1
|
Kumari S, Rehman A, Chandra P, Singh KK. Functional role of SAP18 protein: From transcriptional repression to splicing regulation. Cell Biochem Funct 2023; 41:738-751. [PMID: 37486712 DOI: 10.1002/cbf.3830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Sin3 associated protein 18 (SAP18) is an evolutionary conserved protein, originally discovered in a complex with the transcriptional regulatory protein, Sin3. Subsequent investigations revealed SAP18 as an integral splicing component of the exon junction complex (EJC)-associated apoptosis-and splicing-associated protein (ASAP)/PNN-RNPS1-SAP18 (PSAP) complex. In association with Sin3, SAP18 contributes toward transcriptional repression of genes implicated in embryonic development, stress response, human immunodeficiency virus type 1 replication, and tumorigenesis. As a part of EJC, SAP18 mediates alternative splicing events and suppresses the cryptic splice sites present within flanking regions of exon-exon junctions. In this review, we provide a thorough discussion on SAP18, focussing on its conserved dual role in transcriptional regulation and messenger RNA splicing. Recent research on the involvement of SAP18 in the emergence of cancer and human disorders has also been highlighted. The potential of SAP18 as a therapeutic target is also discussed in these recent studies, particularly related to malignancies of the myeloid lineage.
Collapse
Affiliation(s)
- Sweta Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ayushi Rehman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Pratap Chandra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Kusum K Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022; 14:pharmaceutics14091945. [PMID: 36145693 PMCID: PMC9504237 DOI: 10.3390/pharmaceutics14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Appreciation of the properties of arsenic trioxide (ATO) has redefined the treatment landscape for acute promyelocytic leukaemia (APL) and offers promise as a treatment for numerous other diseases. The benefits of ATO in patients with APL is related to its ability to counteract the effects of PML::RARA, an oncoprotein that is invariably detected in the blood or bone marrow of affected individuals. The PML::RARA oncoprotein is degraded specifically by binding to ATO. Thus ATO, in combination with all-trans retinoic acid, has become the curative treatment for ATO. The multiple mechanisms of action of ATO has also paved the way for application in various condition encompassing autoimmune or inflammatory disorders, solid organ tumours, lymphomas and other subtypes of AML. The development of oral formulation of ATO (oral ATO) has reduced costs of treatment and improved treatment convenience allowing widespread applicability. In this review, we discuss the mechanisms of action of ATO, the development of oral ATO, and the applications of oral ATO in APL and other diseases.
Collapse
|
3
|
Prochownik EV, Wang H. Normal and Neoplastic Growth Suppression by the Extended Myc Network. Cells 2022; 11:747. [PMID: 35203395 PMCID: PMC8870482 DOI: 10.3390/cells11040747] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Among the first discovered and most prominent cellular oncogenes is MYC, which encodes a bHLH-ZIP transcription factor (Myc) that both activates and suppresses numerous genes involved in proliferation, energy production, metabolism and translation. Myc belongs to a small group of bHLH-ZIP transcriptional regulators (the Myc Network) that includes its obligate heterodimerization partner Max and six "Mxd proteins" (Mxd1-4, Mnt and Mga), each of which heterodimerizes with Max and largely opposes Myc's functions. More recently, a second group of bHLH-ZIP proteins (the Mlx Network) has emerged that bears many parallels with the Myc Network. It is comprised of the Myc-like factors ChREBP and MondoA, which, in association with the Max-like member Mlx, regulate smaller and more functionally restricted repertoires of target genes, some of which are shared with Myc. Opposing ChREBP and MondoA are heterodimers comprised of Mlx and Mxd1, Mxd4 and Mnt, which also structurally and operationally link the two Networks. We discuss here the functions of these "Extended Myc Network" members, with particular emphasis on their roles in suppressing normal and neoplastic growth. These roles are complex due to the temporal- and tissue-restricted expression of Extended Myc Network proteins in normal cells, their regulation of both common and unique target genes and, in some cases, their functional redundancy.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The Hillman Cancer Center of UPMC, Pittsburgh, PA 15224, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15224, USA
| | - Huabo Wang
- Division of Hematology/Oncology, The Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
4
|
Liaño-Pons J, Arsenian-Henriksson M, León J. The Multiple Faces of MNT and Its Role as a MYC Modulator. Cancers (Basel) 2021; 13:4682. [PMID: 34572909 PMCID: PMC8465425 DOI: 10.3390/cancers13184682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
MNT is a crucial modulator of MYC, controls several cellular functions, and is activated in most human cancers. It is the largest, most divergent, and most ubiquitously expressed protein of the MXD family. MNT was first described as a MYC antagonist and tumor suppressor. Indeed, 10% of human tumors present deletions of one MNT allele. However, some reports show that MNT functions in cooperation with MYC by maintaining cell proliferation, promoting tumor cell survival, and supporting MYC-driven tumorigenesis in cellular and animal models. Although MAX was originally considered MNT's obligate partner, our recent findings demonstrate that MNT also works independently. MNT forms homodimers and interacts with proteins both outside and inside of the proximal MYC network. These complexes are involved in a wide array of cellular processes, from transcriptional repression via SIN3 to the modulation of metabolism through MLX as well as immunity and apoptosis via REL. In this review, we discuss the present knowledge of MNT with a special focus on its interactome, which sheds light on the complex and essential role of MNT in cell biology.
Collapse
Affiliation(s)
- Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, SE-171 65 Stockholm, Sweden;
| | - Javier León
- Departmento de Biología Molecular and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, 39011 Santander, Spain;
| |
Collapse
|
5
|
Zhu X, Xu T, Zhu J. The regulatory function of tandem repeat VNTR2-1 in hTERT gene involves basic Helix-loop-helix family transcription factors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:338-349. [PMID: 34115413 PMCID: PMC9648534 DOI: 10.1002/em.22447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Telomerase is a ribonucleoprotein enzyme that synthesizes telomere end sequence. The expression of hTERT gene, encoding the catalytic subunit of human telomerase, is restricted to highly proliferative tissues and is undetectable in most somatic cells. Abnormal activation of hTERT gene is found in 90% of human tumors. Previously, we identified tandem repeat of 42-bp/unit, VNTR2-1, in intron 2 of the hTERT gene, as a novel regulatory element important for hTERT transcription in cancer cells. In the current study, we found that multiple 42-bp repeats of VNTR2-1 activated luciferase gene in reporter plasmids. Mutation of the predicted cis-regulatory elements within the 42-bp repeats, including a E-box motif, resulted in a partial or complete loss of its enhancer activity. Moreover, MYC family proteins, c-MYC, MAX, and MNT, regulated hTERT gene transcription through both VNTR2-1 and E-boxes at the proximal hTERT promoter. Chromatin segmentation analysis of published ChIP-sequencing data from K562 cells indicated that VNTR2-1 was a bivalent enhancer. In telomerase-expressing human melanoma cell line MelJuSo, deletion of VNTR2-1 caused the hTERT promoter chromatin status to change from an active state to a repressed state, accompanied by increases of H3K27me3 and H3K9me3 marks. Therefore, we provided additional evidence for VNTR2-1 as a functional regulatory element that regulated hTERT expression by MYC family transcription factors. These results have improved our knowledge on the functions of repetitive genomic DNAs and the regulatory mechanisms of human telomerase gene.
Collapse
Affiliation(s)
| | | | - Jiyue Zhu
- To whom correspondence should be addressed. Tel: 1-509-368-6565; Fax: 1-509-368-6561; ; 412E Spokane Falls Blvd, PBS323, Spokane, WA, 99202, USA
| |
Collapse
|
6
|
miR-139-5p Regulates the Proliferation of Acute Promyelocytic Leukemia Cells by Targeting MNT. JOURNAL OF ONCOLOGY 2021; 2021:5522051. [PMID: 33953744 PMCID: PMC8064781 DOI: 10.1155/2021/5522051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022]
Abstract
Acute promyelocytic leukemia (APL) patients with progressive leukocytosis are more likely to have various complications and poor outcomes. However, the regulatory roles of microRNAs in the leukocytosis of APL have not been clarified. Our study aims to evaluate the effects of miRNAs on leukocytosis during induction therapy of APL patients and explore its potential mechanisms. During induction treatment, patients with white blood cell count higher than 10 × 109/L were divided into leukocytosis group and others were nonleukocytosis group. Using microarray assays, we found that miR-139-5p was significantly downregulated in the leukocytosis group. Elevated expression of miR-139-5p inhibited the proliferation of NB4 cells by arresting the cell cycle and inducing apoptosis. We further identified that MNT was a target of miR-139-5p. miR-139-5p significantly inhibited the proliferation, invasion, and migration function of NB4 cells through targeting MNT. Strategies for regulating miR-139-5p or MNT expression might provide new therapeutic approaches for progressive leukocytosis in APL.
Collapse
|
7
|
Lafita-Navarro MC, Liaño-Pons J, Quintanilla A, Varela I, Blanco R, Ourique F, Bretones G, Aresti J, Molina E, Carroll P, Hurlin P, Romero OA, Sanchez-Céspedes M, Eisenman RN, Delgado MD, León J. The MNT transcription factor autoregulates its expression and supports proliferation in MYC-associated factor X (MAX)-deficient cells. J Biol Chem 2020; 295:2001-2017. [PMID: 31919096 PMCID: PMC7029127 DOI: 10.1074/jbc.ra119.010389] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
The MAX network transcriptional repressor (MNT) is an MXD family transcription factor of the basic helix-loop-helix (bHLH) family. MNT dimerizes with another transcriptional regulator, MYC-associated factor X (MAX), and down-regulates genes by binding to E-boxes. MAX also dimerizes with MYC, an oncogenic bHLH transcription factor. Upon E-box binding, the MYC-MAX dimer activates gene expression. MNT also binds to the MAX dimerization protein MLX (MLX), and MNT-MLX and MNT-MAX dimers co-exist. However, all MNT functions have been attributed to MNT-MAX dimers, and no functions of the MNT-MLX dimer have been described. MNT's biological role has been linked to its function as a MYC oncogene modulator, but little is known about its regulation. We show here that MNT localizes to the nucleus of MAX-expressing cells and that MNT-MAX dimers bind and repress the MNT promoter, an effect that depends on one of the two E-boxes on this promoter. In MAX-deficient cells, MNT was overexpressed and redistributed to the cytoplasm. Interestingly, MNT was required for cell proliferation even in the absence of MAX. We show that in MAX-deficient cells, MNT binds to MLX, but also forms homodimers. RNA-sequencing experiments revealed that MNT regulates the expression of several genes even in the absence of MAX, with many of these genes being involved in cell cycle regulation and DNA repair. Of note, MNT-MNT homodimers regulated the transcription of some genes involved in cell proliferation. The tight regulation of MNT and its functionality even without MAX suggest a major role for MNT in cell proliferation.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Judit Liaño-Pons
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Fabiana Ourique
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Julia Aresti
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Ester Molina
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Patrick Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Peter Hurlin
- Shriners Hospitals for Children Research Center, and Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Octavio A Romero
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, 08908 Barcelona, Spain
| | - Montse Sanchez-Céspedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute-IDIBELL, 08908 Barcelona, Spain
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - M Dolores Delgado
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, and Department of Molecular Biology, Universidad de Cantabria, 39005 Santander, Spain.
| |
Collapse
|
8
|
Carabet LA, Rennie PS, Cherkasov A. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci 2018; 20:E120. [PMID: 30597997 PMCID: PMC6337544 DOI: 10.3390/ijms20010120] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Myc (avian myelocytomatosis viral oncogene homolog) represents one of the most sought after drug targets in cancer. Myc transcription factor is an essential regulator of cell growth, but in most cancers it is overexpressed and associated with treatment-resistance and lethal outcomes. Over 40 years of research and drug development efforts did not yield a clinically useful Myc inhibitor. Drugging the "undruggable" is problematic, as Myc inactivation may negatively impact its physiological functions. Moreover, Myc is a disordered protein that lacks effective binding pockets on its surface. It is well established that the Myc function is dependent on dimerization with its obligate partner, Max (Myc associated factor X), which together form a functional DNA-binding domain to activate genomic targets. Herein, we provide an overview of the knowledge accumulated to date on Myc regulation and function, its critical role in cancer, and summarize various strategies that are employed to tackle Myc-driven malignant transformation. We focus on important structure-function relationships of Myc with its interactome, elaborating structural determinants of Myc-Max dimer formation and DNA recognition exploited for therapeutic inhibition. Chronological development of small-molecule Myc-Max prototype inhibitors and corresponding binding sites are comprehensively reviewed and particular emphasis is placed on modern computational drug design methods. On the outlook, technological advancements may soon provide the so long-awaited Myc-Max clinical candidate.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
9
|
Lee SI, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller CP, Chien S, Dai J, Saxena A, Blau CA, Becker PS. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 2018; 9:42. [PMID: 29298978 PMCID: PMC5752671 DOI: 10.1038/s41467-017-02465-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene’s potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents. Identification of markers of drug response is essential for precision therapy. Here the authors introduce an algorithm that uses prior information about each gene’s importance in AML to identify the most predictive gene-drug associations from transcriptome and drug response data from 30 AML samples.
Collapse
Affiliation(s)
- Su-In Lee
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA, 98195, USA. .,Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA. .,Center for Cancer Innovation, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.
| | - Safiye Celik
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | | | - Scott M Lundberg
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA, 98195, USA
| | - Timothy J Martins
- Quellos High Throughput Screening Core, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Vivian G Oehler
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Elihu H Estey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Chris P Miller
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Sylvia Chien
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Jin Dai
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Akanksha Saxena
- Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - C Anthony Blau
- Center for Cancer Innovation, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Pamela S Becker
- Center for Cancer Innovation, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA.,Division of Hematology, Department of Medicine and Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| |
Collapse
|
10
|
MNT and Emerging Concepts of MNT-MYC Antagonism. Genes (Basel) 2017; 8:genes8020083. [PMID: 28230739 PMCID: PMC5333072 DOI: 10.3390/genes8020083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
MYC family proteins play fundamental roles in stem and progenitor cell homeostasis, morphogenesis and cancer. As expected for proteins that profoundly affect the fate of cells, the activities of MYC are regulated at a multitude of levels. One mechanism with the potential to broadly affect the activities of MYC is transcriptional antagonism by a group of MYC-related transcriptional repressors. From this group, the protein MNT has emerged as having perhaps the most far-reaching impact on MYC activities. In this review, we discuss the current understanding of MNT, its regulation and how, as a MYC antagonist, it functions both as a tumor suppressor and facilitator of MYC-driven proliferation and oncogenesis.
Collapse
|
11
|
Kapoor I, Kanaujiya J, Kumar Y, Thota JR, Bhatt MLB, Chattopadhyay N, Sanyal S, Trivedi AK. Proteomic discovery of MNT as a novel interacting partner of E3 ubiquitin ligase E6AP and a key mediator of myeloid differentiation. Oncotarget 2016; 7:7640-56. [PMID: 26506232 PMCID: PMC4884944 DOI: 10.18632/oncotarget.6156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Perturbed stability of regulatory proteins is a major cause of transformations leading to cancer, including several leukemia subtypes. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase negatively targets MAX binding protein MNT for ubiquitin-mediated proteasome degradation and impedes ATRA mediated myeloid cell differentiation. MNT is a member of the Myc/Max/Mad network of transcription factor that regulates cell proliferation, differentiation, cellular transformation and tumorigenesis. Wild-type E6AP promoted proteasome dependent degradation of MNT, while catalytically inactive E6AP having cysteine replaced with alanine at amino-acid 843 position (E6APC843A) rather stabilized it. Further, these proteins physically associated with each other both in non-myeloid (HEK293T) and myeloid cells. MNT overexpression induced G0-G1 growth arrest and promoted myeloid differentiation while its knockdown mitigated even ATRA induced differentiation suggesting MNT to be crucial for myeloid differentiation. We further showed that ATRA inhibited E6AP and stabilized MNT expression by protecting it from E6AP mediated ubiquitin-proteasome degradation. Notably, E6AP knockdown in HL60 cells restored MNT expression and promoted myeloid differentiation. Taken together, our data demonstrated that E6AP negatively regulates granulocytic differentiation by targeting MNT for degradation which is required for growth arrest and subsequent myeloid differentiation by various differentiation inducing agents.
Collapse
Affiliation(s)
- Isha Kapoor
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Jitendra Kanaujiya
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | | | - Madan L B Bhatt
- Department of Radiotherapy, King George's Medical University, Lucknow, UP, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, UP, India
| | - Sabyasachi Sanyal
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR-Central Drug Research Institute, Lucknow, UP, India
| |
Collapse
|
12
|
Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:484-500. [PMID: 24857747 PMCID: PMC4241192 DOI: 10.1016/j.bbagrm.2014.05.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
The transcription factor MYC and its related family members MYCN and MYCL have been implicated in the etiology of a wide spectrum of human cancers. Compared to other oncoproteins, such as RAS or SRC, MYC is unique because its protein coding region is rarely mutated. Instead, MYC's oncogenic properties are unleashed by regulatory mutations leading to unconstrained high levels of expression. Under both normal and pathological conditions MYC regulates multiple aspects of cellular physiology including proliferation, differentiation, apoptosis, growth and metabolism by controlling the expression of thousands of genes. How a single transcription factor exerts such broad effects remains a fascinating puzzle. Notably, MYC is part of a network of bHLHLZ proteins centered on the MYC heterodimeric partner MAX and its counterpart, the MAX-like protein MLX. This network includes MXD1-4, MNT, MGA, MONDOA and MONDOB proteins. With some exceptions, MXD proteins have been functionally linked to cell cycle arrest and differentiation, while MONDO proteins control cellular metabolism. Although the temporal expression patterns of many of these proteins can differ markedly they are frequently expressed simultaneously in the same cellular context, and potentially bind to the same, or similar DNA consensus sequence. Here we review the activities and interactions among these proteins and propose that the broad spectrum of phenotypes elicited by MYC deregulation is intimately connected to the functions and regulation of the other network members. Furthermore, we provide a meta-analysis of TCGA data suggesting that the coordinate regulation of the network is important in MYC driven tumorigenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA.
| |
Collapse
|
13
|
Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4:a014399. [PMID: 24939054 DOI: 10.1101/cshperspect.a014399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion.
Collapse
Affiliation(s)
- Stephen R Hann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| |
Collapse
|
14
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
15
|
Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol 2013; 92:237-46. [PMID: 24189169 DOI: 10.1016/j.ejcb.2013.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022] Open
Abstract
Sin3, a large acidic protein, shares structural similarity with the helix-loop-helix dimerization domain of proteins of the Myc family of transcription factors. Sin3/HDAC corepressor complex functions in transcriptional regulation of several genes and is therefore implicated in the regulation of key biological processes. Knockdown studies have confirmed the role of Sin3 in cellular proliferation, differentiation, apoptosis and cell cycle regulation, emphasizing Sin3 as an essential regulator of critical cellular events in normal and pathological processes. The present review covers the diverse functions of this master transcriptional regulator as well as illustrates the redundant and distinct functions of its two mammalian isoforms.
Collapse
Affiliation(s)
- Rama Kadamb
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | | | | | | | | |
Collapse
|
16
|
Wahlström T, Belikov S, Arsenian Henriksson M. Chromatin dynamics at the hTERT promoter during transcriptional activation and repression by c-Myc and Mnt in Xenopus leavis oocytes. Exp Cell Res 2013; 319:3160-9. [PMID: 23860446 DOI: 10.1016/j.yexcr.2013.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/22/2022]
Abstract
The transcription factors c-Myc and Mnt regulate gene expression through dimerization with Max and binding to E-boxes in target genes. While c-Myc activates gene expression via recruitment of histone modifying complexes, Mnt acts as a transcriptional repressor. Here, we used the Xenopus leavis oocyte system to address the effect of c-Myc and Mnt on transcription and chromatin remodeling over the E-box region in the human telomerase reverse transcriptase (hTERT) promoter. As expected we found elevated and decreased levels of hTERT transcription upon exogenously expressed c-Myc/Max and Mnt/Max, respectively. In addition, we confirmed binding of these heterodimers to both E-boxes already enriched with H3K9ac and H4K16ac. These chromatin marks were further enhanced upon c-Myc/Max binding followed by increased DNA accessibility in the E-box region. In contrast, Mnt/Max inhibited Myc-induced transcription and mediated repression through complete chromatin condensation and deacetylation of H3K9 and H4K16 across the E-box region. Importantly, Mnt was able to counteract c-Myc mediated activation even when expressed at low levels, suggesting Mnt to act as a strong repressor by closing the chromatin structure. Collectively our data demonstrate that the balance between c-Myc and Mnt activity determines the transcriptional outcome of the hTERT promoter by modulation of the chromatin architecture.
Collapse
Affiliation(s)
- Therese Wahlström
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Terragni J, Nayak G, Banerjee S, Medrano JL, Graham JR, Brennan JF, Sepulveda S, Cooper GM. The E-box binding factors Max/Mnt, MITF, and USF1 act coordinately with FoxO to regulate expression of proapoptotic and cell cycle control genes by phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 signaling. J Biol Chem 2011; 286:36215-27. [PMID: 21873430 DOI: 10.1074/jbc.m111.246116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol (PI) 3-kinase/Akt signaling plays a critical role in cell proliferation and survival, partly by regulation of FoxO transcription factors. Previous work using global expression profiling indicated that inhibition of PI 3-kinase in proliferating cells led to induction of genes that promote cell cycle arrest and apoptosis. The upstream regulatory regions of these genes had binding sites not only for FoxO, but also for Myc/Max transcription factors. In the present study, we have addressed the role of Myc family members and related E-box-binding proteins in the regulation of these genes. Chromatin immunoprecipitations and RNA interference indicated that transcription was repressed by Max-Mnt-Sin3a-histone deacetylase complexes in proliferating cells. Inhibition of PI 3-kinase led to a loss of Max/Mnt binding and transcriptional induction by MITF and USF1, as well as FoxO. Both MITF and USF1 were activated by glycogen synthase kinase (GSK) 3, with GSK3 phosphorylation sites on USF1 identified as the previously described activating site threonine 153 as well as serine 186. siRNA against MITF as well as against FoxO3a protected cells from apoptosis following PI 3-kinase inhibition. These results define a novel E-box-regulated network that functions coordinately with FoxO to regulate transcription of apoptotic and cell cycle regulatory genes downstream of PI 3-kinase/Akt/GSK3 signaling.
Collapse
Affiliation(s)
- Jolyon Terragni
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010; 316:1429-37. [PMID: 20382143 DOI: 10.1016/j.yexcr.2010.03.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022]
Abstract
The Myc proto-oncoprotein coordinates a number of normal physiological processes necessary for growth and expansion of somatic cells by controlling the expression of numerous target genes. Deregulation of MYC as a consequence of carciogenic events enforces cells to undergo a transition to a hyperproliferative state. This increases the risk of additional oncogenic mutations that in turn can result in further tumor progression. However, Myc activation also provokes intrinsic tumor suppressor mechanisms including apoptosis, cellular senescence and DNA damage responses that act as barriers for tumor development and therefore needs to be overcome during tumorigenesis. Myc thus possesses two seemingly contradictory "faces" here referred to as "Yin and Yang". Observations that many tumor suppressor pathways remain intact but are latent in tumor cells opens the possibility that pharmacological inhibition of the Yin or activation of the Yang functions can prevail and offer new attractive approaches for treating diverse types of cancer.
Collapse
Affiliation(s)
- Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
19
|
Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol 2010; 12:447-56. [PMID: 20364142 DOI: 10.1038/ncb2046] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/15/2010] [Indexed: 01/15/2023]
Abstract
Meiotic and early-embryonic cell divisions in vertebrates take place in the absence of transcription and rely on the translational regulation of stored maternal messenger RNAs. Most of these mRNAs are regulated by the cytoplasmic-polyadenylation-element-binding protein (CPEB), which mediates translational activation and repression through cytoplasmic changes in their poly(A) tail length. It was unknown whether translational regulation by cytoplasmic polyadenylation and CPEB can also regulate mRNAs at specific points of mitotic cell-cycle divisions. Here we show that CPEB-mediated post-transcriptional regulation by phase-specific changes in poly(A) tail length is required for cell proliferation and specifically for entry into M phase in mitotically dividing cells. This translational control is mediated by two members of the CPEB family of proteins, CPEB1 and CPEB4. We conclude that regulation of poly(A) tail length is not only required to compensate for the lack of transcription in specialized cell divisions but also acts as a general mechanism to control mitosis.
Collapse
|
20
|
MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A 2010; 107:1553-8. [PMID: 20080637 DOI: 10.1073/pnas.0913517107] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MYCN, a proto-oncogene normally expressed in the migrating neural crest, is in its amplified state a key factor in the genesis of human neuroblastoma (NB). However, the mechanisms underlying MYCN-mediated NB progression are poorly understood. Here, we present a MYCN-induced miRNA signature in human NB involving the activation and transrepression of several miRNA genes from paralogous clusters. Several family members derived from the miR-17 approximately 92 cluster, including miR-18a and miR-19a, were among the up-regulated miRNAs. Expression analysis of these miRNAs in NB tumors confirmed increased levels in MYCN-amplified samples. Specifically, we show that miR-18a and miR-19a target and repress the expression of estrogen receptor-alpha (ESR1), a ligand-inducible transcription factor implicated in neuronal differentiation. Immunohistochemical staining demonstrated ESR1 expression in human fetal sympathetic ganglia, suggesting a role for ESR1 during sympathetic nervous system development. Concordantly, lentiviral restoration of ESR1 in NB cells resulted in growth arrest and neuronal differentiation. Moreover, lentiviral-mediated inhibition of miR-18a in NB cells led to severe growth retardation, outgrowth of varicosity-containing neurites, and induction of neuronal sympathetic differentiation markers. Bioinformatic analyses of microarray data from NB tumors revealed that high ESR1 expression correlates with increased event-free survival in NB patients and favorable disease outcome. Thus, MYCN amplification may disrupt estrogen signaling sensitivity in primitive sympathetic cells through deregulation of ESR1, thereby preventing the normal induction of neuroblast differentiation. Collectively, our findings demonstrate the molecular consequences of abnormal miRNA transcription in a MYCN-driven tumor and offer unique insights into the pathology underlying MYCN-amplified NB.
Collapse
|
21
|
Abstract
Myc is the most frequently deregulated oncogene in human tumors. The protein belongs to the Myc/Max/Mxd network of transcriptional regulators important for cell growth, proliferation, differentiation, and apoptosis. The ratio between Mnt/Max and c-Myc/Max on the 5'-CACGTG-3' E-box sequence at shared target genes is of great importance for cell cycle progression and arrest. Serum stimulation of quiescent cells results in phosphorylation of Mnt and disruption of the critical Mnt-mSin3-HDAC1 interaction. This in turn leads to increased expression of the Myc/Mnt target gene cyclin D2. It is therefore possible that Myc function relies on its ability to overcome transcriptional repression by Mnt and that relief of Mnt-mediated transcriptional repression is of greater importance for regulation of target genes than the sole activation by Myc. In addition, Mnt has many features of a tumor suppressor and may thus be nonfunctional or inactivated in human tumors. In summary, accumulating evidence supports the model of Mnt as the key regulator of the network in vivo.
Collapse
Affiliation(s)
- Therese Wahlström
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
22
|
Akopov SB, Chernov IP, Wahlström T, Kostina MB, Klein G, Henriksson M, Nikolaev LG. Identification of recognition sites for myc/max/mxd network proteins by a whole human chromosome 19 selection strategy. BIOCHEMISTRY (MOSCOW) 2009; 73:1260-8. [PMID: 19120031 DOI: 10.1134/s0006297908110138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we have identified 20 human sequences containing Myc network binding sites in a library from the whole human chromosome 19. We demonstrated binding of the Max protein to these sequences both in vitro and in vivo. The majority of the identified sequences contained one or several CACGTG or CATGTG E-boxes. Several of these sites were located within introns or in their vicinity and the corresponding genes were found to be up- or down-regulated in differentiating HL-60 cells. Our data show the proof of principle for using this strategy in identification of Max target genes, and this method can also be applied for other transcription factors.
Collapse
Affiliation(s)
- S B Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The role of the myc gene family in the biology of normal and cancer cells has been intensively studied since the early 1980s. myc genes, responding to diverse external and internal signals, express transcription factors (c-, N-, and L-Myc) that heterodimerize with Max, bind DNA, and modulate expression of a specific set of target genes. Over the last few years, expression profiling, genomic binding studies, and genetic analyses in mammals and Drosophila have led to an expanded view of Myc function. This review is focused on two major aspects of Myc: the nature of the genes and pathways that are targeted by Myc, and the role of Myc in stem cell and cancer biology.
Collapse
Affiliation(s)
- Martin Eilers
- Institute of Molecular Biology and Tumor Research, 35033 Marburg, Germany
| | | |
Collapse
|
24
|
Hildmann C, Riester D, Schwienhorst A. Histone deacetylases—an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 2007; 75:487-97. [PMID: 17377789 DOI: 10.1007/s00253-007-0911-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 02/26/2007] [Accepted: 02/26/2007] [Indexed: 12/25/2022]
Abstract
The elucidation of mechanisms of chromatin remodeling, particular transcriptional activation, and repression by histone acetylation and deacetylation has shed light on the role of histone deacetylases (HDAC) as a new kind of therapeutic target for human cancer treatment. HDACs, in general, act as components of large corepressor complexes that prevent the transcription of several tumor suppression genes. In addition, they appear to be also involved in the deacetylation of nonhistone proteins. This paper reviews the most recent insights into the diverse biological roles of HDACs as well as the evolution of this important protein family.
Collapse
Affiliation(s)
- Christian Hildmann
- Department of Molecular Genetics and Preparative Molecular Biology, Institute for Microbiology and Genetics, Grisebachstr. 8, 37077, Göttingen, Germany
| | | | | |
Collapse
|
25
|
Abstract
The small bHLHZip protein MAX functions at the center of a transcription factor network that governs many aspects of cell behavior, including cell proliferation and tumorigenesis. MAX serves as a cofactor for DNA binding by the various members of this network, which include the MYC family of oncoproteins and a group of putative MYC antagonists that include MNT, MXD1-4 (formerly MAD1, MXI1, MAD3 and MAD4) and MGA. The many heterodimerization partners of MAX raises questions concerning the dynamics of MAX interactions and the functional consequences of the switching of Max partners. Here we review the activities of MAX, its interaction partners, and recent results showing that tissues lacking the MAX-interacting protein MNT are predisposed to tumor formation.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97201, USA.
| | | |
Collapse
|
26
|
Rottmann S, Lüscher B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol 2006; 302:63-122. [PMID: 16620026 DOI: 10.1007/3-540-32952-8_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A significant body of evidence has been accumulated that demonstrates decisive roles of members of the Myc/Max/Mad network in the control of various aspects of cell behavior, including proliferation, differentiation, and apoptosis. The components of this network serve as transcriptional regulators. Mad family members, including Mad1, Mxi1, Mad3, Mad4, Mnt, and Mga, function in part as antagonists of Myc oncoproteins. At the molecular level this antagonism is reflected by the different cofactor/chromatin remodeling complexes that are recruited by Myc and Mad family members. One important function of the latter is their ability to repress gene transcription. In this review we summarize the current view of how this repression is achieved and what the consequences of Mad action are for cell behavior. In addition, we point out some of the many aspects that have not been clarified and thus leave us with a rather incomplete picture of the functions, both molecular and at the cellular level, of Mad family members.
Collapse
Affiliation(s)
- S Rottmann
- Abteilung Biochemie und Molekularbiologie, Institut für Biochemie, Klinikum der RWTH, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | |
Collapse
|
27
|
Abstract
Deregulation of Myc expression is a common feature in cancer and leads to tumor formation in experimental model systems. There are several potential barriers that Myc must overcome in order to promote tumorigenesis, including its propensity to sensitize many cell types to apoptotic cell death. Myc activities appear also to be constrained and fine-tuned by a set of proteins that include the Mxd (formerly named Mad) family and the related protein Mnt. Like Myc-family proteins, Mxd and Mnt proteins use Max as a cofactor for DNA binding. But Mnt-Max and Mxd-Max complexes are transcriptional repressors and can antagonize the transcriptional activation function of Myc-Max. Studies examining the relationship between Myc, Mxd and Mnt proteins suggest that whereas Mnt plays a general role as a Myc antagonist, Mxd proteins have more specialized roles as Myc antagonist that is probably related to their more restricted expression patterns. The interplay between these proteins is postulated to fine-tune Myc activity for cell-cycle entry and exit, proliferation rate and apoptosis.
Collapse
Affiliation(s)
- C William Hooker
- Shriners Hospitals for Children and Department of Cell and Developmental Biology, Oregon Health and Science University, 3101 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | |
Collapse
|
28
|
Mo H, Henriksson M. Identification of small molecules that induce apoptosis in a Myc-dependent manner and inhibit Myc-driven transformation. Proc Natl Acad Sci U S A 2006; 103:6344-9. [PMID: 16606833 PMCID: PMC1435363 DOI: 10.1073/pnas.0601418103] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Myc transcription factor plays a central role in the regulation of cell cycle progression, apoptosis, angiogenesis, and cellular transformation. Myc is a potent oncoprotein that is deregulated in a wide variety of human tumors and is therefore an attractive target for novel cancer therapies. Using a cellular screening approach, we have identified low-molecular-weight compounds, Myc pathway response agents (MYRAs), that induce apoptosis in a c-Myc-dependent manner and inhibit Myc-driven cellular transformation. MYRA-A inhibits Myc transactivation and interferes with the DNA-binding activity of Myc family proteins but has no effect on the E-box-binding protein USF. In contrast, MYRA-B induces Myc-dependent apoptosis without affecting Myc transactivation or Myc/Max DNA binding. Our data show that cellular screening assays can be a powerful strategy for the identification of candidate substances that modulate the Myc pathway. These compounds can be useful tools for studying Myc function and may also be of therapeutic potential as leads for drug development.
Collapse
Affiliation(s)
- Hao Mo
- Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Marie Henriksson
- Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
- *To whom correspondence should be addressed at:
Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden. E-mail:
| |
Collapse
|