1
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Fousek-Schuller VJ, Borgstahl GEO. The Intriguing Mystery of RPA Phosphorylation in DNA Double-Strand Break Repair. Genes (Basel) 2024; 15:167. [PMID: 38397158 PMCID: PMC10888239 DOI: 10.3390/genes15020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Human Replication Protein A (RPA) was historically discovered as one of the six components needed to reconstitute simian virus 40 DNA replication from purified components. RPA is now known to be involved in all DNA metabolism pathways that involve single-stranded DNA (ssDNA). Heterotrimeric RPA comprises several domains connected by flexible linkers and is heavily regulated by post-translational modifications (PTMs). The structure of RPA has been challenging to obtain. Various structural methods have been applied, but a complete understanding of RPA's flexible structure, its function, and how it is regulated by PTMs has yet to be obtained. This review will summarize recent literature concerning how RPA is phosphorylated in the cell cycle, the structural analysis of RPA, DNA and protein interactions involving RPA, and how PTMs regulate RPA activity and complex formation in double-strand break repair. There are many holes in our understanding of this research area. We will conclude with perspectives for future research on how RPA PTMs control double-strand break repair in the cell cycle.
Collapse
Affiliation(s)
| | - Gloria E. O. Borgstahl
- Eppley Institute for Research in Cancer & Allied Diseases, UNMC, Omaha, NE 68198-6805, USA
| |
Collapse
|
3
|
Sadoughi F, Maleki Dana P, Asemi Z, Yousefi B. DNA damage response and repair in osteosarcoma: Defects, regulation and therapeutic implications. DNA Repair (Amst) 2021; 102:103105. [PMID: 33836418 DOI: 10.1016/j.dnarep.2021.103105] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents which has the survival rate of 20% in its advanced stages. Osteosarcomas are mostly resistance to our common treatments. DNA damage response (DDR) is a specialized multistep process containing abundant proteins which are necessary for the survival of any cell and organism. DDR machinery detects a diversity of DNA lesions and inhibits the cell cycle progression if these lesions are not repairable. DDR is involved in aging, age-related diseases, and cancer. In recent years, DDR inhibitors have gained the attention of researches due to their potentials in offering novel therapeutic targets and improving the response of many cancers to either chemo- or radio-therapy. In this regard, we tried to gather a great body of evidence about the role of DDR ingredients in osteosarcoma's initiation/progression, prognosis, and treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Minocherhomji S, Liu Y, He YD, Fielden MR. Biomarkers of genome instability in normal mammalian genomes following drug-induced replication stress. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:770-785. [PMID: 32078182 DOI: 10.1002/em.22364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/03/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Genome instability is a hallmark of most human cancers and is exacerbated following replication stress. However, the effects that drugs/xenobiotics have in promoting genome instability including chromosomal structural rearrangements in normal cells are not currently assessed in the genetic toxicology battery. Here, we show that drug-induced replication stress leads to increased genome instability in vitro using proliferating primary human cells as well as in vivo in rat bone marrow (BM) and duodenum (DD). p53-binding protein 1 (53BP1, biomarker of DNA damage repair) nuclear bodies were increased in a dose-dependent manner in normal proliferating human mammary epithelial fibroblasts following treatment with compounds traditionally classified as either genotoxic (hydralazine) and nongenotoxic (low-dose aphidicolin, duvelisib, idelalisib, and amiodarone). Comparatively, no increases in 53BP1 nuclear bodies were observed in nonproliferating cells. Negative control compounds (mannitol, alosteron, diclofenac, and zonisamide) not associated with cancer risk did not induce 53BP1 nuclear bodies in any cell type. Finally, we studied the in vivo genomic consequences of drug-induced replication stress in rats treated with 10 mg/kg of cyclophosphamide for up to 14 days followed by polymerase chain reaction-free whole genome sequencing (30X coverage) of BM and DD cells. Cyclophosphamide induced chromosomal structural rearrangements at an average of 90 genes, including 40 interchromosomal/intrachromosomal translocations, within 2 days of treatment. Collectively, these data demonstrate that this drug-induced genome instability test (DiGIT) can reveal potential adverse effects of drugs not otherwise informed by standard genetic toxicology testing batteries. These efforts are aligned with the food and drug administration's (FDA's) predictive toxicology roadmap initiative.
Collapse
Affiliation(s)
- Sheroy Minocherhomji
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Yang Liu
- Genome Analysis Unit, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Yudong D He
- Genome Analysis Unit, Amgen Research, Amgen Inc., Thousand Oaks, California
| | - Mark R Fielden
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc., Thousand Oaks, California
- Expansion Therapeutics, San Diego, California
| |
Collapse
|
5
|
Dueva R, Iliakis G. Replication protein A: a multifunctional protein with roles in DNA replication, repair and beyond. NAR Cancer 2020; 2:zcaa022. [PMID: 34316690 PMCID: PMC8210275 DOI: 10.1093/narcan/zcaa022] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Single-stranded DNA (ssDNA) forms continuously during DNA replication and is an important intermediate during recombination-mediated repair of damaged DNA. Replication protein A (RPA) is the major eukaryotic ssDNA-binding protein. As such, RPA protects the transiently formed ssDNA from nucleolytic degradation and serves as a physical platform for the recruitment of DNA damage response factors. Prominent and well-studied RPA-interacting partners are the tumor suppressor protein p53, the RAD51 recombinase and the ATR-interacting proteins ATRIP and ETAA1. RPA interactions are also documented with the helicases BLM, WRN and SMARCAL1/HARP, as well as the nucleotide excision repair proteins XPA, XPG and XPF–ERCC1. Besides its well-studied roles in DNA replication (restart) and repair, accumulating evidence shows that RPA is engaged in DNA activities in a broader biological context, including nucleosome assembly on nascent chromatin, regulation of gene expression, telomere maintenance and numerous other aspects of nucleic acid metabolism. In addition, novel RPA inhibitors show promising effects in cancer treatment, as single agents or in combination with chemotherapeutics. Since the biochemical properties of RPA and its roles in DNA repair have been extensively reviewed, here we focus on recent discoveries describing several non-canonical functions.
Collapse
Affiliation(s)
- Rositsa Dueva
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122 Essen, Germany
| |
Collapse
|
6
|
Ghilu S, Li Q, Fontaine SD, Santi DV, Kurmasheva RT, Zheng S, Houghton PJ. Prospective use of the single-mouse experimental design for the evaluation of PLX038A. Cancer Chemother Pharmacol 2020; 85:251-263. [PMID: 31927611 PMCID: PMC7039322 DOI: 10.1007/s00280-019-04017-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Defining robust criteria for drug activity in preclinical studies allows for fewer animals per treatment group, and potentially allows for inclusion of additional cancer models that more accurately represent genetic diversity and, potentially, allows for tumor sensitivity biomarker identification. METHODS Using a single-mouse design, 32 pediatric xenograft tumor models representing diverse pediatric cancer types [Ewing sarcoma (9), brain (4), rhabdomyosarcoma (10), Wilms tumor (4), and non-CNS rhabdoid tumors (5)] were evaluated for response to a single administration of pegylated-SN38 (PLX038A), a controlled-release PEGylated formulation of SN-38. Endpoints measured were percent tumor regression, and event-free survival (EFS). The correlation between response to PLX038A was compared to that for ten models treated with irinotecan (2.5 mg/kg × 5 days × 2 cycles), using a traditional design (10 mice/group). Correlations between tumor sensitivity, genetic mutations and gene expression were sought. Models showing no disease at week 20 were categorized as 'extreme responders' to PLX038A, whereas those with EFS less than 5 weeks were categorized as 'resistant'. RESULTS The activity of PLX038A was evaluable in 31/32 models. PLX038A induced > 50% volume regressions in 25 models (78%). Initial tumor volume regression correlated only modestly with EFS (r2 = 0.238), but sensitivity to PLX038A was better correlated with response to irinotecan when one tumor hypersensitive to PLX038A was omitted (r2 = 0.6844). Mutations in 53BP1 were observed in three of six sensitive tumor models compared to none in resistant models (n = 6). CONCLUSIONS This study demonstrates the feasibility of using a single-mouse design for assessing the antitumor activity of an agent, while encompassing greater genetic diversity representative of childhood cancers. PLX038A was highly active in most xenograft models, and tumor sensitivity to PLX038A was correlated with sensitivity to irinotecan, validating the single-mouse design in identifying agents with the same mechanism of action. Biomarkers that correlated with model sensitivity included wild-type TP53, or mutant TP53 but with a mutation in 53BP1, thus a defect in DNA damage response. These results support the value of the single-mouse experimental design.
Collapse
Affiliation(s)
- Samson Ghilu
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Qilin Li
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Shaun D Fontaine
- ProLynx LLC, 455 Mission Bay Blvd, South San Francisco, CA, 94158, USA
| | - Daniel V Santi
- ProLynx LLC, 455 Mission Bay Blvd, South San Francisco, CA, 94158, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, UT Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
7
|
Buzon B, Grainger R, Huang S, Rzadki C, Junop MS. Structure-specific endonuclease activity of SNM1A enables processing of a DNA interstrand crosslink. Nucleic Acids Res 2019; 46:9057-9066. [PMID: 30165656 PMCID: PMC6158701 DOI: 10.1093/nar/gky759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/20/2018] [Indexed: 01/09/2023] Open
Abstract
DNA interstrand crosslinks (ICLs) covalently join opposing strands, blocking both replication and transcription, therefore making ICL-inducing compounds highly toxic and ideal anti-cancer agents. While incisions surrounding the ICL are required to remove damaged DNA, it is currently unclear which endonucleases are needed for this key event. SNM1A has been shown to play an important function in human ICL repair, however its suggested role has been limited to exonuclease activity and not strand incision. Here we show that SNM1A has endonuclease activity, having the ability to cleave DNA structures that arise during the initiation of ICL repair. In particular, this endonuclease activity cleaves single-stranded DNA. Given that unpaired DNA regions occur 5′ to an ICL, these findings suggest SNM1A may act as either an endonuclease and/or exonuclease during ICL repair. This finding is significant as it expands the potential role of SNM1A in ICL repair.
Collapse
Affiliation(s)
- Beverlee Buzon
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Ryan Grainger
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Simon Huang
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Cameron Rzadki
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada
| | - Murray S Junop
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster, University, Hamilton, Ontario L8N 3Z5, Canada.,Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| |
Collapse
|
8
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
9
|
53BP1 Mediates ATR-Chk1 Signaling and Protects Replication Forks under Conditions of Replication Stress. Mol Cell Biol 2018; 38:MCB.00472-17. [PMID: 29378830 DOI: 10.1128/mcb.00472-17] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/12/2018] [Indexed: 12/14/2022] Open
Abstract
Complete replication of the genome is an essential prerequisite for normal cell division, but a variety of factors can block the replisome, triggering replication stress and potentially causing mutation or cell death. The cellular response to replication stress involves recruitment of proteins to stabilize the replication fork and transmit a stress signal to pause the cell cycle and allow fork restart. We find that the ubiquitously expressed DNA damage response factor 53BP1 is required for the normal response to replication stress. Using primary, ex vivo B cells, we showed that a population of 53BP1-/- cells in early S phase is hypersensitive to short-term exposure to three different agents that induce replication stress. 53BP1 localizes to a subset of replication forks following induced replication stress, and an absence of 53BP1 leads to defective ATR-Chk1-p53 signaling and caspase 3-mediated cell death. Nascent replicated DNA additionally undergoes degradation in 53BP1-/- cells. These results show that 53BP1 plays an important role in protecting replication forks during the cellular response to replication stress, in addition to the previously characterized role of 53BP1 in DNA double-strand break repair.
Collapse
|
10
|
Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks. Oncotarget 2018; 7:49574-49587. [PMID: 27391338 PMCID: PMC5226530 DOI: 10.18632/oncotarget.10411] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/12/2016] [Indexed: 11/25/2022] Open
Abstract
Phosphorylation of histone H2AX on serine 139 (γH2AX) is an early step in cellular response to a DNA double-strand break (DSB). γH2AX foci are generally regarded as markers of DSBs. A growing body of evidence demonstrates, however, that while induction of DSBs always brings about phosphorylation of histone H2AX, the reverse is not true - the presence of γH2AX foci should not be considered an unequivocal marker of DNA double-strand breaks. We studied DNA damage induced in A549 human lung adenocarcinoma cells by topoisomerase type I and II inhibitors (0.2 μM camptothecin, 10 μM etoposide or 0.2 μM mitoxantrone for 1 h), and using 3D high resolution quantitative confocal microscopy, assessed the number, size and the integrated intensity of immunofluorescence signals of individual γH2AX foci induced by these drugs. Also, investigated was spatial association between γH2AX foci and foci of 53BP1, the protein involved in DSB repair, both in relation to DNA replication sites (factories) as revealed by labeling nascent DNA with EdU. Extensive 3D and correlation data analysis demonstrated that γH2AX foci exhibit a wide range of sizes and levels of H2AX phosphorylation, and correlate differently with 53BP1 and DNA replication. This is the first report showing lack of a link between low level phosphorylation γH2AX sites and double-strand DNA breaks in cells exposed to topoisomerase I or II inhibitors. The data are discussed in terms of mechanisms that may be involved in formation of γH2AX sites of different sizes and intensities.
Collapse
|
11
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
12
|
Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome 2017; 28:262-274. [DOI: 10.1007/s00335-017-9688-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/25/2017] [Indexed: 12/22/2022]
|
13
|
Yim H, Shin SB, Woo SU, Lee PCW, Erikson RL. Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity. Oncogene 2017; 36:966-978. [PMID: 27477698 DOI: 10.1038/onc.2016.263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Abstract
Although 53BP1 has been established well as a mediator in DNA damage response, its function in mitosis is not clearly understood. We found that 53BP1 is a mitotic-binding partner of the kinases Plk1 and AuroraA, and that the binding with Plk1 increases the stability of 53BP1 by accelerating its interaction with the deubiquitinase USP7. Depletion of 53BP1 induces mitotic defects such as chromosomal missegregation, misorientation of spindle poles and the generation of extra centrosomes, which is similar phenotype to USP7-knockdown cells. In addition, 53BP1 depletion reduces the levels of p53 and centromere protein F (CENPF), interacting proteins of 53BP1. These phenotypes induced by 53BP1 depletion were rescued by expression of wild-type or phosphomimic mutant 53BP1 but not by expression of a dephosphomimic mutant. We propose that phosphorylation of 53BP1 at S380 accelerates complex formation with USP7 and CENPF to regulate their stability, thus having a crucial role in proper centrosome positioning, chromosomal alignment, and centrosome number.
Collapse
Affiliation(s)
- H Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - S-B Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - S U Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - P C-W Lee
- Department of Biomedical Sciences, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Korea
| | - R L Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 2014; 25:9-23. [PMID: 25403473 DOI: 10.1038/cr.2014.147] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- 1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA [2] Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Lee DH, Acharya SS, Kwon M, Drane P, Guan Y, Adelmant G, Kalev P, Shah J, Pellman D, Marto JA, Chowdhury D. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. Mol Cell 2014; 54:512-25. [PMID: 24703952 DOI: 10.1016/j.molcel.2014.03.020] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 01/01/2023]
Abstract
Excluding 53BP1 from chromatin is required to attenuate the DNA damage response during mitosis, yet the functional relevance and regulation of this exclusion are unclear. Here we show that 53BP1 is phosphorylated during mitosis on two residues, T1609 and S1618, located in its well-conserved ubiquitination-dependent recruitment (UDR) motif. Phosphorylating these sites blocks the interaction of the UDR motif with mononuclesomes containing ubiquitinated histone H2A and impedes binding of 53BP1 to mitotic chromatin. Ectopic recruitment of 53BP1-T1609A/S1618A to mitotic DNA lesions was associated with significant mitotic defects that could be reversed by inhibiting nonhomologous end-joining. We also reveal that protein phosphatase complex PP4C/R3β dephosphorylates T1609 and S1618 to allow the recruitment of 53BP1 to chromatin in G1 phase. Our results identify key sites of 53BP1 phosphorylation during mitosis, identify the counteracting phosphatase complex that restores the potential for DDR during interphase, and establish the physiological importance of this regulation.
Collapse
Affiliation(s)
- Dong-Hyun Lee
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Sciences, College of Science, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Sanket S Acharya
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Mijung Kwon
- Department of Cell Biology, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pascal Drane
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Yinghua Guan
- Department of Systems Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Guillaume Adelmant
- Department of Biological Chemistry Molecular Pharmacology, Harvard Medical School, Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Peter Kalev
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jagesh Shah
- Department of Systems Biology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David Pellman
- Department of Cell Biology, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jarrod A Marto
- Department of Biological Chemistry Molecular Pharmacology, Harvard Medical School, Department of Cancer Biology and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Xu Z, Zan H, Pone EJ, Mai T, Casali P. Immunoglobulin class-switch DNA recombination: induction, targeting and beyond. Nat Rev Immunol 2012; 12:517-31. [PMID: 22728528 PMCID: PMC3545482 DOI: 10.1038/nri3216] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Class-switch DNA recombination (CSR) of the immunoglobulin heavy chain (IGH) locus is central to the maturation of the antibody response and crucially requires the cytidine deaminase AID. CSR involves changes in the chromatin state and the transcriptional activation of the IGH locus at the upstream and downstream switch (S) regions that are to undergo S-S DNA recombination. In addition, CSR involves the induction of AID expression and the targeting of CSR factors to S regions by 14-3-3 adaptors, and it is facilitated by the transcription machinery and by histone modifications. In this Review, we focus on recent advances regarding the induction and targeting of CSR and outline an integrated model of the assembly of macromolecular complexes that transduce crucial epigenetic information to enzymatic effectors of the CSR machinery.
Collapse
Affiliation(s)
- Zhenming Xu
- Institute for Immunology and Department of Medicine, School of Medicine, University of California, Irvine, California 92697-4120, USA
| | | | | | | | | |
Collapse
|
17
|
Carra C, Saha J, Cucinotta FA. Theoretical prediction of the binding free energy for mutants of replication protein A. J Mol Model 2011; 18:3035-49. [PMID: 22160652 DOI: 10.1007/s00894-011-1313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/16/2011] [Indexed: 01/29/2023]
Abstract
The replication protein A (RPA) is a heterotrimeric (70, 32, and 14 kDa subunits), single stranded DNA (ssDNA) binding protein required for pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Studies based on deletions and mutations have identified the high affinity ssDNA binding domains in the 70 kDa subunit of RPA, regions A and B. Individually, the domain A and B have a low affinity for ssDNA, while tandems composed of AA, AB, BB, and BA sequences bind the ssDNA with moderate to high affinity. Single and double point mutations on polar residues in the binding domains leads to a reduction in affinity of RPA for ssDNA, in particular when two hydrophilic residues are involved. In view of these results, we performed a study based on molecular dynamics simulation aimed to reproduce the experimental change in binding free energy, ΔΔG, of RPA70 mutants to further elucidate the nature of the protein-ssDNA interaction. The MM-PB(GB)SA methods implemented in Amber10 and the code FoldX were used to estimate the binding free energy. The theoretical and experimental ΔΔG values correlate better when the results are obtained by MM-PBSA calculated on individual trajectories for each mutant. In these conditions, the correlation coefficient between experimental and theoretical ΔΔG reaches a value of 0.95 despite the overestimation of the energy change by one order of magnitude. The decomposition of the MM-GBSA energy per residue allows us to correlate the change of the affinity with the residue polarity and energy contribution to the binding. The method revealed reliable predictions of the change in the affinity in function of mutations, and can be used to identify new mutants with distinct binding properties.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, Columbia, MD, USA.
| | | | | |
Collapse
|
18
|
Carra C, Cucinotta FA. Accurate prediction of the binding free energy and analysis of the mechanism of the interaction of replication protein A (RPA) with ssDNA. J Mol Model 2011; 18:2761-83. [PMID: 22116609 DOI: 10.1007/s00894-011-1288-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
The eukaryotic replication protein A (RPA) has several pivotal functions in the cell metabolism, such as chromosomal replication, prevention of hairpin formation, DNA repair and recombination, and signaling after DNA damage. Moreover, RPA seems to have a crucial role in organizing the sequential assembly of DNA processing proteins along single stranded DNA (ssDNA). The strong RPA affinity for ssDNA, K(A) between 10(-9)-10(-10) M, is characterized by a low cooperativity with minor variation for changes on the nucleotide sequence. Recently, new data on RPA interactions was reported, including the binding free energy of the complex RPA70AB with dC(8) and dC(5), which has been estimated to be -10 ± 0.4 kcal mol(-1) and -7 ± 1 kcal mol(-1), respectively. In view of these results we performed a study based on molecular dynamics aimed to reproduce the absolute binding free energy of RPA70AB with the dC(5) and dC(8) oligonucleotides. We used several tools to analyze the binding free energy, rigidity, and time evolution of the complex. The results obtained by MM-PBSA method, with the use of ligand free geometry as a reference for the receptor in the separate trajectory approach, are in excellent agreement with the experimental data, with ±4 kcal mol(-1) error. This result shows that the MM-PB(GB)SA methods can provide accurate quantitative estimates of the binding free energy for interacting complexes when appropriate geometries are used for the receptor, ligand and complex. The decomposition of the MM-GBSA energy for each residue in the receptor allowed us to correlate the change of the affinity of the mutated protein with the ΔG(gas+sol) contribution of the residue considered in the mutation. The agreement with experiment is optimal and a strong change in the binding free energy can be considered as the dominant factor in the loss for the binding affinity resulting from mutation.
Collapse
Affiliation(s)
- Claudio Carra
- Universities Space Research Association, Houston, TX 77058, USA.
| | | |
Collapse
|
19
|
Labay E, Efimova EV, Quarshie BK, Golden DW, Weichselbaum RR, Kron SJ. Ionizing radiation-induced foci persistence screen to discover enhancers of accelerated senescence. ACTA ACUST UNITED AC 2011; 2:1-13. [PMID: 26097382 PMCID: PMC4474479 DOI: 10.2147/ijhts.s17076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Much like replicative senescence, the irreversible cell-cycle arrest induced by eroded telomeres, accelerated senescence occurs when replicative cells suffer irreparable DNA double-strand breaks (DSBs). Along with apoptosis and necrosis, senescence is a desirable outcome in cancer treatment with ionizing radiation (IR) or chemotherapy. In both normal and cancer cells, DSBs promote the assembly of IR-induced foci (IRIF), domains of modified chromatin that serve a key role in DNA damage signaling. IRIF persistence is a critical determinant of accelerated senescence, making drugs that promote persistent IRIF an attractive strategy to sensitize cancer to genotoxic therapy. As an IRIF reporter, we have expressed an inducible green fluorescent protein (GFP) fusion to the IRIF-binding domain (IBD) of 53BP1 (GFP-IBD) in the breast cancer cell line MCF7. Within minutes of exposure to IR, the GFP-IBD relocalizes to form fluorescent nuclear foci, which disperse within several hours. A pair of high-content screening assays for IRIF formation and persistence were established in multiwell plates based on imaging and quantifying GFP-IBD foci per Hoechst-stained MCF7 nucleus at 2 hours and 24 hours. Using the ataxia telangiectasia-mutated inhibitor CGK733 to block IRIF formation and the topoisomerase II inhibitor etoposide to prevent IRIF resolution, we obtained a Z' >0.8 both for IRIF formation at 2 hours and IRIF persistence at 24 hours. Screening the diverse drugs and natural products in the National Cancer Institute Developmental Therapeutics Program Approved Oncology Drugs Set, the National Institutes of Health Clinical Collection, and the MicroSource Spectrum Collection yielded multiple hits that significantly delayed IRIF resolution. Secondary screening suggested some of these otherwise nontoxic drugs also enhance accelerated senescence, indicating strong potential for their repurposing as radiation sensitizers to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Edwardine Labay
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Elena V Efimova
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Benjamin K Quarshie
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Daniel W Golden
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | | | - Stephen J Kron
- Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Oakley GG, Patrick SM. Replication protein A: directing traffic at the intersection of replication and repair. FRONT BIOSCI-LANDMRK 2010; 15:883-900. [PMID: 20515732 DOI: 10.2741/3652] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
Collapse
Affiliation(s)
- Greg G Oakley
- College of Dentistry, University of Nebraska Medical Center, Lincoln, Nebraska 68583, USA
| | | |
Collapse
|
21
|
Differential requirement for H2AX and 53BP1 in organismal development and genome maintenance in the absence of poly(ADP)ribosyl polymerase 1. Mol Cell Biol 2010; 30:2341-52. [PMID: 20231360 DOI: 10.1128/mcb.00091-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Combined deficiencies of poly(ADP)ribosyl polymerase 1 (PARP1) and ataxia telangiectasia mutated (ATM) result in synthetic lethality and, in the mouse, early embryonic death. Here, we investigated the genetic requirements for this lethality via analysis of mice deficient for PARP1 and either of two ATM-regulated DNA damage response (DDR) factors: histone H2AX and 53BP1. We found that, like ATM, H2AX is essential for viability in a PARP1-deficient background. In contrast, deficiency for 53BP1 modestly exacerbates phenotypes of growth retardation, genomic instability, and organismal radiosensitivity observed in PARP1-deficient mice. To gain mechanistic insights into these different phenotypes, we examined roles for 53BP1 in the repair of replication-associated double-strand breaks (DSBs) in several cellular contexts. We show that 53BP1 is required for DNA-PKcs-dependent repair of hydroxyurea (HU)-induced DSBs but dispensable for RPA/RAD51-dependent DSB repair in the same setting. Moreover, repair of mitomycin C (MMC)-induced DSBs and sister chromatid exchanges (SCEs), two RAD51-dependent processes, are 53BP1 independent. Overall, our findings define 53BP1 as a main facilitator of nonhomologous end joining (NHEJ) during the S phase of the cell cycle, beyond highly specialized lymphocyte rearrangements. These findings have important implications for our understanding of the mechanisms whereby ATM-regulated DDR prevents human aging and cancer.
Collapse
|
22
|
Sakasai R, Teraoka H, Tibbetts RS. Proteasome inhibition suppresses DNA-dependent protein kinase activation caused by camptothecin. DNA Repair (Amst) 2009; 9:76-82. [PMID: 19959400 DOI: 10.1016/j.dnarep.2009.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/15/2009] [Accepted: 10/27/2009] [Indexed: 01/18/2023]
Abstract
The ubiquitin-proteasome pathway plays an important role in DNA damage signaling and repair by facilitating the recruitment and activation of DNA repair factors and signaling proteins at sites of damaged chromatin. Proteasome activity is generally not thought to be required for activation of apical signaling kinases including the PI3K-related kinases (PIKKs) ATM, ATR, and DNA-PK that orchestrate downstream signaling cascades in response to diverse genotoxic stimuli. In a previous work, we showed that inhibition of the proteasome by MG-132 suppressed 53BP1 (p53 binding protein1) phosphorylation as well as RPA2 (replication protein A2) phosphorylation in response to the topoisomerase I (TopI) poison camptothecin (CPT). To address the mechanism of proteasome-dependent RPA2 phosphorylation, we investigated the effects of proteasome inhibitors on the upstream PIKKs. MG-132 sharply suppressed CPT-induced DNA-PKcs autophosphorylation, a marker of the activation, whereas the phosphorylation of ATM and ATR substrates was only slightly suppressed by MG-132, suggesting that DNA-PK among the PIKKs is specifically regulated by the proteasome in response to CPT. On the other hand, MG-132 did not suppress DNA-PK activation in response to UV or IR. MG-132 blocked the interaction between DNA-PKcs and Ku heterodimer enhanced by CPT, and hydroxyurea pre-treatment completely abolished CPT-induced DNA-PKcs autophosphorylation, indicating a requirement for ongoing DNA replication. CPT-induced TopI degradation occurred independent of DNA-PK activation, suggesting that DNA-PK activation does not require degradation of trapped TopI complexes. The combined results suggest that CPT-dependent replication fork collapse activates DNA-PK signaling through a proteasome dependent, TopI degradation-independent pathway. The implications of DNA-PK activation in the context of TopI poison-based therapies are discussed.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, Japan.
| | | | | |
Collapse
|
23
|
Takashi Y, Kobayashi Y, Tanaka K, Tamura K. Arabidopsis replication protein A 70a is required for DNA damage response and telomere length homeostasis. PLANT & CELL PHYSIOLOGY 2009; 50:1965-1976. [PMID: 19812063 DOI: 10.1093/pcp/pcp140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Replication protein A1 (RPA1/RPA70) forms a heterotrimeric complex together with RPA2/RPA32 and RPA3/RPA14 subunits which plays essential roles in various aspects of DNA metabolism including replication, repair, recombination and telomere maintenance. Compared with RPA70 in yeast and mammals, limited information is available about the factor in plants. In this study, we analyzed the functions of AtRPA70a, which is most similar to human RPA70 among four paralogs in Arabidopsis thaliana. RNA blot analysis showed that AtRPA70a is expressed ubiquitously in plant organs containing differentiated and meristematic tissues, while its expression was up-regulated in response to DNA damage stress. Yeast two-hybrid and co-immunoprecipitation analyses showed that AtRPA70a interacted preferentially with Arabidopsis RPA32a, one of two paralogs. Inactivation of AtRPA70a by T-DNA insertion did not affect growth under normal conditions, but resulted in increased sensitivity to genotoxic agents such as methylmethane sulfonate, bleomycin and hydroxyurea. Terminal restriction fragment analysis revealed that telomere lengths in an AtRPA70a-deficient line were significantly larger than in the wild type, whereas those in the mutant expressing antisense AtTERT (telomerase catalytic subunit gene) were shortened during successive generations. These results demonstrate that AtRPA70a is involved in repair of double-strand DNA breaks and possibly contributes to telomerase-dependent telomere length regulation.
Collapse
Affiliation(s)
- Yoshiyuki Takashi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
24
|
Abstract
NFBD1/MDC1, 53BP1 and BRCA1 are DNA damage checkpoint proteins with twin BRCT domains. In order to determine if they have redundant roles in responses to ionizing radiation, we used siRNA and shRNA to deplete NFBD1, 53BP1 and BRCA1 in single, double and triple combinations. These analyses were performed in early passage human foreskin fibroblasts so that checkpoint responses could be assessed in a normal genetic background. We report that NFBD1, 53BP1 and BRCA1 have both unique and redundant functions in radiation-induced phosphorylation and localization events in the ATM-Chk2 pathway. 53BP1, but not NFBD1 and BRCA1, mediates ionizing radiation-induced ATM S1981 autophosphorylation. In contrast, all three mediators collaborate to promote IR-induced Chk2 T68 phosphorylation. NFBD1 and 53BP1, but not BRCA1, work together to mediate pATMS1981, pChk2T68 and NBS1 ionizing radiation induced foci (IRIF). However, the relative importance of NFBD1 and 53BP1 in IRIF formation differ. We also determined the interdependence among mediators in IRIF recruitment. We extend previous findings in cancer cells and mouse cells that NFBD1 is upstream of 53BP1 and BRCA1 to primary human cells. Furthermore, NFBD1 promotes BRCA1 IRIF through both 53BP1-dependent and 53BP1-independent mechanisms.
Collapse
Affiliation(s)
- Kathleen A Wilson
- Department of Pathology and Graduate Program in Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | |
Collapse
|
25
|
Sakasai R, Tibbetts R. RNF8-dependent and RNF8-independent regulation of 53BP1 in response to DNA damage. J Biol Chem 2008; 283:13549-55. [PMID: 18337245 DOI: 10.1074/jbc.m710197200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage surveillance network orchestrates cellular responses to DNA damage through the recruitment of DNA damage-signaling molecules to DNA damage sites and the concomitant activation of protein phosphorylation cascades controlled by the ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) kinases. Activation of ATM/ATR triggers cell cycle checkpoint activation and adaptive responses to DNA damage. Recent studies suggest that protein ubiquitylation or degradation plays an important role in the DNA damage response. In this study, we examined the potential role of the proteasome in checkpoint activation and ATM/ATR signaling in response to UV light-induced DNA damage. HeLa cells treated with the proteasome inhibitor MG-132 showed delayed phosphorylation of ATM substrates in response to UV light. UV light-induced phosphorylation of 53BP1, as well as its recruitment to DNA damage foci, was strongly suppressed by proteasome inhibition, whereas the recruitment of upstream regulators of 53BP1, including MDC1 and H2AX, was unaffected. The ubiquitin-protein isopeptide ligase RNF8 was critical for 53BP1 focus targeting and phosphorylation in ionizing radiation-damaged cells, whereas UV light-induced 53BP1 phosphorylation and targeting exhibited partial dependence on RNF8 and the ubiquitin-conjugating enzyme UBC13. Suppression of RNF8 or UBC13 also led to subtle defects in UV light-induced G2/M checkpoint activation. These findings are consistent with a model in which RNF8 ubiquitylation pathways are essential for 53BP1 regulation in response to ionizing radiation, whereas RNF8-independent pathways contribute to 53BP1 targeting and phosphorylation in response to UV light and potentially other forms of DNA replication stress.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
26
|
Manthey KC, Opiyo S, Glanzer JG, Dimitrova D, Elliott J, Oakley GG. NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse. J Cell Sci 2007; 120:4221-9. [PMID: 18003706 DOI: 10.1242/jcs.004580] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Post-translational phosphorylation of proteins provides a mechanism for cells to switch on or off many diverse processes, including responses to replication stress. Replication-stress-induced phosphorylation enables the rapid activation of numerous proteins involved in DNA replication, DNA repair and cell cycle checkpoints, including replication protein A (RPA). Here, we report that hydroxyurea (HU)-induced RPA phosphorylation requires both NBS1 (NBN) and NBS1 phosphorylation. Transfection of both phosphospecific and nonphosphospecific anti-NBS1 antibodies blocked hyperphosphorylation of RPA in HeLa cells. Nijmegen breakage syndrome (NBS) cells stably transfected with an empty vector or with S343A-NBS1 or S278A/S343A phospho-mutants were unable to hyperphosphorylate RPA in DNA-damage-associated foci following HU treatment. The stable transfection of fully functional NBS1 in NBS cells restored RPA hyperphosphorylation. Retention of ATR on chromatin in both NBS cells and in NBS cells expressing S278A/S343A NBS1 mutants decreased after DNA damage, suggesting that ATR is the kinase responsible for RPA phosphorylation. The importance of RPA hyperphosphorylation is demonstrated by the ability of cells expressing a phospho-mutant form of RPA32 (RPA2) to suppress and delay HU-induced apoptosis. Our findings suggest that RPA hyperphosphorylation requires NBS1 and is important for the cellular response to DNA damage.
Collapse
Affiliation(s)
- Karoline C Manthey
- Department of Oral Biology, University of Nebraska Medical Center College of Dentistry and Nebraska Center for Cellular Signaling, Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
27
|
Adams MM, Carpenter PB. Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Div 2006; 1:19. [PMID: 16945145 PMCID: PMC1601952 DOI: 10.1186/1747-1028-1-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/31/2006] [Indexed: 01/08/2023] Open
Abstract
To maintain genomic stability and ensure the fidelity of chromosomal transmission, cells respond to various forms of genotoxic stress, including DNA double-stranded breaks (DSBs), through the activation of DNA damage response signaling networks. In response to DSBs as induced by ionizing radiation (IR), during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in B cells of lymphoid origin, the phosphatidyl inositol-like kinase (PIK) kinases ATM (mutated in ataxia telangiectasia), ATR (ATM and Rad3-related kinase), and the DNA-dependent protein kinase (DNA-PK) activate signaling pathways that lead to DSB repair. DSBs are repaired by either of two major, non-mutually exclusive pathways: homologous recombination (HR) that utilizes an undamaged sister chromatid template (or homologous chromosome) and non- homologous end joining (NHEJ), an error prone mechanism that processes and joins broken DNA ends through the coordinated effort of a small set of ubiquitous factors (DNA-PKcs, Ku70, Ku80, artemis, Xrcc4/DNA lig IV, and XLF/Cernunnos). The PIK kinases phosphorylate a variety of effector substrates that propagate the DNA damage signal, ultimately resulting in various biological outputs that influence cell cycle arrest, transcription, DNA repair, and apoptosis. A variety of data has revealed a critical role for p53-binding protein 1 (53BP1) in the cellular response to DSBs including various aspects of p53 function. Importantly, 53BP1 plays a major role in suppressing translocations, particularly in B and T cells. This report will review past experiments and current knowledge regarding the role of 53BP1 in the DNA damage response.
Collapse
Affiliation(s)
- Melissa M Adams
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Phillip B Carpenter
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
28
|
Fanning E, Klimovich V, Nager AR. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 2006; 34:4126-37. [PMID: 16935876 PMCID: PMC1616954 DOI: 10.1093/nar/gkl550] [Citation(s) in RCA: 445] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Processing of DNA in replication, repair and recombination pathways in cells of all organisms requires the participation of at least one major single-stranded DNA (ssDNA)-binding protein. This protein protects ssDNA from nucleolytic damage, prevents hairpin formation and blocks DNA reannealing until the processing pathway is successfully completed. Many ssDNA-binding proteins interact physically and functionally with a variety of other DNA processing proteins. These interactions are thought to temporally order and guide the parade of proteins that 'trade places' on the ssDNA, a model known as 'hand-off', as the processing pathway progresses. How this hand-off mechanism works remains poorly understood. Recent studies of the conserved eukaryotic ssDNA-binding protein replication protein A (RPA) suggest a novel mechanism by which proteins may trade places on ssDNA by binding to RPA and mediating conformation changes that alter the ssDNA-binding properties of RPA. This article reviews the structure and function of RPA, summarizes recent studies of RPA in DNA replication and other DNA processing pathways, and proposes a general model for the role of RPA in protein-mediated hand-off.
Collapse
Affiliation(s)
- Ellen Fanning
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville, TN 37235-1634, USA.
| | | | | |
Collapse
|
29
|
Zou Y, Liu Y, Wu X, Shell SM. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 2006; 208:267-73. [PMID: 16523492 PMCID: PMC3107514 DOI: 10.1002/jcp.20622] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human replication protein A (RPA), a heterotrimeric protein complex, was originally defined as a eukaryotic single-stranded DNA binding (SSB) protein essential for the in vitro replication of simian virus 40 (SV40) DNA. Since then RPA has been found to be an indispensable player in almost all DNA metabolic pathways such as, but not limited to, DNA replication, DNA repair, recombination, cell cycle, and DNA damage checkpoints. Defects in these cellular reactions may lead to genome instability and, thus, the diseases with a high potential to evolve into cancer. This extensive involvement of RPA in various cellular activities implies a potential modulatory role for RPA in cellular responses to genotoxic insults. In support, RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATR (ATM and Rad3-related), and DNA-dependent protein kinase (DNA-PK). The hyperphosphorylation may change the functions of RPA and, thus, the activities of individual pathways in which it is involved. Indeed, there is growing evidence that hyperphosphorylation alters RPA-DNA and RPA-protein interactions. In addition, recent advances in understanding the molecular basis of the stress-induced modulation of RPA functions demonstrate that RPA undergoes a subtle structural change upon hyperphosphorylation, revealing a structure-based modulatory mechanism. Furthermore, given the crucial roles of RPA in a broad range of cellular processes, targeting RPA to inhibit its specific functions, particularly in DNA replication and repair, may serve a valuable strategy for drug development towards better cancer treatment.
Collapse
Affiliation(s)
- Yue Zou
- Department of Biochemistry and Molecular Biology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, USA.
| | | | | | | |
Collapse
|
30
|
Mougeot JLC, Bahrani-Mostafavi Z, Vachris JC, McKinney KQ, Gurlov S, Zhang J, Naumann RW, Higgins RV, Hall JB. Gene Expression Profiling of Ovarian Tissues for Determination of Molecular Pathways Reflective of Tumorigenesis. J Mol Biol 2006; 358:310-29. [PMID: 16503337 DOI: 10.1016/j.jmb.2006.01.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 02/01/2023]
Abstract
Ovarian cancer is the fourth leading cause of gynecological cancer death among women in the United States. Early detection is a critical prerequisite to initiating effective cancer therapy. Gene microarray technology and proteomics have provided much of the biomarkers with potential use for diagnosis. However, more research is needed to fully understand disease onset and progression. To this end, we have performed microarray analysis with the goal of identifying molecular interaction networks defining tumor growth. Microarray analysis was performed on a limited set of ovarian tissues with various pathological diagnoses using Human Genome Focus Array (HGFA) for the detection of approximately 8500 human transcripts. Hierarchical clustering identified groups of ovarian tissues reflective of low malignant potential/early cancer onset and possible pre-cancerous stages involving small molecule, cytokine and/or hormone-dependent feed-back responses specific to the pelvic reproductive system and a priori initiated tumor suppression mechanisms. ANOVA followed by post hoc Scheffe confirmed our hypotheses. Moreover, we established a protein/protein interaction database associated with HGFA probe sets. This database was used to build and visualize molecular networks integrating small but significant changes in gene expression. In conclusion, we were able for the first time to delineate an intersecting genetic pattern linking ovarian tissues reflective of low potential malignancy/early cancer onset stages via long distance signaling between tissues of gynecological origin.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Cannon Research Center, Department of Research Services, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Namiki Y, Zou L. ATRIP associates with replication protein A-coated ssDNA through multiple interactions. Proc Natl Acad Sci U S A 2006; 103:580-5. [PMID: 16407120 PMCID: PMC1334680 DOI: 10.1073/pnas.0510223103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ATR (ATM- and rad3-related)-mediated checkpoint pathway has a crucial role in regulating the cellular responses to DNA damage and DNA-replication stress. ATRIP (ATR-interacting protein), the regulatory partner of ATR, binds directly to replication protein A (RPA)-coated ssDNA and enables the ATR-ATRIP complex to recognize this DNA damage-induced structure. Here, we show that ATRIP associates with RPA-ssDNA through multiple interactions. Two major RPA-ssDNA-interacting domains of ATRIP were mapped to the regions flanking the conserved coiled-coil domain. In contrast to a recent article, we found that ATRIP mutants lacking the N terminus retained the ability to bind to RPA-ssDNA, suggesting that the multiple interactions between ATRIP and RPA-ssDNA may function redundantly in the recruitment of ATR-ATRIP. Unexpectedly, one internal region of ATRIP exhibited affinity to ssDNA, suggesting that ATRIP may interact with ssDNA in the ATRIP-RPA-ssDNA complex. Also, the N terminus of ATRIP associated with RPA-ssDNA in two distinct ways, indicating a dynamic and regulated association between ATRIP and RPA-ssDNA.
Collapse
Affiliation(s)
- Yuka Namiki
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | |
Collapse
|