1
|
Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, Wojcik A, Lundholm L. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11:1297942. [PMID: 38162630 PMCID: PMC10755029 DOI: 10.3389/fpubh.2023.1297942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Zuzana Kocibalova
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fabian Brückner
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Cross-platform validation of a mouse blood gene signature for quantitative reconstruction of radiation dose. Sci Rep 2022; 12:14124. [PMID: 35986207 PMCID: PMC9391341 DOI: 10.1038/s41598-022-18558-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
In the search for biological markers after a large-scale exposure of the human population to radiation, gene expression is a sensitive endpoint easily translatable to in-field high throughput applications. Primarily, the ex-vivo irradiated healthy human blood model has been used to generate available gene expression datasets. This model has limitations i.e., lack of signaling from other irradiated tissues and deterioration of blood cells cultures over time. In vivo models are needed; therefore, we present our novel approach to define a gene signature in mouse blood cells that quantitatively correlates with radiation dose (at 1 Gy/min). Starting with available microarray datasets, we selected 30 radiation-responsive genes and performed cross-validation/training–testing data splits to downselect 16 radiation-responsive genes. We then tested these genes in an independent cohort of irradiated adult C57BL/6 mice (50:50 both sexes) and measured mRNA by quantitative RT-PCR in whole blood at 24 h. Dose reconstruction using net signal (difference between geometric means of top 3 positively correlated and top 4 negatively correlated genes with dose), was highly improved over the microarrays, with a root mean square error of ± 1.1 Gy in male and female mice combined. There were no significant sex-specific differences in mRNA or cell counts after irradiation.
Collapse
|
3
|
Humayun A, Fornace AJ. GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:1-22. [PMID: 35505159 DOI: 10.1007/978-3-030-94804-7_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GADD45 is a gene family consisting of GADD45A, GADD45B, and GADD45G that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. Many of these roles are carried out via signaling mediated by p38 mitogen-activated protein kinases (MAPKs). The GADD45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction, as well as suppression of p38 activity in certain cases. In vivo, there are important tissue and cell type specific differences in the roles for GADD45 in MAPK signaling. In addition to being p53-regulated, GADD45A has also been found to contribute to p53 activation via p38. Like other stress and signaling proteins, GADD45 proteins show complex regulation and numerous effectors. More recently, aberrant GADD45 expression has been found in several human cancers, but the mechanisms behind these findings largely remain to be understood.
Collapse
Affiliation(s)
- Arslon Humayun
- Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Albert J Fornace
- Lombardi Comprehensive Cancer Center, Washington, DC, USA.
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
4
|
Comparative Analysis of Transcriptional Responses to Genotoxic and Non-Genotoxic Agents in the Blood Cell Model TK6 and the Liver Model HepaRG. Int J Mol Sci 2022; 23:ijms23073420. [PMID: 35408779 PMCID: PMC8998745 DOI: 10.3390/ijms23073420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Transcript signatures are a promising approach to identify and classify genotoxic and non-genotoxic compounds and are of interest as biomarkers or for future regulatory application. Not much data, however, is yet available about the concordance of transcriptional responses in different cell types or tissues. Here, we analyzed transcriptomic responses to selected genotoxic food contaminants in the human p53-competent lymphoblastoid cell line TK6 using RNA sequencing. Responses to treatment with five genotoxins, as well as with four non-genotoxic liver toxicants, were compared with previously published gene expression data from the human liver cell model HepaRG. A significant overlap of the transcriptomic changes upon genotoxic stress was detectable in TK6 cells, whereas the comparison with the HepaRG model revealed considerable differences, which was confirmed by bioinformatic data mining for cellular upstream regulators or pathways. Taken together, the study presents a transcriptomic signature for genotoxin exposure in the human TK6 blood cell model. The data demonstrate that responses in different cell models have considerable variations. Detection of a transcriptomic genotoxin signature in blood cells indicates that gene expression analyses of blood samples might be a valuable approach to also estimate responses to toxic exposure in target organs such as the liver.
Collapse
|
5
|
Mills BN, Qiu H, Drage MG, Chen C, Mathew JS, Garrett-Larsen J, Ye J, Uccello TP, Murphy JD, Belt BA, Lord EM, Katz AW, Linehan DC, Gerber SA. Modulation of the Human Pancreatic Ductal Adenocarcinoma Immune Microenvironment by Stereotactic Body Radiotherapy. Clin Cancer Res 2021; 28:150-162. [PMID: 34862242 DOI: 10.1158/1078-0432.ccr-21-2495] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) is an emerging treatment modality for pancreatic ductal adenocarcinoma (PDAC), which can effectively prime cytotoxic T cells by inducing immunogenic tumor cell death in preclinical models. SBRT effects on human PDAC have yet to be thoroughly investigated; therefore, this study aimed to characterize immunomodulation in the human PDAC tumor microenvironment following therapy. EXPERIMENTAL DESIGN Tumor samples were obtained from patients with resectable PDAC. Radiotherapy was delivered a median of 7 days prior to surgical resection, and sections were analyzed by multiplex IHC (mIHC), RNA sequencing, and T-cell receptor sequencing (TCR-seq). RESULTS Analysis of SBRT-treated tumor tissue indicated reduced tumor cell density and increased immunogenic cell death relative to untreated controls. Radiotherapy promoted collagen deposition; however, vasculature was unaffected and spatial analyses lacked evidence of T-cell sequestration. Conversely, SBRT resulted in fewer tertiary lymphoid structures and failed to lessen or reprogram abundant immune suppressor populations. Higher percentages of PD-1+ T cells were observed following SBRT, and a subset of tumors displayed more clonal T-cell repertoires. CONCLUSIONS These findings suggest that SBRT augmentation of antitumor immunogenicity may be dampened by an overabundance of refractory immunosuppressive populations, and support the continued development of SBRT/immunotherapy combination for human PDAC.
Collapse
Affiliation(s)
- Bradley N Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Haoming Qiu
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Michael G Drage
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Chunmo Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York
| | - Jocelyn S Mathew
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Jesse Garrett-Larsen
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Jian Ye
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Taylor P Uccello
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Joseph D Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Brian A Belt
- Department of Surgery, University of Rochester Medical Center, Rochester, New York
| | - Edith M Lord
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.,Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| | - Alan W Katz
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York. .,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York.,Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
6
|
Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun 2021; 12:3622. [PMID: 34131120 PMCID: PMC8206133 DOI: 10.1038/s41467-021-23330-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.
Collapse
|
7
|
Chen T, Yan J, Li Z. Expression of miR-34a is a sensitive biomarker for exposure to genotoxic agents in human lymphoblastoid TK6 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 856-857:503232. [PMID: 32928372 DOI: 10.1016/j.mrgentox.2020.503232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/07/2023]
Abstract
miR-34a has been identified as a tumor suppressor microRNA (miRNA) involved in the P53 network. Its expression levels correlate to carcinogenesis, which are generally lower in tumor tissue and higher in response to DNA damage. In this study, the response of miR-34a from exposure to genotoxic agents in human lymphoblastoid TK6 cells was evaluated to assess whether the expression of this miRNA could be used as an early indicator for genotoxic damage in mammalian cells. TK6 cells were treated with seven genotoxic agents with different mode-of-actions (cisplatin, N-ethyl-N-nitrosourea, etoposide, mitomycin C, methyl methanesulphonate, taxol, and X-ray radiation) and a non-genetic toxin (usnic acid) at different concentrations for four hours (except for X-rays) and the expression levels of miR-34a were measured 24 h after the beginning of the treatments. The expression levels of miR-34a were significantly increased by these genetic toxins in a dose-dependent manner, while no significant change in miRNA expression was found in the usnic acid-treated cells. These results suggest that miR-34a can respond to genotoxic insults sensitively; thus, miR-34a expression has the potential to be used to evaluate genotoxicity of agents.
Collapse
Affiliation(s)
- Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States.
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States
| | - Zhiguang Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, United States
| |
Collapse
|
8
|
Ghandhi SA, Smilenov L, Shuryak I, Pujol-Canadell M, Amundson SA. Discordant gene responses to radiation in humans and mice and the role of hematopoietically humanized mice in the search for radiation biomarkers. Sci Rep 2019; 9:19434. [PMID: 31857640 PMCID: PMC6923394 DOI: 10.1038/s41598-019-55982-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
The mouse (Mus musculus) is an extensively used model of human disease and responses to stresses such as ionizing radiation. As part of our work developing gene expression biomarkers of radiation exposure, dose, and injury, we have found many genes are either up-regulated (e.g. CDKN1A, MDM2, BBC3, and CCNG1) or down-regulated (e.g. TCF4 and MYC) in both species after irradiation at ~4 and 8 Gy. However, we have also found genes that are consistently up-regulated in humans and down-regulated in mice (e.g. DDB2, PCNA, GADD45A, SESN1, RRM2B, KCNN4, IFI30, and PTPRO). Here we test a hematopoietically humanized mouse as a potential in vivo model for biodosimetry studies, measuring the response of these 14 genes one day after irradiation at 2 and 4 Gy, and comparing it with that of human blood irradiated ex vivo, and blood from whole body irradiated mice. We found that human blood cells in the hematopoietically humanized mouse in vivo environment recapitulated the gene expression pattern expected from human cells, not the pattern seen from in vivo irradiated normal mice. The results of this study support the use of hematopoietically humanized mice as an in vivo model for screening of radiation response genes relevant to humans.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Lubomir Smilenov
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Monica Pujol-Canadell
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630 W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
9
|
Li HH, Yauk CL, Chen R, Hyduke DR, Williams A, Frötschl R, Ellinger-Ziegelbauer H, Pettit S, Aubrecht J, Fornace AJ. TGx-DDI, a Transcriptomic Biomarker for Genotoxicity Hazard Assessment of Pharmaceuticals and Environmental Chemicals. Front Big Data 2019; 2:36. [PMID: 33693359 PMCID: PMC7931968 DOI: 10.3389/fdata.2019.00036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/17/2019] [Indexed: 01/27/2023] Open
Abstract
Genotoxicity testing is an essential component of the safety assessment paradigm required by regulatory agencies world-wide for analysis of drug candidates, and environmental and industrial chemicals. Current genotoxicity testing batteries feature a high incidence of irrelevant positive findings—particularly for in vitro chromosomal damage (CD) assays. The risk management of compounds with positive in vitro findings is a major challenge and requires complex, time consuming, and costly follow-up strategies including animal testing. Thus, regulators are urgently in need of new testing approaches to meet legislated mandates. Using machine learning, we identified a set of transcripts that responds predictably to DNA-damage in human cells that we refer to as the TGx-DDI biomarker, which was originally referred to as TGx-28.65. We proposed to use this biomarker in conjunction with current genotoxicity testing batteries to differentiate compounds with irrelevant “false” positive findings in the in vitro CD assays from true DNA damaging agents (i.e., for de-risking agents that are clastogenic in vitro but not in vivo). We validated the performance of the TGx-DDI biomarker to identify true DNA damaging agents, assessed intra- and inter- laboratory reproducibility, and cross-platform performance. Recently, to augment the application of this biomarker, we developed a high-throughput cell-based genotoxicity testing system using the NanoString nCounter® technology. Here, we review the status of TGx-DDI development, its integration in the genotoxicity testing paradigm, and progress to date in its qualification at the US Food and Drug Administration (FDA) as a drug development tool. If successfully validated and implemented, the TGx-DDI biomarker assay is expected to significantly augment the current strategy for the assessment of genotoxic hazards for drugs and chemicals.
Collapse
Affiliation(s)
- Heng-Hong Li
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Renxiang Chen
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States.,Amelia Technologies LLC, Rockville, MD, United States
| | - Daniel R Hyduke
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Roland Frötschl
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | | | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jiri Aubrecht
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Albert J Fornace
- Department of Oncology, Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
10
|
Cho E, Buick JK, Williams A, Chen R, Li H, Corton JC, Fornace AJ, Aubrecht J, Yauk CL. Assessment of the performance of the TGx-DDI biomarker to detect DNA damage-inducing agents using quantitative RT-PCR in TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:122-133. [PMID: 30488505 PMCID: PMC6588084 DOI: 10.1002/em.22257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 05/05/2023]
Abstract
Gene expression biomarkers are now available for application in the identification of genotoxic hazards. The TGx-DDI transcriptomic biomarker can accurately distinguish DNA damage-inducing (DDI) from non-DDI exposures based on changes in the expression of 64 biomarker genes. The 64 genes were previously derived from whole transcriptome DNA microarray profiles of 28 reference agents (14 DDI and 14 non-DDI) after 4 h treatments of TK6 human lymphoblastoid cells. To broaden the applicability of TGx-DDI, we tested the biomarker using quantitative RT-PCR (qPCR), which is accessible to most molecular biology laboratories. First, we selectively profiled the expression of the 64 biomarker genes using TaqMan qPCR assays in 96-well arrays after exposing TK6 cells to the 28 reference agents for 4 h. To evaluate the classification capability of the qPCR profiles, we used the reference qPCR signature to classify 24 external validation chemicals using two different methods-a combination of three statistical analyses and an alternative, the Running Fisher test. The qPCR results for the reference set were comparable to the original microarray biomarker; 27 of the 28 reference agents (96%) were accurately classified. Moreover, the two classification approaches supported the conservation of TGx-DDI classification capability using qPCR; the combination of the two approaches accurately classified 21 of the 24 external validation chemicals, demonstrating 100% sensitivity, 81% specificity, and 91% balanced accuracy. This study demonstrates that qPCR can be used when applying the TGx-DDI biomarker and will improve the accessibility of TGx-DDI for genotoxicity screening. Environ. Mol. Mutagen. 60: 122-133, 2019. © 2018 Her Majesty the Queen in Right of Canada Environmental and Molecular Mutagenesis.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Julie K. Buick
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
| | - Renxiang Chen
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Heng‐Hong Li
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | | | - Albert J. Fornace
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Jiri Aubrecht
- Takeda Pharmaceuticals USA Inc.CambridgeMassachusetts
| | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| |
Collapse
|
11
|
Saha LK, Kim S, Kang H, Akter S, Choi K, Sakuma T, Yamamoto T, Sasanuma H, Hirota K, Nakamura J, Honma M, Takeda S, Dertinger S. Differential micronucleus frequency in isogenic human cells deficient in DNA repair pathways is a valuable indicator for evaluating genotoxic agents and their genotoxic mechanisms. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:529-538. [PMID: 29761828 DOI: 10.1002/em.22201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
The micronucleus (MN) test has become an attractive tool both for evaluating the genotoxicity of test chemicals because of its ability to detect clastogenic and aneugenic events and for its convenience. As the MN assay has been mostly performed using only DNA repair-proficient mammalian cells, we believed that the comparison of the MN frequency between DNA repair-proficient and -deficient human cells may be an excellent indicator for detecting the genotoxic potential of test chemicals and for understanding their mode of action. To address this issue, the following five genes encoding DNA-damage-response (DDR) factors were disrupted in the TK6 B cell line, a human cell line widely used for the MN test: FANCD2, DNA polymerase ζ (REV3), XRCC1, RAD54, and/or LIG4. Using these isogenic TK6 cell lines, the MN test was conducted for four widely-used DNA-damaging agents: methyl methanesulfonate (MMS), hydrogen peroxide (H2 O2 ), γ-rays, and mitomycin C (MMC). The frequency of micronuclei in the double strand break repair-deficient RAD54-/- /LIG4-/- cells after exposure to γ-rays, H2 O2 , MMS and MMC was 6.2-7.5 times higher than that of parental wild-type TK6 cells. The percentages of cells exhibiting micronuclei in the base excision repair- and single strand break repair-deficient XRCC1-/- cells after exposure to H2 O2 , MMC and MMS were all ∼5 times higher than those of wild-type cells. In summary, a supplementary MN assay using the combination of RAD54-/- /LIG4-/- , XRCC1-/- and wild-type TK6 cells is a promising method for detecting the genotoxic potential of test chemicals and their mode of action. Environ. Mol. Mutagen., 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sujin Kim
- Department of Environmental Health, School of Public Health, Seoul National University,599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Habyeong Kang
- Department of Environmental Health, School of Public Health, Seoul National University,599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Salma Akter
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kyungho Choi
- Department of Environmental Health, School of Public Health, Seoul National University,599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Jun Nakamura
- Department of Laboratory Animal Science, School of Veterinary Science, Osaka Prefecture University, Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | | |
Collapse
|
12
|
Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proc Natl Acad Sci U S A 2017; 114:E10881-E10889. [PMID: 29203651 PMCID: PMC5754797 DOI: 10.1073/pnas.1714109114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Standard in vitro assays to assess genotoxicity frequently generate positive results that are subsequently found to be irrelevant for in vivo carcinogenesis and human cancer risk assessment. Currently used follow-up methods, such as animal testing, are expensive and time-consuming, and the development of approaches enabling more accurate mechanism-based risk assessment is essential. We developed an in vitro transcriptomic biomarker-based approach that provides a robust biomarker reflecting stress-signaling responses. The biomarker correctly identifies the vast majority of irrelevant genotoxicity results from in vitro chromosome damage assays. TGx-DDI, a multigene biomarker for DNA damage-inducing agents, is the first biomarker that not only shows convincing interlaboratory and intralaboratory reproducibility, but also performs accurately in a system suitable for high-throughput screening. Interpretation of positive genotoxicity findings using the current in vitro testing battery is a major challenge to industry and regulatory agencies. These tests, especially mammalian cell assays, have high sensitivity but suffer from low specificity, leading to high rates of irrelevant positive findings (i.e., positive results in vitro that are not relevant to human cancer hazard). We developed an in vitro transcriptomic biomarker-based approach that provides biological relevance to positive genotoxicity assay data, particularly for in vitro chromosome damage assays, and propose its application for assessing the relevance of the in vitro positive results to carcinogenic hazard. The transcriptomic biomarker TGx-DDI (previously known as TGx-28.65) readily distinguishes DNA damage-inducing (DDI) agents from non-DDI agents. In this study, we demonstrated the ability of the biomarker to classify 45 test agents across a broad set of chemical classes as DDI or non-DDI. Furthermore, we assessed the biomarker’s utility in derisking known irrelevant positive agents and evaluated its performance across analytical platforms. We correctly classified 90% (9 of 10) of chemicals with irrelevant positive findings in in vitro chromosome damage assays as negative. We developed a standardized experimental and analytical protocol for our transcriptomics biomarker, as well as an enhanced application of TGx-DDI for high-throughput cell-based genotoxicity testing using nCounter technology. This biomarker can be integrated in genetic hazard assessment as a follow-up to positive chromosome damage findings. In addition, we propose how it might be used in chemical screening and assessment. This approach offers an opportunity to significantly improve risk assessment and reduce cost.
Collapse
|
13
|
Sharma A, Bányiová K, Babica P, El Yamani N, Collins AR, Čupr P. Different DNA damage response of cis and trans isomers of commonly used UV filter after the exposure on adult human liver stem cells and human lymphoblastoid cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:18-26. [PMID: 28340478 DOI: 10.1016/j.scitotenv.2017.03.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/25/2017] [Accepted: 03/05/2017] [Indexed: 06/06/2023]
Abstract
2-ethylhexyl 4-methoxycinnamate (EHMC), used in many categories of personal care products (PCPs), is one of the most discussed ultraviolet filters because of its endocrine-disrupting effects. EHMC is unstable in sunlight and can be transformed from trans-EHMC to emergent cis-EHMC. Toxicological studies are focusing only on trans-EHMC; thus the toxicological data for cis-EHMC are missing. In this study, the in vitro genotoxic effects of trans- and cis-EHMC on adult human liver stem cells HL1-hT1 and human-derived lymphoblastoid cells TK-6 using a high-throughput comet assay were studied. TK-6 cells treated with cis-EHMC showed a high level of DNA damage when compared to untreated cells in concentrations 1.56 to 25μgmL-1. trans-EHMC showed genotoxicity after exposure to the two highest concentrations 12.5 and 25μgmL-1. The increase in DNA damage on HL1-hT1 cells induced by cis-EHMC and trans-EHMC was detected at the concentration 25μgmL-1. The No observed adverse effect level (NOAEL, mg kg-1bwday-1) was determined using a Quantitative in vitro to in vivo extrapolation (QIVIVE) approach: NOAELtrans-EHMC=3.07, NOAELcis-EHMC=0.30 for TK-6 and NOAELtrans-EHMC=26.46, NOAELcis-EHMC=20.36 for HL1-hT1. The hazard index (HI) was evaluated by comparing the reference dose (RfD, mgkg-1bwday-1) obtained from our experimental data with the chronic daily intake (CDI) of the female population. Using comet assay experimental data with the more sensitive TK-6 cells, HIcis-EHMC was 7 times higher than HItrans-EHMC. In terms of CDI, relative contributions were; dermal exposure route>oral>inhalation. According to our results we recommend the RfDtrans-EHMC=0.20 and RfDcis-EHMC=0.02 for trans-EHMC and cis-EHMC, respectively, to use for human health risk assessment. The significant difference in trans-EHMC and cis-EHMC response points to the need for toxicological reevaluation and application reassessment of both isomers in PCPs.
Collapse
Affiliation(s)
- Anežka Sharma
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katarína Bányiová
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Naouale El Yamani
- Department of Nutrition, University of Oslo, PO Box 1046, Blindern, N-0316 Oslo, Norway; Department of Environmental Chemistry, Health Effect Laboratory, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | | | - Pavel Čupr
- Masaryk University, Faculty of Science, RECETOX, Research Centre for Toxic Compounds in the Environment, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Med Genomics 2017; 10:18. [PMID: 28340577 PMCID: PMC5423421 DOI: 10.1186/s12920-017-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare mutations, are still not well understood. Methods We performed a bioinformatics study of the p53 pathway function at the gene expression level on our collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry. Results We revealed significant and differential alterations of p53 pathway-related gene expression in most of the AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL, accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation. Conclusions Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Abramowitz
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel.
| | - Tzahi Neuman
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| |
Collapse
|
15
|
Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Sci Rep 2017; 7:43598. [PMID: 28256581 PMCID: PMC5335570 DOI: 10.1038/srep43598] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells.
Collapse
|
16
|
Xie X, Wang L, Zhao B, Chen Y, Li J. SIRT3 mediates decrease of oxidative damage and prevention of ageing in porcine fetal fibroblasts. Life Sci 2017; 177:41-48. [PMID: 28131761 DOI: 10.1016/j.lfs.2017.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/05/2017] [Accepted: 01/24/2017] [Indexed: 12/13/2022]
Abstract
AIMS Sirtuin 3 (SIRT3) is a mitochondria-specific protein required for the deacetylation of metabolic enzymes and the action of oxidative phosphorylation by acting as a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase. SIRT3 increases oxidative stress resistance and prevents mitochondrial decay associated with ageing in response to caloric restriction. However, the effects of SIRT3 on oxidative damage and ageing are not well understood. We investigated the physiological functions of porcine SIRT3 on the damage and ageing in porcine fetal fibroblasts (PFFs). MAIN METHODS Overexpression and knockdown of SIRT3 were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. All cells were treated with three different stress reagents 12-o-tetradecanoylphorbol-13-acetate (TPA), methanesulfonic acid methylester (MMS), and tert-butylhydroperoxide (t-BHP), respectively, and then examined by flow cytometry following JC-1 (5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazol-carbocyanine iodide) staining. KEY FINDINGS SIRT3 overexpression enhanced the ability of superoxide dismutase 2 (SOD2) to reduce cellular reactive oxygen species (ROS), which further decreased the damage to the membranes and the organelles of the cells, especially to mitochondria. It inhibited the initial decrease of mitochondrial membrane potential, and prevented the decrease of adenosine triphosphate (ATP) production and activity of Nampt. In contrast, SIRT3 knockdown reduced the ability of SOD2 to increase cellular ROS which was directly correlated with stress-induced oxidative damage and ageing in PFFs. SIGNIFICANCE Our findings identify one function of SIRT3 in PFFs was to dampen cytotoxicity, and, therefore, to decrease oxidative damage and attenuate ageing possibly by enhancing the activity of SOD2.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Liangliang Wang
- College of Ecology, Lishui University, Lishui 323000, China; College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Binggong Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yangyang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiaqi Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events. Nat Commun 2016; 7:13197. [PMID: 28959951 PMCID: PMC5093340 DOI: 10.1038/ncomms13197] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 09/11/2016] [Indexed: 02/06/2023] Open
Abstract
Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers.
Long non-coding RNAs are implicated in multiple aspects of tumourigenesis. Here, the authors generate a landscape of these macromolecules in a wide array of cancer types and examine which RNAs are transcriptionally altered in relation to somatic driver mutations in established coding cancer genes.
Collapse
|
18
|
Edmondson DA, Karski EE, Kohlgruber A, Koneru H, Matthay KK, Allen S, Hartmann CL, Peterson LE, DuBois SG, Coleman MA. Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with (131)I-mIBG, a Targeted Radionuclide. Radiat Res 2016; 186:235-44. [PMID: 27556353 DOI: 10.1667/rr14263.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calculating internal dose from therapeutic radionuclides currently relies on estimates made from multiple radiation exposure measurements, converted to absorbed dose in specific organs using the Medical Internal Radiation Dose (MIRD) schema. As an alternative biodosimetric approach, we utilized gene expression analysis of whole blood from patients receiving targeted radiotherapy. Collected blood from patients with relapsed or refractory neuroblastoma who received (131)I-labeled metaiodobenzylguanidine ((131)I-mIBG) at the University of California San Francisco (UCSF) was used to compare calculated internal dose with the modulation of chosen gene expression. A total of 40 patients, median age 9 years, had blood drawn at baseline, 72 and 96 h after (131)I-mIBG infusion. Whole-body absorbed dose was calculated for each patient based on the cumulated activity determined from injected mIBG activity and patient-specific time-activity curves combined with (131)I whole-body S factors. We then assessed transcripts that were the most significant for describing the mixed therapeutic treatments over time using real-time polymerase chain reaction (RT-PCR). Modulation was evaluated statistically using multiple regression analysis for data at 0, 72 and 96 h. A total of 10 genes were analyzed across 40 patients: CDKN1A; FDXR; GADD45A; BCLXL; STAT5B; BAX; BCL2; DDB2; XPC; and MDM2. Six genes were significantly modulated upon exposure to (131)I-mIBG at 72 h, as well as at 96 h. Four genes varied significantly with absorbed dose when controlling for time. A gene expression biodosimetry model was developed to predict absorbed dose based on modulation of gene transcripts within whole blood. Three transcripts explained over 98% of the variance in the modulation of gene expression over the 96 h (CDKN1A, BAX and DDB2). To our knowledge, this is a novel study, which uses whole blood collected from patients treated with a radiopharmaceutical, to characterize biomarkers that may be useful for biodosimetry. Our data indicate that transcripts, which have been previously identified as biomarkers of external exposures in ex vivo whole blood and in vivo radiotherapy patients, are also good early indicators of internal exposure. However, for internal sources of radiation, the biokinetics and physical decay of the radionuclide strongly influence the gene expression.
Collapse
Affiliation(s)
- David A Edmondson
- a School of Health Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Erin E Karski
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Ayano Kohlgruber
- c Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Harsha Koneru
- c Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Katherine K Matthay
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Shelly Allen
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | | | - Leif E Peterson
- d Center for Biostatistics, Houston Methodist Research Institute. Houston, Texas 77030; and
| | - Steven G DuBois
- b Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco California 94143
| | - Matthew A Coleman
- c Lawrence Livermore National Laboratory, Livermore, California 94550;,e Department of Radiation Oncology, University of California Davis, School of Medicine, Davis, California 95817
| |
Collapse
|
19
|
Yauk CL, Buick JK, Williams A, Swartz CD, Recio L, Li H, Fornace AJ, Thomson EM, Aubrecht J. Application of the TGx-28.65 transcriptomic biomarker to classify genotoxic and non-genotoxic chemicals in human TK6 cells in the presence of rat liver S9. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:243-60. [PMID: 26946220 PMCID: PMC5021161 DOI: 10.1002/em.22004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 05/05/2023]
Abstract
In vitro transcriptional signatures that predict toxicities can facilitate chemical screening. We previously developed a transcriptomic biomarker (known as TGx-28.65) for classifying agents as genotoxic (DNA damaging) and non-genotoxic in human lymphoblastoid TK6 cells. Because TK6 cells do not express cytochrome P450s, we confirmed accurate classification by the biomarker in cells co-exposed to 1% 5,6 benzoflavone/phenobarbital-induced rat liver S9 for metabolic activation. However, chemicals may require different types of S9 for activation. Here we investigated the response of TK6 cells to higher percentages of Aroclor-, benzoflavone/phenobarbital-, or ethanol-induced rat liver S9 to expand TGx-28.65 biomarker applicability. Transcriptional profiles were derived 3 to 4 hr following a 4 hr co-exposure of TK6 cells to test chemicals and S9. Preliminary studies established that 10% Aroclor- and 5% ethanol-induced S9 alone did not induce the TGx-28.65 biomarker genes. Seven genotoxic and two non-genotoxic chemicals (and concurrent solvent and positive controls) were then tested with one of the S9s (selected based on cell survival and micronucleus induction). Relative survival and micronucleus frequency was assessed by flow cytometry in cells 20 hr post-exposure. Genotoxic/non-genotoxic chemicals were accurately classified using the different S9s. One technical replicate of cells co-treated with dexamethasone and 10% Aroclor-induced S9 was falsely classified as genotoxic, suggesting caution in using high S9 concentrations. Even low concentrations of genotoxic chemicals (those not causing cytotoxicity) were correctly classified, demonstrating that TGx-28.65 is a sensitive biomarker of genotoxicity. A meta-analysis of datasets from 13 chemicals supports that different S9s can be used in TK6 cells, without impairing classification using the TGx-28.65 biomarker.
Collapse
Affiliation(s)
- Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Julie K. Buick
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carol D. Swartz
- Integrated Laboratory Systems IncResearch Triangle ParkNorth Carolina
| | - Leslie Recio
- Integrated Laboratory Systems IncResearch Triangle ParkNorth Carolina
| | - Heng‐Hong Li
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Errol M. Thomson
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer IncGrotonConnecticut
| |
Collapse
|
20
|
Glover KP, Chen Z, Markell LK, Han X. Synergistic Gene Expression Signature Observed in TK6 Cells upon Co-Exposure to UVC-Irradiation and Protein Kinase C-Activating Tumor Promoters. PLoS One 2015; 10:e0139850. [PMID: 26431317 PMCID: PMC4592187 DOI: 10.1371/journal.pone.0139850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/17/2015] [Indexed: 12/24/2022] Open
Abstract
Activation of stress response pathways in the tumor microenvironment can promote the development of cancer. However, little is known about the synergistic tumor promoting effects of stress response pathways simultaneously induced in the tumor microenvironment. Therefore, the purpose of this study was to establish gene expression signatures representing the interaction of pathways deregulated by tumor promoting agents and pathways induced by DNA damage. Human lymphoblastoid TK6 cells were pretreated with the protein kinase C activating tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and exposed to UVC-irradiation. The time and dose-responsive effects of the co-treatment were captured with RNA-sequencing (RNA-seq) in two separate experiments. TK6 cells exposed to both TPA and UVC had significantly more genes differentially regulated than the theoretical sum of genes induced by either stress alone, thus indicating a synergistic effect on global gene expression patterns. Further analysis revealed that TPA+UVC co-exposure caused synergistic perturbation of specific genes associated with p53, AP-1 and inflammatory pathways important in carcinogenesis. The 17 gene signature derived from this model was confirmed with other PKC-activating tumor promoters including phorbol-12,13-dibutyrate, sapintoxin D, mezerein, (-)-Indolactam V and resiniferonol 9,13,14-ortho-phenylacetate (ROPA) with quantitative real-time PCR (QPCR). Here we show a novel gene signature that may represent a synergistic interaction in the tumor microenvironment that is relevant to the mechanisms of chemical induced tumor promotion.
Collapse
Affiliation(s)
- Kyle P. Glover
- DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, Delaware, United States of America
- Department of Biological Sciences, Cell and Molecular Biology Graduate Program, University of the Sciences, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Zhongqiang Chen
- DuPont Industrial Biosciences, Wilmington, Delaware, United States of America
| | - Lauren K. Markell
- DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, Delaware, United States of America
| | - Xing Han
- DuPont Haskell Global Centers for Health & Environmental Sciences, Newark, Delaware, United States of America
| |
Collapse
|
21
|
Cytokinesis failure in RhoA-deficient mouse erythroblasts involves actomyosin and midbody dysregulation and triggers p53 activation. Blood 2015; 126:1473-82. [PMID: 26228485 DOI: 10.1182/blood-2014-12-616169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
RhoA GTPase has been shown in vitro in cell lines and in vivo in nonmammalian organisms to regulate cell division, particularly during cytokinesis and abscission, when 2 daughter cells partition through coordinated actomyosin and microtubule machineries. To investigate the role of this GTPase in the rapidly proliferating mammalian erythroid lineage, we developed a mouse model with erythroid-specific deletion of RhoA. This model was proved embryonic lethal as a result of severe anemia by embryonic day 16.5 (E16.5). The primitive red blood cells were enlarged, poikilocytic, and frequently multinucleated, but were able to sustain life despite experiencing cytokinesis failure. In contrast, definitive erythropoiesis failed and the mice died by E16.5, with profound reduction of maturing erythroblast populations within the fetal liver. RhoA was required to activate myosin-regulatory light chain and localized at the site of the midbody formation in dividing wild-type erythroblasts. Cytokinesis failure caused by RhoA deficiency resulted in p53 activation and p21-transcriptional upregulation with associated cell-cycle arrest, increased DNA damage, and cell death. Our findings demonstrate the role of RhoA as a critical regulator for efficient erythroblast proliferation and the p53 pathway as a powerful quality control mechanism in erythropoiesis.
Collapse
|
22
|
Buick JK, Moffat I, Williams A, Swartz CD, Recio L, Hyduke DR, Li H, Fornace AJ, Aubrecht J, Yauk CL. Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK6 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:520-34. [PMID: 25733247 PMCID: PMC4506226 DOI: 10.1002/em.21940] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 12/24/2014] [Accepted: 01/14/2015] [Indexed: 05/21/2023]
Abstract
The use of integrated approaches in genetic toxicology, including the incorporation of gene expression data to determine the molecular pathways involved in the response, is becoming more common. In a companion article, a genomic biomarker was developed in human TK6 cells to classify chemicals as genotoxic or nongenotoxic. Because TK6 cells are not metabolically competent, we set out to broaden the utility of the biomarker for use with chemicals requiring metabolic activation. Specifically, chemical exposures were conducted in the presence of rat liver S9. The ability of the biomarker to classify genotoxic (benzo[a]pyrene, BaP; aflatoxin B1, AFB1) and nongenotoxic (dexamethasone, DEX; phenobarbital, PB) agents correctly was evaluated. Cells were exposed to increasing chemical concentrations for 4 hr and collected 0 hr, 4 hr, and 20 hr postexposure. Relative survival, apoptosis, and micronucleus frequency were measured at 24 hr. Transcriptome profiles were measured with Agilent microarrays. Statistical modeling and bioinformatics tools were applied to classify each chemical using the genomic biomarker. BaP and AFB1 were correctly classified as genotoxic at the mid- and high concentrations at all three time points, whereas DEX was correctly classified as nongenotoxic at all concentrations and time points. The high concentration of PB was misclassified at 24 hr, suggesting that cytotoxicity at later time points may cause misclassification. The data suggest that the use of S9 does not impair the ability of the biomarker to classify genotoxicity in TK6 cells. Finally, we demonstrate that the biomarker is also able to accurately classify genotoxicity using a publicly available dataset derived from human HepaRG cells.
Collapse
Affiliation(s)
- Julie K. Buick
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Ivy Moffat
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
- Water and Air Quality Bureau, Health CanadaOttawaOntarioCanada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| | - Carol D. Swartz
- Integrated Laboratory Systems Inc.Research Triangle ParkNorth Carolina
| | - Leslie Recio
- Integrated Laboratory Systems Inc.Research Triangle ParkNorth Carolina
| | - Daniel R. Hyduke
- Biological Engineering DepartmentUtah State UniversityLoganUtah
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Heng‐Hong Li
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Albert J. Fornace
- Department of Biochemistry and Molecular and Cellular BiologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
- Department of OncologyGeorgetown University Medical CenterWashingtonDistrict of Columbia
| | - Jiri Aubrecht
- Drug Safety Research and Development, Pfizer Inc.GrotonConnecticut
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health CanadaOttawaOntarioCanada
| |
Collapse
|
23
|
Li HH, Hyduke DR, Chen R, Heard P, Yauk CL, Aubrecht J, Fornace AJ. Development of a toxicogenomics signature for genotoxicity using a dose-optimization and informatics strategy in human cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:505-19. [PMID: 25733355 PMCID: PMC4506269 DOI: 10.1002/em.21941] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/19/2015] [Indexed: 05/11/2023]
Abstract
The development of in vitro molecular biomarkers to accurately predict toxicological effects has become a priority to advance testing strategies for human health risk assessment. The application of in vitro transcriptomic biomarkers promises increased throughput as well as a reduction in animal use. However, the existing protocols for predictive transcriptional signatures do not establish appropriate guidelines for dose selection or account for the fact that toxic agents may have pleiotropic effects. Therefore, comparison of transcriptome profiles across agents and studies has been difficult. Here we present a dataset of transcriptional profiles for TK6 cells exposed to a battery of well-characterized genotoxic and nongenotoxic chemicals. The experimental conditions applied a new dose optimization protocol that was based on evaluating expression changes in several well-characterized stress-response genes using quantitative real-time PCR in preliminary dose-finding studies. The subsequent microarray-based transcriptomic analyses at the optimized dose revealed responses to the test chemicals that were typically complex, often exhibiting substantial overlap in the transcriptional responses between a variety of the agents making analysis challenging. Using the nearest shrunken centroids method we identified a panel of 65 genes that could accurately classify toxicants as genotoxic or nongenotoxic. To validate the 65-gene panel as a genomic biomarker of genotoxicity, the gene expression profiles of an additional three well-characterized model agents were analyzed and a case study demonstrating the practical application of this genomic biomarker-based approach in risk assessment was performed to demonstrate its utility in genotoxicity risk assessment.
Collapse
Affiliation(s)
- Heng-Hong Li
- Department of Biochemistry and Molecular & Cellular Biology, and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Daniel R. Hyduke
- Department of Biochemistry and Molecular & Cellular Biology, and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
- Biological Engineering Department, Utah State University, Logan, UT 84321
| | - Renxiang Chen
- Department of Biochemistry and Molecular & Cellular Biology, and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
| | - Pamela Heard
- Pfizer Global Research and Development, Drug Safety Research and Development, Eastern Point Road, Groton, CT 06340
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - Jiri Aubrecht
- Pfizer Global Research and Development, Drug Safety Research and Development, Eastern Point Road, Groton, CT 06340
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, and Department of Oncology, Georgetown University Medical Center, Washington, DC 20057
- To whom correspondence should be addressed at: Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd. NW, Room E504, Washington, DC 20057. Fax: (202) 687-3140.,
| |
Collapse
|
24
|
Bae JH, Kim JG, Heo K, Yang K, Kim TO, Yi JM. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics 2015; 16:56. [PMID: 25887185 PMCID: PMC4342812 DOI: 10.1186/s12864-015-1229-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Background Exposure to ionizing radiation (IR) results in the simultaneous activation or downregulation of multiple signaling pathways that play critical roles in cell type-specific control of survival or death. IR is a well-known genotoxic agent and human carcinogen that induces cellular damage through direct and indirect mechanisms. However, its impact on epigenetic mechanisms has not been elucidated, and more specifically, little information is available regarding genome-wide DNA methylation changes in cancer cells after IR exposure. Recently, genome-wide DNA methylation profiling technology using the Illumina HumanMethylation450K platform has emerged that allows us to query >450,000 loci within the genome. This improved technology is capable of identifying genome-wide DNA methylation changes in CpG islands and other CpG island-associated regions. Results In this study, we employed this technology to test the hypothesis that exposure to IR not only induces differential DNA methylation patterns at a genome-wide level, but also results in locus- and gene-specific DNA methylation changes. We screened for differential DNA methylation changes in colorectal cancer cells after IR exposure with 2 and 5 Gy. Twenty-nine genes showed radiation-induced hypomethylation in colon cancer cells, and of those, seven genes showed a corresponding increase in gene expression by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we performed chromatin immunoprecipitation (ChIP) to confirm that the DNA-methyltransferase 1 (DNMT1) level associated with the promoter regions of these genes correlated with their methylation level and gene expression changes. Finally, we used a gene ontology (GO) database to show that a handful of hypomethylated genes induced by IR are associated with a variety of biological pathways related to cancer. Conclusion We identified alterations in global DNA methylation patterns and hypomethylation at specific cancer-related genes following IR exposure, which suggests that radiation exposure plays a critical role in conferring epigenetic alterations in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Han Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea. .,Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, 139-709, Korea.
| | - Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik hospital, Busan, 612-896, South Korea.
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| |
Collapse
|
25
|
Richardson C, Yan S, Vestal CG. Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells. Int J Mol Sci 2015; 16:2366-85. [PMID: 25622253 PMCID: PMC4346841 DOI: 10.3390/ijms16022366] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) can be generated by defective endogenous reduction of oxygen by cellular enzymes or in the mitochondrial respiratory pathway, as well as by exogenous exposure to UV or environmental damaging agents. Regulation of intracellular ROS levels is critical since increases above normal concentrations lead to oxidative stress and DNA damage. A growing body of evidence indicates that the inability to regulate high levels of ROS leading to alteration of cellular homeostasis or defective repair of ROS-induced damage lies at the root of diseases characterized by both neurodegeneration and bone marrow failure as well as cancer. That these diseases may be reflective of the dynamic ability of cells to respond to ROS through developmental stages and aging lies in the similarities between phenotypes at the cellular level. This review summarizes work linking the ability to regulate intracellular ROS to the hematopoietic stem cell phenotype, aging, and disease.
Collapse
Affiliation(s)
- Christine Richardson
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - Shan Yan
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| | - C Greer Vestal
- Department of Biological Sciences, UNC Charlotte, 9201 University City Blvd., Woodward Hall Room 386B, Charlotte, NC 28223, USA.
| |
Collapse
|
26
|
Fendyur A, Varma S, Lo CT, Voldman J. Cell-based biosensor to report DNA damage in micro- and nanosystems. Anal Chem 2014; 86:7598-605. [PMID: 25001406 PMCID: PMC4144749 DOI: 10.1021/ac501412c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Understanding how newly engineered
micro- and nanoscale materials
and systems that interact with cells impact cell physiology is crucial
for the development and ultimate adoption of such technologies. Reports
regarding the genotoxic impact of forces applied to cells in such
systems that can both directly or indirectly damage DNA emphasize
the need for developing facile methods to assess how materials and
technologies affect cell physiology. To address this need we have
developed a TurboRFP-based DNA damage reporter cell line in NIH-3T3
cells that fluoresce to report genotoxic stress caused by a wide variety
of agents, from chemical genotoxic agents to UV-C radiation. Our biosensor
was successfully implemented in reporting the genotoxic impact of
nanomaterials, demonstrating the ability to assess size dependent
geno- and cyto-toxicity. The biosensor cells can be assayed in a high
throughput, noninvasive manner, with no need for overly sophisticated
equipment or additional reagents. We believe that this open-source
biosensor is an important resource for the community of micro- and
nanomaterials and systems designers and users who wish to evaluate
the impact of systems and materials on cell physiology.
Collapse
Affiliation(s)
- Anna Fendyur
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Room 36-824, Cambridge, Massachusetts 02139, United States
| | | | | | | |
Collapse
|
27
|
Hyduke DR, Laiakis EC, Li HH, Fornace AJ. Identifying radiation exposure biomarkers from mouse blood transcriptome. ACTA ACUST UNITED AC 2014; 9:365-85. [PMID: 23797995 DOI: 10.1504/ijbra.2013.054701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ionising radiation is a pleiotropic stress agent that may induce a variety of adverse effects. Molecular biomarker approaches possess promise to assess radiation exposure, however, the pleiotropic nature of ionising radiation induced transcriptional responses and the historically poor inter-laboratory performance of omics-derived biomarkers serve as barriers to identification of unequivocal biomarker sets. Here, we present a whole-genome survey of the murine transcriptomic response to physiologically relevant radiation doses, 2 Gy and 8 Gy. We used this dataset with the Random Forest algorithm to correctly classify independently generated data and to identify putative metabolite biomarkers for radiation exposure.
Collapse
Affiliation(s)
- Daniel R Hyduke
- Department of Biochemistry and Molecular and Cellular Biology, and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
| | | | | | | |
Collapse
|
28
|
Guan P, Olaharski A, Fielden M, Roome N, Dragan Y, Sina J. Biomarkers of carcinogenicity and their roles in drug discovery and development. Expert Rev Clin Pharmacol 2014; 1:759-71. [DOI: 10.1586/17512433.1.6.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Sakai R, Kondo C, Oka H, Miyajima H, Kubo K, Uehara T. Utilization of CDKN1A/p21 gene for class discrimination of DNA damage-induced clastogenicity. Toxicology 2013; 315:8-16. [PMID: 24211769 DOI: 10.1016/j.tox.2013.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022]
Abstract
The in vitro mammalian cytogenetic tests monitor chromosomal aberrations in cultured mammalian cells to test the mutagenicity of compounds. Although these tests are especially useful for evaluating the potential clastogenic effects of chemicals, false positives associated with excessive toxicity occur frequently. There is a growing demand for mechanism-based assays to confirm positive results from cytogenetic tests. We hypothesized that a toxicogenomic approach that is based on gene expression profiles could be used to investigate mechanisms of genotoxicity. Human lymphoblastoid TK6 cells were treated with each of eight different genotoxins that included six DNA damaging compounds-mitomycin C, methyl methanesulfonate, ethyl methanesulfonate, cisplatin, etoposide, hydroxyurea-and two compounds that do not damage DNA-colchicine and adenine. Cells were exposed to each compound for 4h, and Affymetrix U133A microarrays were then used to comprehensively examine gene expression. A statistical analysis was used to select biomarker candidates, and 103 probes met our statistical criteria. Expression of cyclin-dependent kinase inhibitor 1A (CDKN1A)/p21 was ranked highest for discriminating DNA-damaging compounds. To further characterize the biological significance of alterations in gene expression, functional network analysis was performed with the 103 selected probes. Interestingly, a CDKN1A-centered interactome was identified as the most significant network. Together, these findings indicated that DNA-damaging compounds often induced changes in the expression of a large number of these 103 probes and that upregulation of CDKN1A was a common key feature of DNA damage stimuli. The utility of CDKN1A as a biomarker for assessing the genotoxicity of drug candidates was further evaluated; specifically, quantitative RT-PCR was used to assess the effects of 14 additional compounds-including DNA damaging genotoxins and genotoxins that do not damage DNA and five newly-synthesized drug candidates-on CDKN1A expression. In these assays, DNA damage-positive clastogens were clearly separated from DNA damage-negative compounds based on CDKN1A expression. In conclusion, CDKN1A may be a valuable biomarker for identifying DNA damage-inducing clastogens and as a follow-up assay for mammalian cytogenetic tests.
Collapse
Affiliation(s)
- Rina Sakai
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan; Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Chiaki Kondo
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hiroyuki Oka
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hirofumi Miyajima
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kihei Kubo
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinkuu Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeki Uehara
- Drug Developmental Research Laboratories, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| |
Collapse
|
30
|
Versteyhe S, Driessens N, Ghaddhab C, Tarabichi M, Hoste C, Dumont JE, Miot F, Corvilain B, Detours V. Comparative analysis of the thyrocytes and T cells: responses to H2O2 and radiation reveals an H2O2-induced antioxidant transcriptional program in thyrocytes. J Clin Endocrinol Metab 2013; 98:E1645-54. [PMID: 23666977 DOI: 10.1210/jc.2013-1266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Radiation is an established cause of thyroid cancer, and growing evidence supports a role for hydrogen peroxide (H2O2) in spontaneous thyroid carcinogenesis. Little is known about the molecular programs activated by these agents in thyrocytes. OBJECTIVE The purpose of this study was to compare the responses of thyrocytes and T cells to H2O2 and radiation. METHODS We profiled the DNA damage and cell death induced by γ-radiation (0.1-5 Gy) and H2O2 (0.0025-0.3 mM) in primary human thyrocytes and T cells. We next prepared thyroid and T-cell primary cultures from 8 donors operated for noncancerous thyroid pathological conditions and profiled their genome-wide transcriptional response 4 hours after (1) exposure to 1-Gy radiation, (2) treatment with H2O2 and (3) no treatment. Two H2O2 concentrations were investigated, calibrated in each cell type to elicit levels of single- and double-strand breaks equivalent to 1-Gy γ-radiation. RESULTS Although thyrocytes and T cells had comparable radiation responses, 3- to 10-fold more H2O2 was needed to induce detectable DNA damage in thyrocytes. At H2O2 and radiation doses inducing double-strand breaks, cell death occurred after 24 hours in T cells but not in thyrocytes. The transcriptional responses of thyrocytes and T cells to radiation were similar, involving DNA repair and cell death genes. In addition to this transcriptional program, H2O2 also up-regulated antioxidant genes in thyrocytes, including glutathione peroxidases and heme oxygenase at the double-strand breaks-inducing concentration. In contrast, a transcriptional storm involving thousands of genes was raised in T cells. Finally, we showed that inhibiting glutathione peroxidases activity increased the DNA damaging effect of H2O2 in thyrocytes. CONCLUSION We propose that high H2O2 production in thyrocytes is matched with specific transcriptionally regulated antioxidant protection.
Collapse
Affiliation(s)
- Soetkin Versteyhe
- Universite Libre de Bruxelles-Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, B1070 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kimura A, Miyata A, Honma M. A combination of in vitro comet assay and micronucleus test using human lymphoblastoid TK6 cells. Mutagenesis 2013; 28:583-90. [DOI: 10.1093/mutage/get036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Kuehner S, Holzmann K, Speit G. Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol 2013; 87:1999-2012. [PMID: 23649840 DOI: 10.1007/s00204-013-1060-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/23/2013] [Indexed: 12/11/2022]
Abstract
Gene expression analysis has been established as a tool for the characterization of genotoxic mechanisms of chemical mutagens. It has been suggested that expression analysis is capable of distinguishing compounds that cause DNA damage from those that interfere with mitotic spindle function. Formaldehyde (FA) is known to be a DNA-reactive substance which mainly induces chromosomal damage in cultured mammalian cells. However, there has been concern that FA might also induce leukemia-specific aneuploidies, although recent cytogenetic studies excluded a relevant aneugenic potential of FA. We now investigated whether gene expression profiling can be used as a molecular tool to further characterize FA's genotoxic mode of action and to differentiate between clastogenic and aneugenic activity. TK6 cells were exposed to FA for 4 and 24 h, and changes in gene expression were analyzed using a whole-genome human microarray. Results were compared to the expression profiles of two DNA-damaging clastogens (methyl methanesulfonate and ethyl methanesulfonate) and two aneugens (colcemid and vincristine). The genotoxic activity of FA, MMS and EMS under these conditions was confirmed by comet assay experiments. The gene expression profiles indicated that clastogens and aneugens induce discriminable gene expression patterns. Exposure of TK6 cells to FA led to a discrete gene expression pattern, and all toxicogenomics analyses revealed a closer relationship of FA with clastogens than with aneugens.
Collapse
Affiliation(s)
- Stefanie Kuehner
- Institut für Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Karlheinz Holzmann
- Microarray-Core Facility, Universitätsklinikum Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Günter Speit
- Institut für Humangenetik, Universität Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,Institut für Humangenetik, Universität Ulm, 89069, Ulm, Germany.
| |
Collapse
|
33
|
Kapasa M, Vlachakis D, Kostadima M, Sotiropoulou G, Kossida S. Towards the elucidation of the regulatory network guiding the insulin producing cells’ differentiation. Genomics 2012; 100:212-21. [DOI: 10.1016/j.ygeno.2012.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 11/26/2022]
|
34
|
Gu B, Zhu WG. Surf the post-translational modification network of p53 regulation. Int J Biol Sci 2012; 8:672-84. [PMID: 22606048 PMCID: PMC3354625 DOI: 10.7150/ijbs.4283] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/07/2012] [Indexed: 02/07/2023] Open
Abstract
Among the human genome, p53 is one of the first tumor suppressor genes to be discovered. It has a wide range of functions covering cell cycle control, apoptosis, genome integrity maintenance, metabolism, fertility, cellular reprogramming and autophagy. Although different possible underlying mechanisms for p53 regulation have been proposed for decades, none of them is conclusive. While much literature focuses on the importance of individual post-translational modifications, further explorations indicate a new layer of p53 coordination through the interplay of the modifications, which builds up a complex 'network'. This review focuses on the necessity, characteristics and mechanisms of the crosstalk among post-translational modifications and its effects on the precise and selective behavior of p53.
Collapse
Affiliation(s)
- Bo Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
35
|
Cary LH, Ngudiankama BF, Salber RE, Ledney GD, Whitnall MH. Efficacy of Radiation Countermeasures Depends on Radiation Quality. Radiat Res 2012; 177:663-75. [DOI: 10.1667/rr2783.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Malik AI, Williams A, Lemieux CL, White PA, Yauk CL. Hepatic mRNA, microRNA, and miR-34a-target responses in mice after 28 days exposure to doses of benzo(a)pyrene that elicit DNA damage and mutation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:10-21. [PMID: 21964900 PMCID: PMC3525943 DOI: 10.1002/em.20668] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 05/04/2023]
Abstract
Benzo(a)pyrene (BaP) is a mutagenic carcinogen that is ubiquitous in our environment. To better understand the toxic effects of BaP and to explore the relationship between toxicity and toxicogenomics profiles, we assessed global mRNA and microRNA (miRNA) expression in Muta™Mouse. Adult male mice were exposed by oral gavage to 25, 50, and 75 mg/kg/day BaP for 28 days. Liver tissue was collected 3 days following the last treatment. Initially, we established that exposure to BaP led to the formation of hepatic DNA adducts and mutations in the lacZ transgene of the Muta™Mouse. We then analyzed hepatic gene expression profiles. Microarray analysis of liver samples revealed 134 differentially expressed transcripts (adjusted P < 0.05; fold changes > 1.5). The mRNAs most affected were involved in xenobiotic metabolism, immune response, and the downstream targets of p53. In this study, we found a significant 2.0 and 3.6-fold increase following exposure to 50 and 75 mg/kg/day BaP, respectively, relative to controls for miR-34a. This miRNA is involved in p53 response. No other significant changes in miRNAs were observed. The protein levels of five experimentally confirmed miR-34a targets were examined, and no major down-regulation was present. The results suggest that liver miRNAs are largely unresponsive to BaP doses that cause both DNA adducts and mutations. In summary, the validated miRNA and mRNA expression profiles following 28 day BaP exposure reflect a DNA damage response and effects on the cell cycle, consistent with the observed increases in DNA adducts and mutations.
Collapse
|
37
|
Ory C, Ugolin N, Schlumberger M, Hofman P, Chevillard S. Discriminating gene expression signature of radiation-induced thyroid tumors after either external exposure or internal contamination. Genes (Basel) 2011; 3:19-34. [PMID: 24704841 PMCID: PMC3899964 DOI: 10.3390/genes3010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 01/02/2023] Open
Abstract
Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation.
Collapse
Affiliation(s)
- Catherine Ory
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Nicolas Ugolin
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Martin Schlumberger
- Institut Gustave Roussy, Department on Nuclear Medicine and Endocrine Oncology, Villejuif, and University Paris-Sud, F-94800, France.
| | | | - Sylvie Chevillard
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| |
Collapse
|
38
|
Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA. Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 2011; 88:147-53. [PMID: 22017241 DOI: 10.1111/j.1751-1097.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Kato TA, Okayasu R, Jeggo PA, Fujimori A. ASPM influences DNA double-strand break repair and represents a potential target for radiotherapy. Int J Radiat Biol 2011; 87:1189-95. [PMID: 21923303 DOI: 10.3109/09553002.2011.624152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In a previous study using HiCEP (High coverage expression profiling), we demonstrated that ASPM (abnormal spindle-like microcephaly-associated) or the most common-type microcephaly (MCPH5) gene was selectively down-regulated by IR (ionizing radiation). The roles of ASPM on radiosensitivity, however, have never been studied. MATERIALS AND METHODS Using glioblastoma cell lines and normal human fibroblasts, we investigated how IR sensitivity (survived fraction, DNA repair and chromosome aberration) was affected by the reduction of ASPM by specific siRNA (small interfering RNA). RESULTS Down-regulation of ASPM by siRNA enhanced radiosensitivity in three human cell lines examined. Constant-field gel electrophoreses and γ-H2AX (phosphorylated form of Histone H2A variant H2AX) foci analysis showed that ASPM-specific siRNA impaired DNA double-strand breaks (DSB) in irradiated cells. Elevated levels of abnormal chromosomes were also observed following ASPM siRNA. In addition IR-sensitization by ASPM knockdown was not enhanced in DNA-PK (DNA-dependent protein kinase) deficient glioblastoma cells suggesting that ASPM impacts upon a DNA-PK-dependent pathway. CONCLUSIONS Our results show for the first time that ASPM is required for efficient non-homologous end-joining in mammalian cells. In clinical applications, ASPM could be a novel target for combination therapy with radiation as well as a useful biomarker for tumor prognosis as ever described.
Collapse
Affiliation(s)
- Takamitsu A Kato
- Heavy-Ion Radiobiology Research Group, Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, Japan
| | | | | | | |
Collapse
|
40
|
Mizota T, Ohno K, Yamada T. Validation of a genotoxicity test based on p53R2 gene expression in human lymphoblastoid cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 724:76-85. [DOI: 10.1016/j.mrgentox.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 05/11/2011] [Accepted: 06/12/2011] [Indexed: 12/01/2022]
|
41
|
Strategy to find molecular signatures in a small series of rare cancers: validation for radiation-induced breast and thyroid tumors. PLoS One 2011; 6:e23581. [PMID: 21853153 PMCID: PMC3154936 DOI: 10.1371/journal.pone.0023581] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 07/21/2011] [Indexed: 11/28/2022] Open
Abstract
Methods of classification using transcriptome analysis for case-by-case tumor diagnosis could be limited by tumor heterogeneity and masked information in the gene expression profiles, especially as the number of tumors is small. We propose a new strategy, EMts_2PCA, based on: 1) The identification of a gene expression signature with a great potential for discriminating subgroups of tumors (EMts stage), which includes: a) a learning step, based on an expectation-maximization (EM) algorithm, to select sets of candidate genes whose expressions discriminate two subgroups, b) a training step to select from the sets of candidate genes those with the highest potential to classify training tumors, c) the compilation of genes selected during the training step, and standardization of their levels of expression to finalize the signature. 2) The predictive classification of independent prospective tumors, according to the two subgroups of interest, by the definition of a validation space based on a two-step principal component analysis (2PCA). The present method was evaluated by classifying three series of tumors and its robustness, in terms of tumor clustering and prediction, was further compared with that of three classification methods (Gene expression bar code, Top-scoring pair(s) and a PCA-based method). Results showed that EMts_2PCA was very efficient in tumor classification and prediction, with scores always better that those obtained by the most common methods of tumor clustering. Specifically, EMts_2PCA permitted identification of highly discriminating molecular signatures to differentiate post-Chernobyl thyroid or post-radiotherapy breast tumors from their sporadic counterparts that were previously unsuccessfully classified or classified with errors.
Collapse
|
42
|
Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace AJ. Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol 2011; 87:802-23. [PMID: 21692691 PMCID: PMC3572797 DOI: 10.3109/09553002.2011.556177] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. This review provides an overview of radiation signalling and metabolism, of metabolomic approaches used in the discovery phase, and of instrumentation with the potential to assess radiation injury in the field. APPROACH Recent developments in fast, high-resolution chromatography and mass spectrometry and new data analysis methods allow the quantitative assessment of thousands of metabolites based on biofluids obtained non-invasively. This complex analysis leads to the discovery-phase identification of groups of metabolites useful for screening and biodosimetry by targeted quantitative measurement. Instrumentation for target analysis can be simpler than that used for discovery, so we examine current technologies based on ion mobility. CONCLUSIONS Recent published results and ongoing studies examine the complex changes in the levels of many metabolites caused by radiation exposure, and identify groups of small-molecule biomarkers for radiation biodosimetry. Based on results showing separation orthogonal to mass, chemical noise suppression, and high sensitivity, differential mobility mass spectrometry (DMS-MS) ion mobility spectrometry appears highly promising for the development of deployable instrumentation.
Collapse
Affiliation(s)
- Stephen L. Coy
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - John B. Tyburski
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sean P. Collins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
43
|
Rashi-Elkeles S, Elkon R, Shavit S, Lerenthal Y, Linhart C, Kupershtein A, Amariglio N, Rechavi G, Shamir R, Shiloh Y. Transcriptional modulation induced by ionizing radiation: p53 remains a central player. Mol Oncol 2011; 5:336-48. [PMID: 21795128 DOI: 10.1016/j.molonc.2011.06.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/25/2011] [Indexed: 01/30/2023] Open
Abstract
The cellular response to DNA damage is vital for maintaining genomic stability and preventing undue cell death or cancer formation. The DNA damage response (DDR), most robustly mobilized by double-strand breaks (DSBs), rapidly activates an extensive signaling network that affects numerous cellular systems, leading to cell survival or programmed cell death. A major component of the DDR is the widespread modulation of gene expression. We analyzed together six datasets that probed transcriptional responses to ionizing radiation (IR) - our novel experimental data and 5 published datasets - to elucidate the scope of this response and identify its gene targets. According to the mRNA expression profiles we recorded from 5 cancerous and non-cancerous human cell lines after exposure to 5 Gy of IR, most of the responses were cell line-specific. Computational analysis identified significant enrichment for p53 target genes and cell cycle-related pathways among groups of up-regulated and down-regulated genes, respectively. Computational promoter analysis of the six datasets disclosed that a statistically significant number of the induced genes contained p53 binding site signatures. p53-mediated regulation had previously been documented for subsets of these gene groups, making our lists a source of novel potential p53 targets. Real-time qPCR and chromatin immunoprecipitation (ChIP) assays validated the IR-induced p53-dependent induction and p53 binding to the respective promoters of 11 selected genes. Our results demonstrate the power of a combined computational and experimental approach to identify new transcriptional targets in the DNA damage response network.
Collapse
Affiliation(s)
- Sharon Rashi-Elkeles
- The David and Inez Myers Laboratory for Genetic Research, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Room 1022, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Paules RS, Aubrecht J, Corvi R, Garthoff B, Kleinjans JC. Moving forward in human cancer risk assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:739-743. [PMID: 21147607 PMCID: PMC3114805 DOI: 10.1289/ehp.1002735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/13/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND The current safety paradigm for assessing carcinogenic properties of drugs, cosmetics, industrial chemicals, and environmental exposures relies mainly on in vitro genotoxicity testing followed by 2-year rodent bioassays. This testing battery is extremely sensitive but has low specificity. Furthermore, rodent bioassays are associated with high costs, high animal burden, and limited predictive value for human risks. OBJECTIVES We provide a response to a growing appeal for a paradigm change in human cancer risk assessment. METHODS To facilitate development of a road map for this needed paradigm change in carcinogenicity testing, a workshop titled "Genomics in Cancer Risk Assessment" brought together toxicologists from academia and industry and government regulators and risk assessors from the United States and the European Union. Participants discussed the state-of-the-art in developing alternative testing strategies for carcinogenicity, with emphasis on potential contributions from omics technologies. RESULTS AND CONCLUSIONS The goal of human risk assessment is to decide whether a given exposure to an agent is acceptable to human health and to provide risk management measures based on evaluating and predicting the effects of exposures on human health. Although exciting progress is being made using genomics approaches, a new paradigm that uses these methods and human material when possible would provide mechanistic insights that may inform new predictive approaches (e.g., in vitro assays) and facilitate the development of genomics-derived biomarkers. Regulators appear to be willing to accept such approaches where use is clearly defined, evidence is strong, and approaches are qualified for regulatory use.
Collapse
Affiliation(s)
- Richard S Paules
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
45
|
Honma M, Hayashi M. Comparison of in vitro micronucleus and gene mutation assay results for p53-competent versus p53-deficient human lymphoblastoid cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:373-384. [PMID: 20963812 DOI: 10.1002/em.20634] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/16/2010] [Accepted: 08/20/2010] [Indexed: 05/30/2023]
Abstract
The high frequency of false or irrelevant positive results in in vitro mammalian cell genotoxicity tests is a critical concern for regulators. Here, we tested whether such results may be due to the mammalian cells used in the tests being deficient in p53, which is involved in the maintenance of genomic stability. We compared the in vitro responses of two human lymphoblastoid cell lines derived from the same progenitor cell-p53-competent (TK6) and p53-deficient (WTK-1) cells-in a micronucleus (MN) test and a thymidine kinase gene (TK) mutation assay. We tested 14 chemicals including three mutagens and 11 clastogens and spindle poisons. The three mutagens evoked clear positive responses in both assays in both cell lines. The responses to the clastogens and spindle poisons, on the other hand, depended on the assay endpoint and/or the cell line. Most of clastogens and spindle poisons were positive in the MN test in both cell lines. In the TK mutation assay, on the other hand, WTK-1 cells but not TK6 cells detected spindle poisons, which may have been due to the disturbance of the spindle checkpoint and lack of apoptosis in the p53-deficient cells. Some chemicals that induced chromosome aberrations in rodent cells were negative in both TK6 and WTK-1 cells, indicating that a species-specific factor rather than p53 status was associated with the response. In conclusion, the p53 status did not seriously influence the MN test results but it did influence the TK mutation assay results.
Collapse
Affiliation(s)
- Masamitsu Honma
- National Institute of Health Sciences, Division of Genetics and Mutagenesis, Tokyo, Japan.
| | | |
Collapse
|
46
|
Meador JA, Ghandhi SA, Amundson SA. p53-independent downregulation of histone gene expression in human cell lines by high- and low-let radiation. Radiat Res 2011; 175:689-99. [PMID: 21520998 DOI: 10.1667/rr2539.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Using microarrays to analyze differential gene expression as a function of p53 status and radiation quality, we observed downregulation of a large set of histone genes in p53 wild-type TK6 cells 24 h after exposure to equitoxic doses of high-LET (1.67 Gy 1 GeV/amu (56)Fe ions) or low-LET (2.5 Gy γ rays) radiation. Quantitative real-time PCR of specific subtypes of core (H2A, H2B, H3 and H4) and linker (H1) histones confirmed this result. DNA synthesis and histone gene expression are tightly coordinated during the S phase of the cell cycle, and both processes are regulated by cell cycle checkpoints in response to DNA damage caused by ionizing radiation. However, we observed similar repression of histone gene expression in both TK6 cells and their p53-null derivative NH32 after radiation exposure, although the histone gene expression was not decreased to the same extent in NH32 cells as it was in TK6 cells. We also found decreased histone gene expression that was dose- and time-dependent in the colon cancer cell line HCT116 and its p53-null derivative. These results show that both high- and low-LET radiation exposure negatively regulate histone gene expression in human lymphoblastoid and colon cancer cell lines independent of p53 status.
Collapse
Affiliation(s)
- Jarah A Meador
- Center for Radiological Research, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
47
|
Lynch AM, Sasaki JC, Elespuru R, Jacobson-Kram D, Thybaud V, De Boeck M, Aardema MJ, Aubrecht J, Benz RD, Dertinger SD, Douglas GR, White PA, Escobar PA, Fornace A, Honma M, Naven RT, Rusling JF, Schiestl RH, Walmsley RM, Yamamura E, van Benthem J, Kim JH. New and emerging technologies for genetic toxicity testing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:205-223. [PMID: 20740635 DOI: 10.1002/em.20614] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans.
Collapse
|
48
|
Feinendegen LE, Brooks AL, Morgan WF. Biological consequences and health risks of low-level exposure to ionizing radiation: commentary on the workshop. HEALTH PHYSICS 2011; 100:247-259. [PMID: 21285724 DOI: 10.1097/hp.0b013e31820a83ae] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper provides an integration and discussion of the information presented at the workshop held from 2-5 May 2010 in Richland, WA, adjacent to the Pacific Northwest National Laboratory (PNNL). Consequently, this is commentary and not necessarily a consensus document. This workshop was in honor of Dr. Victor P. Bond in celebration of his numerous contributions to the radiation sciences.
Collapse
|
49
|
Vincenti S, Brillante N, Lanza V, Bozzoni I, Presutti C, Chiani F, Etna MP, Negri R. HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Res 2011; 175:535-46. [PMID: 21361781 DOI: 10.1667/rr2200.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNAs that control gene expression by targeting mRNAs and triggering either repression of translation or RNA degradation. They have been shown to be involved in a variety of biological processes such as development, differentiation and cell cycle control, but little is known about their involvement in the response to irradiation. We showed here that in human umbilical vein endothelial cells (HUVEC) some miRNAs previously shown to have a crucial role in vascular biology are transiently modulated in response to a clinically relevant dose of ionizing radiation. In particular we identified an early transcriptional induction of several members of the microRNA cluster 17-92 and other microRNAs already known to be related to angiogenesis. At the same time we observed a peculiar behavior of the miR-221/222 cluster, suggesting an important role of these microRNAs in HUVEC homeostasis. We observed an increased efficiency in the formation of capillary-like structures in irradiated HUVEC. These results could lead to a new interpretation of the effect of ionizing radiation on endothelial cells and on the response of tumor endothelial bed cells to radiotherapy.
Collapse
Affiliation(s)
- Sara Vincenti
- Dipartimento di Biologia e Biotecnologie C. Darwin, Laboratorio di Genomica Funzionale e Proteomica dei Sistemi Modello, University "La Sapienza", Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Waters MD, Jackson M, Lea I. Characterizing and predicting carcinogenicity and mode of action using conventional and toxicogenomics methods. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2010; 705:184-200. [DOI: 10.1016/j.mrrev.2010.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 01/10/2023]
|