1
|
Xu M, Yang A, Xia J, Jiang J, Liu CF, Ye Z, Ma J, Yang S. Protein glycosylation in urine as a biomarker of diseases. Transl Res 2023; 253:95-107. [PMID: 35952983 DOI: 10.1016/j.trsl.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023]
Abstract
Human body fluids have become an indispensable resource for clinical research, diagnosis and prognosis. Urine is widely used to discover disease-specific glycoprotein biomarkers because of its recurrently non-invasive collection and disease-indicating properties. While urine is an unstable fluid in that its composition changes with ingested nutrients and further as it is excreted through micturition, urinary proteins are more stable and their abnormal glycosylation is associated with diseases. It is known that aberrant glycosylation can define tumor malignancy and indicate disease initiation and progression. However, a thorough and translational survey of urinary glycosylation in diseases has not been performed. In this article, we evaluate the clinical applications of urine, introduce methods for urine glycosylation analysis, and discuss urine glycoprotein biomarkers. We emphasize the importance of mining urinary glycoproteins and searching for disease-specific glycosylation in various diseases (including cancer, neurodegenerative diseases, diabetes, and viral infections). With advances in mass spectrometry-based glycomics/glycoproteomics/glycopeptidomics, characterization of disease-specific glycosylation will optimistically lead to the discovery of disease-related urinary biomarkers with better sensitivity and specificity in the near future.
Collapse
Affiliation(s)
- Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Arthur Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Ye
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Hu N, Zou L, Wang C, Song G. RUNX1T1 function in cell fate. Stem Cell Res Ther 2022; 13:369. [PMID: 35902872 PMCID: PMC9330642 DOI: 10.1186/s13287-022-03074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
RUNX1T1 (Runt-related transcription factor 1, translocated to 1), a myeloid translocation gene (MTG) family member, is usually investigated as part of the fusion protein RUNX1-RUNX1T1 for its role in acute myeloid leukemia. In the main, by recruiting histone deacetylases, RUNX1T1 negatively influences transcription, enabling it to regulate the proliferation and differentiation of hematopoietic progenitors. Moreover, the formation of blood vessels, neuronal differentiation, microglial activation following injury, and intestinal development all relate closely to the expression of RUNX1T1. Furthermore, through alternative splicing of RUNX1T1, short and long isoforms have been noted to mediate adipogenesis by balancing the differentiation and proliferation of adipocytes. In addition, RUNX1T1 plays wide-ranging and diverse roles in carcinoma as a biomarker, suppressor, or positive regulator of carcinogenesis, closely correlated to specific organs and dominant signaling pathways. The aim of this work was to investigate the structure of RUNX1T1, which contains four conserved nervy homolog domains, and to demonstrate crosstalk with the Notch signaling pathway. Moreover, we endeavored to illustrate the effects of RUNX1T1 on cell fate from multiple aspects, including its influence on hematopoiesis, neuronal differentiation, microglial activation, intestinal development, adipogenesis, angiogenesis, and carcinogenesis.
Collapse
Affiliation(s)
- Nan Hu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Cheng Wang
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
3
|
Lin H, Liu S, Gao W, Liu H. DDIT3 modulates cancer stemness in gastric cancer by directly regulating CEBPβ. J Pharm Pharmacol 2020; 72:807-815. [PMID: 32189359 DOI: 10.1111/jphp.13243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Cancer stem cells (CSCs) have been identified to correlate with the initiation and metastasis of tumours, and DNA damage-inducible transcript 3 (DDIT3) is associated with the poor prognosis in gastric cancer (GC). However, whether DDIT3 mediates CSCs stemness in GC is still unclear. METHODS Microarray analysis and Gene Ontology (GO) were conducted to identify the differentially expressed genes in GC tissues from GC patients. The interaction between DDIT3 and CEBPβ was determined using immunoprecipitation (IP) analysis. KEY FINDINGS Herein, microarray analysis showed that DDIT3 expression is increased in GC tissues. qRT-PCR confirmed that DDIT3 is significantly increased in GC tissues and cancer cell lines compared with healthy tissues and normal cell lines, individually. Genetic overexpression of DDIT3 enhanced GC cell proliferation, colony-forming ability, sphere formation and CSCs stemness. Mechanistically, DDIT3 directly up-regulated the expression of transcription factor CEBPβ, leading to the increased expression of CSCs markers SOX2, NANOG, OCT4 and CD133 in gastric CSCs. Genetic downregulation of CEBPβ significantly abolishes DDIT3-mediated increased cell proliferation, colony-forming ability, sphere formation and CSCs stemness. CONCLUSION Our results demonstrated that DDIT3 promotes CSCs stemness by up-regulating CEBPβ in GC that provides novel targets for the further GC therapy.
Collapse
Affiliation(s)
- Hai Lin
- Department of digestive medicine, Linyi Central Hospital, Linyi, Shandong, China
| | - Shufang Liu
- Department of Laboratory, Linyi Central Hospital, Linyi, Shandong, China
| | - Weidong Gao
- Department of Gastroenterology, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Hongyu Liu
- Department of Pathology, The First Hospital of Qiqihar, The Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
4
|
Yang Y, Fan J, Han S, Li E. TNIP1 Inhibits Proliferation And Promotes Apoptosis In Clear Cell Renal Carcinoma Through Targeting C/Ebpβ. Onco Targets Ther 2019; 12:9861-9871. [PMID: 31819484 PMCID: PMC6874165 DOI: 10.2147/ott.s216138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022] Open
Abstract
Background/Purpose TNF-α-induced protein 3-interacting protein 1 (TNIP1) is active in various cancers, but its expression and function in renal cell carcinoma (RCC) have not been described. This study investigated the role of TNIP1 in clear cell renal cell carcinomas (ccRCC), which accounts for 75–80% of RCC and has a poor prognosis. Methods The expression of TNIP1 in human ccRCC tissues and cells was detected by real-time quantitative reverse transcription–polymerase chain reaction (qRT-PCR), Western blot (WB), and immunohistochemical (IHC) staining. Cell proliferation was assayed by a cell counting kit (CCK)-8 assay; cell cycle analysis and apoptosis assay were done by flow cytometry. Results TNIP1 is downregulated in both ccRCC human tissues and cells. Besides, TNIP1 downregulation promoted cell proliferation with more cell cycle entry, and inhibited apoptosis. TNIP1 downregulation was associated with increased of expression of the Bcl-2 anti-apoptosis gene and decreased expression of the Bax apoptosis-promoting gene and cleaved-caspase-3 by negatively regulating C/EBPβ expression. Conclusion TNIP1 acted as a tumor-inhibitor in ccRCC by targeting C/EBPβ. The results warrant study of TNIP1 as a potential diagnostic marker and therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Yong Yang
- Department of Urology, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi, People's Republic of China
| | - Shenglu Han
- Department of Urology, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Enyuan Li
- Department of Urology, The Ninth Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
5
|
C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle. Cells 2019; 8:cells8020145. [PMID: 30754676 PMCID: PMC6407104 DOI: 10.3390/cells8020145] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 12/25/2022] Open
Abstract
The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor that regulates cellular proliferation, differentiation, apoptosis and tumorigenesis. Although the pro-oncogenic roles of C/EBPβ have been implicated in various human cancers, how it contributes to tumorigenesis or tumor progression has not been determined. Immunohistochemistry with human non-small cell lung cancer (NSCLC) tissues revealed that higher levels of C/EBPβ protein were expressed compared to normal lung tissues. Knockdown of C/EBPβ by siRNA reduced the proliferative capacity of NSCLC cells by delaying the G2/M transition in the cell cycle. In C/EBPβ-knockdown cells, a prolonged increase in phosphorylation of cyclin dependent kinase 1 at tyrosine 15 (Y15-pCDK1) was displayed with simultaneously increased Wee1 and decreased Cdc25B expression. Chromatin immunoprecipitation (ChIP) analysis showed that C/EBPβ bound to distal promoter regions of WEE1 and repressed WEE1 transcription through its interaction with histone deacetylase 2. Treatment of C/EBPβ-knockdown cells with a Wee1 inhibitor induced a decrease in Y15-pCDK1 and recovered cells from G2/M arrest. In the xenograft tumors, the depletion of C/EBPβ significantly reduced tumor growth. Taken together, these results indicate that Wee1 is a novel transcription target of C/EBPβ that is required for the G2/M phase of cell cycle progression, ultimately regulating proliferation of NSCLC cells.
Collapse
|
6
|
Wang W, Li Z, Wang J, Du M, Li B, Zhang L, Li Q, Xu J, Wang L, Li F, Zhang D, Xu H, Yang L, Gong W, Qiang F, Zhang Z, Xu Z. A functional polymorphism in TFF1 promoter is associated with the risk and prognosis of gastric cancer. Int J Cancer 2017; 142:1805-1816. [PMID: 29210057 DOI: 10.1002/ijc.31197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/05/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Trefoil Factor 1 (TFF1, also named pS2), which serves as the gastrointestinal mucosal protector, is known as gastric-specific tumor suppressor gene. However, the genetic variants of TFF1 are still not well studied. In our study, we aim to explore the effects of tagging single nucleotide polymorphisms (tagSNPs) of TFF1 on risk and prognosis of gastric cancer. Seven tagSNPs of TFF1 gene were first analyzed in the discovery set, which was consisted of 753 cases and 950 cancer-free controls. Then, the validation set (940 cases and 1,042 controls) was used for further evaluation. Moreover, we also tested the relation between these tagSNPs and prognosis of gastric cancer (GC). A series of experiments were performed to investigate the underlying mechanisms. We found that rs3761376 AA in the promoter region of TFF1, could reduce the expression of TFF1 by affecting the binding affinity of estrogen receptor 1 (ESR1, ERα), and thereby increased the risk of GC (1.29, 1.08-1.53). Moreover, the rs3761376 AA genotype was also found associated with worse prognosis among patients receiving 5-FU based chemotherapy after surgery (1.71, 1.18-2.48). Further functional assays demonstrated that TFF1 could increase the chemosensitivity of 5-FU by modulating NF-κB targeted genes. These results identified the effect of rs3761376 on TFF1 expression, which accounted for the correlation with susceptibility and prognosis of GC; and this genetic variant may be a potential biomarker to predict the risk and survival of GC.
Collapse
Affiliation(s)
- Weizhi Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiwei Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of General Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bowen Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianghao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linjun Wang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Diancai Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weida Gong
- Department of General Surgery, Yixing Tumor Hospital, Yixing, China
| | - Fulin Qiang
- Core Laboratory, Nantong Tumor Hospital, Nantong, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zekuan Xu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Chen Z, Soutto M, Rahman B, Fazili MW, Peng D, Blanca Piazuelo M, Chen H, Kay Washington M, Shyr Y, El-Rifai W. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia. Genes Chromosomes Cancer 2017; 56:535-547. [PMID: 28281307 DOI: 10.1002/gcc.22456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene expression platforms for analysis of molecular signatures in the mouse stomach [Tff1-KO (LGD) and Tff1 wild-type (normal)] and human gastric cancer tissues and their adjacent normal tissue samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD lesions (P < .05). Using Ingenuity pathway analysis, these genes mapped to important transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an early molecular step in gastric carcinogenesis.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Mohammed Soutto
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Bushra Rahman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Muhammad W Fazili
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - DunFa Peng
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Maria Blanca Piazuelo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Heidi Chen
- Center of Quantitative Sciences, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - M Kay Washington
- Department of Pathology, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - Yu Shyr
- Center of Quantitative Sciences, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, 37232
| | - Wael El-Rifai
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37232.,Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232.,Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232
| |
Collapse
|
8
|
Regalo G, Förster S, Resende C, Bauer B, Fleige B, Kemmner W, Schlag PM, Meyer TF, Machado JC, Leutz A. C/EBPβ regulates homeostatic and oncogenic gastric cell proliferation. J Mol Med (Berl) 2016; 94:1385-1395. [PMID: 27522676 PMCID: PMC5143359 DOI: 10.1007/s00109-016-1447-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/24/2016] [Accepted: 07/17/2016] [Indexed: 12/26/2022]
Abstract
Abstract Cancer of the stomach is among the leading causes of death from cancer worldwide. The transcription factor C/EBPβ is frequently overexpressed in gastric cancer and associated with the suppression of the differentiation marker TFF1. We show that the murine C/EBPβ knockout stomach displays unbalanced homeostasis and reduced cell proliferation and that tumorigenesis of human gastric cancer xenograft is inhibited by knockdown of C/EBPβ. Cross-species comparison of gene expression profiles between C/EBPβ-deficient murine stomach and human gastric cancer revealed a subset of tumors with a C/EBPβ signature. Within this signature, the RUNX1t1 tumor suppressor transcript was down-regulated in 38 % of gastric tumor samples. The RUNX1t1 promoter was frequently hypermethylated and ectopic expression of RUNX1t1 in gastric cancer cells inhibited proliferation and enhanced TFF1 expression. These data suggest that the tumor suppressor activity of both RUNX1t1 and TFF1 are mechanistically connected to C/EBPβ and that cross-regulation between C/EBPβ-RUNX1t1-TFF1 plays an important role in gastric carcinogenesis. Key message C/EBPβ controls proliferation and differentiation balance in the stomach. Homeostatic differentiation/proliferation balance is altered in gastric cancer. RUNX1t1 is a C/EBPβ-associated tumor suppressor. RUNX1t1 negatively regulates C/EBPβ pro-oncogenic functions.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-016-1447-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Goncalo Regalo
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Susann Förster
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Carlos Resende
- Institute of Pathology and Molecular Immunology of the University of Porto, 4200-465, Porto, Portugal
| | - Bianca Bauer
- Max-Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Barbara Fleige
- Institut für Gewebediagnostik Berlin am MVZ des HELIOS Klinikum, 13125, Berlin, Germany
| | - Wolfgang Kemmner
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Peter M Schlag
- Charité Comprehensive Cancer Centers, Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - Thomas F Meyer
- Max-Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - José C Machado
- Institute of Pathology and Molecular Immunology of the University of Porto, 4200-465, Porto, Portugal
| | - Achim Leutz
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
- Humboldt-University of Berlin, Institute of Biology, 10115, Berlin, Germany.
| |
Collapse
|
9
|
Wu SM, Lin WY, Shen CC, Pan HC, Keh-Bin W, Chen YC, Jan YJ, Lai DW, Tang SC, Tien HR, Chiu CS, Tsai TC, Lai YL, Sheu ML. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NFκB cleavage. J Pineal Res 2016; 60:142-54. [PMID: 26514342 DOI: 10.1111/jpi.12295] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Abstract
Peritoneal dissemination of tumor has high mortality and is associated with the loss of epithelial features, acquisition of motile mesenchymal morphology characteristics, and invasive properties by tumor cells. Melatonin is an endogenously produced molecule in all plant species that is known to exert antitumor activity, but to date, its underlying mechanisms and antiperitoneal metastasis efficacy is not well defined. This study determined the antiperitoneal dissemination potential of melatonin in vivo and assessed its association with the inhibition of epithelial-to-mesenchymal transition (EMT) signaling mechanism by endoplasmic reticulum (ER) stress, which may be a major molecular mechanism of melatonin against cancer. The results demonstrate that melatonin inhibited peritoneal metastasis in vivo and activated ER stress in Cignal ERSE Reporter Assay, organelle structure in transmission electron microscopy images, calpain activity, and protein biomarkers like p-elf2α. Moreover, the overexpression of transcription factor C/EBPβ in gastric cancer interacted with NFκB and further regulates COX-2 expression. These were dissociated and downregulated by melatonin, as proven by immunofluorescence imaging, immunoprecipitation, EMSA, and ChIP assay. Melatonin or gene silencing of C/EBPβ decreased the EMT protein markers (E-cadherin, Snail, and Slug) and Wnt/beta-catenin activity by Topflash activity, and increased ER stress markers. In an animal study, the results of melatonin therapy were consistent with those of in vitro findings and attenuated systemic proangiogenesis factor production. In conclusion, C/EBPβ and NFκB inhibition by melatonin may impede both gastric tumor growth and peritoneal dissemination by inducing ER stress and inhibiting EMT.
Collapse
Affiliation(s)
- Sheng-Mao Wu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Yu Lin
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Chang Shen
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan, Taiwan
| | - Hung-Chuan Pan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wang Keh-Bin
- Department of Nuclear Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yi-Ching Chen
- Department of Nuclear Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - De-Wei Lai
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ching Tang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hsing-Ru Tien
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Shan Chiu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Chih Tsai
- Department of life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Liang Lai
- Division of Gastroenterology, Department of Internal Medicine, Armed Forces Taichung General Hospital, Taiping, Taichung, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
10
|
Skierucha M, Milne ANA, Offerhaus GJA, Polkowski WP, Maciejewski R, Sitarz R. Molecular alterations in gastric cancer with special reference to the early-onset subtype. World J Gastroenterol 2016; 22:2460-2474. [PMID: 26937134 PMCID: PMC4768192 DOI: 10.3748/wjg.v22.i8.2460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023] Open
Abstract
Currently, gastric cancer (GC) is one of the most frequently diagnosed neoplasms, with a global burden of 723000 deaths in 2012. It is the third leading cause of cancer-related death worldwide. There are numerous possible factors that stimulate the pro-carcinogenic activity of important genes. These factors include genetic susceptibility expressed in a single-nucleotide polymorphism, various acquired mutations (chromosomal instability, microsatellite instability, somatic gene mutations, epigenetic alterations) and environmental circumstances (e.g., Helicobcter pylori infection, EBV infection, diet, and smoking). Most of the aforementioned pathways overlap, and authors agree that a clear-cut pathway for GC may not exist. Thus, the categorization of carcinogenic events is complicated. Lately, it has been claimed that research on early-onset gastric carcinoma (EOGC) and hereditary GC may contribute towards unravelling some part of the mystery of the GC molecular pattern because young patients are less exposed to environmental carcinogens and because carcinogenesis in this setting may be more dependent on genetic factors. The comparison of various aspects that differ and coexist in EOGCs and conventional GCs might enable scientists to: distinguish which features in the pathway of gastric carcinogenesis are modifiable, discover specific GC markers and identify a specific target. This review provides a summary of the data published thus far concerning the molecular characteristics of GC and highlights the outstanding features of EOGC.
Collapse
|
11
|
Interleukin-1B signalling leads to increased survival of gastric carcinoma cells through a CREB-C/EBPβ-associated mechanism. Gastric Cancer 2016; 19:74-84. [PMID: 25740226 DOI: 10.1007/s10120-014-0448-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Polymorphisms in inflammation-related genes have been associated with a risk of gastric carcinoma (GC). However, the biological mechanisms underlying these associations are still elusive. Our objective was to determine whether chronic inflammation-associated IL1Β signalling, as seen in the context of Helicobacter pylori infection, could be linked to gastric carcinogenesis by modulating the behaviour of gastric epithelial cells. METHODS The effect of IL1B was assessed by studying the expression and activation status of the IL1Β-activated transcription factors C/EBPβ and CREB in GC cell lines. Interaction between CREB and C/EBPβ was explored through interference RNA, chromatin immunoprecipitation and chemical inhibition. CREB and C/EBPβ expression was analysed in 66 samples of primary GC and in normal gastric mucosa. GC cell growth was analysed in vitro by BrdU incorporation and in vivo employing a chicken embryo chorioallantoic membrane model. RESULTS We found that IL1B regulates the expression/activation status of both C/EBPβ and CREB in GC cells through an ERK1/2-dependent mechanism. Our results show that CREB is a direct transactivator of CEBPB, acting as an upstream effector in this regulatory mechanism. Furthermore, we found CREB to be overexpressed in 94 % of GC samples and significantly associated with C/EBPβ expression (P < 0.05). Finally, we demonstrated both in vitro and in vivo that CREB can mediate IL1B-induced GC cell proliferation. CONCLUSIONS Our results support the hypothesis that the effect of chronic inflammation on gastric carcinogenesis, as seen in the context of genetically susceptible individuals infected with Helicobacter pylori, includes the modulation of signalling pathways that regulate survival mechanisms in epithelial cells. IL1B is able to increase the expression/activation status of CREB and its target gene C/EBPβ, which are mandatory for GC cell survival. Our results may help inform new strategies for the prevention and treatment of GC, including the control of chronic inflammation.
Collapse
|
12
|
Hu TZ, Huang LH, Xu CX, Liu XM, Wang Y, Xiao J, Zhou L, Luo L, Jiang XX. Expressional profiles of transcription factors in the progression of Helicobacter pylori-associated gastric carcinoma based on protein/DNA array analysis. Med Oncol 2015; 32:265. [PMID: 26563475 DOI: 10.1007/s12032-015-0711-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are crucial modulators of gene expression during the development and progression of gastric carcinoma. Helicobacter pylori (H. pylori) is one of the most significant risk factors of gastric carcinoma, and it is widely known that chronic inflammation with H. pylori infection triggers gastric carcinogenesis through inflammation-carcinoma chain [gastric carcinogenesis stages: non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric carcinoma (GC)], but its mechanism regarding changed TFs remains unknown. In this study, we investigated the expressional profiles of 345 transcription factors in gastric mucosa of healthy volunteers and patients at different gastric carcinogenesis stages using protein/DNA array-based approach. The data demonstrated the up-regulated TFs such as GATA-3, AP4, c-Myc and Pbx1 in the gastric mucosa of GC patients compared with the healthy volunteers, while other TFs, particularly CCAAT and CACC, showed the consistently decreasing trend along the gastric carcinogenesis. The increased expressions of AP4, Pbx1 and C/EBPα were further validated by quantitative real-time PCR and Western blot in various H. pylori-infected models such as clinical gastric tissues, gastric epithelial cell lines and Mongolian gerbils. This study provides insights into and potential laws for gene transcriptional regulation by identifying potential TFs targets against the development of H. pylori-associated gastric carcinoma.
Collapse
Affiliation(s)
- Ting-Zi Hu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Li-Hua Huang
- Center for Medical Experiment, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, China
| | - Can-Xia Xu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, China.
| | - Xiao-Ming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Yu Wang
- Department of Internal Medicine, The Third People's Hospital of Huaihua, Huaihua, 418000, Hunan Province, China
| | - Jing Xiao
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Li Zhou
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Ling Luo
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| | - Xiao-Xia Jiang
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, 138 Tongzipo Street, Changsha, 410013, Hunan Province, China
| |
Collapse
|
13
|
Anand S, Ebner J, Warren CB, Raam MS, Piliang M, Billings SD, Maytin EV. C/EBP transcription factors in human squamous cell carcinoma: selective changes in expression of isoforms correlate with the neoplastic state. PLoS One 2014; 9:e112073. [PMID: 25402211 PMCID: PMC4234316 DOI: 10.1371/journal.pone.0112073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/13/2014] [Indexed: 12/28/2022] Open
Abstract
The CCAAT/Enhancer Binding Proteins (C/EBPs) are a family of leucine-zipper transcription factors that regulate physiological processes such as energy metabolism, inflammation, cell cycle, and the development and differentiation of several tissues including skin. Recently, a role for C/EBPs in tumor cell proliferation and differentiation has been proposed, but the incomplete characterization in the literature of multiple translational isoforms of these proteins has made interpretation of these roles difficult. Therefore, we have carefully reexamined C/EBP isoform expression in human non-melanoma skin cancers. C/EBPα, C/EBPβ, and C/EBPδ were analyzed histologically in squamous cell carcinomas (SCC). The individual isoforms of C/EBPα and C/EBPβ were examined by immunofluorescent digital imaging, western blotting and DNA binding activity (electrophoretic mobility shift analysis). Expression of all C/EBP family proteins was decreased in SCC tumors. Suppression was greatest for C/EBPα, less for C/EBPβ, and least for C/EBPδ. Western analyses confirmed that C/EBPα p42 and p30 isoforms were decreased. For C/EBPβ, only the abundant full-length isoform (C/EBPβ−1, LAP*, 55 kD) was reduced, whereas the smaller isoforms, C/EBPβ−2 (LAP, 48 kD) and C/EBPβ−3 (LIP, 20 kD), which are predominantly nuclear, were significantly increased in well- and moderately-differentiated SCC (up to 14-fold for C/EBPβ−3). These elevations correlated with increases in PCNA, a marker of proliferation. Although C/EBPβ displayed increased post-translational modifications in SCC, phosphorylation of C/EBPβ−1 (Thr 235) was not altered. C/EBP-specific DNA binding activity in nuclear and whole-cell extracts of cultured cells and tumors was predominantly attributable to C/EBPβ. In summary, two short C/EBPβ isoforms, C/EBPβ−2 and C/EBPβ−3, represent strong candidate markers for epithelial skin malignancy, due to their preferential expression in carcinoma versus normal skin, and their strong correlation with tumor proliferation.
Collapse
Affiliation(s)
- Sanjay Anand
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - John Ebner
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Christine B. Warren
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Manu S. Raam
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Melissa Piliang
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Steven D. Billings
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Edward V. Maytin
- Department of Dermatology, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, United States of America
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
Shi X, Gu J, Chen X, Shajahan A, Hilakivi-Clarke L, Clarke R, Xuan J. mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networks. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S4. [PMID: 24564939 PMCID: PMC4028818 DOI: 10.1186/1752-0509-7-s5-s4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background Identification of cooperative gene regulatory network is an important topic for biological study especially in cancer research. Traditional approaches suffer from large noise in gene expression data and false positive connections in motif binding data; they also fail to identify the modularized structure of gene regulatory network. Methods that are capable of revealing underlying modularized structure and robust to noise and false positives are needed to be developed. Results We proposed and developed an integrated approach to identify gene regulatory networks, which consists of a novel clustering method (namely motif-guided affinity propagation clustering (mAPC)) and a sampling based method (called Gibbs sampler based on outlier sum statistic (GibbsOS)). mAPC is used in the first step to obtain co-regulated gene modules by clustering genes with a similarity measurement taking into account both gene expression data and binding motif information. This clustering method can reduce the noise effect from microarray data to obtain modularized gene clusters. However, due to many false positives in motif binding data, some genes not regulated by certain transcription factors (TFs) will be falsely clustered with true target genes. To overcome this problem, GibbsOS is applied in the second step to refine each cluster for the identification of true target genes. In order to evaluate the performance of the proposed method, we generated simulation data under different signal-to-noise ratios and false positive ratios to test the method. The experimental results show an improved accuracy in terms of clustering and transcription factor identification. Moreover, an improved performance is demonstrated in target gene identification as compared with GibbsOS. Finally, we applied the proposed method to two breast cancer patient datasets to identify cooperative transcriptional regulatory networks associated with recurrence of breast cancer, as supported by their functional annotations. Conclusions We have developed a two-step approach for gene regulatory network identification, featuring an integrated method to identify modularized regulatory structures and refine their target genes subsequently. Simulation studies have shown the robustness of the method against noise in gene expression data and false positives in motif binding data. The proposed method has been applied to two breast cancer gene expression datasets to infer the hidden regulation mechanisms. The experimental results demonstrate the efficacy of the method in identifying key regulatory networks related to the progression and recurrence of breast cancer.
Collapse
|
15
|
Uppal DS, Powell SM. Genetics/genomics/proteomics of gastric adenocarcinoma. Gastroenterol Clin North Am 2013; 42:241-60. [PMID: 23639639 DOI: 10.1016/j.gtc.2013.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hereditary diffuse gastric cancer can be caused by epithelial cadherin mutations for which genetic testing is available. Inherited cancer predisposition syndromes including Lynch, Li-Fraumeni, and Peutz-Jeghers syndromes, can be associated with gastric cancer. Chromosomal and microsatellite instability occur in gastric cancers. Several consistent genetic and molecular alterations including chromosomal instability, microsatellite instability, and epigenetic alterations have been identified in gastric cancers. Biomarkers and molecular profiles are being discovered with potential for diagnostic, prognostic, and treatment guidance implications.
Collapse
Affiliation(s)
- Dushant S Uppal
- Division of Gastroenterology/Hepatology, Department of Medicine, University of Virginia, Charlottesville, VA 22908-0708, USA
| | | |
Collapse
|
16
|
Winder T, Wilson PM, Yang D, Zhang W, Ning Y, Power DG, Bohanes P, Gerger A, Tang LH, Shah M, Lenz HJ. An individual coding polymorphism and the haplotype of the SPARC gene predict gastric cancer recurrence. THE PHARMACOGENOMICS JOURNAL 2012; 13:342-8. [PMID: 22491017 DOI: 10.1038/tpj.2012.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 02/08/2023]
Abstract
The 5-year survival rate for gastric adenocarcinoma (GA) remains only 40% and biomarkers to identify patients at high risk of tumor recurrence are urgently needed. Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein that mediates cell matrix interactions, and upregulation of SPARC can promote tumor progression and metastasis. This study investigated whether single-nucleotide polymorphisms (SNPs) in SPARC impact the prognosis of GA. Blood or formalin-fixed, paraffin-embedded tissues were obtained from 137 GA patients at the University of Southern California and Memorial Sloan-Kettering Cancer Center medical facilities. DNA was isolated and five SNPs in the SPARC 3'-untranslated region (UTR) were evaluated by DNA sequencing or PCR-restriction fragment length polymorphism. Associations between SNPs and time to tumor recurrence (TTR) were analyzed using Kaplan-Meier curves, log-rank tests, and likelihood-ratio test within logistic or Cox regression model as appropriate. Patients carrying at least one G allele of the SPARC rs1059829 polymorphism (GG, AG) showed a median TTR of 3.7 years compared with 2.1 years TTR for patients with AA (hazard ratio (HR) 0.57; P=0.033). In a multivariate analysis adjusted for T and N category as covariates and stratified by race, hospital and chemotherapy, patients with at least one SPARC rs1059829 G allele (GG, AG) remained significantly associated with superior TTR than patients with AA genotype (adjusted P=0.026). In addition, patients harboring the G-A-A haplotype had the highest risk of tumor recurrence (HR 1.892; adjusted P=0.016). Our findings suggest that SPARC 3'-UTR SNPs may be useful in predicting GA patients at increased risk of recurrence.
Collapse
Affiliation(s)
- T Winder
- Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Du ZP, Yuan HM, Wu BL, Chang JX, Lv Z, Shen J, Wu JY, Chen HB, Li EM, Xu LY. Neutrophil gelatinase-associated lipocalin in gastric carcinoma cells and its induction by TPA are controlled by C/EBPβ. Biochem Cell Biol 2011; 89:314-24. [PMID: 21612443 DOI: 10.1139/o11-002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) expression has been found to be upregulated in a variety of tumors, but the mechanism of NGAL elevation in gastric carcinoma remains unknown. Here, immunohistochemistry was applied to analyze NGAL expression in gastric carcinoma patients. Reverse transcription PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate NGAL mRNA and protein levels before and after 12-O-tetradecanoylphorbol-13-acetate (TPA) induction. Luciferase reporter assay was carried out to identify the core cis element in NGAL promoter. The binding ability and specificity of transcription factors were analyzed by electrophoretic mobility-shift assay (EMSA) and chromatin immunoprecipitation (ChIP), respectively. Results showed that NGAL was overexpressed in gastric tumor tissues. Gastric cancer cells treated with TPA resulted in the transactivation of NGAL promoter and the upregulation of its mRNA and protein levels. We identified the -110 to -79 sequence segment upstream from the transcription initiation site of NGAL as a TPA responsive element (TRE) and confirmed that C/EBPβ was able to bind to the -87 to -79 segment. Forced expression of C/EBPβ significantly increased the promoter activity of NGAL as well as its mRNA level. These results suggest that NGAL is overexpressed in gastric cancer, the binding of C/EBPβ to the TRE of its gene promoter mediates its TPA-induced overexpression in gastric carcinoma cells.
Collapse
Affiliation(s)
- Ze-Peng Du
- Institute of Oncologic Pathology, Medical College of Shantou University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Milne AN, Carneiro F, O'Morain C, Offerhaus GJA. Nature meets nurture: molecular genetics of gastric cancer. Hum Genet 2009; 126:615-628. [PMID: 19657673 PMCID: PMC2771140 DOI: 10.1007/s00439-009-0722-x] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 07/16/2009] [Indexed: 12/14/2022]
Abstract
The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed.
Collapse
Affiliation(s)
- Anya N Milne
- Pathology Department H04.2.25, University Medical Centre Utrecht, Postbus 85500, 3508GA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
19
|
Abstract
The immensity of genes and molecules implicated in gastric carcinogenesis is overwhelming and the relevant importance of some of these molecules is too often unclear. This review serves to bring us up-to-date with the latest findings as well as to look at the larger picture in terms of how to tackle the problem of solving this multi-piece puzzle. In this review, the environmental nurturing of intestinal cancer is discussed, beginning with epidemiology (known causative factors for inducing molecular change), an update of H. pylori research, including the role of inflammation and stem cells in premalignant lesions. The role of E-cadherin in the nature (genotype) of diffuse gastric cancer is highlighted, and finally the ever growing discipline of SNP analysis (including IL1B) is discussed.
Collapse
|
20
|
Park MJ, Kim KH, Kim HY, Kim K, Cheong J. Bile acid induces expression of COX-2 through the homeodomain transcription factor CDX1 and orphan nuclear receptor SHP in human gastric cancer cells. Carcinogenesis 2008; 29:2385-93. [PMID: 18775915 DOI: 10.1093/carcin/bgn207] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The caudal-related homeobox gene, CDX1, encodes for an intestinal-specific transcription factor and is involved in the induction of intestinal metaplasia (IM) of the stomach in gastric cancer. Gastric IM induced by bile reflux is a precancerous gastric adenocarcinomal lesion and has been associated with the induction of cyclooxygenase-2 (COX-2). In this study, we demonstrate the molecular mechanisms underlying the transcriptional regulation of COX-2 by bile acid in gastric cells. We noted that the ectopic expression of CDX1 enhanced COX-2 gene expression and that bile acid was associated with the induction of CDX1 expression. Furthermore, the induction of CDX1 by bile acid was mediated by the orphan nuclear receptor, small heterodimer partner (SHP). Finally, it was verified that the expression of COX-2, CDX1, SHP and CCAAT element-binding protein beta messenger RNA in human IM lesions were significantly higher than in lesions associated with gastritis. Collectively, these results reveal that bile acid induces an increase in the gene expression of COX-2 via the sequential transcriptional induction of SHP and CDX1 in precancerous lesions of human gastric cancer.
Collapse
Affiliation(s)
- Min Jung Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | | | | | | | | |
Collapse
|
21
|
Armengol G, Eissa S, Lozano JJ, Shoman S, Sumoy L, Caballín MR, Knuutila S. Genomic imbalances in Schistosoma-associated and non–Schistosoma-associated bladder carcinoma. An array comparative genomic hybridization analysis. ACTA ACUST UNITED AC 2007; 177:16-9. [PMID: 17693186 DOI: 10.1016/j.cancergencyto.2007.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/17/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
Carcinoma of the urinary bladder is the most common malignancy in many tropical and subtropical countries due to endemic infection by Schistosoma hematobium (bilharzia). In the current study, we performed a high-resolution analysis of gene copy number amplifications using array comparative genomic hybridization to compare DNA copy number changes in pools of Schistosoma-associated (SA) and non-Schistosoma-associated (NSA) bladder cancer (BC). Many DNA copy number changes were detected in all studies, with multiple gains and losses of genetic material. The most frequent alterations were gains on 5p15.2 approximately p15.33, 8q13.1, and 11q13, and losses on 8p21.3 approximately p22 and 22q13. Even when SA pools showed no Schistosoma-specific gene copy number profiling as compared to NSA pools, some genes seemed to be gained (ELN on 7q11.23) and some lost (PRKAG3 on 2q35 and PRDM6 on 5q23.2) in SA-SCC. The following genes were gained in all histopathologic categories: SRC (20q11.23), CEBPB (20q13.13), and GPR9 (Xq13.1). Our study did not provide clear evidence of differences in carcinogenesis of SA-BC and NSA-BC.
Collapse
Affiliation(s)
- Gemma Armengol
- U. Antropologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Faculty of Sciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Regalo G, Canedo P, Suriano G, Resende C, Campos ML, Oliveira MJ, Figueiredo C, Rodrigues-Pereira P, Blin N, Seruca R, Carneiro F, Machado JC. C/EBPbeta is over-expressed in gastric carcinogenesis and is associated with COX-2 expression. J Pathol 2007; 210:398-404. [PMID: 16981245 DOI: 10.1002/path.2063] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The CCAAT/enhancer-binding protein beta (C/EBPbeta) transcription factor has been associated with several cancer models. In this study, the expression of C/EBPbeta was analysed in a series of 90 gastric carcinomas (GCs). We also assessed the effect of C/EBPbeta on COX-2 expression. In normal gastric mucosa, C/EBPbeta expression was restricted to cells in the proliferative zone. In intestinal metaplasia, dysplasia, and GC of the intestinal and atypical subtypes, C/EBPbeta was over-expressed (p < 0.0001, for the association with histological type). C/EBPbeta and Ki67, a marker of cell proliferation, were also co-expressed in primary GC. We also observed an overlap between C/EBPbeta and COX-2 expression in GC. Using GC cell lines we show that C/EBPbeta can regulate the expression of endogenous COX-2 and transactivate the promoter of the COX-2 gene, depending on its methylation status. These results suggest that C/EBPbeta may be a marker of neoplastic transformation and also play an active role in gastric tumourigenesis by regulating COX-2 expression.
Collapse
Affiliation(s)
- G Regalo
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|