but was independent of p53. Proteasome inhibitors, such as lactacystin and NLVS, could bypass the IBV-induced S-phase arrest by restoring the expression of corresponding cyclin/Cdk complexes. Our data also showed that cell cycle arrest at both S- and G2/M-phases was manipulated by IBV for the enhancement of viral replication. In addition, apoptosis induced by IBV at late stages of the infection cycle in cultured cells was shown to be p53-independent. This conclusion was drawn based on the observations that apoptosis occurred in both IBV-infected H1299 and Vero cells, and that IBV infection did not affect the expression of p53 in host cells.
Collapse
Affiliation(s)
- Frank Q Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
17
|
Kalie E, Jaitin DA, Abramovich R, Schreiber G. An interferon alpha2 mutant optimized by phage display for IFNAR1 binding confers specifically enhanced antitumor activities. J Biol Chem 2007; 282:11602-11. [PMID: 17310065 DOI: 10.1074/jbc.m610115200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
All alpha-interferons (IFNalpha) bind the IFNAR1 receptor subunit with low affinity. Increasing the binding affinity was shown to specifically increase the antiproliferative potency of IFNalpha2. Here, we constructed a phage display library by randomizing three positions on IFNalpha2 previously shown to confer weak binding to IFNAR1. The tightest binding variant selected, comprised of mutations H57Y, E58N, and Q61S (YNS), was shown to bind IFNAR1 60-fold tighter compared with wild-type IFNalpha2, and 3-fold tighter compared with IFNbeta. Binding of YNS to IFNAR2 was comparable with wild-type IFNalpha2. The YNS mutant conferred a 150-fold higher antiproliferative potency in WISH cells compared with wild-type IFNalpha2, whereas its antiviral activity was increased by only 3.5-fold. The high antiproliferative activity was related to an induction of apoptosis, as demonstrated by annexin V binding assays, and to specific gene induction, particularly TRAIL. To determine the potency of the YNS mutant in a xenograft cancer model, we injected it twice a week to nude mice carrying transplanted MDA231 human breast cancer cells. After 5 weeks, no tumors remained in mice treated with YNS, whereas most mice treated with wild-type IFNalpha2 showed visible tumors. Histological analysis of these tumors showed a significant anti-angiogenic effect of YNS, compared with wild-type IFNalpha2. This work demonstrates the application of detailed biophysical understanding in the process of protein engineering, yielding an interferon variant with highly increased biological potency.
Collapse
Affiliation(s)
- Eyal Kalie
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|