1
|
Guo LM, Li J, Qi PP, Wang JB, Ghanem H, Qing L, Zhang HM. The TATA-box binding protein-associated factor TAF12b facilitates the degradation of type B response regulators to negatively regulate cytokinin signaling. PLANT COMMUNICATIONS 2024; 5:101076. [PMID: 39228128 PMCID: PMC11671765 DOI: 10.1016/j.xplc.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
Cytokinins (CKs) are one of the important classes of plant hormones essential for plant growth and development. TATA-box binding protein-associated factor 12b (TAF12b) is involved in CK signaling, but its molecular and biochemical mechanisms are not fully understood. In this study, TAF12b of Nicotiana benthamiana (NbTAF12b) was found to mediate the CK response by directly interacting with type B response regulators (B-RRs), positive regulators of CK signaling, and inhibiting their transcriptional activities. As a transcriptional co-factor, TAF12b specifically facilitated the proteasomal degradation of non-phosphorylated B-RRs by recruiting the KISS ME DEADLY family of F-box proteins. Such interactions between TAF12b and B-RRs also occur in other plant species. Genetic transformation experiments showed that overexpression of NbTAF12b attenuates the CK-hypersensitive phenotype conferred by NbRR1 overexpression. Taken together, these results suggest a conserved mechanism in which TAF12b negatively regulates CK responses by promoting 26S proteasome-mediated B-RR degradation in multiple plant species, providing novel insights into the regulatory network of CK signaling in plants.
Collapse
Affiliation(s)
- Liu-Ming Guo
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Li
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Pan-Pan Qi
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jie-Bing Wang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing 400716, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing 400716, China; National Citrus Engineering Research Center, Southwest University, Chongqing 400712, China.
| | - Heng-Mu Zhang
- Laboratory of Virology, Innovation Center of Chinese Medicine Crops, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Paerhati P, Liu J, Jin Z, Jakoš T, Zhu S, Qian L, Zhu J, Yuan Y. Advancements in Activating Transcription Factor 5 Function in Regulating Cell Stress and Survival. Int J Mol Sci 2022; 23:ijms23137129. [PMID: 35806136 PMCID: PMC9266924 DOI: 10.3390/ijms23137129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Activating transcription factor 5 (ATF5) belongs to the activating transcription factor/cyclic adenosine monophosphate (cAMP) response element-binding protein family of basic region leucine zipper transcription factors. ATF5 plays an important role in cell stress regulation and is involved in cell differentiation and survival, as well as centrosome maintenance and development. Accumulating evidence demonstrates that ATF5 plays an oncogenic role in cancer by regulating gene expressions involved in tumorigenesis and tumor survival. Recent studies have indicated that ATF5 may also modify the gene expressions involved in other diseases. This review explores in detail the regulation of ATF5 expression and signaling pathways and elucidates the role of ATF5 in cancer biology. Furthermore, an overview of putative therapeutic strategies that can be used for restoring aberrant ATF5 activity in different cancer types is provided.
Collapse
Affiliation(s)
- Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Jing Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Zhedong Jin
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Tanja Jakoš
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Shunyin Zhu
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Lan Qian
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; (S.Z.); (L.Q.)
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University College of Pharmacy, Shanghai 200240, China; (P.P.); (J.L.); (Z.J.); (T.J.); (J.Z.)
- Correspondence:
| |
Collapse
|
3
|
Arabidopsis TBP-ASSOCIATED FACTOR 12 ortholog NOBIRO6 controls root elongation with unfolded protein response cofactor activity. Proc Natl Acad Sci U S A 2022; 119:2120219119. [PMID: 35115407 PMCID: PMC8833210 DOI: 10.1073/pnas.2120219119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/18/2022] Open
Abstract
Plant root growth is indeterminate but continuously responds to environmental changes. We previously reported on the severe root growth defect of a double mutant in bZIP17 and bZIP28 (bz1728) modulating the unfolded protein response (UPR). To elucidate the mechanism by which bz1728 seedlings develop a short root, we obtained a series of bz1728 suppressor mutants, called nobiro, for rescued root growth. We focused here on nobiro6, which is defective in the general transcription factor component TBP-ASSOCIATED FACTOR 12b (TAF12b). The expression of hundreds of genes, including the bZIP60-UPR regulon, was induced in the bz1728 mutant, but these inductions were markedly attenuated in the bz1728nobiro6 mutant. In view of this, we assigned transcriptional cofactor activity via physical interaction with bZIP60 to NOBIRO6/TAF12b. The single nobiro6/taf12b mutant also showed an altered sensitivity to endoplasmic reticulum stress for both UPR and root growth responses, demonstrating that NOBIRO6/TAF12b contributes to environment-responsive root growth control through UPR.
Collapse
|
4
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Nuño-Cabanes C, Rodríguez-Navarro S. The promiscuity of the SAGA complex subunits: Multifunctional or moonlighting proteins? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194607. [PMID: 32712338 DOI: 10.1016/j.bbagrm.2020.194607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022]
Abstract
Gene expression, the decoding of DNA information into accessible instructions for protein synthesis, is a complex process in which multiple steps, including transcription, mRNA processing and mRNA export, are regulated by different factors. One of the first steps in this process involves chemical and structural changes in chromatin to allow transcription. For such changes to occur, histone tail and DNA epigenetic modifications foster the binding of transcription factors to promoter regions. The SAGA coactivator complex plays a crucial role in this process by mediating histone acetylation through Gcn5, and histone deubiquitination through Ubp8 enzymes. However, most SAGA subunits interact physically with other proteins beyond the SAGA complex. These interactions could represent SAGA-independent functions or a mechanism to widen SAGA multifunctionality. Among the different mechanisms to perform more than one function, protein moonlighting defines unrelated molecular activities for the same polypeptide sequence. Unlike pleiotropy, where a single gene can affect different phenotypes, moonlighting necessarily involves separate functions of a protein at the molecular level. In this review we describe in detail some of the alternative physical interactions of several SAGA subunits. In some cases, the alternative role constitutes a clear moonlighting function, whereas in most of them the lack of molecular evidence means that we can only define these interactions as promiscuous that require further work to verify if these are moonlighting functions.
Collapse
Affiliation(s)
- Carme Nuño-Cabanes
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain
| | - Susana Rodríguez-Navarro
- Gene Expression and RNA Metabolism Laboratory, Instituto de Biomedicina de Valencia (CSIC), Jaume Roig, 11, E-46010 Valencia, Spain.
| |
Collapse
|
6
|
Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis 2020; 34:375-389. [PMID: 31799611 PMCID: PMC6923166 DOI: 10.1093/mutage/gez041] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated ‘cancer gene chameleon’ ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
Collapse
Affiliation(s)
- Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Ana C Monteiro
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vijayalakshmi Mahadevan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
7
|
Gustafson EA, Seymour KA, Sigrist K, Rooij DGDE, Freiman RN. ZFP628 Is a TAF4b-Interacting Transcription Factor Required for Mouse Spermiogenesis. Mol Cell Biol 2020; 40:e00228-19. [PMID: 31932482 PMCID: PMC7076252 DOI: 10.1128/mcb.00228-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/11/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
TAF4b is a subunit of the TFIID complex that is highly expressed in the ovary and testis and required for mouse fertility. TAF4b-deficient male mice undergo a complex series of developmental defects that result in the inability to maintain long-term spermatogenesis. To decipher the transcriptional mechanisms upon which TAF4b functions in spermatogenesis, we used two-hybrid screening to identify a novel TAF4b-interacting transcriptional cofactor, ZFP628. Deletion analysis of both proteins reveals discrete and novel domains of ZFP628 and TAF4b protein that function to bridge their direct interaction in vitro Moreover, coimmunoprecipitation of ZFP628 and TAF4b proteins in testis-derived protein extracts supports their endogenous association. Using CRISPR-Cas9, we disrupted the expression of ZFP628 in the mouse and uncovered a postmeiotic germ cell arrest at the round spermatid stage in the seminiferous tubules of the testis in ZFP628-deficient mice that results in male infertility. Coincident with round spermatid arrest, we find reduced mRNA expression of transition protein (Tnp1 and Tnp2) and protamine (Prm1 and Prm2) genes, which are critical for the specialized maturation of haploid male germ cells called spermiogenesis. These data delineate a novel association of two transcription factors, TAF4b and ZFP628, and identify ZFP628 as a novel transcriptional regulator of stage-specific spermiogenesis.
Collapse
Affiliation(s)
- Eric A Gustafson
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| | - Kimberly A Seymour
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| | - Kirsten Sigrist
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| | - Dirk G D E Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard N Freiman
- Brown University, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Schaeffer E, Vigneron M, Sibler AP, Oulad-Abdelghani M, Chatton B, Donzeau M. ATF7 is stabilized during mitosis in a CDK1-dependent manner and contributes to cyclin D1 expression. Cell Cycle 2016; 14:2655-66. [PMID: 26101806 DOI: 10.1080/15384101.2015.1064568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The transcription factor ATF7 undergoes multiple post-translational modifications, each of which has distinct effects upon ATF7 function. Here, we show that ATF7 phosphorylation on residue Thr112 exclusively occurs during mitosis, and that ATF7 is excluded from the condensed chromatin. Both processes are CDK1/cyclin B dependent. Using a transduced neutralizing monoclonal antibody directed against the Thr112 epitope in living cells, we could demonstrate that Thr112 phosphorylation protects endogenous ATF7 protein from degradation, while it has no effect on the displacement of ATF7 from the condensed chromatin. The crucial role of Thr112 phosphorylation in stabilizing ATF7 protein during mitosis was confirmed using phospho-mimetic and phospho-deficient mutants. Finally, silencing ATF7 by CRISPR/Cas9 technology leads to a decrease of cyclin D1 protein expression levels. We propose that mitotic stabilized ATF7 protein re-localizes onto chromatin at the end of telophase and contributes to induce the cyclin D1 gene expression.
Collapse
Affiliation(s)
- Etienne Schaeffer
- a Université de Strasbourg; UMR7242 Biotechnologie et Signalisation Cellulaire; Ecole Supérieure de Biotechnologie de Strasbourg ; Illkirch Cedex , France
| | | | | | | | | | | |
Collapse
|
9
|
A humanized leucine zipper-TRAIL hybrid induces apoptosis of tumors both in vitro and in vivo. PLoS One 2015; 10:e0122980. [PMID: 25849628 PMCID: PMC4388654 DOI: 10.1371/journal.pone.0122980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/26/2015] [Indexed: 11/21/2022] Open
Abstract
Evidence suggests that stimulating apoptosis in malignant cells without inflicting collateral damage to the host's normal tissues is a promising cancer therapy. Chemo- and radiation therapies that, especially if combined, induce apoptosis in tumor cells have been used for treating cancer patients for decades. These treatments, however, are limited in their ability to discriminate between malignant and non-malignant cells and, therefore, produce substantial healthy tissue damage and subsequent toxic side-effects. In addition, as a result of these therapies, many tumor types acquire an apoptosis-resistant phenotype and become more aggressive and metastatic. Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) has been considered a promising and reliable selective inducer of apoptosis in cancerous cells. TRAIL, however, is not uniformly effective in cancer and multiple cancer cell types are considered resistant to natural TRAIL. To overcome this deficiency of TRAIL, we have earlier constructed a yeast-human hybrid leucine zipper-TRAIL in which the yeast GCN4-pII leucine zipper was fused to human TRAIL (GCN4-TRAIL). This construct exhibited a significantly improved anti-tumor apoptotic activity and safety, but is potentially immunogenic in humans. Here, we report a novel, potent, and fully human ATF7 leucine zipper-TRAIL (ATF7-TRAIL) fusion construct that is expected to have substantially lower immunogenicity. In solution, ATF7-TRAIL exists solely as a trimer with a Tm of 80°C and is active against cancer cells both in vitro and in vivo, in a mouse tumor xenograft model. Our data suggest that our re-engineered TRAIL is a promising candidate for further evaluation as an antitumor agent.
Collapse
|
10
|
Cdk1-mediated phosphorylation of human ATF7 at Thr-51 and Thr-53 promotes cell-cycle progression into M phase. PLoS One 2014; 9:e116048. [PMID: 25545367 PMCID: PMC4278844 DOI: 10.1371/journal.pone.0116048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/30/2014] [Indexed: 12/22/2022] Open
Abstract
Activating transcription factor 2 (ATF2) and its homolog ATF7 are phosphorylated at Thr-69/Thr-71 and at Thr-51/Thr-53, respectively, by stress-activated MAPKs regulating their transcriptional functions in G1 and S phases. However, little is known about the role of ATF2 and ATF7 in G2/M phase. Here, we show that Cdk1-cyclin B1 phosphorylates ATF2 at Thr-69/Thr-71 and ATF7 at Thr-51/Thr-53 from early prophase to anaphase in the absence of any stress stimulation. Knockdown of ATF2 or ATF7 decreases the rate of cell proliferation and the number of cells in M-phase. In particular, the knockdown of ATF7 severely inhibits cell proliferation and G2/M progression. The inducible expression of a mitotically nonphosphorylatable version of ATF7 inhibits G2/M progression despite the presence of endogenous ATF7. We also show that mitotic phosphorylation of ATF7 promotes the activation of Aurora kinases, which are key enzymes for early mitotic events. These results suggest that the Cdk1-mediated phosphorylation of ATF7 facilitates G2/M progression, at least in part, by enabling Aurora signaling.
Collapse
|
11
|
Galson DL, Roodman GD. Pathobiology of Paget's Disease of Bone. J Bone Metab 2014; 21:85-98. [PMID: 25025000 PMCID: PMC4075272 DOI: 10.11005/jbm.2014.21.2.85] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 11/11/2022] Open
Abstract
Paget's disease of bone is characterized by highly localized areas of increased bone resorption accompanied by exuberant, but aberrant new bone formation with the primary cellular abnormality in osteoclasts. Paget's disease provides an important paradigm for understanding the molecular mechanisms regulating both osteoclast formation and osteoclast-induced osteoblast activity. Both genetic and environmental etiologies have been implicated in Paget's disease, but their relative contributions are just beginning to be defined. To date, the only gene with mutations in the coding region linked to Paget's disease is sequestosome-1 (SQSTM1), which encodes the p62 protein, and these mutations lead to elevated cytokine activation of NF-B in osteoclasts but do not induce a "pagetic osteoclast" phenotype. Further, genetic mutations linked to Paget's appear insufficient to cause Paget's disease and additional susceptibility loci or environmental factors may be required. Among the environmental factors suggested to induce Paget's disease, chronic measles (MV) infection has been the most studied. Expression of the measles virus nucleocapsid gene (MVNP) in osteoclasts induces pagetic-like osteoclasts and bone lesions in mice. Further, mice expressing both MVNP in osteoclasts and germline mutant p62 develop dramatic pagetic bone lesions that were strikingly similar to those seen in patients with Paget's disease. Thus, interactions between environmental and genetic factors appear important to the development of Paget's disease. In this article we review the mechanisms responsible for the effects of mutant p62 gene expression and MVNP on osteoclast and osteoblast activity, and how they may contribute to the development of Paget's disease of bone.
Collapse
Affiliation(s)
- Deborah L Galson
- Department of Medicine/Hematology-Oncology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - G David Roodman
- Department of Medicine/Hematology-Oncology, Indiana University, Indianapolis IN, USA. ; Veterans Administration Medical Center, Indianapolis, IN, USA
| |
Collapse
|
12
|
Teramachi J, Hiruma Y, Ishizuka S, Ishizuka H, Brown JP, Michou L, Cao H, Galson DL, Subler MA, Zhou H, Dempster DW, Windle JJ, Roodman GD, Kurihara N. Role of ATF7-TAF12 interactions in the vitamin D response hypersensitivity of osteoclast precursors in Paget's disease. J Bone Miner Res 2013; 28:1489-500. [PMID: 23426901 PMCID: PMC3663902 DOI: 10.1002/jbmr.1884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 11/06/2022]
Abstract
Osteoclast (OCL) precursors from many Paget's disease (PD) patients express measles virus nucleocapsid protein (MVNP) and are hypersensitive to 1,25-dihydroxyvitamin D₂ (1,25-(OH)₂D₃; also know as calcitriol). The increased 1,25-(OH)₂D₃ sensitivity is mediated by transcription initiation factor TFIID subunit 12 (TAF12), a coactivator of the vitamin D receptor (VDR), which is present at much higher levels in MVNP-expressing OCL precursors than normals. These results suggest that TAF12 plays an important role in the abnormal OCL activity in PD. However, the molecular mechanisms underlying both 1,25-(OH)₂D₃'s effects on OCL formation and the contribution of TAF12 to these effects in both normals and PD patients are unclear. Inhibition of TAF12 with a specific TAF12 antisense construct decreased OCL formation and OCL precursors' sensitivity to 1,25-(OH)₂D₃ in PD patient bone marrow samples. Further, OCL precursors from transgenic mice in which TAF12 expression was targeted to the OCL lineage (tartrate-resistant acid phosphatase [TRAP]-TAF12 mice), formed OCLs at very low levels of 1,25-(OH)₂D₃, although the OCLs failed to exhibit other hallmarks of PD OCLs, including receptor activator of NF-κB ligand (RANKL) hypersensitivity and hypermultinucleation. Chromatin immunoprecipitation (ChIP) analysis of OCL precursors using an anti-TAF12 antibody demonstrated that TAF12 binds the 24-hydroxylase (CYP24A1) promoter, which contains two functional vitamin D response elements (VDREs), in the presence of 1,25-(OH)₂D₃. Because TAF12 directly interacts with the cyclic adenosine monophosphate-dependent activating transcription factor 7 (ATF7) and potentiates ATF7-induced transcriptional activation of ATF7-driven genes in other cell types, we determined whether TAF12 is a functional partner of ATF7 in OCL precursors. Immunoprecipitation of lysates from either wild-type (WT) or MVNP-expressing OCL with an anti-TAF12 antibody, followed by blotting with an anti-ATF7 antibody, or vice versa, showed that TAF12 and ATF7 physically interact in OCLs. Knockdown of ATF7 in MVNP-expressing cells decreased cytochrome P450, family 24, subfamily A, polypeptide 1 (CYP24A1) induction by1,25-(OH)₂D₃, as well as TAF12 binding to the CYP24A1 promoter. These results show that ATF7 interacts with TAF12 and contributes to the hypersensitivity of OCL precursors to 1,25-(OH)₂D₃ in PD.
Collapse
Affiliation(s)
- Jumpei Teramachi
- Department of Medicine, Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Diring J, Camuzeaux B, Donzeau M, Vigneron M, Rosa-Calatrava M, Kedinger C, Chatton B. A cytoplasmic negative regulator isoform of ATF7 impairs ATF7 and ATF2 phosphorylation and transcriptional activity. PLoS One 2011; 6:e23351. [PMID: 21858082 PMCID: PMC3156760 DOI: 10.1371/journal.pone.0023351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/13/2011] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing and post-translational modifications are processes that give rise to the complexity of the proteome. The nuclear ATF7 and ATF2 (activating transcription factor) are structurally homologous leucine zipper transcription factors encoded by distinct genes. Stress and growth factors activate ATF2 and ATF7 mainly via sequential phosphorylation of two conserved threonine residues in their activation domain. Distinct protein kinases, among which mitogen-activated protein kinases (MAPK), phosphorylate ATF2 and ATF7 first on Thr71/Thr53 and next on Thr69/Thr51 residues respectively, resulting in transcriptional activation. Here, we identify and characterize a cytoplasmic alternatively spliced isoform of ATF7. This variant, named ATF7-4, inhibits both ATF2 and ATF7 transcriptional activities by impairing the first phosphorylation event on Thr71/Thr53 residues. ATF7-4 indeed sequesters the Thr53-phosphorylating kinase in the cytoplasm. Upon stimulus-induced phosphorylation, ATF7-4 is poly-ubiquitinated and degraded, enabling the release of the kinase and ATF7/ATF2 activation. Our data therefore conclusively establish that ATF7-4 is an important cytoplasmic negative regulator of ATF7 and ATF2 transcription factors.
Collapse
Affiliation(s)
- Jessica Diring
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Barbara Camuzeaux
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Mariel Donzeau
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Marc Vigneron
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine VirPath, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Claude Kedinger
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
| | - Bruno Chatton
- Université de Strasbourg, UMR7242 Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Illkirch, France
- * E-mail:
| |
Collapse
|
14
|
Kalogeropoulou M, Voulgari A, Kostourou V, Sandaltzopoulos R, Dikstein R, Davidson I, Tora L, Pintzas A. TAF4b and Jun/activating protein-1 collaborate to regulate the expression of integrin alpha6 and cancer cell migration properties. Mol Cancer Res 2010; 8:554-68. [PMID: 20353996 DOI: 10.1158/1541-7786.mcr-09-0159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The TAF4b subunit of the transcription factor IID, which has a central role in transcription by polymerase II, is involved in promoter recognition by selective recruitment of activators. The activating protein-1 (AP-1) family members participate in oncogenic transformation via gene regulation. Utilizing immunoprecipitation of endogenous protein complexes, we documented specific interactions between Jun family members and TATA box binding protein-associated factors (TAF) in colon HT29 adenocarcinoma cells. Particularly, TAF4b and c-Jun were found to colocalize and interact in the nucleus of advanced carcinoma cells and in cells with epithelial-to-mesenchymal transition (EMT) characteristics. TAF4b was found to specifically regulate the AP-1 target gene involved in EMT integrin alpha6, thus altering related cellular properties such as migration potential. Using a chromatin immunoprecipitation approach in colon adenocarcinoma cell lines, we further identified a synergistic role for TAF4b and c-Jun and other AP-1 family members on the promoter of integrin alpha6, underlining the existence of a specific mechanism related to gene expression control. We show evidence for the first time of an interdependence of TAF4b and AP-1 family members in cell type-specific promoter recognition and initiation of transcription in the context of cancer progression and EMT.
Collapse
Affiliation(s)
- Margarita Kalogeropoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Papai G, Tripathi MK, Ruhlmann C, Werten S, Crucifix C, Weil PA, Schultz P. Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Structure 2009; 17:363-73. [PMID: 19278651 DOI: 10.1016/j.str.2009.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/19/2008] [Accepted: 01/05/2009] [Indexed: 11/28/2022]
Abstract
The general transcription factor TFIID is a large multisubunit complex required for the transcription of most protein-encoding genes by RNA polymerase II. Taking advantage of a TFIID preparation partially depleted in the initiator-binding Taf2p subunit, we determined the conformational and biochemical variations of the complex by electron tomography and cryo-electron microscopy of single molecules. Image analysis revealed the extent of conformational flexibility of the complex and the selection of the most homogeneous TFIID subpopulation allowed us to determine an improved structural model at 23 Angstroms resolution. This study also identified two subpopulations of Taf2p-containing and Taf2p-depleted TFIID molecules. By comparing these two TFIID species we could infer the position of Taf2p, which was confirmed by immunolabeling using a subunit-specific antibody. Mapping the position of this crucial subunit in the vicinity of Taf1p and of TBP sheds new light on its role in promoter recognition.
Collapse
Affiliation(s)
- Gabor Papai
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS/INSERM/ULP, 67404 Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Distinct modes of gene regulation by a cell-specific transcriptional activator. Proc Natl Acad Sci U S A 2009; 106:4213-8. [PMID: 19251649 DOI: 10.1073/pnas.0808347106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The architectural layout of a eukaryotic RNA polymerase II core promoter plays a role in general transcriptional activation. However, its role in tissue-specific expression is not known. For example, differing modes of its recognition by general transcription machinery can provide an additional layer of control within which a single tissue-restricted transcription factor may operate. Erythroid Kruppel-like factor (EKLF) is a hematopoietic-specific transcription factor that is critical for the activation of subset of erythroid genes. We find that EKLF interacts with TATA binding protein-associated factor 9 (TAF9), which leads to important consequences for expression of adult beta-globin. First, TAF9 functionally supports EKLF activity by enhancing its ability to activate the beta-globin gene. Second, TAF9 interacts with a conserved beta-globin downstream promoter element, and ablation of this interaction by beta-thalassemia-causing mutations decreases its promoter activity and disables superactivation. Third, depletion of EKLF prevents recruitment of TAF9 to the beta-globin promoter, whereas depletion of TAF9 drastically impairs beta-promoter activity. However, a TAF9-independent mode of EKLF transcriptional activation is exhibited by the alpha-hemoglobin-stabilizing protein (AHSP) gene, which does not contain a discernable downstream promoter element. In this case, TAF9 does not enhance EKLF activity and depletion of TAF9 has no effect on AHSP promoter activation. These studies demonstrate that EKLF directs different modes of tissue-specific transcriptional activation depending on the architecture of its target core promoter.
Collapse
|
17
|
Camuzeaux B, Diring J, Hamard PJ, Oulad-Abdelghani M, Donzeau M, Vigneron M, Kedinger C, Chatton B. p38beta2-mediated phosphorylation and sumoylation of ATF7 are mutually exclusive. J Mol Biol 2008; 384:980-91. [PMID: 18950637 DOI: 10.1016/j.jmb.2008.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 11/29/2022]
Abstract
The ubiquitous activating transcription factor (ATF) 7 binds as a homodimer to the cAMP response element/TPA response element motifs present in the promoters of its target genes. ATF7 is homologous to ATF2 and heterodimerizes with Jun or Fos proteins, modulating their DNA-binding specificities. We previously demonstrated that TAF12, a component of the TFIID general transcription factor, mediates ATF7 transcriptional activity through direct interactions between the two proteins. By contrast, ATF7, but not ATF2, is modified in vivo by sumoylation, which restricts its subcellular localization, thereby inhibiting its transcriptional activity. In the present study, we dissect the mechanism of this functional switch. We characterized the multisite phosphorylation of the ATF7 activation domain and identified one of the involved kinase, p38beta2 mitogen-activated protein kinase. In addition, we show that epidermal growth factor treatment results in a two-step modification mechanism of ATF7 activation domain. The Thr53 residue is phosphorylated first by a presently unknown kinase, allowing p38beta2 mitogen-activated protein kinase to modify the Thr51 residue, excluding the sumoylation of ATF7 protein. The resulting activation of transcription is related to an increased association of TAF12 with this phosphorylated form of ATF7. Our data therefore conclusively establish that sumoylation and phosphorylation of ATF7 are two antagonistic posttranslational modifications.
Collapse
Affiliation(s)
- Barbara Camuzeaux
- Université de Strasbourg I, Institut Gilbert Laustriat, CNRS-UMR7175, Ecole Supérieure de Biotechnologie de Strasbourg, BP10413, Strasbourg Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Voulgari A, Voskou S, Tora L, Davidson I, Sasazuki T, Shirasawa S, Pintzas A. TATA box-binding protein-associated factor 12 is important for RAS-induced transformation properties of colorectal cancer cells. Mol Cancer Res 2008; 6:1071-83. [PMID: 18567809 DOI: 10.1158/1541-7786.mcr-07-0375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating mutations in the RAS proto-oncogene result in constant stimulation of its downstream pathways, further leading to tumorigenesis. Transcription factor IID (TFIID) can be regulated by cellular signals to specifically alter transcription of particular subsets of genes. To investigate potential links between the regulation of TFIID function and the RAS-induced carcinogenesis, we monitored the expression of the TATA box-binding protein and its associated factors (TAF) in human colon carcinoma cells. We primarily identified TAF12 levels as being up-regulated in cell lines bearing natural RAS mutations or stably overexpressing a mutated RAS isoform via a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-dependent pathway. We further showed by electrophoretic mobility shift assays and chromatin immunoprecipitation that the ETS1 protein was interacting with an ETS-binding site on the TAF12 promoter and was regulating TAF12 expression. The binding was enhanced in extracts from oncogenic RAS-transformed cells, pointing to a role in the RAS-mediated regulation of TAF12 expression. Reduction of TAF12 levels by small interfering RNA treatment induced a destabilization of the TFIID complex, enhanced E-cadherin mRNA and protein levels, and reduced migration and adhesion properties of RAS-transformed cells with epithelial to mesenchymal transition. Overall, our study indicates the importance of TAF12 in the process of RAS-induced transformation properties of human colon cells and epithelial to mesenchymal transition, most notably those related to increased motility, by regulating specifically expression of genes such as E-cadherin.
Collapse
Affiliation(s)
- Angeliki Voulgari
- Laboratory of Signal Mediated Gene Expression, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vasileos Konstantinou Avenue, Athens 11635, Greece
| | | | | | | | | | | | | |
Collapse
|
19
|
Bereczki O, Ujfaludi Z, Pardi N, Nagy Z, Tora L, Boros IM, Balint E. TATA binding protein associated factor 3 (TAF3) interacts with p53 and inhibits its function. BMC Mol Biol 2008; 9:57. [PMID: 18549481 PMCID: PMC2441632 DOI: 10.1186/1471-2199-9-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 06/12/2008] [Indexed: 01/16/2023] Open
Abstract
Background The tumour suppressor protein p53 is a sequence specific DNA-binding transcription regulator, which exerts its versatile roles in genome protection and apoptosis by affecting the expression of a large number of genes. In an attempt to obtain a better understanding of the mechanisms by which p53 transcription function is regulated, we studied p53 interactions. Results We identified BIP2 (Bric-à-brac interacting protein 2), the fly homolog of TAF3, a histone fold and a plant homeodomain containing subunit of TFIID, as an interacting partner of Drosophila melanogaster p53 (Dmp53). We detected physical interaction between the C terminus of Dmp53 and the central region of TAF3 both in yeast two hybrid assays and in vitro. Interestingly, DmTAF3 can also interact with human p53, and mammalian TAF3 can bind to both Dmp53 and human p53. This evolutionarily conserved interaction is functionally significant, since elevated TAF3 expression severely and selectively inhibits transcription activation by p53 in human cell lines, and it decreases the level of the p53 protein as well. Conclusion We identified TAF3 as an evolutionarily conserved negative regulator of p53 transcription activation function.
Collapse
Affiliation(s)
- Orsolya Bereczki
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | |
Collapse
|
20
|
Hamard PJ, Boyer-Guittaut M, Camuzeaux B, Dujardin D, Hauss C, Oelgeschläger T, Vigneron M, Kedinger C, Chatton B. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity. Nucleic Acids Res 2007; 35:1134-44. [PMID: 17264123 PMCID: PMC1851647 DOI: 10.1093/nar/gkl1168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Michaël Boyer-Guittaut
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Barbara Camuzeaux
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Denis Dujardin
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Charlotte Hauss
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Thomas Oelgeschläger
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Marc Vigneron
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Claude Kedinger
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
| | - Bruno Chatton
- Institut Gilbert Laustriat, Ecole Supérieure de Biotechnologie de Strasbourg, UMR7175 CNRS-ULP, BP10413, 67412 Strasbourg Illkirch Cedex, France and Transcription laboratory, Marie Curie Research Institute, The Chart, Oxted, RH8 0TL, Surrey, England
- *To whom correspondence should be addressed. Tel: +(33) 390 244 787; Fax+(33) 390 244 770;
| |
Collapse
|
21
|
Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 2007; 27:297-311. [PMID: 17074814 PMCID: PMC1800639 DOI: 10.1128/mcb.01558-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/06/2006] [Accepted: 10/13/2006] [Indexed: 11/20/2022] Open
Abstract
In vivo studies have previously shown that Saccharomyces cerevisiae ribosomal protein (RP) gene expression is controlled by the transcription factor repressor activator protein 1 (Rap1p) in a TFIID-dependent fashion. Here we have tested the hypothesis that yeast TFIID serves as a coactivator for RP gene transcription by directly interacting with Rap1p. We have found that purified recombinant Rap1p specifically interacts with purified TFIID in pull-down assays, and we have mapped the domains of Rap1p and subunits of TFIID responsible. In vitro transcription of a UAS(RAP1) enhancer-driven reporter gene requires both Rap1p and TFIID and is independent of the Fhl1p-Ifh1p coregulator. UAS(RAP1) enhancer-driven transactivation in extracts depleted of both Rap1p and TFIID is efficiently rescued by addition of physiological amounts of these two purified factors but not TATA-binding protein. We conclude that Rap1p and TFIID directly interact and that this interaction contributes importantly to RP gene transcription.
Collapse
Affiliation(s)
- Krassimira A Garbett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, Nashville, TN 37232-0615, USA
| | | | | | | | | |
Collapse
|