1
|
Effects of Sorafenib and Quercetin Alone or in Combination in Treating Hepatocellular Carcinoma: In Vitro and In Vivo Approaches. Molecules 2022; 27:molecules27228082. [PMID: 36432184 PMCID: PMC9697794 DOI: 10.3390/molecules27228082] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Sorafenib is the first drug approved to treat advanced hepatocellular carcinoma (HCC) and continues as the gold-standard therapy against HCC. However, acquired drug resistance represents a main concern about sorafenib therapy. The flavanol quercetin found in plants has shown great anti-cancer and anti-inflammatory properties. In this work, quercetin was used as a therapeutic agent alone or in combination with a sorafenib chemotherapy drug to improve the routine HCC treatment with sorafenib. The in vitro and in vivo results presented here confirm that quercetin alone or in combination with sorafenib significantly inhibited HCC growth, induced cell cycle arrest and induced apoptosis and necrosis. Further molecular data shown in this report demonstrate that quercetin alone or combined with sorafenib downregulated key inflammatory, proliferative and angiogenesis-related genes (TNF-α, VEGF, P53 and NF-κB). Combined quercetin/sorafenib treatment markedly improved the morphology of the induced liver damage and showed significant antioxidant and anti-tumor effects. The advantage of combined treatment efficacy reported here can be attributed to quercetin's prominent effects in modulating cell cycle arrest, apoptosis, oxidative stress and inflammation.
Collapse
|
2
|
Nuclear Acetyl-CoA Production by ACLY Promotes Homologous Recombination. Mol Cell 2017; 67:252-265.e6. [PMID: 28689661 DOI: 10.1016/j.molcel.2017.06.008] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
While maintaining the integrity of the genome and sustaining bioenergetics are both fundamental functions of the cell, potential crosstalk between metabolic and DNA repair pathways is poorly understood. Since histone acetylation plays important roles in DNA repair and is sensitive to the availability of acetyl coenzyme A (acetyl-CoA), we investigated a role for metabolic regulation of histone acetylation during the DNA damage response. In this study, we report that nuclear ATP-citrate lyase (ACLY) is phosphorylated at S455 downstream of ataxia telangiectasia mutated (ATM) and AKT following DNA damage. ACLY facilitates histone acetylation at double-strand break (DSB) sites, impairing 53BP1 localization and enabling BRCA1 recruitment and DNA repair by homologous recombination. ACLY phosphorylation and nuclear localization are necessary for its role in promoting BRCA1 recruitment. Upon PARP inhibition, ACLY silencing promotes genomic instability and cell death. Thus, the spatial and temporal control of acetyl-CoA production by ACLY participates in the mechanism of DNA repair pathway choice.
Collapse
|
3
|
Gorniewska AM, Kluzek K, Gackowska L, Kubiszewska I, Zdzienicka MZ, Bialkowska A. Distinct cellular phenotype linked to defective DNA interstrand crosslink repair and homologous recombination. Mol Med Rep 2017. [PMID: 28627616 PMCID: PMC5561886 DOI: 10.3892/mmr.2017.6781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Repair of DNA interstrand crosslinks (ICLs) predominantly involves the Fanconi anemia (FA) pathway and homologous recombination (HR). The HR repair system eliminates DNA double strand breaks (DSBs) that emerge during ICLs removal. The current study presents a novel cell line, CL-V8B, representing a new complementation group of Chinese hamster cell mutants hypersensitive to DNA crosslinking factors. CL-V8B exhibits increased sensitivity to various DNA-damaging agents, including compounds leading to DSBs formation (bleomycin and 6-thioguanine), and is extremely sensitive to poly (ADP-ribose) polymerase inhibitor (>400-fold), which is typical for HR-defective cells. In addition, this cell line exhibits a reduced number of spontaneous and induced sister chromatid exchanges, which suggests likely impairment of HR in CL-V8B cells. However, in contrast to other known HR mutants, CL-V8B cells do not show defects in Rad51 foci induction, but only slight alterations in the focus formation kinetics. CL-V8B is additionally characterized by a considerable chromosomal instability, as indicated by a high number of spontaneous and MMC-induced chromosomal aberrations, and a twice as large proportion of cells with abnormal centrosomes than that in the wild type cell line. The molecular defect present in CL-V8B does not affect the efficiency and stabilization of replication forks. However, stalling of the forks in response to replication stress is observed relatively rarely, which suggests an impairment of a signaling mechanism. Exposure of CL-V8B to crosslinking agents results in S-phase arrest (as in the wild type cells), but also in larger proportion of G2/M-phase cells and apoptotic cells. CL-V8B exhibits similarities to HR- and/or FA-defective Chinese hamster mutants sensitive to DNA crosslinking agents. However, the unique phenotype of this new mutant implies that it carries a defect of a yet unidentified gene involved in the repair of ICLs.
Collapse
Affiliation(s)
- Aleksandra M Gorniewska
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Katarzyna Kluzek
- Department of Human Molecular Genetics, Adam Mickiewicz University, Poznan 61‑614, Poland
| | - Lidia Gackowska
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Izabela Kubiszewska
- Department of Immunology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Malgorzata Z Zdzienicka
- Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85‑094, Poland
| | - Aneta Bialkowska
- Innovative Medical Forum, Franciszek Lukaszczyk Oncology Center, Bydgoszcz 85‑796, Poland
| |
Collapse
|
4
|
Ferroudj S, Yildiz G, Bouras M, Iscan E, Ekin U, Ozturk M. Role of Fanconi anemia/BRCA pathway genes in hepatocellular carcinoma chemoresistance. Hepatol Res 2016; 46:1264-1274. [PMID: 26885668 DOI: 10.1111/hepr.12675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/26/2016] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
AIM To investigate the expression of DNA repair genes and the impact of the breast cancer 1, early onset (BRCA1) protein on chemoresistance of hepatocellular carcinoma (HCC). METHODS Microarray gene expression datasets were analyzed using the gene set enrichment analysis method. BRCA1 protein was tested by Western blotting. Response of HCC cells to interstrand cross-links was investigated by cell viability assay following exposure to mitomycin C, cisplatin, and melphalan. Effects of BRCA1 ectopic expression were studied in HepG2 cells with BRCA1-expression plasmids. Effects of BRCA1 downregulation were studied in SNU449 cells with BRCA1-specific siRNAs. Response of transfected SNU449 cells to mitomycin C was analyzed by cell viability tests and cell cycle analysis using flow cytometry. RESULTS Expression of Fanconi anemia and double-stranded DNA break repair genes was significantly upregulated in HCC tumors. This upregulation displayed a gradual amplification during tumor progression. BRCA1 and BRCA2 genes were among consistently upregulated genes. Epithelial-like HCC cells had low BRCA1 expression and low chemoresistance, whereas mesenchymal-like HCC cells had high BRCA1 expression and increased chemoresistance. Ectopic expression of BRCA1 increased the chemoresistance of epithelial-like HepG2 cells. Conversely, BRCA1 knockdown chemosensitized mesenchymal-like SNU449 cells. Chemosensitization of SNU449 cells was due to cell cycle arrest at 4N stage. CONCLUSION Increased expression of Fanconi anemia and double-stranded DNA repair genes such as BRCA1 is a novel mechanism of HCC chemoresistance. However, functional inactivation of BRCA1 expression is sufficient to reverse such chemoresistance.
Collapse
Affiliation(s)
- Sana Ferroudj
- CRI INSERM/UJF U823, Grenoble, France.,Biochemistry Department, Faculty of Natural and Life Sciences, University of Sétif, Algeria.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Gokhan Yildiz
- CRI INSERM/UJF U823, Grenoble, France.,Department of Medical Biology, Faculty of Medicine, Erzincan University, Erzincan, Turkey
| | - Mourad Bouras
- CRI INSERM/UJF U823, Grenoble, France.,Biochemistry and Molecular Biology Department of Pharmacy, School of Medicine, University of Batna, Algeria
| | - Evin Iscan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Umut Ekin
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Mehmet Ozturk
- CRI INSERM/UJF U823, Grenoble, France.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
5
|
Tan DSP, Kaye SB. Chemotherapy for Patients with BRCA1 and BRCA2-Mutated Ovarian Cancer: Same or Different? Am Soc Clin Oncol Educ Book 2016:114-21. [PMID: 25993149 DOI: 10.14694/edbook_am.2015.35.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retrospective studies have shown an improved prognosis, higher response rates to platinum-containing regimens, and longer treatment-free intervals between relapses in patients with BRCA 1 and BRCA 2 (BRCA1/2)-mutated ovarian cancer (BMOC) compared with patients who are not carriers of this mutation. These features of BMOC are attributed to homologous-recombination repair (HR) deficiency in the absence of BRCA1/2 function, which results in an impaired ability of tumor cells to repair platinum-induced double-strand breaks (DSBs), thereby conferring increased chemosensitivity and increased sensitivity to poly(ADP-ribose) polymerase (PARP) enzyme inhibition and other DNA-damaging chemotherapeutic agents such as pegylated liposomal doxorubicin (PLD). Therefore, the chemotherapeutic approach for patients with BMOC should focus on treatment with platinum-based chemotherapy at first-line and recurrent-disease settings and measures to increase the platinum-free interval following early platinum-resistant relapse (i.e., progression-free survival of less than 6 months from last platinum-based chemotherapy) by using nonplatinum cytotoxic agents, with the aim of reintroducing platinum again at a later date. The role of first-line intraperitoneal platinum-based therapy in the specific context of BMOC also merits further analysis. Other than platinum, alternative DNA-damaging agents (including PLD and trabectedin) also may have a therapeutic role in patients with recurrent BMOC. The recent approval of olaparib for clinical use in Europe and the United States will also affect chemotherapeutic strategies for these patients. Further work to clarify the precise relationship between BRCA1/2 mutation genotype and clinical phenotype is crucial to delineating the optimal therapeutic choices in the future for patients with BMOC.
Collapse
Affiliation(s)
- David S P Tan
- From the National University Cancer Institute, Singapore; National University Hospital, Singapore; The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Stanley B Kaye
- From the National University Cancer Institute, Singapore; National University Hospital, Singapore; The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Evidence for clinical efficacy of mitomycin C in heavily pretreated ovarian cancer patients carrying germ-line BRCA1 mutation. Med Oncol 2014; 31:199. [DOI: 10.1007/s12032-014-0199-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/22/2014] [Indexed: 12/31/2022]
|
7
|
Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets 2014; 15:2-16. [PMID: 24387338 DOI: 10.2174/1389450114666140106095151] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 01/07/2023]
Abstract
Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Wen-Hwa Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine. 240 Med Sci D, Irvine, CA 92697, USA.
| |
Collapse
|
8
|
Dewalt RI, Kesler KA, Hammoud ZT, Baldridge L, Hattab EM, Jalal SI. Gastroesophageal junction adenocarcinoma displays abnormalities in homologous recombination and nucleotide excision repair. LUNG CANCER-TARGETS AND THERAPY 2014; 5:11-20. [PMID: 28210138 PMCID: PMC5217507 DOI: 10.2147/lctt.s57594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Esophageal adenocarcinoma (EAC) continues to be a disease associated with high mortality. Among the factors leading to poor outcomes are innate resistance to currently available therapies, advanced stage at diagnosis, and complex biology. Platinum and ionizing radiation form the backbone of treatment for the majority of patients with EAC. Of the multiple processes involved in response to platinum chemotherapy or ionizing radiation, deoxyribonucleic acid (DNA) repair has been a major player in cancer sensitivity to these agents. DNA repair defects have been described in various malignancies. The purpose of this study was to determine whether alterations in DNA repair are present in EAC compared with normal gastroesophageal tissues. METHODS We analyzed the expression of genes involved in homologous recombination (HR), nonhomologous end-joining, and nucleotide excision repair (NER) pathways in 12 EAC tumor samples with their matched normal counterparts. These pathways were chosen because they are the main pathways involved in the repair of platinum- or ionizing-radiation-induced damage. In addition, abnormalities in these pathways have not been well characterized in EAC. RESULTS We identified increased expression of at least one HR gene in eight of the EAC tumor samples. Alterations in the expression of EME1, a structure-specific endonuclease involved in HR, were the most prevalent, with messenger (m)RNA overexpression in six of the EAC samples. In addition, all EAC samples revealed decreased expression of at least one of numerous NER genes including XPC, XPA, DDB2, XPF, and XPG. CONCLUSION Our study identified DNA repair dysregulation in EAC involving two critical pathways, HR and NER, and is the first demonstration of EME1 upregulation in any cancer. These DNA repair abnormalities have the potential to affect a number of processes such as genomic instability and therapy response, and the consequences of these defects deserve further study in EAC.
Collapse
Affiliation(s)
| | - Kenneth A Kesler
- Cardiothoracic Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - LeeAnn Baldridge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eyas M Hattab
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shadia I Jalal
- Division of Hematology/Oncology, Department of Medicine; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
9
|
van Rijt SH, Romero-Canelón I, Fu Y, Shnyder SD, Sadler PJ. Potent organometallic osmium compounds induce mitochondria-mediated apoptosis and S-phase cell cycle arrest in A549 non-small cell lung cancer cells. Metallomics 2014; 6:1014-22. [DOI: 10.1039/c4mt00034j] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Imyanitov EN, Moiseyenko VM. Drug therapy for hereditary cancers. Hered Cancer Clin Pract 2011; 9:5. [PMID: 21819606 PMCID: PMC3171323 DOI: 10.1186/1897-4287-9-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/06/2011] [Indexed: 12/20/2022] Open
Abstract
Tumors arising in patients with hereditary cancer syndromes may have distinct drug sensitivity as compared to their sporadic counterparts. Breast and ovarian neoplasms from BRCA1 or BRCA2 mutation carriers are characterized by deficient homologous recombination (HR) of DNA, that makes them particularly sensitive to platinum compounds or inhibitors of poly (ADP-ribose) polymerase (PARP). Outstandingly durable complete responses to high dose chemotherapy have been observed in several cases of BRCA-related metastatic breast cancer (BC). Multiple lines of evidence indicate that women with BRCA1-related BC may derive less benefit from taxane-based treatment than other categories of BC patients. There is virtually no reports directly assessing drug response in hereditary colorectal cancer (CRC) patients; studies involving non-selected (i.e., both sporadic and hereditary) CRC with high-level microsatellite instability (MSI-H) suggest therapeutic advantage of irinotecan. Celecoxib has been approved for the treatment of familial adenomatous polyposis (FAP). Hereditary medullary thyroid cancers (MTC) have been shown to be highly responsive to a multitargeted tyrosine kinase inhibitor vandetanib, which exerts specific activity towards mutated RET receptor. Given the rapidly improving accessibility of DNA analysis, it is foreseen that the potential predictive value of cancer-associated germ-line mutations will be increasingly considered in the future studies.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia
- Department of Oncology, St.-Petersburg Medical Academy for Postgraduate Studies, St.-Petersburg, 191015, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical Academy, St.-Petersburg, 194100, Russia
| | - Vladimir M Moiseyenko
- Department of Oncology, St.-Petersburg Medical Academy for Postgraduate Studies, St.-Petersburg, 191015, Russia
| |
Collapse
|
11
|
Bonham S, O'Donovan L, Carty MP, Aldabbagh F. First synthesis of an aziridinyl fused pyrrolo[1,2-a]benzimidazole and toxicity evaluation towards normal and breast cancer cell lines. Org Biomol Chem 2011; 9:6700-6. [PMID: 21808774 DOI: 10.1039/c1ob05694h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Anionic aromatic ipso-substitution has allowed an aziridine ring to be fused onto pyrrolo[1,2-a]benzimidazole. This diazole analogue of aziridinomitosene, and N-[(aziridinyl)methyl]-1H-benzimidazole are shown to be significantly more cytotoxic towards the human breast cancer cell lines MCF-7 and HCC1937 than towards a human normal fibroblast cell line (GM00637). The aziridinyl fused pyrrolo[1,2-a]benzimidazole is less cytotoxic than the non-ring fused aziridinyl analogue towards all three cell lines. The BRCA1-deficient HCC1937 cells are more sensitive to mitomycin C (MMC) compared to GM00637 and MCF-7 cells. The evidence provided indicates that different pathways may mediate cellular response to benzimidazole-containing aziridine compounds compared to MMC.
Collapse
Affiliation(s)
- Sarah Bonham
- School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland
| | | | | | | |
Collapse
|
12
|
Izawa N, Wu W, Sato K, Nishikawa H, Kato A, Boku N, Itoh F, Ohta T. HERC2 Interacts with Claspin and regulates DNA origin firing and replication fork progression. Cancer Res 2011; 71:5621-5. [PMID: 21775519 DOI: 10.1158/0008-5472.can-11-0385] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA replication, recombination, and repair are highly interconnected processes the disruption of which must be coordinated in cancer. HERC2, a large HECT protein required for homologous recombination repair, is an E3 ubiquitin ligase that targets breast cancer suppressor BRCA1 for degradation. Here, we show that HERC2 is a component of the DNA replication fork complex that plays a critical role in DNA elongation and origin firing. In the presence of BRCA1, endogenous HERC2 interacts with Claspin, a protein essential for G(2)-M checkpoint activation and replication fork stability. Claspin depletion slowed S-phase progression and additional HERC2 depletion reduced the effect of Claspin depletion. In addition, HERC2 interacts with replication fork complex proteins. Depletion of HERC2 alleviated the slow replication fork progression in Claspin-deficient cells, suppressed enhanced origin firing, and led to a decrease in MCM2 phosphorylation. In a HERC2-dependent manner, treatment of cells with replication inhibitor aphidicolin enhanced MCM2 phosphorylation. Taken together, our results suggest that HERC2 regulates DNA replication progression and origin firing by facilitating MCM2 phosphorylation. These findings establish HERC2 as a critical function in DNA repair, checkpoint activation, and DNA replication.
Collapse
Affiliation(s)
- Naoki Izawa
- Department of Translational Oncology, Gastroenterology and Hepatology, Clinical Oncology, and Breast and Endocrine Surgery, Institute of Advanced Medical Science, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jowsey PA, Williams FM, Blain PG. The role of homologous recombination in the cellular response to sulphur mustard. Toxicol Lett 2010; 197:12-8. [DOI: 10.1016/j.toxlet.2010.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 01/19/2023]
|
14
|
In vitro cytotoxicity evaluation of natural rubber latex film surface coated with PMMA nanoparticles. Colloids Surf B Biointerfaces 2010; 78:328-33. [DOI: 10.1016/j.colsurfb.2010.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/03/2010] [Accepted: 03/22/2010] [Indexed: 11/22/2022]
|
15
|
Palmeira A, Paiva A, Sousa E, Seca H, Almeida GM, Lima RT, Fernandes MX, Pinto M, Vasconcelos MH. Insights into the in vitro antitumor mechanism of action of a new pyranoxanthone. Chem Biol Drug Des 2010; 76:43-58. [PMID: 20456373 DOI: 10.1111/j.1747-0285.2010.00978.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Naturally occurring xanthones have been documented as having antitumor properties, with some of them presently undergoing clinical trials. In an attempt to improve the biological activities of dihydroxyxanthones, prenylation and other molecular modifications were performed. All the compounds reduced viable cell number in a leukemia cell line K-562, with the fused xanthone 3,4-dihydro-12-hydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one (5) being the most potent. The pyranoxanthone 5 was particularly effective in additional leukemia cell lines (HL-60 and BV-173). Furthermore, the pyranoxanthone 5 decreased cellular proliferation and induced an S-phase cell cycle arrest. In vitro, the pyranoxanthone 5 increased the percentage of apoptotic cells which was confirmed by an appropriate response at the protein level (e.g., PARP cleavage). Using a computer screening strategy based on the structure of several anti- and pro-apoptotic proteins, it was verified that the pyranoxanthone 5 may block the binding of anti-apoptotic Bcl-xL to pro-apoptotic Bad and Bim. The structure-based screening revealed the pyranoxanthone 5 as a new scaffold that may guide the design of small molecules with better affinity profile for Bcl-xL.
Collapse
Affiliation(s)
- Andreia Palmeira
- Department of Chemistry, Laboratory of Organic and Pharmaceutical Chemistry, Faculty of Pharmacy, University of Porto, 4050-047 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quinn JE, Carser JE, James CR, Kennedy RD, Harkin DP. BRCA1 and implications for response to chemotherapy in ovarian cancer. Gynecol Oncol 2009; 113:134-42. [DOI: 10.1016/j.ygyno.2008.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/05/2008] [Accepted: 12/09/2008] [Indexed: 01/05/2023]
|
17
|
Kim MA, Kim HJ, Jee HJ, Kim AJ, Bae YS, Bae SS, Yun J. Akt2, but not Akt1, is required for cell survival by inhibiting activation of JNK and p38 after UV irradiation. Oncogene 2009; 28:1241-7. [PMID: 19151757 DOI: 10.1038/onc.2008.487] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The serine/threonine protein kinase, Akt/PKB, has an essential function in cell survival during response to various stresses. Recent studies have demonstrated that Akt isoforms exhibit some distinct physiological functions, but the isotype-specific functions for Akt in the stress response have not been fully identified. In this study, we analysed the cellular response to genotoxic stress using isogenic wild-type, Akt1(-/-) and Akt2(-/-) mouse embryonic fibroblasts (MEFs). Marked hypersensitivity of Akt2(-/-) MEFs was observed to UV irradiation, whereas wild-type and Akt1(-/-) MEFs showed comparable levels of resistance. Akt2(-/-) mouse aortic endothelial cells also showed hypersensitivity to UV and the reconstitution of Akt2 expression in the Akt2(-/-) MEFs restored the UV resistance of the cells. Interestingly, upon UV irradiation, JNK and p38 were significantly upregulated in Akt2(-/-) MEFs, compared to wild-type and Akt1(-/-) MEFs. Additionally, inhibition of JNK and p38 activation reduced UV-induced cell death. Furthermore, both the hyperactivation of JNK and p38 and the UV-induced cell death in Akt2(-/-) MEFs were completely inhibited by restoring Akt2 expression. These results indicate that Akt2, but not Akt1, is essential for cell survival upon UV irradiation, and that Akt2 prevents UV-induced cell death by inhibiting activation of JNK and p38.
Collapse
Affiliation(s)
- M-A Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Seo-Gu, Busan, South Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Al-Sukhni W, Rothenmund H, Borgida AE, Zogopoulos G, O'Shea AM, Pollett A, Gallinger S. Germline BRCA1 mutations predispose to pancreatic adenocarcinoma. Hum Genet 2008; 124:271-278. [PMID: 18762988 DOI: 10.1007/s00439-008-0554-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/24/2008] [Indexed: 05/26/2023]
Abstract
Although the association of germline BRCA2 mutations with pancreatic adenocarcinoma is well established, the role of BRCA1 mutations is less clear. We hypothesized that the loss of heterozygosity at the BRCA1 locus occurs in pancreatic cancers of germline BRCA1 mutation carriers, acting as a "second-hit" event contributing to pancreatic tumorigenesis. Seven germline BRCA1 mutation carriers with pancreatic adenocarcinoma and nine patients with sporadic pancreatic cancer were identified from clinic- and population-based registries. DNA was extracted from paraffin-embedded tumor and nontumor samples. Three polymorphic microsatellite markers for the BRCA1 gene, and an internal control marker on chromosome 16p, were selected to test for the loss of heterozygosity. Tumor DNA demonstrating loss of heterozygosity in BRCA1 mutation carriers was sequenced to identify the retained allele. The loss of heterozygosity rate for the control marker was 20%, an expected baseline frequency. Loss of heterozygosity at the BRCA1 locus was 5/7 (71%) in BRCA1 mutation carriers; tumor DNA was available for sequencing in 4/5 cases, and three demonstrated loss of the wild-type allele. Only 1/9 (11%) sporadic cases demonstrated loss of heterozygosity at the BRCA1 locus. Loss of heterozygosity occurs frequently in pancreatic cancers of germline BRCA1 mutation carriers, with loss of the wild-type allele, and infrequently in sporadic cancer cases. Therefore, BRCA1 germline mutations likely predispose to the development of pancreatic cancer, and individuals with these mutations may be considered for pancreatic cancer-screening programs.
Collapse
Affiliation(s)
- Wigdan Al-Sukhni
- Gallinger Lab, Samuel Lunenfeld Research Institute, 60 Murray Street, Toronto, ON, M5G1X5, Canada.
| | | | | | | | | | | | | |
Collapse
|
19
|
Riches LC, Lynch AM, Gooderham NJ. Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 2008; 23:331-9. [PMID: 18644834 DOI: 10.1093/mutage/gen039] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Physical and chemical agents that induce DNA double-strand breaks (DSBs) are among the most potent mutagens. The mammalian cell response to DSB comprises a highly co-ordinated, yet complex network of proteins that have been categorized as sensors, signal transducers, mediators and effectors of damage and repair. While this provides an accessible classification system, review of the literature indicates that many proteins satisfy the criteria of more than one category, pointing towards a series of highly co-operative pathways with overlapping function. In summary, the MRE11-NBS1-RAD50 complex is necessary for achieving optimal activation of ataxia-telangiectasia-mutated (ATM) kinase, which catalyses a phosphorylation-mediated signal transduction cascade. Among the subset of proteins phosphorylated by ATM are histone H2AX (H2AX), mediator of damage checkpoint protein 1, nibrin (NBS1), P53-binding protein 1 and breast cancer protein 1, all of which subsequently redistribute into DSB-containing sub-nuclear compartments. Post-translational modification of DSB responding proteins achieves a rapid and reversible change in protein behaviour and mediates damage-specific interactions, hence imparting a high degree of vigilance to the cell. This review highlights events fundamental in maintaining genetic integrity with emphasis on early stages of the DSB response.
Collapse
Affiliation(s)
- Lucy C Riches
- Department of Biomolecular Medicine, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|
20
|
Homologous recombination and maintenance of genome integrity: Cancer and aging through the prism of human RecQ helicases. Mech Ageing Dev 2008; 129:425-40. [DOI: 10.1016/j.mad.2008.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 01/05/2023]
|
21
|
Gupta R, Brosh RM. Helicases as prospective targets for anti-cancer therapy. Anticancer Agents Med Chem 2008; 8:390-401. [PMID: 18473724 DOI: 10.2174/187152008784220339] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint.
Collapse
Affiliation(s)
- Rigu Gupta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
22
|
Litman R, Gupta R, Brosh RM, Cantor SB. BRCA-FA pathway as a target for anti-tumor drugs. Anticancer Agents Med Chem 2008; 8:426-30. [PMID: 18473727 DOI: 10.2174/187152008784220285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Promising research on DNA repair signaling pathways predicts a new age of anti-tumor drugs. This research was initiated through the discovery and characterization of proteins that functioned together in signaling pathways to sense, respond, and repair DNA damage. It was realized that tumor cells often lacked distinct DNA repair pathways, but simultaneously relied heavily on compensating pathways. More recently, researchers have begun to manipulate these compensating pathways to reign in and kill tumor cells. In a striking example it was shown that tumors derived from mutations in the DNA repair genes, of BRCA-FA pathway, were selectively sensitive to inhibition of the base excision repair pathway. These findings suggest that tumors derived from defects in DNA repair genes will be easier to treat clinically, providing a streamlined and targeted therapy that spares healthy cells. In the future, identifying patients with susceptible tumors and discovering additional DNA repair targets amenable to anti-tumor drugs will have a major impact on the course of cancer treatment.
Collapse
Affiliation(s)
- Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School, 364 Plantation St., Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
23
|
Wu XY, Qian JJ, Lin Y, Zheng MH. Hepatitis B virus X protein disrupts DNA interstrand crosslinking agent mitomycin C induced ATR dependent intra-S-phase checkpoint. Eur J Cancer 2008; 44:1596-602. [PMID: 18492607 DOI: 10.1016/j.ejca.2008.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 04/16/2008] [Accepted: 04/23/2008] [Indexed: 11/17/2022]
Abstract
Chronic infection of hepatitis B virus (HBV) is one of the major causes of hepatocellular carcinoma (HCC) in the world. The hepatitis B virus X protein (HBx) is implicated in HCC development, although its oncogenic role remains controversial. HBx is a multifunctional regulator that modulates transcription, signal transduction, cell cycle progress, and DNA repair by directly or indirectly interacting with host factors. We constructed the HBx stably expressing HepG2 cell line to investigate the impact of HBx on intra-S-phase checkpoint induced by mitomycin C (MMC). The HBx transformed HepG2 cells are more sensitive to MMC treatment and showed defective radioresistant DNA synthesis compared to the control cell line transformed with empty vector. With DNA content assay, HBx transformed cells showed defective S phase arrest and a consequent G2/M arrest after MMC treatment. HBx impaired the ATR dependent phosphorylation of Chk1 and monoubiquitination of FANCD2. Overexpression of ATR reverted the MMC induced phenotype of Chk1 and FANCD2 in HBx transformed cells. The defect of intra-S-phase checkpoint resulted in accumulation of genomic instability. In conclusion, HBx disrupts intra-S-phase checkpoint induced by MMC through ATR-Chk1 and ATR-FANCD2 pathways.
Collapse
Affiliation(s)
- Xiao-Ye Wu
- Department of Pathology, Sir Run Run Shaw Hospital, Affiliated with School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | |
Collapse
|
24
|
Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 2008; 24:70-6. [PMID: 18192062 DOI: 10.1016/j.tig.2007.11.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 11/21/2022]
Abstract
The interstrand crosslink (ICL) presents a challenge to both the cell and the scientist. From a clinical standpoint, these lesions are particularly intriguing: ICL-inducing agents are powerful tools in cancer chemotherapy, and spontaneous ICLs have recently been linked with accelerated aging phenotypes. Nevertheless, the ICL repair process has proven difficult to elucidate. Here we discuss recent additions to the current model and argue that the endonuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1 (XPF-ERCC1) has been heretofore misplaced. During nucleotide excision repair, XPF-ERCC1 makes a single-strand nick adjacent to the lesion. XPF-ERCC1 has been thought to play an analogous role in ICL repair. However, recent data has implicated XPF-ERCC1 in homologous recombination. We suggest that this role, rather than its function in nucleotide excision repair, defines its importance to ICL repair.
Collapse
|
25
|
Pamidi A, Cardoso R, Hakem A, Matysiak-Zablocki E, Poonepalli A, Tamblyn L, Perez-Ordonez B, Hande MP, Sanchez O, Hakem R. Functional interplay of p53 and Mus81 in DNA damage responses and cancer. Cancer Res 2007; 67:8527-35. [PMID: 17875692 DOI: 10.1158/0008-5472.can-07-1161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mus81 plays an integral role in the maintenance of genome stability and DNA repair in mammalian cells. Deficiency of Mus81 in human and mouse cells results in hypersensitivity to interstrand cross-linking (ICL) agents and elevated levels of genomic instability. Furthermore, Mus81-mutant mice are susceptible to spontaneous lymphomas. The role of cellular checkpoints in mediating the phenotypes observed in Mus81-deficient cells and mice is currently unknown. In this study, we have observed increased activation of p53 in Mus81(-/-) cells in response to ICL-induced DNA damage. In addition, p53 inactivation completely rescued the ICL hypersensitivity of Mus81(-/-) cells, signifying p53 is essential for the elimination of ICL-damaged cells in the absence of Mus81. Confirming that p53 acts as a critical checkpoint for the Mus81 repair pathway, a synergistic increase of spontaneous and ICL-induced genomic instability was observed in Mus81(-/-)p53(-/-) cells. To clarify the genetic interactions of Mus81 and p53 in tumor suppression, we monitored Mus81(-/-)p53(-/-) and control mice for the development of spontaneous tumors. Significantly, we show that loss of even a single allele of Mus81 drastically modifies the tumor spectrum of p53-mutant mice and increases their predisposition to developing sarcomas. Our results reveal a key role for p53 in mediating the response to spontaneous and ICL-induced DNA damage that occurs in the absence of Mus81. Furthermore, our data show that loss of Mus81, in addition to p53, is a key step in sarcoma development.
Collapse
Affiliation(s)
- Ashwin Pamidi
- The Advanced Medical Discovery Institute, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gupta R, Sharma S, Sommers JA, Kenny MK, Cantor SB, Brosh RM. FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 2007; 110:2390-8. [PMID: 17596542 PMCID: PMC1988918 DOI: 10.1182/blood-2006-11-057273] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The BRCA1 associated C-terminal helicase (BACH1, designated FANCJ) is implicated in the chromosomal instability genetic disorder Fanconi anemia (FA) and hereditary breast cancer. A critical role of FANCJ helicase may be to restart replication as a component of downstream events that occur during the repair of DNA cross-links or double-strand breaks. We investigated the potential interaction of FANCJ with replication protein A (RPA), a single-stranded DNA-binding protein implicated in both DNA replication and repair. FANCJ and RPA were shown to coimmunoprecipitate most likely through a direct interaction of FANCJ and the RPA70 subunit. Moreover, dependent on the presence of BRCA1, FANCJ colocalizes with RPA in nuclear foci after DNA damage. Our data are consistent with a model in which FANCJ associates with RPA in a DNA damage-inducible manner and through the protein interaction RPA stimulates FANCJ helicase to better unwind duplex DNA substrates. These findings identify RPA as the first regulatory partner of FANCJ. The FANCJ-RPA interaction is likely to be important for the role of the helicase to more efficiently unwind DNA repair intermediates to maintain genomic stability.
Collapse
Affiliation(s)
- Rigu Gupta
- Laboratory of Molecular Gerontology, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, Warrener P, Jackson AL, Carleton M, Oatley M, Locco L, Santini F, Smith T, Kunapuli P, Ferrer M, Strulovici B, Friend SH, Linsley PS. Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol 2006; 26:9377-86. [PMID: 17000754 PMCID: PMC1698535 DOI: 10.1128/mcb.01229-06] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drug's mechanism of action. Hits identified by screening of a genome-scale siRNA library for cisplatin enhancers in TP53-deficient HeLa cells were significantly enriched for genes with annotated functions in DNA damage repair as well as poorly characterized genes likely having novel functions in this process. We followed up on a subset of the hits from the cisplatin enhancer screen and validated a number of enhancers whose products interact with BRCA1 and/or BRCA2. TP53(+/-) matched-pair cell lines were used to determine if knockdown of BRCA1, BRCA2, or validated hits that associate with BRCA1 and BRCA2 selectively enhances cisplatin cytotoxicity in TP53-deficient cells. Silencing of BRCA1, BRCA2, or BRCA1/2-associated genes enhanced cisplatin cytotoxicity approximately 4- to 7-fold more in TP53-deficient cells than in matched TP53 wild-type cells. Thus, tumor cells having disruptions in BRCA1/2 network genes and TP53 together are more sensitive to cisplatin than cells with either disruption alone.
Collapse
|
28
|
Ouyang Y, Kwon YT, An JY, Eller D, Tsai SC, Diaz-Perez S, Troke JJ, Teitell MA, Marahrens Y. Loss of Ubr2, an E3 ubiquitin ligase, leads to chromosome fragility and impaired homologous recombinational repair. Mutat Res 2006; 596:64-75. [PMID: 16488448 DOI: 10.1016/j.mrfmmm.2005.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/05/2005] [Accepted: 12/21/2005] [Indexed: 01/08/2023]
Abstract
The N-end rule pathway of protein degradation targets proteins with destabilizing N-terminal residues. Ubr2 is one of the E3 ubiquitin ligases of the mouse N-end rule pathway. We have previously shown that Ubr2-/- male mice are infertile, owing to the arrest of spermatocytes between the leptotene/zygotene and pachytene of meiosis I, the failure of chromosome pairing, and subsequent apoptosis. Here, we report that mouse fibroblast cells derived from Ubr2-/- embryos display genome instability. The frequency of chromosomal bridges and micronuclei were much higher in Ubr2-/- fibroblasts than in +/+ controls. Metaphase chromosome spreads from Ubr2-/- cells revealed a high incidence of spontaneous chromosomal gaps, indicating chromosomal fragility. These fragile sites were generally replicated late in S phase. Ubr2-/- cells were hypersensitive to mitomycin C, a DNA cross-linking agent, but displayed normal sensitivity to gamma-irradiation. A reporter assay showed that Ubr2-/- cells are significantly impaired in the homologous recombination repair of a double strand break. In contrast, Ubr2-/- cells appeared normal in an assay for non-homologous end joining. Our results therefore unveil the role of the ubiquitin ligase Ubr2 in maintaining genome integrity and in homologous recombination repair.
Collapse
Affiliation(s)
- Yan Ouyang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
30
|
Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreassen PR, Cantor SB. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 2005; 8:255-65. [PMID: 16153896 DOI: 10.1016/j.ccr.2005.08.004] [Citation(s) in RCA: 289] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 08/18/2005] [Accepted: 08/22/2005] [Indexed: 12/13/2022]
Abstract
We showed in this study that cells deficient of the BRCA1-associated BACH1 helicase, also known as BRIP1, failed to elicit homologous recombination (HR) after DNA double-stranded breaks (DSBs). BACH1-deficient cells were also sensitive to mitomycin C (MMC) and underwent MMC-induced chromosome instability. Moreover, we identified a homozygous nonsense mutation in BACH1 in a FA-J patient-derived cell line and could not detect BACH1 protein in this cell line. Expression of wild-type BACH1 in this cell line reduced the accumulation of cells at G2/M phases following exposure to DNA crosslinkers, a characteristic of Fanconi anemia (FA) cells. These results support the conclusion that BACH1 is FANCJ.
Collapse
Affiliation(s)
- Rachel Litman
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|