1
|
Bristol JA, Nelson SE, Ohashi M, Casco A, Hayes M, Ranheim EA, Pawelski AS, Singh DR, Hodson DJ, Johannsen EC, Kenney SC. Latent Epstein-Barr virus infection collaborates with Myc over-expression in normal human B cells to induce Burkitt-like Lymphomas in mice. PLoS Pathog 2024; 20:e1012132. [PMID: 38620028 PMCID: PMC11045125 DOI: 10.1371/journal.ppat.1012132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/25/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024] Open
Abstract
Epstein-Barr virus (EBV) is an important cause of human lymphomas, including Burkitt lymphoma (BL). EBV+ BLs are driven by Myc translocation and have stringent forms of viral latency that do not express either of the two major EBV oncoproteins, EBNA2 (which mimics Notch signaling) and LMP1 (which activates NF-κB signaling). Suppression of Myc-induced apoptosis, often through mutation of the TP53 (p53) gene or inhibition of pro-apoptotic BCL2L11 (BIM) gene expression, is required for development of Myc-driven BLs. EBV+ BLs contain fewer cellular mutations in apoptotic pathways compared to EBV-negative BLs, suggesting that latent EBV infection inhibits Myc-induced apoptosis. Here we use an EBNA2-deleted EBV virus (ΔEBNA2 EBV) to create the first in vivo model for EBV+ BL-like lymphomas derived from primary human B cells. We show that cord blood B cells infected with both ΔEBNA2 EBV and a Myc-expressing vector proliferate indefinitely on a CD40L/IL21 expressing feeder layer in vitro and cause rapid onset EBV+ BL-like tumors in NSG mice. These LMP1/EBNA2-negative Myc-driven lymphomas have wild type p53 and very low BIM, and express numerous germinal center B cell proteins (including TCF3, BACH2, Myb, CD10, CCDN3, and GCSAM) in the absence of BCL6 expression. Myc-induced activation of Myb mediates expression of many of these BL-associated proteins. We demonstrate that Myc blocks LMP1 expression both by inhibiting expression of cellular factors (STAT3 and Src) that activate LMP1 transcription and by increasing expression of proteins (DNMT3B and UHRF1) known to enhance DNA methylation of the LMP1 promoters in human BLs. These results show that latent EBV infection collaborates with Myc over-expression to induce BL-like human B-cell lymphomas in mice. As NF-κB signaling retards the growth of EBV-negative BLs, Myc-mediated repression of LMP1 may be essential for latent EBV infection and Myc translocation to collaboratively induce human BLs.
Collapse
Affiliation(s)
- Jillian A. Bristol
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Scott E. Nelson
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Makoto Ohashi
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Alejandro Casco
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Erik A. Ranheim
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail S. Pawelski
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Deo R. Singh
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Daniel J. Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Eric C. Johannsen
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shannon C. Kenney
- Department of Oncology, McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Murti K, Fender H, Glatzle C, Wismer R, Sampere-Birlanga S, Wild V, Muhammad K, Rosenwald A, Serfling E, Avots A. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells. Front Oncol 2023; 13:1205788. [PMID: 37546418 PMCID: PMC10403262 DOI: 10.3389/fonc.2023.1205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andris Avots
- *Correspondence: Edgar Serfling, ; Andris Avots,
| |
Collapse
|
3
|
Winkler R, Piskor EM, Kosan C. Lessons from Using Genetically Engineered Mouse Models of MYC-Induced Lymphoma. Cells 2022; 12:37. [PMID: 36611833 PMCID: PMC9818924 DOI: 10.3390/cells12010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Oncogenic overexpression of MYC leads to the fatal deregulation of signaling pathways, cellular metabolism, and cell growth. MYC rearrangements are found frequently among non-Hodgkin B-cell lymphomas enforcing MYC overexpression. Genetically engineered mouse models (GEMMs) were developed to understand MYC-induced B-cell lymphomagenesis. Here, we highlight the advantages of using Eµ-Myc transgenic mice. We thoroughly compiled the available literature to discuss common challenges when using such mouse models. Furthermore, we give an overview of pathways affected by MYC based on knowledge gained from the use of GEMMs. We identified top regulators of MYC-induced lymphomagenesis, including some candidates that are not pharmacologically targeted yet.
Collapse
Affiliation(s)
| | | | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, 07745 Jena, Germany
| |
Collapse
|
4
|
Petrenko O, Li J, Cimica V, Mena-Taboada P, Shin HY, D’Amico S, Reich NC. IL-6 promotes MYC-induced B cell lymphomagenesis independent of STAT3. PLoS One 2021; 16:e0247394. [PMID: 33651821 PMCID: PMC7924759 DOI: 10.1371/journal.pone.0247394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
The inflammatory cytokine IL-6 is known to play a causal role in the promotion of cancer, although the underlying mechanisms remain to be completely understood. Interplay between endogenous and environmental cues determines the fate of cancer development. The Eμ-myc transgenic mouse expresses elevated levels of c-Myc in the B cell lineage and develops B cell lymphomas with associated mutations in p53 or other genes linked to apoptosis. We generated Eμ-myc mice that either lacked the IL-6 gene, or lacked the STAT3 gene specifically in B cells to determine the role of the IL-6/JAK/STAT3 pathway in tumor development. Using the Eμ-myc lymphoma mouse model, we demonstrate that IL-6 is a critical tumor promoter during early stages of B cell lymphomagenesis. IL-6 is shown to inhibit the expression of tumor suppressors, notably BIM and PTEN, and this may contribute to advancing MYC-driven B cell tumorigenesis. Several miRNAs known to target BIM and PTEN are upregulated by IL-6 and likely lead to the stable suppression of pro-apoptotic pathways early during the tumorigenic process. STAT3, a classical downstream effector of IL-6, appears dispensable for Eμ-myc driven lymphomagenesis. We conclude that the growth-promoting and anti-apoptotic mechanisms activated by IL-6 are critically involved in Eμ-myc driven tumor initiation and progression, but the B cell intrinsic expression of STAT3 is not required.
Collapse
Affiliation(s)
- Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
| | - Jinyu Li
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States of America
| | - Velasco Cimica
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- American Type Culture Collection, City of Manassas, Virginia, United States of America
| | - Patricio Mena-Taboada
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- University Frontera, Temuco, Chile
| | - Ha Youn Shin
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, Korea
| | - Stephen D’Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
5
|
Richart L, Felipe I, Delgado P, Andrés MPD, Prieto J, Pozo ND, García JF, Piris MA, Ramiro A, Real FX. Bptf determines oncogenic addiction in aggressive B-cell lymphomas. Oncogene 2020; 39:4884-4895. [PMID: 32451433 DOI: 10.1038/s41388-020-1331-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Chromatin remodeling factors contribute to establish aberrant gene expression programs in cancer cells and therefore represent valuable targets for therapeutic intervention. BPTF (Bromodomain PhD Transcription Factor), a core subunit of the nucleosome remodeling factor (NURF), modulates c-MYC oncogenic activity in pancreatic cancer. Here, we analyze the role of BPTF in c-MYC-driven B-cell lymphomagenesis using the Eμ-Myc transgenic mouse model of aggressive B-cell lymphoma. We find that BPTF is required for normal B-cell differentiation without evidence of haploinsufficiency. In contrast, deletion of one Bptf allele is sufficient to delay lymphomagenesis in Eμ-Myc mice. Tumors arising in a Bptf heterozygous background display decreased c-MYC levels and pathway activity, together with increased activation of the NF-κB pathway, a molecular signature characteristic of human diffuse large B-cell lymphoma (DLBCL). In human B-cell lymphoma samples, we find a strong correlation between BPTF and c-MYC mRNA and protein levels, together with an anti-correlation between BPTF and NF-κB pathway activity. Our results indicate that BPTF is a relevant therapeutic target in B-cell lymphomas and that, upon its inhibition, cells acquire distinct oncogenic dependencies.
Collapse
Affiliation(s)
- Laia Richart
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Irene Felipe
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Pilar Delgado
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Mónica P de Andrés
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Jaime Prieto
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain
| | - Natalia Del Pozo
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Juan F García
- Department of Pathology, MD Anderson Cancer Center, 28033, Madrid, Spain
| | - Miguel A Piris
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain.,Department of Pathology, Fundación Jiménez Díaz, 28040, Madrid, Spain.,Department of Pathology, Hospital Universitario Marqués de Valdecilla, 39008, Santander, Spain
| | - Almudena Ramiro
- B Lymphocyte Biology Lab, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre-CNIO, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029, Madrid, Spain. .,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
6
|
HSP90 promotes Burkitt lymphoma cell survival by maintaining tonic B-cell receptor signaling. Blood 2016; 129:598-608. [PMID: 28064214 DOI: 10.1182/blood-2016-06-721423] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell neoplasm that is currently treated by intensive chemotherapy in combination with anti-CD20 antibodies. Because of their toxicity, current treatment regimens are often not suitable for elderly patients or for patients in developing countries where BL is endemic. Targeted therapies for BL are therefore needed. In this study, we performed a compound screen in 17 BL cell lines to identify small molecule inhibitors affecting cell survival. We found that inhibitors of heat shock protein 90 (HSP90) induced apoptosis in BL cells in vitro at concentrations that did not affect normal B cells. By global proteomic and phosphoproteomic profiling, we show that, in BL, HSP90 inhibition compromises the activity of the pivotal B-cell antigen receptor (BCR)-proximal effector spleen tyrosine kinase (SYK), which we identified as an HSP90 client protein. Consistently, expression of constitutively active TEL-SYK counteracted the apoptotic effect of HSP90 inhibition. Together, our results demonstrate that HSP90 inhibition impairs BL cell survival by interfering with tonic BCR signaling, thus providing a molecular rationale for the use of HSP90 inhibitors in the treatment of BL.
Collapse
|
7
|
Hunter JE, Butterworth JA, Zhao B, Sellier H, Campbell KJ, Thomas HD, Bacon CM, Cockell SJ, Gewurz BE, Perkins ND. The NF-κB subunit c-Rel regulates Bach2 tumour suppressor expression in B-cell lymphoma. Oncogene 2016; 35:3476-84. [PMID: 26522720 PMCID: PMC4853301 DOI: 10.1038/onc.2015.399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 08/13/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022]
Abstract
The REL gene, encoding the NF-κB subunit c-Rel, is frequently amplified in B-cell lymphoma and functions as a tumour-promoting transcription factor. Here we report the surprising result that c-rel-/- mice display significantly earlier lymphomagenesis in the c-Myc driven, Eμ-Myc model of B-cell lymphoma. c-Rel loss also led to earlier onset of disease in a separate TCL1-Tg-driven lymphoma model. Tumour reimplantation experiments indicated that this is an effect intrinsic to the Eμ-Myc lymphoma cells but, counterintuitively, c-rel-/- Eμ-Myc lymphoma cells were more sensitive to apoptotic stimuli. To learn more about why loss of c-Rel led to earlier onset of disease, microarray gene expression analysis was performed on B cells from 4-week-old, wild-type and c-rel-/- Eμ-Myc mice. Extensive changes in gene expression were not seen at this age, but among those transcripts significantly downregulated by the loss of c-Rel was the B-cell tumour suppressor BTB and CNC homology 2 (Bach2). Quantitative PCR and western blot analysis confirmed loss of Bach2 in c-Rel mutant Eμ-Myc tumours at both 4 weeks and the terminal stages of disease. Moreover, Bach2 expression was also downregulated in c-rel-/- TCL1-Tg mice and RelA Thr505Ala mutant Eμ-Myc mice. Analysis of wild-type Eμ-Myc mice demonstrated that the population expressing low levels of Bach2 exhibited the earlier onset of lymphoma seen in c-rel-/- mice. Confirming the relevance of these findings to human disease, analysis of chromatin immunoprecipitation sequencing data revealed that Bach2 is a c-Rel and NF-κB target gene in transformed human B cells, whereas treatment of Burkitt's lymphoma cells with inhibitors of the NF-κB/IκB kinase pathway or deletion of c-Rel or RelA resulted in loss of Bach2 expression. These data reveal a surprising tumour suppressor role for c-Rel in lymphoma development explained by regulation of Bach2 expression, underlining the context-dependent complexity of NF-κB signalling in cancer.
Collapse
Affiliation(s)
- J E Hunter
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - J A Butterworth
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - B Zhao
- Brigham and Women's Hospital, Boston, MA, USA
| | - H Sellier
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| | - K J Campbell
- The Beatson Institute for Cancer Research, Glasgow, UK
| | - H D Thomas
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - C M Bacon
- Northern Institute for Cancer Research, Newcastle Upon Tyne, UK
| | - S J Cockell
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - B E Gewurz
- Brigham and Women's Hospital, Boston, MA, USA
| | - N D Perkins
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Medical School, Newcastle Upon Tyne, UK
| |
Collapse
|
8
|
Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival. Proc Natl Acad Sci U S A 2016; 113:5688-93. [PMID: 27155012 DOI: 10.1073/pnas.1601053113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkitt's lymphoma (BL) is a highly proliferative B-cell neoplasm and is treated with intensive chemotherapy that, because of its toxicity, is often not suitable for the elderly or for patients with endemic BL in developing countries. BL cell survival relies on signals transduced by B-cell antigen receptors (BCRs). However, tonic as well as activated BCR signaling networks and their relevance for targeted therapies in BL remain elusive. We have systematically characterized and compared tonic and activated BCR signaling in BL by quantitative phosphoproteomics to identify novel BCR effectors and potential drug targets. We identified and quantified ∼16,000 phospho-sites in BL cells. Among these sites, 909 were related to tonic BCR signaling, whereas 984 phospho-sites were regulated upon BCR engagement. The majority of the identified BCR signaling effectors have not been described in the context of B cells or lymphomas yet. Most of these newly identified BCR effectors are predicted to be involved in the regulation of kinases, transcription, and cytoskeleton dynamics. Although tonic and activated BCR signaling shared a considerable number of effector proteins, we identified distinct phosphorylation events in tonic BCR signaling. We investigated the functional relevance of some newly identified BCR effectors and show that ACTN4 and ARFGEF2, which have been described as regulators of membrane-trafficking and cytoskeleton-related processes, respectively, are crucial for BL cell survival. Thus, this study provides a comprehensive dataset for tonic and activated BCR signaling and identifies effector proteins that may be relevant for BL cell survival and thus may help to develop new BL treatments.
Collapse
|
9
|
Muralidharan SV, Bhadury J, Nilsson LM, Green LC, McLure KG, Nilsson JA. BET bromodomain inhibitors synergize with ATR inhibitors to induce DNA damage, apoptosis, senescence-associated secretory pathway and ER stress in Myc-induced lymphoma cells. Oncogene 2016; 35:4689-97. [PMID: 26804177 DOI: 10.1038/onc.2015.521] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/08/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Inhibiting the bromodomain and extra-terminal (BET) domain family of epigenetic reader proteins has been shown to have potent anti-tumoral activity, which is commonly attributed to suppression of transcription. In this study, we show that two structurally distinct BET inhibitors (BETi) interfere with replication and cell cycle progression of murine Myc-induced lymphoma cells at sub-lethal concentrations when the transcriptome remains largely unaltered. This inhibition of replication coincides with a DNA-damage response and enhanced sensitivity to inhibitors of the upstream replication stress sensor ATR in vitro and in mouse models of B-cell lymphoma. Mechanistically, ATR and BETi combination therapy cause robust transcriptional changes of genes involved in cell death, senescence-associated secretory pathway, NFkB signaling and ER stress. Our data reveal that BETi can potentiate the cell stress and death caused by ATR inhibitors. This suggests that ATRi can be used in combination therapies of lymphomas without the use of genotoxic drugs.
Collapse
Affiliation(s)
- S V Muralidharan
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - J Bhadury
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - L M Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - L C Green
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K G McLure
- Zenith Epigenetics Corp, Calgary, Alberta, Canada
| | - J A Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Rampazzo C, Tozzi MG, Dumontet C, Jordheim LP. The druggability of intracellular nucleotide-degrading enzymes. Cancer Chemother Pharmacol 2015; 77:883-93. [PMID: 26614508 DOI: 10.1007/s00280-015-2921-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/13/2015] [Indexed: 01/24/2023]
Abstract
Nucleotide metabolism is the target of a large number of anticancer drugs including antimetabolites and specific enzyme inhibitors. We review scientific findings that over the last 10-15 years have allowed the identification of several intracellular nucleotide-degrading enzymes as cancer drug targets, and discuss further potential therapeutic applications for Rcl, SAMHD1, MTH1 and cN-II. We believe that enzymes involved in nucleotide metabolism represent potent alternatives to conventional cancer chemotherapy targets.
Collapse
Affiliation(s)
- Chiara Rampazzo
- Department of Biology, University of Padova, 35131, Padua, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Biochemistry Unit, University of Pisa, Pisa, Italy
| | - Charles Dumontet
- Université de Lyon, 69000, Lyon, France.,Université de Lyon 1, 69622, Lyon, France.,Université de Lyon 1, 69000, Lyon, France.,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France.,Centre Léon Bérard, 69008, Lyon, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lars Petter Jordheim
- Université de Lyon, 69000, Lyon, France. .,Université de Lyon 1, 69622, Lyon, France. .,Université de Lyon 1, 69000, Lyon, France. .,INSERM U1052, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69000, Lyon, France. .,Centre Léon Bérard, 69008, Lyon, France. .,Equipe Anticorps-Anticancer, INSERM U1052 - CNRS UMR 5286, Faculté Rockefeller, Centre de Recherche en Cancérologie de Lyon, 8 avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
11
|
Perez-Chacon G, de los Rios C, Zapata JM. Indole-3-carbinol induces cMYC and IAP-family downmodulation and promotes apoptosis of Epstein–Barr virus (EBV)-positive but not of EBV-negative Burkitt's lymphoma cell lines. Pharmacol Res 2014; 89:46-56. [DOI: 10.1016/j.phrs.2014.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
|
12
|
Abstract
Myc oncogenic transcription factors (c-Myc, N-Myc, and L-Myc) coordinate the control of cell growth, division, and metabolism. In cancer, Myc overexpression is often associated with aggressive disease, which is in part due to the destruction of select targets by the ubiquitin-proteasome system (eg, SCF(Skp2)-directed destruction of the Cdk inhibitor p27(Kip1)). We reasoned that Myc would also regulate SUMOylation, a related means of posttranslational modification of proteins, and that this circuit would play essential roles in Myc-dependent tumorigenesis. Here, we report marked increases in the expression of genes that encode regulators and components of the SUMOylation machinery in mouse and human Myc-driven lymphomas, resulting in hyper-SUMOylation in these tumors. Further, inhibition of SUMOylation by genetic means disables Myc-induced proliferation, triggering G2/M cell-cycle arrest, polyploidy, and apoptosis. Using genetically defined cell models and conditional expression systems, this response was shown to be Myc specific. Finally, in vivo loss-of-function and pharmacologic studies demonstrated that inhibition of SUMOylation provokes rapid regression of Myc-driven lymphoma. Thus, targeting SUMOylation represents an attractive therapeutic option for lymphomas with MYC involvement.
Collapse
|
13
|
Nfkb1 is a haploinsufficient DNA damage-specific tumor suppressor. Oncogene 2014; 34:2807-13. [PMID: 25043302 PMCID: PMC4302074 DOI: 10.1038/onc.2014.211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/30/2014] [Accepted: 06/02/2014] [Indexed: 12/12/2022]
Abstract
NF-κB proteins play a central and subunit-specific role in the response to DNA damage. Previous work identified p50/NF-κB1 as being necessary for cytotoxicity in response to DNA alkylation damage. Given the importance of damage-induced cell death for the maintenance of genomic stability, we examined whether Nfkb1 acts as a tumor suppressor in the setting of alkylation damage. Hprt mutation analysis demonstrates that Nfkb1(-/-) cells accumulate more alkylator-induced, but not ionizing radiation (IR)-induced, mutations than similarly treated wild-type cells. Subsequent in vivo tumor induction studies reveal that following alkylator treatment, but not IR, Nfkb1(-/-) mice develop more lymphomas than similarly treated Nfkb1(+/+) animals. Heterozygous mice develop lymphomas at an intermediate rate and retain functional p50 in their tumors, indicating that Nfkb1 acts in a haploinsufficient manner. Analysis of human cancers, including therapy-related myeloid neoplasms, demonstrates that NFKB1 mRNA expression is downregulated compared with control samples in multiple hematological malignancies. These data indicate that Nfkb1 is a haploinsufficient, pathway-specific tumor suppressor that prevents the development of hematologic malignancy in the setting of alkylation damage.
Collapse
|
14
|
Ferraresso S, Bresolin S, Aricò A, Comazzi S, Gelain ME, Riondato F, Bargelloni L, Marconato L, te Kronnie G, Aresu L. Epigenetic silencing of TFPI-2 in canine diffuse large B-cell lymphoma. PLoS One 2014; 9:e92707. [PMID: 24695110 PMCID: PMC3973630 DOI: 10.1371/journal.pone.0092707] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 12/18/2022] Open
Abstract
Epigenetic modifications are important early events during carcinogenesis. In particular, hypermethylation of CpG islands in the promoter region of tumor suppressor genes is a well-known mechanism of gene silencing that contributes to cancer development and progression. Tissue factor pathway inhibitor 2 (TFPI-2) is a tumor suppressor involved in invasiveness inhibition. Although TFPI-2 transcriptional silencing, through promoter hypermethylation, has been widely reported in several human malignancies, it has never been explored in lymphoma. In the present study TFPI-2 methylation and gene expression have been investigated in canine Diffuse Large B-cell lymphomas (cDLBCL). The methylation level of 23 CpGs located within the TFPI-2 promoter was investigated by bisulfite-specific PCR and next generation amplicon deep sequencing (GS Junior 454, Roche) in 22 cDLBCLs and 9 controls. For the same specimens, TFPI-2 gene expression was assessed by means of Real-time RT-PCR. Sequence analysis clearly demonstrated that TFPI2 is frequently hypermethylated in cDLBCL. Hypermethylation of the TFPI-2 promoter was found in 77% of DLBCLs (17 out of 22) and in one normal lymph node. Globally, dogs with DLBCL showed a mean methylation level significantly increased compared to controls (p<0.01) and analysis of hypermethylation by site identified 19 loci out of 23 (82%) with mean methylation levels from 2- to 120-fold higher in cDLBCL. Gene expression analysis confirmed a significant down-regulation of TFPI-2 (p<0.05) in DLBCLs compared with normal lymph nodes, suggesting that TFPI-2 hypermethylation negatively regulates its transcription. In addition, a significant positive correlation (p<0.01) was found between TFPI-2 methylation levels and age providing the first indication of age-associated epigenetic modifications in canine DLBCL. To conclude, our findings demonstrated that epigenetic dysregulation of TFPI-2, leading to its reduced expression, is frequently detected in canine DLBCL. In the next future, the aberrant TFPI-2 promoter hypermethylation may be considered in association with prognosis and therapy.
Collapse
Affiliation(s)
- Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Silvia Bresolin
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Arianna Aricò
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Stefano Comazzi
- Department of Animal Pathology Hygiene and Veterinary Public Health, University of Milano, Milano, Italy
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Fulvio Riondato
- Department Veterinary Science, University of Torino, Torino, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | | | - Geertruy te Kronnie
- Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Luca Aresu
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Kulyté A, Belarbi Y, Lorente-Cebrián S, Bambace C, Arner E, Daub CO, Hedén P, Rydén M, Mejhert N, Arner P. Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue. Diabetes 2014; 63:1248-58. [PMID: 24379347 DOI: 10.2337/db13-0702] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adipose tissue inflammation is present in insulin-resistant conditions. We recently proposed a network of microRNAs (miRNAs) and transcription factors (TFs) regulating the production of the proinflammatory chemokine (C-C motif) ligand-2 (CCL2) in adipose tissue. We presently extended and further validated this network and investigated if the circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a control CCL2 production by several TFs, including v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), MYC-associated factor X (MAX), and specificity protein 12 (SP1). This was confirmed in human adipocytes by the observation that gene silencing of ETS1, MAX, or SP1 attenuated CCL2 production. Combined gene silencing of ETS1 and MAX resulted in an additive reduction in CCL2 production. Moreover, overexpression of miR-126/-193b/-92a in different pairwise combinations reduced CCL2 secretion more efficiently than either miRNA alone. However, although effects on CCL2 secretion by co-overexpression of miR-92a/-193b and miR-92a/-126 were additive in adipocytes, the combination of miR-126/-193b was primarily additive in macrophages. Signals for miR-92a and -193b converged on the nuclear factor-κB pathway. In conclusion, TF and miRNA-mediated regulation of CCL2 production is additive and partly relayed by cell-specific networks in human adipose tissue that may be important for the development of insulin resistance/type 2 diabetes.
Collapse
Affiliation(s)
- Agné Kulyté
- Department of Medicine, Huddinge, Lipid Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
El-Kady A, Sun Y, Li YX, Liao DJ. Cyclin D1 inhibits whereas c-Myc enhances the cytotoxicity of cisplatin in mouse pancreatic cancer cells via regulation of several members of the NF-κB and Bcl-2 families. J Carcinog 2011; 10:24. [PMID: 22190866 PMCID: PMC3243339 DOI: 10.4103/1477-3163.90437] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/05/2011] [Indexed: 12/30/2022] Open
Abstract
Background: Cisplatin (CDDP) is a drug used for treatment of many types of malignancy but pancreatic cancer is relatively resistant to it. This study aims to determine whether and how cyclin D1 (D1) and c-Myc influence the response of pancreatic cancer cells to CDDP. Materials and Methods: Ela-mycPT mouse pancreatic cancer cells were transfected with D1 or c-myc cDNA and treated with CDDP alone or together with NPCD, an inhibitor of cyclin dependent ckinase (CDK) 4 and 6. Reverse transcription followed by polymerase chain reaction (RT-PCR) and western blot assays were used to determine the mRNA and protein levels of interested genes. Cell viability was determined using 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results: Treatment of Ela-mycPT1 cells with CDDP caused an increase in c-myc expression but a slightly latent decrease in D1 expression, whereas D1 and c-Myc proteins repressed each other. D1 or c-Myc rendered Ela-mycPT1 cells resistant or sensitive, respectively, to CDDP. D1 induced the expression of several members of the NF-κB family, including RelA, RelB, Nfκb1 and Nfκb2. D1 also induced BIRC5 and several pro-survival members of the Bcl-2 gene family, including Bcl-2 , Mcl-1 and Bad while it decreased the level of the pro-apoptotic Noxa. Inhibition of CDK4 or CDK6 kinase activity by NPCD did not affect these effects of D1. In contrast, c-Myc in Ela-mycPT1 and Ela-mycPT4 cells has the opposite effects to D1 on the expression of most of these apoptosis regulating genes. Conclusion: Our results suggest that induction of c-Myc and inhibition of D1 may be mechanisms for CDDP to elicit cytotoxicity. On the other hand, D1 induces whereas c-Myc represses the expression of key NF-κB family members to induce and repress, respectively, the expression of BIRC5 and several Bcl-2 family members, in turn inhibiting or enhancing the response to CDDP.
Collapse
Affiliation(s)
- Ayman El-Kady
- Department of the University of Minnesota, Hormel Institute, Austin, MN 55912, USA
| | | | | | | |
Collapse
|
17
|
Chng WJ, Huang GF, Chung TH, Ng SB, Gonzalez-Paz N, Troska-Price T, Mulligan G, Chesi M, Bergsagel PL, Fonseca R. Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma. Leukemia 2011; 25:1026-35. [PMID: 21468039 PMCID: PMC3432644 DOI: 10.1038/leu.2011.53] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/30/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
Events mediating transformation from the pre-malignant monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma (MM) are unknown. We analyzed gene expression data sets generated on the Affymetrix U133 platform from 22 MGUS and 101 MM patients using gene-set enrichment analysis. Genes overexpressed in MM were enriched for cell cycle, proliferation and MYC activation gene sets. Upon dissecting the relationship between MYC and cell-cycle gene sets, we identified and validated an MYC activation signature dissociated from proliferation. Applying this signature, MYC is activated in 67% of myeloma, but not in MGUS. This was further confirmed by immunohistochemistry (IHC) using membrane CD138 and nuclear MYC double staining. We also showed that almost all tumors with RAS mutations expressed the MYC activation signature, and multiple mechanisms may be involved in activating MYC. MYC activation, whether assessed by gene-expression signature or IHC, is associated with hyperdiploid MM and shorter survival even in tumors that are not proliferative. Bortezomib treatment is able to overcome the survival disadvantage in patients with MYC activation.
Collapse
Affiliation(s)
- W-J Chng
- Department of Haematology/Oncology, Mayo Clinic Comprehensive Cancer Center, Scottsdale, AZ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Doddapaneni K, Zahurancik W, Haushalter A, Yuan C, Jackman J, Wu Z. RCL hydrolyzes 2'-deoxyribonucleoside 5'-monophosphate via formation of a reaction intermediate. Biochemistry 2011; 50:4712-9. [PMID: 21510673 DOI: 10.1021/bi101742z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RCL is an enzyme that catalyzes the N-glycosidic bond cleavage of purine 2'-deoxyribonucleoside 5'-monophosphates. Recently, the structures of both free wild type and GMP-bound mutant complex have been determined by multidimensional NMR, revealing a doubly wound α/β protein existing in a symmetric homodimer. In this work, we investigated the catalytic mechanism by rational site-directed mutagenesis, steady-state and pre-steady-state kinetics, ITC binding analysis, methanolysis, and NMR study. First, we provide kinetic evidence in support of the structural studies that RCL functions in a dimeric form, with an apparent dissociation constant around 0.5 μM in the presence of substrate dGMP. Second, among the eight residues under investigation, the highly conserved Glu93 is absolutely critical and Tyr13 is also important likely contributing to the chemical step, whereas Ser117 from the neighboring subunit and Ser87 could be the key residues for the phosphate group recognition. Lastly, we demonstrate by methanolysis study that the catalytic reaction proceeds via the formation of a reaction intermediate, which is subsequently hydrolyzed by solvent nucleophile resulting in the formation of normal product deoxyribose monophosphate (dR5P) or methoylated-dR5P. In conclusion, the current study provides mechanistic insights into a new class of nucleotide hydrolase, which resembles nucleoside 2'-deoxyribosyltransferases structurally and functionally but also possesses clear distinction.
Collapse
Affiliation(s)
- Kiran Doddapaneni
- Biochemistry Department, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
19
|
Wang C, Tai Y, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther 2011; 11:615-26. [PMID: 21278493 DOI: 10.4161/cbt.11.7.14688] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The c-Myc protein, encoded by c-myc gene, in its wild-type form can induce tumors with a high frequency and can induce massive programmed cell death (PCD) in most transgenic mouse models, with greater efficiency than other oncogenes. Evidence also indicates that c-Myc can cause proliferative inhibition, i.e. mitoinhibition. The c-Myc-induced PCD and mitoinhibition, which may be attributable to its inhibition of cyclin D1 and induction of p53, may impose a pressure of compensatory proliferation, i.e. regeneration, onto the initiated cells (cancer progenitor cells) that occur sporadically and are resistant to the mitoinhibition. The initiated cells can thus proliferate robustly and progress to a malignancy. This hypothetical thinking, i.e. the concurrent PCD and mitoinhibition induced by c-Myc can promote carcinogenesis, predicts that an optimal balance is achieved between cell death and ensuing regeneration during oncogenic transformation by c-Myc, which can better promote carcinogenesis. In this perspective, we summarize accumulating evidence and challenge the current model that oncoprotein induces carcinogenesis by promoting cellular proliferation and/or inhibiting PCD. Inspired by c-myc oncogene, we surmise that many tumor-suppressive or growth-inhibitory genes may also be able to promote carcinogenesis in a similar way, i.e. by inducing PCD and/or mitoinhibition of normal cells to create a need for compensatory proliferation that drives a robust replication of initiating cells.
Collapse
Affiliation(s)
- Chenguang Wang
- Department of Stem Cell and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
20
|
NEMO stabilizes c-Myc through direct interaction in the nucleus. FEBS Lett 2010; 584:4524-30. [DOI: 10.1016/j.febslet.2010.10.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022]
|
21
|
Keller U, Huber J, Nilsson JA, Fallahi M, Hall MA, Peschel C, Cleveland JL. Myc suppression of Nfkb2 accelerates lymphomagenesis. BMC Cancer 2010; 10:348. [PMID: 20598117 PMCID: PMC2902445 DOI: 10.1186/1471-2407-10-348] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/02/2010] [Indexed: 02/26/2023] Open
Abstract
Background Deregulated c-Myc expression is a hallmark of several human cancers where it promotes proliferation and an aggressive tumour phenotype. Myc overexpression is associated with reduced activity of Rel/NF-κB, transcription factors that control the immune response, cell survival, and transformation, and that are frequently altered in cancer. The Rel/NF-κB family member NFKB2 is altered by chromosomal translocations or deletions in lymphoid malignancies and deletion of the C-terminal ankyrin domain of NF-κB2 augments lymphocyte proliferation. Methods Precancerous Eμ-Myc-transgenic B cells, Eμ-Myc lymphomas and human Burkitt lymphoma samples were assessed for Nfkb2 expression. The contribution of Nfkb2 to Myc-driven apoptosis, proliferation, and lymphomagenesis was tested genetically in vivo. Results Here we report that the Myc oncoprotein suppresses Nfkb2 expression in vitro in primary mouse fibroblasts and B cells, and in vivo in the Eμ-Myc transgenic mouse model of human Burkitt lymphoma (BL). NFKB2 suppression by Myc was also confirmed in primary human BL. Promoter-reporter assays indicate that Myc-mediated suppression of Nfkb2 occurs at the level of transcription. The contribution of Nfkb2 to Myc-driven lymphomagenesis was tested in vivo, where Nfkb2 loss was shown to accelerate lymphoma development in Eμ-Myc transgenic mice, by impairing Myc's apoptotic response. Conclusions Nfkb2 is suppressed by c-Myc and harnesses Myc-driven lymphomagenesis. These data thus link Myc-driven lymphomagenesis to the non-canonical NF-κB pathway.
Collapse
Affiliation(s)
- Ulrich Keller
- III. Medical Department, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Selective ablation of the YxxM motif of IL-7Rα suppresses lymphomagenesis but maintains lymphocyte development. Oncogene 2010; 29:3854-64. [DOI: 10.1038/onc.2010.133] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Abstract
Up to 70% of all human malignancies show elevated expression of MYC. MYC is a pleiotropic transcription factor involved in many aspects of cellular development and physiology. Besides direct regulation of target genes involved in proliferation and growth MYC is implicated in controlling the complex networks of microRNAs and apoptosis mediators. The mode of MYC deregulation varies between different tumor entities. In most types of cancer high MYC levels are secondary to alterations in cell signalling pathways, leading to enhanced proliferation of the transformed cells. In some haematological malignancies, like Burkitt lymphoma (BL) and subsets of diffuse large B-cell lymphomas, elevated MYC levels are a direct consequence of genomic aberrations involving the MYC locus. BL is considered the prime example for MYC-induced lymphomagenesis. In comparison to other haematological malignancies it has the highest MYC-expression and is often connected to Epstein-Barr virus (EBV) infection. Over the past five decades BL has provided an invaluable tool for the entire discipline of oncology, helping to decipher many aspects of tumor biology. This review summarizes recent advances in the research on MYC-induced lymphomagenesis, focusing on the regulation of microRNAs and apoptosis, and possible contributions of EBV for lymphoma development.
Collapse
Affiliation(s)
- Kay Klapproth
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | | |
Collapse
|
24
|
Doddapaneni K, Mahler B, Pavlovicz R, Haushalter A, Yuan C, Wu Z. Solution structure of RCL, a novel 2'-deoxyribonucleoside 5'-monophosphate N-glycosidase. J Mol Biol 2009; 394:423-34. [PMID: 19720067 DOI: 10.1016/j.jmb.2009.08.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/20/2009] [Accepted: 08/22/2009] [Indexed: 11/16/2022]
Abstract
RCL is an enzyme that catalyzes the N-glycosidic bond cleavage of purine 2'-deoxyribonucleoside 5'-monophosphates, a novel enzymatic reaction reported only recently. In this work, we determined the solution structure by multidimensional NMR and provide a structural framework to elucidate its mechanism with computational simulation. RCL is a symmetric homodimer, with each monomer consisting of a five-stranded parallel beta-sheet sandwiched between five alpha-helices. Three of the helices form the dimer interface, allowing two monomers to pack side by side. The overall architecture featuring a Rossmann fold is topologically similar to that of deoxyribosyltransferases, with major differences observed in the putative substrate binding pocket and the C-terminal tail. The latter is seemingly flexible and projecting away from the core structure in RCL, but loops back and is positioned at the bottom of the neighboring active site in the transferases. This difference may bear functional implications in the context of nucleobase recognition involving the C-terminal carboxyl group, which is only required in the reverse reaction by the transferases. It was also noticed that residues around the putative active site show significant conformational variation, suggesting that protein dynamics may play an important role in the enzymatic function of apo-RCL. Overall, the work provides invaluable insight into the mechanism of a novel N-glycosidase from the structural point of view, which in turn will allow rational anti-tumor and anti-angiogenesis drug design.
Collapse
Affiliation(s)
- Kiran Doddapaneni
- Biochemistry Department, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Deregulated c-MYC is found in a variety of cancers where it promotes proliferation as well as apoptosis. In many hematologic malignancies, enhanced NF-kappaB exerts prosurvival functions. Here we investigated the role of NF-kappaB in mouse and human c-MYC-transformed lymphomas. The NF-kappaB pathway is extinguished in murine lymphoma cells, and extrinsic stimuli typically inducing NF-kappaB activity fail to activate this pathway. Genetic activation of the NF-kappaB pathway induces apoptosis in these cells, whereas inhibition of NF-kappaB by an IkappaBalpha superrepressor provides a selective advantage in vivo. Furthermore, in human Burkitt lymphoma cells we find that NF-kappaB activation induces apoptosis. NF-kappaB up-regulates Fas and predisposes to Fas-induced cell death, which is caspase-8 mediated and can be prevented by CFLAR overexpression. We conclude that c-MYC overexpression sensitizes cells to NF-kappaB-induced apoptosis, and persistent inactivity of NF-kappaB signaling is a prerequisite for MYC-mediated tumorigenesis. We could also show that low immunogenicity and Fas insensitivity of MYC-driven lymphoma cells are reversed by activation of NF-kappaB. Our observations provide a molecular explanation for the described absence of the NF-kappaB signaling in Burkitt lymphoma and question the applicability of NF-kappaB inhibitors as candidates for treatment of this cancer.
Collapse
|
26
|
Bornkamm GW. Epstein-Barr virus and the pathogenesis of Burkitt's lymphoma: more questions than answers. Int J Cancer 2009; 124:1745-55. [PMID: 19165855 DOI: 10.1002/ijc.24223] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Burkitt's lymphoma (BL) was first described as a clinical entity in children in Central Africa by Denis Burkitt in 1958. The particular epidemiological features of this tumor initiated the search for a virus as the causative agent and led to the discovery of Epstein-Barr virus (EBV) by Epstein and coworkers in 1964. It became apparent in the seventies and eighties that the tumor is not restricted to Central Africa, but occurs with lesser incidence all over the world (sporadic BL) and is also particularly frequent in HIV infected individuals, and that not all BL cases are associated with EBV: about 95% of the cases in Central Africa, 40 to 50% of the cases in HIV-infected individuals and 10 to 20% of the sporadic cases harbour the viral information and express at least one viral antigen (EBNA1) and a number of non-coding viral RNAs. In contrast, all BL cases regardless of their geographical origin exhibit one of three c-myc/Ig chromosomal translocations leading to the activation of the c-myc gene as a crucial event in the development of this disease. Although epidemiological evidence clearly points to a role of the virus in the African cases, the role of EBV in the pathogenesis of BL has remained largely elusive. This review summarizes current concepts and ideas how EBV might contribute to the development of BL in the light of the progress made in the last decade and discusses the problems of the experimental systems available to test such hypotheses.
Collapse
Affiliation(s)
- Georg W Bornkamm
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Clinical Molecular Biology and Tumor Genetics, München, Germany.
| |
Collapse
|
27
|
Mori S, Rempel RE, Chang JT, Yao G, Lagoo AS, Potti A, Bild A, Nevins JR. Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma. Cancer Res 2008; 68:8525-34. [PMID: 18922927 DOI: 10.1158/0008-5472.can-08-1329] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Emu-myc transgenic mouse has provided a valuable model for the study of B-cell lymphoma. Making use of gene expression analysis and, in particular, expression signatures of cell signaling pathway activation, we now show that several forms of B lymphoma can be identified in the Emu-myc mice associated with time of tumor onset. Furthermore, one form of Emu-myc tumor with pre-B character is shown to resemble human Burkitt lymphoma, whereas others exhibit more differentiated B-cell characteristics and show similarity with human diffuse large B-cell lymphoma in the pattern of gene expression, as well as oncogenic pathway activation. Importantly, we show that signatures of oncogenic pathway activity provide further dissection of the spectrum of diffuse large B-cell lymphoma, identifying a subset of patients who have very poor prognosis and could benefit from more aggressive or novel therapeutic strategies. Taken together, these studies provide insight into the complexity of the oncogenic process and a novel strategy for dissecting the heterogeneity of B lymphoma.
Collapse
Affiliation(s)
- Seiichi Mori
- Department of Molecular Genetics and Microbiology, Duke Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ye D, Ma TY. Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-alpha-induced regulation of myosin light chain kinase gene activity. J Cell Mol Med 2008; 12:1331-46. [PMID: 18363837 PMCID: PMC3865676 DOI: 10.1111/j.1582-4934.2008.00302.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The patients with Crohn's disease (CD) have a ‘leaky gut’ manifested by an increase in intestinal epithelial tight junction (TJ) permeability. Tumour necrosis factor-α (TNF-α) is a proto-typical pro-inflammatory cytokine that plays a central role in intestinal inflammation of CD. An important pro-inflammatory action of TNF-α is to cause a functional opening of intestinal TJ barrier. Previous studies have shown that TNF-α increase in TJ permeability was regulated by an increase in myosin light chain kinase (MLCK) gene activity and protein expression. The major aim of this study was to elucidate the cellular and molecular mechanisms that mediate basal and TNF-α-induced increase in MLCK gene activity. By progressive 5′ deletion, minimal MLCK promoter was localized between −313 to +118 on MLCK promoter. A p53 binding site located within minimal promoter region was identified as an essential determinant for basal promoter activity. A 4 bp start site and a 5 bp downstream promoter element were required for MLCK gene activity. TNF-α-induced increase in MLCK promoter activity was mediated by NF-κB activation. There were eight κB binding sites on MLCK promoter. The NF-κB1 site at +48 to +57 mediated TNF-α-induced increase in MLCK promoter activity. The NF-κB2 site at −325 to −316 had a repressive role on promoter activity. The opposite effects on promoter activity were due to differences in the NF-κB dimer type binding to the κB sites. p50/p65 dimer preferentially binds to the NF-κB1 site and up-regulates promoter activity; while p50/p50 dimer preferentially binds to the NF-κB2 site and down-regulates promoter activity. In conclusion, we have identified the minimal MLCK promoter region, essential molecular determinants and molecular mechanisms that mediate basal and TNF-α-induced modulation of MLCK promoter activity in Caco-2 intestinal epithelial cells. These studies provide novel insight into the cellular and molecular mechanisms that regulate basal and TNF-α-induced modulation of MLCK gene activity.
Collapse
Affiliation(s)
- Dongmei Ye
- Department of Internal Medicine, University of New Mexico School of Medicine and Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
29
|
Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W, Jin Z, Liu YY, Dicker DT, Chiao PJ, Flaherty KT, Smith CD, El-Deiry WS. Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 2007; 12:66-80. [PMID: 17613437 DOI: 10.1016/j.ccr.2007.05.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 11/05/2006] [Accepted: 05/15/2007] [Indexed: 10/23/2022]
Abstract
Cells expressing oncogenic c-Myc are sensitized to TNF superfamily proteins. c-Myc also is an important factor in determining whether a cell is sensitive to TRAIL-induced apoptosis, and it is well established that the mitochondrial pathway is essential for apoptosis induced by c-Myc. We investigated whether c-Myc action on the mitochondria is required for TRAIL sensitivity and found that Myc sensitized cells with defective intrinsic signaling to TRAIL. TRAIL induced expression of antiapoptotic Mcl-1 and cIAP2 through activation of NF-kappaB. Both Myc and the multikinase inhibitor sorafenib block NF-kappaB. Combining sorafenib with TRAIL in vivo showed dramatic efficacy in TRAIL-resistant tumor xenografts. We propose the combination of TRAIL with sorafenib holds promise for further development.
Collapse
Affiliation(s)
- M Stacey Ricci
- Laboratory of Molecular Oncology and Cell Cycle Regulation, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Schlee M, Hölzel M, Bernard S, Mailhammer R, Schuhmacher M, Reschke J, Eick D, Marinkovic D, Wirth T, Rosenwald A, Staudt LM, Eilers M, Baran-Marszak F, Fagard R, Feuillard J, Laux G, Bornkamm GW. C-myc activation impairs the NF-kappaB and the interferon response: implications for the pathogenesis of Burkitt's lymphoma. Int J Cancer 2007; 120:1387-95. [PMID: 17211884 DOI: 10.1002/ijc.22372] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deregulation of the proto-oncogene c-myc is a key event in the pathogenesis of many tumors. A paradigm is the activation of the c-myc gene by chromosomal translocations in Burkitt lymphoma (BL). Despite expression of a restricted set of Epstein-Barr viral (EBV) antigens, BL cells are not recognized by antigen-specific cytotoxic T cells (CTLs) because of their inability to process and present HLA class I-restricted antigens. In contrast, cells of EBV-driven posttransplant lymphoproliferative disease (PTLD) are recognized and rejected by EBV-specific CTLs. It is not known whether the poor immunogenicity of BL cells is due to nonexpression of viral antigens, overexpression of c-myc, or both. To understand the basis for immune recognition and escape, we have compared the mRNA expression profiles of BL and EBV-immortalized cells (as PTLD model). Among the genes expressed at low level in BL cells, we have identified many genes involved in the NF-kappaB and interferon response that play a pivotal role in antigen presentation and immune recognition. Using a cell line in which EBNA2 and c-myc can be regulated at will, we show that c-MYC negatively regulates STAT1, the central player linking the Type-I and Type-II interferon response. Switching off c-myc expression leads to STAT1 induction through a direct and indirect mechanism involving induction of Type-I interferons. c-MYC thus masks an interferon-inducing activity in these cells. Our findings imply that immune escape of tumor cells is not only a matter of in vivo selection but may be additionally promoted by activation of a cellular oncogene.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF-National Research Center for Environment and Health, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ghiorghi YK, Zeller KI, Dang CV, Kaminski PA. The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5'-monophosphate N-glycosidase. J Biol Chem 2007; 282:8150-6. [PMID: 17234634 DOI: 10.1074/jbc.m610648200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RCL is a c-Myc target with tumorigenic potential. Genome annotation predicted that RCL belonged to the N-deoxyribosyltransferase family. However, its putative relationship to this class of enzymes did not lead to its precise biochemical function. The purified native or N-terminal His-tagged recombinant rat RCL protein expressed in Escherichia coli exhibits the same enzyme activity, deoxynucleoside 5'-monophosphate N-glycosidase, never before described. dGMP appears to be the best substrate. RCL opens a new route in the nucleotide catabolic pathways by cleaving the N-glycosidic bond of deoxynucleoside 5'-monophosphates to yield two reaction products, deoxyribose 5-phosphate and purine or pyrimidine base. Biochemical studies show marked differences in the terms of the structure and catalytic mechanism between RCL and of its closest enzyme family neighbor, N-deoxyribosyltransferase. The reaction products of this novel enzyme activity have been implicated in purine or pyrimidine salvage, glycolysis, and angiogenesis, and hence are all highly relevant for tumorigenesis.
Collapse
Affiliation(s)
- Yoan Konto Ghiorghi
- Unité de Chimie Organique, CNRS Unité de Recherche Associée 2128, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
32
|
Abstract
The discovery that the Myc oncoprotein could drive cells to undergo apoptosis in addition to its well-established role in cellular proliferation came in the early 1990s, at the beginning of a period of explosive research on cell death. Experimental evidence revealed that Myc sensitises cells to a wide range of death stimuli and abrogating this biological activity plays a profound role in tumorigenesis. Our understanding of the molecular mechanism and genetic programme of Myc-induced apoptosis remains shrouded in mystery and the focus of much attention. In this review, we will discuss established data, recent advances and future objectives regarding the regulatory processes and the functional cooperators that effect and abrogate apoptosis induced by Myc.
Collapse
Affiliation(s)
- Natalie Meyer
- Division of Cancer Genomics and Proteomics, Ontario Cancer Institute/Princess Margaret Hospital, Department of Medical Biophysics, University of Toronto, Toronto, Ont, Canada
| | | | | |
Collapse
|
33
|
Chang PY, Miyamoto S. Nuclear factor-kappaB dimer exchange promotes a p21(waf1/cip1) superinduction response in human T leukemic cells. Mol Cancer Res 2006; 4:101-12. [PMID: 16513841 DOI: 10.1158/1541-7786.mcr-05-0259] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nuclear factor-kappaB (NF-kappaB)/Rel transcription factors are recognized as critical apoptosis regulators. We reported previously that NF-kappaB contributes to chemoresistance of CEM human T leukemic cells in part through its ability to induce p21(waf1/cip1). Here, we provide evidence that sequential NF-kappaB-activating signals induce heightened NF-kappaB DNA binding and p21(waf1/cip1) induction in CEM and additional T leukemic cell lines. This response arises from exceedingly low basal expression of the p105/p50 NF-kappaB subunit encoded by the NFKB1 gene in these cell lines. An initial NF-kappaB activation event enhances the recruitment of p65 and ELF1 to the NFKB1 promoter, leading to p65- and ELF1-dependent synthesis of p105/p50, which promotes an exchange of NF-kappaB complexes to p50-containing complexes with an increased DNA-binding activity to certain NF-kappaB target elements. Subsequent stimulation of these cells with an anticancer agent, etoposide, results in augmented NF-kappaB-dependent p21(waf1/cip1) induction and increased chemoresistance of the leukemia cells. Thus, we propose that low basal NFKB1 expression coupled with sequential NF-kappaB activation events can promote increased chemoresistance in certain T leukemic cells.
Collapse
Affiliation(s)
- Pei-Yun Chang
- Program in Molecular and Cellular Pharmacology, Department of Pharmacology, University of Wisconsin-Madison, 301 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA
| | | |
Collapse
|