1
|
Lundregan SL, Mäkinen H, Buer A, Holand H, Jensen H, Husby A. Infection by a helminth parasite is associated with changes in DNA methylation in the house sparrow. Ecol Evol 2022; 12:e9539. [PMID: 36447599 PMCID: PMC9702581 DOI: 10.1002/ece3.9539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Parasites can exert strong selective pressures on their hosts and influence the evolution of host immunity. While several studies have examined the genetic basis for parasite resistance, the role of epigenetics in the immune response to parasites is less understood. Yet, epigenetic modifications, such as changes in DNA methylation, may allow species to respond rapidly to parasite prevalence or virulence. To test the role of DNA methylation in relation to parasite infection, we examined genome-wide DNA methylation before and during infection by a parasitic nematode, Syngamus trachea, in a natural population of house sparrows (Passer domesticus) using reduced representation bisulfite sequencing (RRBS). We found that DNA methylation levels were slightly lower in infected house sparrows, and we identified candidate genes relating to the initial immune response, activation of innate and adaptive immunity, and mucus membrane functional integrity that were differentially methylated between infected and control birds. Subsequently, we used methylation-sensitive high-resolution melting (MS-HRM) analyses to verify the relationship between methylation proportion and S. trachea infection status at two candidate genes in a larger sample dataset. We found that methylation level at NR1D1, but not CLDN22, remained related to infection status and that juvenile recruitment probability was positively related to methylation level at NR1D1. This underscores the importance of performing follow-up studies on candidate genes. Our findings demonstrate that plasticity in the immune response to parasites can be epigenetically mediated and highlight the potential for epigenetic studies in natural populations to provide further mechanistic insight into host-parasite interactions.
Collapse
Affiliation(s)
- Sarah L. Lundregan
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Hannu Mäkinen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Amberly Buer
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Håkon Holand
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity DynamicsNorwegian University of Science and TechnologyTrondheimNorway
- Evolutionary Biology, Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
2
|
Zhang S, Liu X, Abdulmomen Ali Mohammed S, Li H, Cai W, Guan W, Liu D, Wei Y, Rong D, Fang Y, Haider F, Lv H, Jin Z, Chen X, Mo Z, Li L, Yang S, Wang H. Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy 2021; 18:1822-1840. [PMID: 34870550 PMCID: PMC9450985 DOI: 10.1080/15548627.2021.2002108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Acquired chemotherapy resistance is one of the main culprits in the relapse of breast cancer. But the underlying mechanism of chemotherapy resistance remains elusive. Here, we demonstrate that a small adaptor protein, SH3BGRL, is not only elevated in the majority of breast cancer patients but also has relevance with the relapse and poor prognosis of breast cancer patients. Functionally, SH3BGRL upregulation enhances the chemoresistance of breast cancer cells to the first-line doxorubicin treatment through macroautophagic/autophagic protection. Mechanistically, SH3BGRL can unexpectedly bind to ribosomal subunits to enhance PIK3C3 translation efficiency and sustain ATG12 stability. Therefore, inhibition of autophagy or silence of PIK3C3 or ATG12 can effectively block the driving effect of SH3BGRL on doxorubicin resistance of breast cancer cells in vitro and in vivo. We also validate that SH3BGRL expression is positively correlated with that of PIK3C3 or ATG12, as well as the constitutive occurrence of autophagy in clinical breast cancer tissues. Taken together, our data reveal that SH3BGRL upregulation would be a key driver to the acquired chemotherapy resistance through autophagy enhancement in breast cancer while targeting SH3BGRL could be a potential therapeutic strategy against breast cancer. Abbreviations: ABCs: ATP-binding cassette transporters; Act D: actinomycin D; ACTB/β-actin: actin beta; ATG: autophagy-related; Baf A1: bafilomycin A1; CASP3: caspase 3; CHX: cycloheximide; CQ: chloroquine; Dox: doxorubicin; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GEO: gene expression omnibus; GFP: green fluorescent protein; G6PD: glucose-6-phosphate dehydrogenase; GSEA: gene set enrichment analysis; IHC: immunochemistry; KEGG: Kyoto Encyclopedia of Genes and Genomes; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; 3-MA: 3-methyladenine; mRNA: messenger RNA; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; SH3BGRL: SH3 domain binding glutamate-rich protein-like; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1
Collapse
Affiliation(s)
- Shaoyang Zhang
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiufeng Liu
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | - Hui Li
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanhua Cai
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Daiyun Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dade Rong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Farhan Haider
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haimei Lv
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Jin
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaomin Chen
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuomao Mo
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lujie Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Centers for Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
SH3-Binding Glutamic Acid Rich-Deficiency Augments Apoptosis in Neonatal Rat Cardiomyocytes. Int J Mol Sci 2021; 22:ijms222011042. [PMID: 34681711 PMCID: PMC8541172 DOI: 10.3390/ijms222011042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is one of the most common birth defects in humans, present in around 40% of newborns with Down’s syndrome (DS). The SH3 domain-binding glutamic acid-rich (SH3BGR) gene, which maps to the DS region, belongs to a gene family encoding a cluster of small thioredoxin-like proteins sharing SH3 domains. Although its expression is confined to the cardiac and skeletal muscle, the physiological role of SH3BGR in the heart is poorly understood. Interestingly, we observed a significant upregulation of SH3BGR in failing hearts of mice and human patients with hypertrophic cardiomyopathy. Along these lines, the overexpression of SH3BGR exhibited a significant increase in the expression of hypertrophic markers (Nppa and Nppb) and increased cell surface area in neonatal rat ventricular cardiomyocytes (NRVCMs), whereas its knockdown attenuated cellular hypertrophy. Mechanistically, using serum response factor (SRF) response element-driven luciferase assays in the presence or the absence of RhoA or its inhibitor, we found that the pro-hypertrophic effects of SH3BGR are mediated via the RhoA–SRF axis. Furthermore, SH3BGR knockdown resulted in the induction of apoptosis and reduced cell viability in NRVCMs via apoptotic Hippo–YAP signaling. Taking these results together, we here show that SH3BGR is vital for maintaining cytoskeletal integrity and cellular viability in NRVCMs through its modulation of the SRF/YAP signaling pathways.
Collapse
|
4
|
Adaptor SH3BGRL promotes breast cancer metastasis through PFN1 degradation by translational STUB1 upregulation. Oncogene 2021; 40:5677-5690. [PMID: 34331014 DOI: 10.1038/s41388-021-01970-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Metastatic recurrence is still a major challenge in breast cancer treatment, but the underlying mechanisms remain unclear. Here, we report that a small adaptor protein, SH3BGRL, is upregulated in the majority of breast cancer patients, especially elevated in those with metastatic relapse, indicating it as a marker for the poor prognosis of breast cancer. Physiologically, SH3BGRL can multifunctionally promote breast cancer cell tumorigenicity, migration, invasiveness, and efficient lung colonization in nude mice. Mechanistically, SH3BGRL downregulates the acting-binding protein profilin 1 (PFN1) by accelerating the translation of the PFN1 E3 ligase, STUB1 via SH3BGRL interaction with ribosomal proteins, or/and enhancing the interaction of PFN1 with STUB1 to accelerate PFN1 degradation. Loss of PFN1 consequently contributes to downstream multiple activations of AKT, NF-kB, and WNT signaling pathways. In contrast, the forced expression of compensatory PFN1 in SH3BGRL-high cells efficiently neutralizes SH3BGRL-induced metastasis and tumorigenesis with PTEN upregulation and PI3K-AKT signaling inactivation. Clinical analysis validates that SH3BGRL expression is negatively correlated with PFN1 and PTEN levels, but positively to the activations of AKT, NF-kB, and WNT signaling pathways in breast patient tissues. Our results thus suggest that SH3BGRL is a valuable prognostic factor and a potential therapeutic target for preventing breast cancer progression and metastasis.
Collapse
|
5
|
Nguyen N, Souza T, Verheijen MCT, Gmuender H, Selevsek N, Schlapbach R, Kleinjans J, Jennen D. Translational Proteomics Analysis of Anthracycline-Induced Cardiotoxicity From Cardiac Microtissues to Human Heart Biopsies. Front Genet 2021; 12:695625. [PMID: 34211507 PMCID: PMC8239409 DOI: 10.3389/fgene.2021.695625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Anthracyclines, including doxorubicin, idarubicin, and epirubicin, are common antitumor drugs as well as well-known cardiotoxic agents. This study analyzed the proteomics alteration in cardiac tissues caused by these 3 anthracyclines analogs. The in vitro human cardiac microtissues were exposed to drugs in 2 weeks; the proteomic data were measured at 7 time points. The heart biopsy data were collected from heart failure patients, in which some patients underwent anthracycline treatment. The anthracyclines-affected proteins were separately identified in the in vitro and in vivo dataset using the WGCNA method. These proteins engage in different cellular pathways including translation, metabolism, mitochondrial function, muscle contraction, and signaling pathways. From proteins detected in 2 datasets, a protein-protein network was established with 4 hub proteins, and 7 weighted proteins from both cardiac microtissue and human biopsies data. These 11 proteins, which involve in mitochondrial functions and the NF-κB signaling pathway, could provide insights into the anthracycline toxic mechanism. Some of them, such as HSPA5, BAG3, and SH3BGRL, are cardiac therapy targets or cardiotoxicity biomarkers. Other proteins, such as ATP5F1B and EEF1D, showed similar responses in both the in vitro and in vivo data. This suggests that the in vitro outcomes could link to clinical phenomena in proteomic analysis.
Collapse
Affiliation(s)
- Nhan Nguyen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Terezinha Souza
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Marcha C T Verheijen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | | | | | - Ralph Schlapbach
- Functional Genomics Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jos Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
6
|
Kwon OK, Ha YS, Lee JN, Kim S, Lee H, Chun SY, Kwon TG, Lee S. Comparative Proteome Profiling and Mutant Protein Identification in Metastatic Prostate Cancer Cells by Quantitative Mass Spectrometry-based Proteogenomics. Cancer Genomics Proteomics 2019; 16:273-286. [PMID: 31243108 DOI: 10.21873/cgp.20132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Prostate cancer (PCa) is the most frequent cancer found in males worldwide. The aim of this study was to identify new biomarkers using mutated peptides for the prognosis and prediction of advanced PCa, based on proteogenomics. MATERIALS AND METHODS The tryptic peptides were analyzed by tandem mass tag-based quantitative proteomics. Proteogenomics were used to identify mutant peptides as novel biomarkers in advanced PCa. RESULTS Using a human database, increased levels of INTS7 and decreased levels of SH3BGRL were found to be associated with the aggressiveness of PCa. Using proteogenomics and a cancer mutation database, 70 mutant peptides were identified in PCa cell lines. Using parallel reaction monitoring, the expression of seven mutant peptides was found to be altered in tumors, amongst which CAPN2 D22E was the most significantly up-regulated mutant peptide in PCa tissues. CONCLUSION Altered mutant peptides present in PCa tissue could be used as new biomarkers in advanced PCa.
Collapse
Affiliation(s)
- Oh Kwang Kwon
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sunjoo Kim
- BK21 Plus Team for Creative Leader Program for Pharmacomics-based Future, Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hyesuk Lee
- BK21 Plus Team for Creative Leader Program for Pharmacomics-based Future, Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea .,Department of Urology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics-based Creative Drug Research Team, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Wang W, Wang S, Zhang M. Identification of urine biomarkers associated with lung adenocarcinoma. Oncotarget 2018; 8:38517-38529. [PMID: 28404947 PMCID: PMC5503550 DOI: 10.18632/oncotarget.15870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LAC) progression is accompanied by changes in protein levels that may be reflected in body fluids, such as urine. Urine collected from LAC patients (n=34) and healthy controls (n=36) was analyzed via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) combined with weak cationic exchange magnetic beads. The results revealed 76 urinary polypeptides significantly different between LAC patients and normal controls (P<0.05). Twenty-two of these peptides were up-regulated and 54 were down-regulated. Thirteen peptides had average peak intensities >600. Twelve of these 13 peptides were successfully identified using nano-liquid chromatography-tandem MS. Receiver operating characteristic analyses identified seven peptides with superior LAC diagnostic performances. Immunohistochemical staining in 20 paired LAC and adjacent normal tissues showed that IGKC, AAT, SH3BGRL3, osteopontin and gelsolin levels were higher in LAC tissues than in adjacent tissuesand were closely associated with LAC. Urinary peptides assessments may thus provide a novel, noninvasive, repeatable method for detecting and monitoring LAC. New, low-cost detection methods and bioinformatics tools are therefore urgently needed for the analysis of low abundance proteins and peptides in body fluids.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Wang
- Department of Pulmonary and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
8
|
Zhu L, Gao N, Wang R, Zhang L. Proteomic and metabolomic analysis of marine medaka (Oryzias melastigma) after acute ammonia exposure. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:267-277. [PMID: 29322369 DOI: 10.1007/s10646-017-1892-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ammonia is both a highly toxic environmental pollutant and the major nitrogenous waste produced by ammoniotelic teleosts. Although the acute toxic effects of ammonia have been widely studied in fish, the biochemical mechanisms of its toxicity have not been understood comprehensively. In this study, we performed comparative proteomic and metabolomic analysis between ammonia-challenged (1.2 and 2.6 mmol L-1 NH4Cl for 96 h) and control groups of marine medaka (Oryzias melastigma) to identify changes of the metabolite and protein profiles in response to ammonia stress. The metabolic responses included changes of multiple amino acids, carbohydrates (glucose and glycogen), energy metabolism products (ATP and creatinine), and other metabolites (choline and phosphocholine) after ammonia exposure, indicating that ammonia mainly caused disturbance in energy metabolism and amino acids metabolism. The two-dimensional electrophoresis-based proteomic study identified 23 altered proteins, which were involved in nervous system, locomotor system, cytoskeleton assembly, immune stress, oxidative stress, and signal transduction of apoptosis. These results suggested that ammonia not only induced oxidative stress, immune stress, cell injury and apoptosis but also affected the motor ability and central nervous system in marine medaka. It is the first time that metabolomic and proteomic approaches were integrated to elucidate ammonia toxicity in marine fishes. This study is of great value in better understanding the mechanisms of ammonia toxicity in marine fishes and in practical aspects of aquaculture.
Collapse
Affiliation(s)
- Limei Zhu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Na Gao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifang Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
9
|
Proteomic features of delayed ocular symptoms caused by exposure to sulfur mustard: As studied by protein profiling of corneal epithelium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1445-1454. [DOI: 10.1016/j.bbapap.2017.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
|
10
|
Xu L, Zhang M, Li H, Guan W, Liu B, Liu F, Wang H, Li J, Yang S, Tong X, Wang H. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk Lymphoma 2017; 59:918-930. [PMID: 28679293 DOI: 10.1080/10428194.2017.1344843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Limei Xu
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengqi Liu
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hehua Wang
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Centre for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuzhen Tong
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Yao Y, Vasoya D, Kgosana L, Smith LP, Gao Y, Wang X, Watson M, Nair V. Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation. J Gen Virol 2017; 98:810-820. [PMID: 28113043 PMCID: PMC5657028 DOI: 10.1099/jgv.0.000718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The v-rel oncoprotein encoded by reticuloendotheliosis virus T strain (Rev-T) is a member of the rel/NF-κB family of transcription factors capable of transformation of primary chicken spleen and bone marrow cells. Rapid transformation of avian haematopoietic cells by v-rel occurs through a process of deregulation of multiple protein-encoding genes through its direct effect on their promoters. More recently, upregulation of oncogenic miR-155 and its precursor pre-miR-155 was demonstrated in both Rev-T-infected chicken embryo fibroblast cultures and Rev-T-induced B-cell lymphomas. Through electrophoresis mobility shift assay and reporter analysis on the gga-miR-155 promoter, we showed that the v-rel-induced miR-155 overexpression occurred by the direct binding to one of the putative NF-κB binding sites. Using the v-rel-induced transformation model on chicken embryonic splenocyte cultures, we could demonstrate a dynamic increase in miR-155 levels during the transformation. Transcriptome profiles of lymphoid cells transformed by v-rel showed upregulation of miR-155 accompanied by downregulation of a number of putative miR-155 targets such as Pu.1 and CEBPβ. We also showed that v-rel could rescue the suppression of miR-155 expression observed in Marek's disease virus (MDV)-transformed cell lines, where its functional viral homologue MDV-miR-M4 is overexpressed. Demonstration of gene expression changes affecting major molecular pathways, including organismal injury and cancer in avian macrophages transfected with synthetic mature miR-155, underlines its potential direct role in transformation. Our study suggests that v-rel-induced transformation involves a complex set of events mediated by the direct activation of NF-κB targets, together with inhibitory effects on microRNA targets.
Collapse
Affiliation(s)
- Yongxiu Yao
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Deepali Vasoya
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Lydia Kgosana
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Lorraine P Smith
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Mick Watson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush EH25 9RG, UK
| | - Venugopal Nair
- Avian Viral Disease Programme & UK-China Centre of Excellence on Avian Disease Research, The Pirbright Institute, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK
| |
Collapse
|
12
|
Mahas A, Potluri K, Kent MN, Naik S, Markey M. Copy number variation in archival melanoma biopsies versus benign melanocytic lesions. Cancer Biomark 2017; 16:575-97. [PMID: 27002761 DOI: 10.3233/cbm-160600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Skin melanocytes can give rise to benign and malignant neoplasms. Discrimination of an early melanoma from an unusual/atypical benign nevus can represent a significant challenge. However, previous studies have shown that in contrast to benign nevi, melanoma demonstrates pervasive chromosomal aberrations. OBJECTIVE This substantial difference between melanoma and benign nevi can be exploited to discriminate between melanoma and benign nevi. METHODS Array-comparative genomic hybridization (aCGH) is an approach that can be used on DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues to assess the entire genome for the presence of changes in DNA copy number. In this study, high resolution, genome-wide single-nucleotide polymorphism (SNP) arrays were utilized to perform comprehensive and detailed analyses of recurrent copy number aberrations in 41 melanoma samples in comparison with 21 benign nevi. RESULTS We found statistically significant copy number gains and losses within melanoma samples. Some of the identified aberrations are previously implicated in melanoma. Moreover, novel regions of copy number alterations were identified, revealing new candidate genes potentially involved in melanoma pathogenesis. CONCLUSIONS Taken together, these findings can help improve melanoma diagnosis and introduce novel melanoma therapeutic targets.
Collapse
Affiliation(s)
- Ahmed Mahas
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Keerti Potluri
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| | - Michael N Kent
- Department of Dermatology, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.,Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Sameep Naik
- Dermatopathology Laboratory of Central States, Dayton, OH, USA
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA
| |
Collapse
|
13
|
Tong F, Zhang M, Guo X, Shi H, Li L, Guan W, Wang H, Yang S. Expression patterns of SH3BGR family members in zebrafish development. Dev Genes Evol 2016; 226:287-95. [PMID: 27233781 DOI: 10.1007/s00427-016-0552-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/20/2016] [Indexed: 11/25/2022]
Abstract
SH3 domain-binding glutamic acid-rich (SH3BGR) gene family is composed of SH3BGR, SH3BGRL, SH3BGRL2, and SH3BGRL3 which encodes a cluster of small thioredoxin-like proteins and shares a Src homology 3 (SH3) domain. However, biological functions of SH3BGR family members are largely elusive. Given that zebrafish (Danio rerio) sh3bgrl, sh3bgrl2, sh3bgrl3, and sh3bgr are evolutionally identical to their corresponding human orthologues, we analyzed the spatiotemporal expression of SH3BGR family members in zebrafish embryonic development stages by in situ hybridization. Our results revealed that except sh3bgrl, other members are all maternally expressed, especially for sh3bgrl3 that is strongly expressed from one-cell stage to juvenile fishes. In situ expression patterns of SH3BGR members are similar in the very early developmental stages, including with commonly strong expression in intestines, olfactory bulbs, and neuromasts for neural system building up. Organ-specific expressions are also demonstrated, of which sh3bgr is uniquely expressed in sarcomere, and sh3bgrl3 in liver. sh3bgrl and sh3bgrl2 are similarly expressed in intestines, notochords, and neuromasts after 12-h post-fertilization of embryos. Eventually, messenger RNAs (mRNAs) of all sh3bgr members are mainly constrained into intestines of juvenile fishes. Collectively, our study clarified the expression patterns of sh3bgr family members in diverse organogenesis in embryonic development and indicates that SH3BGR members may play predominant roles in neural system development and in maintenance of normal function of digestive organs, especially for intestine homeostasis. However, their expression patterns are varied with the development stages and organ types, suggesting that the aberrant expression of these members would result in multiple diseases.
Collapse
Affiliation(s)
- Fang Tong
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Guo
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongshun Shi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Sun Yat-sen University, No. 74 Zhonshan Road 2nd, Guangzhou, 510080, China.
| | - Shulan Yang
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, No. 58, Zhongshan Road 2nd, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Wang H, Liu B, Al-Aidaroos AQO, Shi H, Li L, Guo K, Li J, Tan BCP, Loo JM, Tang JP, Thura M, Zeng Q. Dual-faced SH3BGRL: oncogenic in mice, tumor suppressive in humans. Oncogene 2015; 35:3303-13. [PMID: 26455318 PMCID: PMC4929482 DOI: 10.1038/onc.2015.391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/12/2022]
Abstract
Despite abundant data supporting c-Src as a metastasis-promoting oncogene, activating mutations of c-Src are rare. This suggests that trans-interacting proteins may have a critical role in regulating c-Src activation. Here, we first report the discovery of Src homology 3 (SH3) domain-binding glutamic acid-rich-like protein (SH3BGRL), a novel c-Src activator in mice. Ectopic expression of murine SH3BGRL (mSH3BGRL) strongly promoted both tumor cell invasion and lung metastasis. Molecularly, mSH3BGRL specifically bound the inactive form of c-Src phosphorylated at Tyr527, promoting Tyr416 phosphorylation of c-Src and subsequent FAK-mediated activation of ERK and AKT signaling pathways. Targeting endogenous c-Src alone was sufficient to abolish mSH3BGRL-induced cancer metastasis in vivo. Unexpectedly, human SH3BGRL (hSH3BGRL) in turn suppressed tumorigenesis and metastasis in nature. We attempted site-specific reversion of hSH3BGRL amino-acid sequence to mSH3BGRL and found V108A substitution sufficient to restore SH3BGRL function as a c-Src activator and metastasis promoter. Notably, the somatic mutation R76C of hSH3BGRL can similarly act as hSH3BGRL-V108A and mSH3BGRL in tumorigenesis and metastasis. Our results uncover an evolutionarily controversial role of SH3BGRL in driving tumor metastasis through c-Src activation, and suggests that hSH3BGRL mutation status could be relevant to cancer diagnosis and therapy.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - B Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - A Q O Al-Aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - H Shi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - L Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Center for Stem Cell Biology and Tissue Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - K Guo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - J Li
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - B C P Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - J M Loo
- The Rockefeller University, New York, NY, USA
| | - J P Tang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - M Thura
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Q Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Yao F, Zhang C, Du W, Liu C, Xu Y. Identification of Gene-Expression Signatures and Protein Markers for Breast Cancer Grading and Staging. PLoS One 2015; 10:e0138213. [PMID: 26375396 PMCID: PMC4573873 DOI: 10.1371/journal.pone.0138213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022] Open
Abstract
The grade of a cancer is a measure of the cancer's malignancy level, and the stage of a cancer refers to the size and the extent that the cancer has spread. Here we present a computational method for prediction of gene signatures and blood/urine protein markers for breast cancer grades and stages based on RNA-seq data, which are retrieved from the TCGA breast cancer dataset and cover 111 pairs of disease and matching adjacent noncancerous tissues with pathologists-assigned stages and grades. By applying a differential expression and an SVM-based classification approach, we found that 324 and 227 genes in cancer have their expression levels consistently up-regulated vs. their matching controls in a grade- and stage-dependent manner, respectively. By using these genes, we predicted a 9-gene panel as a gene signature for distinguishing poorly differentiated from moderately and well differentiated breast cancers, and a 19-gene panel as a gene signature for discriminating between the moderately and well differentiated breast cancers. Similarly, a 30-gene panel and a 21-gene panel are predicted as gene signatures for distinguishing advanced stage (stages III-IV) from early stage (stages I-II) cancer samples and for distinguishing stage II from stage I samples, respectively. We expect these gene panels can be used as gene-expression signatures for cancer grade and stage classification. In addition, of the 324 grade-dependent genes, 188 and 66 encode proteins that are predicted to be blood-secretory and urine-excretory, respectively; and of the 227 stage-dependent genes, 123 and 51 encode proteins predicted to be blood-secretory and urine-excretory, respectively. We anticipate that some combinations of these blood and urine proteins could serve as markers for monitoring breast cancer at specific grades and stages through blood and urine tests.
Collapse
Affiliation(s)
- Fang Yao
- Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- Jilin Teachers’ Institute of Engineering and Technology, Changchun, China
| | - Chi Zhang
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
| | - Wei Du
- Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- * E-mail: (WD); (YX)
| | - Chao Liu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ying Xu
- Key Laboratory for Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, United States of America
- * E-mail: (WD); (YX)
| |
Collapse
|
16
|
Jang DG, Sim HJ, Song EK, Medina-Ruiz S, Seo JK, Park TJ. A thioredoxin fold protein Sh3bgr regulates Enah and is necessary for proper sarcomere formation. Dev Biol 2015; 405:1-9. [PMID: 26116879 DOI: 10.1016/j.ydbio.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 01/15/2023]
Abstract
The sh3bgr (SH3 domain binding glutamate-rich) gene encodes a small protein containing a thioredoxin-like fold, SH3 binding domain, and glutamate-rich domain. Originally, it was suggested that increased expression of Sh3bgr may cause the cardiac phenotypes in Down's syndrome. However, it was recently reported that the overexpression of Sh3bgr did not cause any disease phenotypes in mice. In this study, we have discovered that Sh3bgr is critical for sarcomere formation in striated muscle tissues and also for heart development. Sh3bgr is strongly expressed in the developing somites and heart in Xenopus. Morpholino mediated-knockdown of sh3bgr caused severe malformation of heart tissue and disrupted segmentation of the somites. Further analysis revealed that Sh3bgr specifically localized to the Z-line in mature sarcomeres and that knockdown of Sh3bgr completely disrupted sarcomere formation in the somites. Moreover, overexpression of Sh3bgr resulted in abnormally discontinues thick firmaments in the somitic sarcomeres. We suggest that Sh3bgr does its function at least partly by regulating localization of Enah for the sarcomere formation. In addition, we provide the data supporting Sh3bgr is also necessary for proper heart development in part by affecting the Enah protein level.
Collapse
Affiliation(s)
- Dong Gil Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Eun Kyung Song
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea.
| |
Collapse
|
17
|
Muñiz Lino MA, Palacios-Rodríguez Y, Rodríguez-Cuevas S, Bautista-Piña V, Marchat LA, Ruíz-García E, Astudillo-de la Vega H, González-Santiago AE, Flores-Pérez A, Díaz-Chávez J, Carlos-Reyes Á, Álvarez-Sánchez E, López-Camarillo C. Comparative proteomic profiling of triple-negative breast cancer reveals that up-regulation of RhoGDI-2 is associated to the inhibition of caspase 3 and caspase 9. J Proteomics 2014; 111:198-211. [PMID: 24768906 DOI: 10.1016/j.jprot.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/20/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED There are no targeted therapeutic modalities for triple-negative breast cancer (TNBC), thus it is associated with poor prognosis and worst clinical outcome. Here, our aim was to identify deregulated proteins in TNBC with potential therapeutic applications. Proteomics profiling of TNBC and normal breast tissues through two-dimensional electrophoresis and ESI-MS/MS mass spectrometry revealed the existence of 16 proteins (RhoGDI-2, HSP27, SOD1, DJ1, UBE2N, PSME1, FTL, SH3BGRL, and eIF5A-1) with increased abundance in carcinomas. We also evidenced for the first time the deregulation of COX5, MTPN and DB1 proteins in TNBC that may represent novel tumor markers. Particularly, we confirmed the overexpression of the Rho-GDP dissociation inhibitor 2 (RhoGDI-2) in distinct breast cancer subtypes, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Remarkably, targeted disruption of RhoGDI-2 by RNA interference induced mitochondrial dysfunction, and facilitated caspase-3 and -9 activation in two breast cancer cell lines. Moreover, suppression of RhoGDI-2 resulted in a robust sensitization of breast cancer cells to cisplatin therapy. In conclusion, we identified novel proteins deregulated in TNBC, and confirmed the overexpression of RhoGDI-2. We propose that RhoGDI-2 inhibition may be exploited as a potential therapeutic strategy along cisplatin-based chemotherapy in breast cancer. BIOLOGICAL SIGNIFICANCE There are no useful biomarkers neither targeted therapeutic modalities for triple-negative breast cancer, which highly contributes to the poor prognosis of this breast cancer subtype. In this work, we used two-dimensional electrophoresis and ESI-MS/MS spectrometry to identify novel deregulated proteins in breast cancer tissues. Particularly, our results showed that RhoGDI-2, a protein that has been associated to metastasis and poor survival in human cancers, is overexpressed in different subtypes of breast tumors, as well as in metastatic cell lines derived from lung, prostate, and breast cancer. Our data also provided novel insights about the role of RhoGDI-2 in apoptosis through intrinsic pathway inhibition. Importantly, they suggested that targeted modulation of RhoGDI-2 levels might be a useful strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Marcos A Muñiz Lino
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | | | | | | | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, National School of Medicine and Homeopathy, National Polytechnic Institute, Mexico City, Mexico
| | - Erika Ruíz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, Oncology Hospital, Medical Center Siglo XXI, Mexico City, Mexico
| | | | - Ali Flores-Pérez
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Ángeles Carlos-Reyes
- Lung Cancer Laboratory, National Institute of Respiratory Diseases, Mexico City, Mexico
| | | | - César López-Camarillo
- Oncogenomics and Cancer Proteomics Laboratory, Autonomous University of Mexico City, Mexico.
| |
Collapse
|
18
|
Omelchenko DO, Rzhaninova AA, Goldshtein DV. Comparative transcriptome pairwise analysis of spontaneously transformed multipotent stromal cells from human adipose tissue. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Rentoft M, Coates PJ, Laurell G, Nylander K. Transcriptional profiling of formalin fixed paraffin embedded tissue: pitfalls and recommendations for identifying biologically relevant changes. PLoS One 2012; 7:e35276. [PMID: 22530001 PMCID: PMC3328434 DOI: 10.1371/journal.pone.0035276] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/14/2012] [Indexed: 02/08/2023] Open
Abstract
Expression profiling techniques have been used to study the biology of many types of cancer but have been limited to some extent by the requirement for collection of fresh tissue. In contrast, formalin fixed paraffin embedded (FFPE) samples are widely available and represent a vast resource of potential material. The techniques used to handle the degraded and modified RNA from these samples are relatively new and all the pitfalls and limitations of this material for whole genome expression profiling are not yet clarified. Here, we analyzed 70 FFPE tongue carcinoma samples and 17 controls using the whole genome DASL array covering nearly 21000 genes. We identified that sample age is related to quality of extracted RNA and that sample quality influences apparent expression levels in a non-random manner related to gene probe sequence, leading to spurious results. However, by removing sub-standard samples and analysing only those 28 cancers and 15 controls that had similar quality we were able to generate a list of 934 genes significantly altered in tongue cancer compared to control samples of tongue. This list contained previously identified changes and was enriched for genes involved in many cancer-related processes such as tissue remodelling, inflammation, differentiation and apoptosis. Four novel genes of potential importance in tongue cancer development and maintenance, SH3BGL2, SLC2A6, SLC16A3 and CXCL10, were independently confirmed, validating our data. Hence, gene expression profiling can be performed usefully on archival material if appropriate quality assurance steps are taken to ensure sample consistency and we present some recommendations for the use of FFPE material based on our findings.
Collapse
Affiliation(s)
- Matilda Rentoft
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
20
|
Activation of the TGF-β/Smad signaling pathway in oncogenic transformation by v-Rel. Virology 2011; 413:60-71. [DOI: 10.1016/j.virol.2011.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 10/11/2010] [Accepted: 02/01/2011] [Indexed: 01/22/2023]
|
21
|
Kralova J, Sheely JI, Liss AS, Bose HR. ERK and JNK activation is essential for oncogenic transformation by v-Rel. Oncogene 2010; 29:6267-79. [PMID: 20802521 PMCID: PMC2992084 DOI: 10.1038/onc.2010.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
v-Rel is the acutely oncogenic member of the NF-κB family of transcription factors. Infection with retroviruses expressing v-Rel rapidly induces fatal lymphomas in birds and transforms primary lymphocytes and fibroblasts in vitro. We have previously shown that AP-1 transcriptional activity contributes to v-Rel-mediated transformation. While v-Rel increases the expression of these factors, their activity may also be induced through phosphorylation by the mitogen-activated protein (MAP) kinases. The expression of v-Rel results in the strong and sustained activation of the ERK and JNK MAPK pathways. This induction is critical for the v-Rel transformed phenotype, as suppression of MAPK activity with chemical inhibitors or siRNA severely impairs colony formation of v-Rel transformed lymphoid cell lines. However, signaling must be maintained within an optimal range in these cells, since strong additional activation of either pathway beyond the levels induced by v-Rel through the expression of constitutively active MAPK proteins attenuates the transformed phenotype. MAPK signaling also plays an important role in the initial transformation of primary spleen cells by v-Rel, although distinct requirements for MAPK activity at different stages of v-Rel-mediated transformation were identified. We also show that the ability of v-Rel to induce MAPK signaling more strongly than c-Rel contributes to its greater oncogenicity.
Collapse
Affiliation(s)
- J Kralova
- Section of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | | | | | |
Collapse
|
22
|
Liss AS, Tiwari R, Kralova J, Bose HR. Cell transformation by v-Rel reveals distinct roles of AP-1 family members in Rel/NF-kappaB oncogenesis. Oncogene 2010; 29:4925-37. [PMID: 20562914 PMCID: PMC2932816 DOI: 10.1038/onc.2010.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell transformation by the v-rel oncogene is mediated by the aberrant expression of genes that are normally tightly regulated by other Rel/NF-κB family members. Although a number of genes inappropriately activated or suppressed by v-Rel have been identified, their contributions to the v-Rel transformation process have been poorly characterized. Here, we examine the role of individual AP-1 proteins in v-Rel-mediated transformation. v-Rel transformed cells exhibit elevated RNA and protein expression of c-Fos, c-Jun, and ATF2 and sustained repression of Fra-2. c-Fos and c-Jun are essential in both the initiation and maintenance of v-Rel-mediated transformation while Fra-2 is dispensable. By employing a c-Jun dimerization mutant, we further identified Fos:Jun heterodimers as major contributors to the v-Rel transformation process. The inability of c-Rel to induce the expression of c-Fos and c-Jun contributes to its weaker oncogenic potential relative to v-Rel. Our studies also demonstrate that v-Rel may induce AP-1 members by directly upregulating gene expression (c-fos and ATF2) and by activating pathways that stimulate AP-1 activity. While elevated expression of ATF2 is also required for v-Rel-mediated transformation, its ectopic overexpression is inhibitory. Investigating the mode of ATF2 regulation revealed a positive feedback mechanism whereby ATF2 induces p38 MAPK phosphorylation to further induce its own activity. In addition, these studies identified Ha-Ras as an effector of v-Rel mediated transformation and reveal a novel role for ATF2 in the inhibition of the Ras-Raf-MEK-ERK signaling pathway. Overall, these studies reveal distinct and complex roles of AP-1 proteins in Rel/NF-κB oncogenesis.
Collapse
Affiliation(s)
- A S Liss
- Section of Molecular Genetics and Microbiology, Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1095, USA
| | | | | | | |
Collapse
|
23
|
Fu T, Li P, Wang H, He Y, Luo D, Zhang A, Tong W, Zhang L, Liu B, Hu C. c-Rel is a transcriptional repressor of EPHB2 in colorectal cancer. J Pathol 2009; 219:103-113. [PMID: 19621336 DOI: 10.1002/path.2590] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 06/08/2009] [Indexed: 11/07/2022]
Abstract
The receptor tyrosine kinase EPHB2 has recently been identified as a TCF4 transcriptional target that controls the intestinal epithelial architecture through repulsive interactions with Ephrin-B ligands. Many reports have demonstrated that most human colorectal cancers lose EPHB2 expression despite constitutive Wnt activation. Therefore, we investigated the mechanisms that cause EPHB2 down-regulation in colorectal cancer. In this study, we demonstrate that DNA hypermethylation was not responsible for the frequent loss of EPHB2 expression in colorectal cancer. Cloning and functional characterization of the EPHB2 gene 5'-flanking region revealed a potential negative regulatory element in the distal regulatory region. In vitro electrophoretic gel mobility shift and in vivo chromatin immunoprecipitation assays demonstrated that c-Rel directly binds to the putative element. Inhibiting c-Rel activity or knocking down c-Rel expression by RNA interference in colon cancer cells was sufficient to induce EPHB2 expression. Furthermore, transient transfection assays demonstrated that c-Rel over-expression repressed endogenous EPHB2 expression in colon cancer cells. We demonstrate for the first time that c-Rel acts as a transcriptional repressor of EPHB2 and plays an active role in EPHB2 down-regulation in colorectal cancers.
Collapse
Affiliation(s)
- Tao Fu
- Department of General Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Drawid A, Gupta N, Nagaraj VH, Gélinas C, Sengupta AM. OHMM: a Hidden Markov Model accurately predicting the occupancy of a transcription factor with a self-overlapping binding motif. BMC Bioinformatics 2009; 10:208. [PMID: 19583839 PMCID: PMC2718928 DOI: 10.1186/1471-2105-10-208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/07/2009] [Indexed: 12/29/2022] Open
Abstract
Background DNA sequence binding motifs for several important transcription factors happen to be self-overlapping. Many of the current regulatory site identification methods do not explicitly take into account the overlapping sites. Moreover, most methods use arbitrary thresholds and fail to provide a biophysical interpretation of statistical quantities. In addition, commonly used approaches do not include the location of a site with respect to the transcription start site (TSS) in an integrated probabilistic framework while identifying sites. Ignoring these features can lead to inaccurate predictions as well as incorrect design and interpretation of experimental results. Results We have developed a tool based on a Hidden Markov Model (HMM) that identifies binding location of transcription factors with preference for self-overlapping DNA motifs by combining the effects of their alternative binding modes. Interpreting HMM parameters as biophysical quantities, this method uses the occupancy probability of a transcription factor on a DNA sequence as the discriminant function, earning the algorithm the name OHMM: Occupancy via Hidden Markov Model. OHMM learns the classification threshold by training emission probabilities using unaligned sequences containing known sites and estimating transition probabilities to reflect site density in all promoters in a genome. While identifying sites, it adjusts parameters to model site density changing with the distance from the transcription start site. Moreover, it provides guidance for designing padding sequences in gel shift experiments. In the context of binding sites to transcription factor NF-κB, we find that the occupancy probability predicted by OHMM correlates well with the binding affinity in gel shift experiments. High evolutionary conservation scores and enrichment in experimentally verified regulated genes suggest that NF-κB binding sites predicted by our method are likely to be functional. Conclusion Our method deals specifically with identifying locations with multiple overlapping binding sites by computing the local occupancy of the transcription factor. Moreover, considering OHMM as a biophysical model allows us to learn the classification threshold in a principled manner. Another feature of OHMM is that we allow transition probabilities to change with location relative to the TSS. OHMM could be used to predict physical occupancy, and provides guidance for proper design of gel-shift experiments. Based upon our predictions, new insights into NF-κB function and regulation and possible new biological roles of NF-κB were uncovered.
Collapse
Affiliation(s)
- Amar Drawid
- BioMAPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ, USA.
| | | | | | | | | |
Collapse
|
25
|
Fan G, Fan Y, Gupta N, Matsuura I, Liu F, Zhou XZ, Lu KP, Gélinas C. Peptidyl-prolyl isomerase Pin1 markedly enhances the oncogenic activity of the rel proteins in the nuclear factor-kappaB family. Cancer Res 2009; 69:4589-97. [PMID: 19458071 DOI: 10.1158/0008-5472.can-08-4117] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peptidyl-prolyl isomerase Pin1 is frequently up-regulated in human cancers in which Rel/nuclear factor-kappaB (NF-kappaB) is constitutively activated, but its role in these cancers remains to be determined, and evidence is still lacking to show that Pin1 contributes to cell transformation by Rel/NF-kappaB. Rel/NF-kappaB transcriptional and oncogenic activities are modulated by several posttranslational modifications and coregulatory proteins, and previous studies showed that cytokine treatment induces binding of Pin1 to the RelA subunit of NF-kappaB, thereby enhancing RelA nuclear localization and stability. Here we show that Pin1 associates with the Rel subunits of NF-kappaB that are implicated in leukemia/lymphomagenesis and modulates their transcriptional and oncogenic activities. Pin1 markedly enhanced transformation of primary lymphocytes by the human c-Rel protein and also increased cell transformation by the potent viral Rel/NF-kappaB oncoprotein v-Rel, in contrast to a Pin1 mutant in the WW domain involved in interaction with NF-kappaB. Pin1 promoted nuclear accumulation of Rel proteins in the absence of activating stimuli. Importantly, inhibition of Pin1 function with the pharmacologic inhibitor juglone or with Pin1-specific shRNA led to cytoplasmic relocalization of endogenous c-Rel in human lymphoma-derived cell lines, markedly interfered with lymphoma cell proliferation, and suppressed endogenous Rel/NF-kappaB-dependent gene expression. Together, these results show that Pin1 is an important regulator of Rel/NF-kappaB transforming activity and suggest that Pin1 may be a potential therapeutic target in Rel/NF-kappaB-dependent leukemia/lymphomas.
Collapse
Affiliation(s)
- Gaofeng Fan
- Center for Advanced Biotechnology and Medicine, UMDNJ-Robert Wood Johnson Medical School 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Warder SE, Tucker LA, McLoughlin SM, Strelitzer TJ, Meuth JL, Zhang Q, Sheppard GS, Richardson PL, Lesniewski R, Davidsen SK, Bell RL, Rogers JC, Wang J. Discovery, identification, and characterization of candidate pharmacodynamic markers of methionine aminopeptidase-2 inhibition. J Proteome Res 2008; 7:4807-20. [PMID: 18828628 DOI: 10.1021/pr800388p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic activity of methionine aminopeptidase-2 (MetAP2) has been pharmacologically linked to cell growth, angiogenesis, and tumor progression, making this an attractive target for cancer therapy. An assay for monitoring specific protein changes in response to MetAP2 inhibition, allowing pharmacokinetic (PK)/pharmacodynamic (PD) models to be established, could dramatically improve clinical decision-making. Candidate MetAP2-specific protein substrates were discovered from undigested cell culture-derived proteomes by MALDI-/SELDI-MS profiling and a biochemical method using (35)S-Met labeled protein lysates. Substrates were identified either as intact proteins by FT-ICR-MS or applying in-gel protease digestions followed by LC-MS/MS. The combination of these approaches led to the discovery of novel MetAP2-specific substrates including thioredoxin-1 (Trx-1), SH3 binding glutamic acid rich-like protein (SH3BGRL), and eukaryotic elongation factor-2 (eEF2). These studies also confirmed glyceraldehye 3-phosphate dehydrogenase (GAPDH) and cyclophillin A (CypA) as MetAP2 substrates. Additional data in support of these proteins as MetAP2-specific substrates were provided by in vitro MetAP1/MetAP2 enzyme assays with the corresponding N-terminal derived peptides and 1D/2D Western analyses of cellular and tissue lysates. FT-ICR-MS characterization of all intact species of the 18 kDa substrate, CypA, enabled a SELDI-MS cell-based assay to be developed for correlating N-terminal processing and inhibition of proliferation. The MetAP2-specific protein substrates discovered in this study have diverse properties that should facilitate the development of reagents for testing in preclinical and clinical environments.
Collapse
Affiliation(s)
- Scott E Warder
- Advanced Technology and Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
CAPERalpha is a novel Rel-TAD-interacting factor that inhibits lymphocyte transformation by the potent Rel/NF-kappaB oncoprotein v-Rel. J Virol 2008; 82:10792-802. [PMID: 18753212 DOI: 10.1128/jvi.00903-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Rel/NF-kappaB transcription factors are constitutively activated in many human cancers. The Rel proteins in this family are implicated in leukemia/lymphomagenesis, but the mechanism is not completely understood. Previous studies showed that the transcription activation domains (TADs) of the viral oncoprotein v-Rel and its cellular Rel/NF-kappaB homologues c-Rel and RelA are key determinants of their different transforming activities in primary lymphocytes. Substitution of a Rel TAD for that of RelA conferred a strong transforming phenotype upon RelA, which otherwise failed to transform cells. To gain insights into protein interactions that influence cell transformation by the Rel TADs, we identified factors that interact with the TAD of v-Rel, the most oncogenic member of the Rel/NF-kappaB family. We report that the coactivator for transcription factors AP-1 and estrogen receptors, CAPERalpha, interacts with the v-Rel TAD and potently synergizes v-Rel-mediated transactivation. Importantly, coexpression of CAPERalpha markedly reduced and delayed v-Rel's transforming activity in primary lymphocytes, whereas a dominant-negative mutant enhanced the kinetics of v-Rel-mediated transformation. Furthermore, small interfering RNA-mediated knockdown of CAPERalpha in v-Rel-transformed lymphocytes significantly enhanced colony formation in soft agar. Since the potency of Rel-mediated transactivation is an important determinant of lymphocyte transformation, as is Rel's ability to induce transcriptional repression, these data suggest that CAPERalpha's interaction with the Rel TAD could modulate Rel/NF-kappaB's transforming activity by facilitating expression or dampening repression of specific gene subsets important for oncogenesis. Overall, this study identifies CAPERalpha as a new transcriptional coregulator for v-Rel and reveals an important role in modulating Rel's oncogenic activity.
Collapse
|
28
|
Zhu Z, Boobis AR, Edwards RJ. Identification of estrogen-responsive proteins in MCF-7 human breast cancer cells using label-free quantitative proteomics. Proteomics 2008; 8:1987-2005. [PMID: 18491314 DOI: 10.1002/pmic.200700901] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
17beta-Estradiol (E(2)) is a key regulatory steroid hormone that is involved in the control of a number of developmental and other functions. The aim of the present work was to identify estrogen-dependent proteomic changes by determining the levels of expressed proteins in MCF-7 human breast cancer cells following treatment with E(2). A number of methods exist for differential analysis of complex proteomic mixtures. Here, a label-free mass spectrometric approach comparing the ion intensities of tryptic peptides was adopted, which was combined with prefractionation of whole cell lysate proteins by 1-D SDS-PAGE. Using this approach, 60 proteins were found to be affected by E(2). These comprised 55 up-regulated and five down-regulated proteins. These proteins varied widely in their physiochemical properties with pIs of 4-12 and molecular weights of 9-500 kDa. Pathway analysis revealed that the majority of changes were related and together describe an up-regulated pathway consistent with the events of cell proliferation. The quantitative approach used here is relatively straightforward, avoids the use of costly labelling reagents, was reproducible within acceptable limits and has a linear response over a useful concentration range.
Collapse
Affiliation(s)
- Zheying Zhu
- Department of Experimental Medicine and Toxicology, Division of Investigative Science, Imperial College London, Hammersmith Campus, London, UK
| | | | | |
Collapse
|
29
|
Gupta N, Delrow J, Drawid A, Sengupta AM, Fan G, Gélinas C. Repression of B-cell linker (BLNK) and B-cell adaptor for phosphoinositide 3-kinase (BCAP) is important for lymphocyte transformation by rel proteins. Cancer Res 2008; 68:808-14. [PMID: 18245482 DOI: 10.1158/0008-5472.can-07-3169] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Persistent Rel/nuclear factor-kappaB (NF-kappaB) activity is a hallmark of many human cancers, and the Rel proteins are implicated in leukemia/lymphomagenesis but the mechanism is not fully understood. Microarray analysis to identify transformation-impacting genes regulated by NF-kappaB's oncogenic v-Rel and c-Rel proteins uncovered that Rel protein expression leads to transcriptional repression of key B-cell receptor (BCR) components and signaling molecules like B-cell linker (BLNK), the B-cell adaptor for phosphoinositide 3-kinase (BCAP) and immunoglobulin lambda light chain (Ig lambda), and is accompanied by a block in BCR-mediated activation of extracellular signal-regulated kinase, Akt, and c-Jun-NH(2)-kinase in response to anti-IgM. The BLNK and BCAP proteins were also down-regulated in lymphoid cells expressing a transformation-competent chimeric RelA/v-Rel protein, suggesting a correlation with the capacity of Rel proteins to transform lymphocytes. DNA-binding studies identified functional NF-kappaB-binding sites, and chromatin immunoprecipitation (ChIP) data showed binding of Rel to the endogenous blnk and bcap promoters in vivo. Importantly, restoration of either BLNK or BCAP expression strongly inhibited transformation of primary chicken lymphocytes by the potent NF-kappaB oncoprotein v-Rel. These findings are interesting because blnk and other BCR components and signaling molecules are down-regulated in primary mediastinal large B-cell lymphomas and Hodgkin's lymphomas, which depend on c-Rel for survival, and are consistent with the tumor suppressor function of BLNK. Overall, our results indicate that down-regulation of BLNK and BCAP is an important contributing factor to the malignant transformation of lymphocytes by Rel and suggest that gene repression may be as important as transcriptional activation for Rel's transforming activity.
Collapse
Affiliation(s)
- Nupur Gupta
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|