1
|
Naghdi S, Mishra P, Roy SS, Weaver D, Walter L, Davies E, Antony AN, Lin X, Moehren G, Feitelson MA, Reed CA, Lindsten T, Thompson CB, Dang HT, Hoek JB, Knudsen ES, Hajnóczky G. VDAC2 and Bak scarcity in liver mitochondria enables targeting hepatocarcinoma while sparing hepatocytes. Nat Commun 2025; 16:2416. [PMID: 40069152 PMCID: PMC11897174 DOI: 10.1038/s41467-025-56898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2025] [Indexed: 03/15/2025] Open
Abstract
Differences between normal tissues and invading tumors that allow tumor targeting while saving normal tissue are much sought after. Here we show that scarcity of VDAC2, and the consequent lack of Bak recruitment to mitochondria, renders hepatocyte mitochondria resistant to permeabilization by truncated Bid (tBid), a Bcl-2 Homology 3 (BH3)-only, Bcl-2 family protein. Increased VDAC2 and Bak is found in most human liver cancers and mitochondria from tumors and hepatic cancer cell lines exhibit VDAC2- and Bak-dependent tBid sensitivity. Exploring potential therapeutic targeting, we find that combinations of activators of the tBid pathway with inhibitors of the Bcl-2 family proteins that suppress Bak activation enhance VDAC2-dependent death of hepatocarcinoma cells with little effect on normal hepatocytes. Furthermore, in vivo, combination of S63845, a selective Mcl-1 inhibitor, with tumor-nectrosis factor-related, apoptosis-induncing ligand (TRAIL) peptide reduces tumor growth, but only in tumors expressing VDAC2. Thus, we describe mitochondrial molecular fingerprint that discriminates liver from hepatocarcinoma and allows sparing normal tissue while targeting tumors.
Collapse
Affiliation(s)
- Shamim Naghdi
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Piyush Mishra
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Soumya Sinha Roy
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludivine Walter
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Erika Davies
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Anil Noronha Antony
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Xuena Lin
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Gisela Moehren
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark A Feitelson
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher A Reed
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tullia Lindsten
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Craig B Thompson
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Hien T Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B Hoek
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Erik S Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wu E, Ellis A, Bell K, Moss DL, Landry SJ, Hristova K, Wimley WC. pH-Responsive Peptide Nanoparticles Deliver Macromolecules to Cells via Endosomal Membrane Nanoporation. ACS NANO 2024; 18:33922-33936. [PMID: 39651582 PMCID: PMC11656837 DOI: 10.1021/acsnano.4c07525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
The synthetically evolved pHD family of peptides is known to self-assemble into macromolecule-sized nanopores of 2-10 nm diameter in synthetic lipid bilayers, but only when the pH is below ∼6. Here, we show that a representative family member, pHD108, has the same pH-responsive nanopore-forming activity in the endosomal membranes of living human cells, which is triggered by endosomal acidification. This enables the cytosolic delivery of endocytosed proteins and other macromolecules. Acylation of either peptide terminus significantly decreases the concentration of peptide required for macromolecule delivery to the cell cytosol while not causing any measurable cytotoxicity. Longer acyl chains are more effective. The N-terminal palmitoylated C16-pHD108 is the most potent of all of the acyl-pHD108 variants and readily delivers a cytotoxic enzyme, fluorescent proteins, and a dye-labeled dextran to the cell cytosol. C16-pHD108 forms stable monodisperse micellar nanoparticles in a buffer at pH 7 with an average diameter of around 120 nm. These nanoparticles are not cytolytic or cytotoxic because the acylated pHD peptide does not partition from the nanoparticles into cell membranes at pH 7. At pH 5, the nanoparticles are unstable, driving acylated pHD108 to bind strongly to membranes. We hypothesize that passive endocytosis of macromolecular cargo and stable peptide nanoparticles, followed by endosomal acidification-dependent destabilization of the nanoparticles, triggers the nanopore-forming activity of acylated pHD peptides in the endosomal membrane, enabling internalized macromolecules to be delivered to the cytosol.
Collapse
Affiliation(s)
- Eric Wu
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Ains Ellis
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Keynon Bell
- Chemistry-Biology
Interface Program, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel L. Moss
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Samuel J. Landry
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Kalina Hristova
- Institute
for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - William C. Wimley
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
3
|
Chang LH, Seitz O. RNA-templated chemical synthesis of proapoptotic L- and d-peptides. Bioorg Med Chem 2022; 66:116786. [PMID: 35594647 DOI: 10.1016/j.bmc.2022.116786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 11/02/2022]
Abstract
Nucleic acid-programmed reactions find application in drug screening and nucleic acid diagnosis, and offer prospects for a RNA-sensitive prodrug approach. We aim for the development of a nucleic acid-templated reaction providing nucleic acid-linked molecules that can act on intracellular protein targets. Such reactions would be useful for in situ drug synthesis and activity-based DNA-encoded library screening. In this report, we show native chemical ligation-like chemical peptidyl transfer reactions between peptide-PNA conjugates. The reaction proceeds on RNA templates. As a chemical alternative to ribosomal peptide synthesis access to both L- and d-peptides is provided. In reactions affording 9 to 14 amino acid long pro-apoptotic L- and d-peptides, we found that certain PNA sequence motifs and combinations of cell penetrating peptides (CPPs) cause surprisingly high reactivity in absence of a template. Viability measurements demonstrate that the products of templated peptidyl transfer act on HeLa cells and HEK293 cells. Of note, the presence of cysteine, which is required for NCL chemistry, can enhance the bioactivity. The study provides guidelines for the application of peptide-PNA conjugates in templated synthesis and is of interest for in situ drug synthesis and activity-based DNA-encoded library screening.
Collapse
Affiliation(s)
- Li-Hao Chang
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin, Germany.
| |
Collapse
|
4
|
Zhang X, Angelova A, Sun W, Zhang F, Li N, Zou A. A Lipidated Peptide with Mitochondrial Membrane Localization in Human A549 Lung Cells: From Enhanced Cell-Penetrating Properties to Biological Activity Mechanism. ACS APPLIED BIO MATERIALS 2021; 4:8277-8290. [PMID: 35005910 DOI: 10.1021/acsabm.1c00815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, a lipidated peptide Pal-pHK-pKV with self-assembly properties and the ability to provoke the disruption of the mitochondrial voltage-dependent anion channel-1 protein (VDAC1)-hexokinase-II (HK-II) complex is reported. The effects of the peptide pHK (N-terminal 15-amino acid fragment of HK-II that specifically binds VDAC1) are compared to those of a designed biomimetic amphiphilic pHK-pKV conjugate (pHK coupled with a cell-penetrating peptide pKV) and Pal-pHK-pKV (a lipidated conjugate modified with a hydrophobic palmitic (Pal) alkyl chain). The Pal-pHK-pKV exhibits a stronger interaction with the membrane as compared to pHK-pKV, which is demonstrated by the Langmuir-Blodgett technique and two-photon excitation microscopy. The amphiphilic peptide derivatives are cytotoxic to the A549 cells, but Pal-pHK-pKV is more cytotoxic. The inhibitory effects of the pHK derivatives on the A549 cells growth are investigated through induced apoptosis pathway, depolarized mitochondrial membrane potential, inhibited glycolysis, and activated caspase. The results of the immunofluorescence evidence the specific mitochondrial targeting by those derivatives.
Collapse
Affiliation(s)
- Xinlei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR8612, Châtenay-Malabry F-92296, France
| | - Wanfeng Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Fan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Na Li
- National Facility for Protein Science in Shanghai Zhangjiang Laboratory, Shanghai Advanced Research Institute, CAS, No.333, Haike Road, Shanghai 20124, People's Republic of China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, People's Republic of China
| |
Collapse
|
5
|
Dalton KM, Krytska K, Lochmann TL, Sano R, Casey C, D'Aulerio A, Khan QA, Crowther GS, Coon C, Cai J, Jacob S, Kurupi R, Hu B, Dozmorov M, Greninger P, Souers AJ, Benes CH, Mossé YP, Faber AC. Venetoclax-based Rational Combinations are Effective in Models of MYCN-amplified Neuroblastoma. Mol Cancer Ther 2021; 20:1400-1411. [PMID: 34088831 DOI: 10.1158/1535-7163.mct-20-0710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/17/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Venetoclax is a small molecule inhibitor of the prosurvival protein BCL-2 that has gained market approval in BCL-2-dependent hematologic cancers including chronic lymphocytic leukemia and acute myeloid leukemia. Neuroblastoma is a heterogenous pediatric cancer with a 5-year survival rate of less than 50% for high-risk patients, which includes nearly all cases with amplified MYCN We previously demonstrated that venetoclax is active in MYCN-amplified neuroblastoma but has limited single-agent activity in most models, presumably the result of other pro-survival BCL-2 family protein expression or insufficient prodeath protein mobilization. As the relative tolerability of venetoclax makes it amenable to combining with other therapies, we evaluated the sensitivity of MYCN-amplified neuroblastoma models to rational combinations of venetoclax with agents that have both mechanistic complementarity and active clinical programs. First, the MDM2 inhibitor NVP-CGM097 increases the prodeath BH3-only protein NOXA to sensitize p53-wild-type, MYCN-amplified neuroblastomas to venetoclax. Second, the MCL-1 inhibitor S63845 sensitizes MYCN-amplified neuroblastoma through neutralization of MCL-1, inducing synergistic cell killing when combined with venetoclax. Finally, the standard-of-care drug cocktail cyclophosphamide and topotecan reduces the apoptotic threshold of neuroblastoma, thus setting the stage for robust combination efficacy with venetoclax. In all cases, these rational combinations translated to in vivo tumor regressions in MYCN-amplified patient-derived xenograft models. Venetoclax is currently being evaluated in pediatric patients in the clinic, including neuroblastoma (NCT03236857). Although establishment of safety is still ongoing, the data disclosed herein indicate rational and clinically actionable combination strategies that could potentiate the activity of venetoclax in patients with amplified MYCN with neuroblastoma.
Collapse
Affiliation(s)
- Krista M Dalton
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Timothy L Lochmann
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Pharmacyclics, an Abbvie company, Sunnyvale, California
| | - Colleen Casey
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Alessia D'Aulerio
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Qasim A Khan
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Giovanna Stein Crowther
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Colin Coon
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jinyang Cai
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Sheeba Jacob
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Richard Kurupi
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Bin Hu
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Patricia Greninger
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
6
|
Perez JJ, Perez RA, Perez A. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Front Mol Biosci 2021; 8:681617. [PMID: 34095231 PMCID: PMC8173110 DOI: 10.3389/fmolb.2021.681617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Protein-protein interactions (PPIs) mediate a large number of important regulatory pathways. Their modulation represents an important strategy for discovering novel therapeutic agents. However, the features of PPI binding surfaces make the use of structure-based drug discovery methods very challenging. Among the diverse approaches used in the literature to tackle the problem, linear peptides have demonstrated to be a suitable methodology to discover PPI disruptors. Unfortunately, the poor pharmacokinetic properties of linear peptides prevent their direct use as drugs. However, they can be used as models to design enzyme resistant analogs including, cyclic peptides, peptide surrogates or peptidomimetics. Small molecules have a narrower set of targets they can bind to, but the screening technology based on virtual docking is robust and well tested, adding to the computational tools used to disrupt PPI. We review computational approaches used to understand and modulate PPI and highlight applications in a few case studies involved in physiological processes such as cell growth, apoptosis and intercellular communication.
Collapse
Affiliation(s)
- Juan J Perez
- Department of Chemical Engineering, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Roman A Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Sant Cugat, Spain
| | - Alberto Perez
- The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Ugarte-Alvarez O, Muñoz-López P, Moreno-Vargas LM, Prada-Gracia D, Mateos-Chávez AA, Becerra-Báez EI, Luria-Pérez R. Cell-Permeable Bak BH3 Peptide Induces Chemosensitization of Hematologic Malignant Cells. JOURNAL OF ONCOLOGY 2020; 2020:2679046. [PMID: 33312200 PMCID: PMC7721494 DOI: 10.1155/2020/2679046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Hematologic malignancies such as leukemias and lymphomas are among the leading causes of pediatric cancer death worldwide, and although survival rates have improved with conventional treatments, the development of drug-resistant cancer cells may lead to patient relapse and limited possibilities of a cure. Drug-resistant cancer cells in these hematologic neoplasms are induced by overexpression of the antiapoptotic B-cell lymphoma 2 (Bcl-2) protein families, such as Bcl-XL, Bcl-2, and Mcl-1. We have previously shown that peptides from the BH3 domain of the proapoptotic Bax protein that also belongs to the Bcl-2 family may antagonize the antiapoptotic activity of the Bcl-2 family proteins, restore apoptosis, and induce chemosensitization of tumor cells. Furthermore, cell-permeable Bax BH3 peptides also elicit antitumor activity and extend survival in a murine xenograft model of human B non-Hodgkin's lymphoma. However, the activity of the BH3 peptides of the proapoptotic Bak protein of the Bcl-2 family against these hematologic malignant cells requires further characterization. In this study, we report the ability of the cell-permeable Bak BH3 peptide to restore apoptosis and induce chemosensitization of acute lymphoblastic leukemia and non-Hodgkin's lymphoma cell lines, and this event is enhanced with the coadministration of cell-permeable Bax BH3 peptide and represents an attractive approach to improve the patient outcomes with relapsed or refractory hematological malignant cells.
Collapse
Affiliation(s)
- Omar Ugarte-Alvarez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Paola Muñoz-López
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Liliana Marisol Moreno-Vargas
- Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Diego Prada-Gracia
- Research Unit on Computational Biology and Drug Design, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Oncological Diseases, Children's Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| |
Collapse
|
8
|
Liu Q, Osterlund EJ, Chi X, Pogmore J, Leber B, Andrews DW. Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. eLife 2019; 8:e37689. [PMID: 30860026 PMCID: PMC6414199 DOI: 10.7554/elife.37689] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/16/2019] [Indexed: 01/07/2023] Open
Abstract
Tumor initiation, progression and resistance to chemotherapy rely on cancer cells bypassing programmed cell death by apoptosis. We report that unlike other pro-apoptotic proteins, Bim contains two distinct binding sites for the anti-apoptotic proteins Bcl-XL and Bcl-2. These include the BH3 sequence shared with other pro-apoptotic proteins and an unexpected sequence located near the Bim carboxyl-terminus (residues 181-192). Using automated Fluorescence Lifetime Imaging Microscopy - Fluorescence Resonance Energy Transfer (FLIM-FRET) we show that the two binding interfaces enable Bim to double-bolt lock Bcl-XL and Bcl-2 in complexes resistant to displacement by BH3-mimetic drugs currently in use or being evaluated for cancer therapy. Quantifying in live cells the contributions of individual amino acids revealed that residue L185 previously thought involved in binding Bim to membranes, instead contributes to binding to anti-apoptotic proteins. This double-bolt lock mechanism has profound implications for the utility of BH3-mimetics as drugs. .
Collapse
Affiliation(s)
- Qian Liu
- Biological SciencesSunnybrook Research InstituteTorontoCanada
| | - Elizabeth J Osterlund
- Biological SciencesSunnybrook Research InstituteTorontoCanada
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Xiaoke Chi
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
| | - Justin Pogmore
- Department of BiochemistryUniversity of TorontoTorontoCanada
| | - Brian Leber
- Department of MedicineMcMaster UniversityHamiltonCanada
| | | |
Collapse
|
9
|
Naghdi S, Slovinsky WS, Madesh M, Rubin E, Hajnóczky G. Mitochondrial fusion and Bid-mediated mitochondrial apoptosis are perturbed by alcohol with distinct dependence on its metabolism. Cell Death Dis 2018; 9:1028. [PMID: 30301883 PMCID: PMC6177459 DOI: 10.1038/s41419-018-1070-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Environmental stressors like ethanol (EtOH) commonly target mitochondria to influence the cell’s fate. Recent literature supports that chronic EtOH exposure suppresses mitochondrial dynamics, central to quality control, and sensitizes mitochondrial permeability transition pore opening to promote cell death. EtOH-induced tissue injury is primarily attributed to its toxic metabolic products but alcoholism also impairs tissues that poorly metabolize EtOH. We embarked on studies to determine the respective roles of EtOH and its metabolites in mitochondrial fusion and tBid-induced mitochondrial apoptosis. We used HepG2 cells that do not metabolize EtOH and its engineered clone that expresses EtOH-metabolizing Cytochrome P450 E2 and alcohol dehydrogenase (VL-17A cells). We found that fusion impairment by prolonged EtOH exposure was prominent in VL-17A cells, probably owing to reactive oxygen species increase in the mitochondrial matrix. There was no change in fusion protein abundance, mitochondrial membrane potential or Ca2+ uptake. By contrast, prolonged EtOH exposure promoted tBid-induced outer mitochondrial membrane permeabilization and cell death only in HepG2 cells, owing to enhanced Bak oligomerization. Thus, mitochondrial fusion inhibition by EtOH is dependent on its metabolites, whereas sensitization to tBid-induced death is mediated by EtOH itself. This difference is of pathophysiological relevance because of the tissue-specific differences in EtOH metabolism.
Collapse
Affiliation(s)
- Shamim Naghdi
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - William S Slovinsky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Muniswamy Madesh
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuel Rubin
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death Dis 2018; 9:458. [PMID: 29686263 PMCID: PMC5913307 DOI: 10.1038/s41419-018-0500-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/08/2022]
Abstract
BRCA1-associated protein 1 (BAP1) is a nuclear deubiquitinating enzyme that is associated with multiprotein complexes that regulate key cellular pathways, including cell cycle, cellular differentiation, cell death, and the DNA damage response. In this study, we found that the reduced expression of BAP1 pro6motes the survival of neuroblastoma cells, and restoring the levels of BAP1 in these cells facilitated a delay in S and G2/M phase of the cell cycle, as well as cell apoptosis. The mechanism that BAP1 induces cell death is mediated via an interaction with 14-3-3 protein. The association between BAP1 and 14-3-3 protein releases the apoptotic inducer protein Bax from 14-3-3 and promotes cell death through the intrinsic apoptosis pathway. Xenograft studies confirmed that the expression of BAP1 reduces tumor growth and progression in vivo by lowering the levels of pro-survival factors such as Bcl-2, which in turn diminish the survival potential of the tumor cells. Patient data analyses confirmed the finding that the high-BAP1 mRNA expression correlates with a better clinical outcome. In summary, our study uncovers a new mechanism for BAP1 in the regulation of cell apoptosis in neuroblastoma cells.
Collapse
|
11
|
Novel C6-substituted 1,3,4-oxadiazinones as potential anti-cancer agents. Oncotarget 2016; 6:40598-610. [PMID: 26515601 PMCID: PMC4747355 DOI: 10.18632/oncotarget.5839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) is a membrane receptor tyrosine kinase over-expressed in a number of tumors. However, combating resistance is one of the main challenges in the currently available IGF-1R inhibitor-based cancer therapies. Increased Src activation has been reported to confer resistance to anti-IGF-1R therapeutics in various tumor cells. An urgent unmet need for IGF-1R inhibitors is to suppress Src rephosphorylation induced by current anti-IGF-1R regimens. In efforts to develop effective anticancer agents targeting the IGF-1R signaling pathway, we explored 2-aryl-1,3,4-oxadiazin-5-ones as a novel scaffold that is structurally unrelated to current tyrosine kinase inhibitors (TKIs). The compound, LL-2003, exhibited promising antitumor effects in vitro and in vivo; it effectively suppressed IGF-1R and Src and induced apoptosis in various non-small cell lung cancer cells. Further optimizations for enhanced potency in cellular assays need to be followed, but our strategy to identify novel IGF-1R/Src inhibitors may open a new avenue to develop more efficient anticancer agents.
Collapse
|
12
|
Evageliou NF, Haber M, Vu A, Laetsch TW, Murray J, Gamble LD, Cheng NC, Liu K, Reese M, Corrigan KA, Ziegler DS, Webber H, Hayes CS, Pawel B, Marshall GM, Zhao H, Gilmour SK, Norris MD, Hogarty MD. Polyamine Antagonist Therapies Inhibit Neuroblastoma Initiation and Progression. Clin Cancer Res 2016; 22:4391-404. [PMID: 27012811 DOI: 10.1158/1078-0432.ccr-15-2539] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. EXPERIMENTAL DESIGN We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. RESULTS An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. CONCLUSIONS Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391-404. ©2016 AACR.
Collapse
Affiliation(s)
- Nicholas F Evageliou
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Annette Vu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jayne Murray
- Children's Cancer Institute Australia, Sydney, Australia
| | - Laura D Gamble
- Children's Cancer Institute Australia, Sydney, Australia
| | | | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Megan Reese
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kelly A Corrigan
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David S Ziegler
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia. School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, Sydney, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Sydney, Australia
| | - Candice S Hayes
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Sydney, Australia. Kids Cancer Centre, Sydney Children's Hospital, Sydney, Australia
| | - Huaqing Zhao
- Department of Biostatistics, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Susan K Gilmour
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | - Murray D Norris
- Children's Cancer Institute Australia, Sydney, Australia. Center for Childhood Cancer Research, University of New South Wales, Sydney, Australia
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Lung cancer-initiating cells: a novel target for cancer therapy. Target Oncol 2013; 8:159-172. [PMID: 23314952 PMCID: PMC3763165 DOI: 10.1007/s11523-012-0247-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/20/2012] [Indexed: 12/20/2022]
Abstract
Lung cancer is a major public health problem causing more deaths than any other cancer. A better understanding of the biology of this disease and improvements in treatment are greatly needed. Increasing evidence supports the concept that a rare and specialized population of cancer cells, so-called cancer-initiating cells with stem cell-like characteristics, is responsible for tumor growth, maintenance, and recurrence. Cancer-initiating cells also exhibit characteristics that render them resistant to both radiation and chemotherapy, and therefore they are believed to play a role in treatment failure. This has led to the hypothesis that traditional therapies that indiscriminately kill tumor cells will not be as effective as therapies that selectively target cancer-initiating cells. Investigating putative cancer-initiating cells in lung cancer will greatly benefit the understanding of the origins of this disease and may lead to novel approaches to therapy by suggesting markers for use in either further isolating this population for study or for selectively targeting these cells. This review will discuss (1) lung cancer, (2) stem cells, and the role of cancer-initiating cells in tumorigenesis; (3) markers and functional characteristics associated with lung cancer-initiating cells; and (4) the potential to selectively target this subpopulation of tumor cells.
Collapse
|
14
|
Goldsmith KC, Gross M, Peirce S, Luyindula D, Liu X, Vu A, Sliozberg M, Guo R, Zhao H, Reynolds CP, Hogarty MD. Mitochondrial Bcl-2 family dynamics define therapy response and resistance in neuroblastoma. Cancer Res 2012; 72:2565-77. [PMID: 22589275 DOI: 10.1158/0008-5472.can-11-3603] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuroblastoma is a childhood tumor in which transient therapeutic responses are typically followed by recurrence with lethal chemoresistant disease. In this study, we characterized the apoptotic responses in diverse neuroblastomas using an unbiased mitochondrial functional assay. We defined the apoptotic set point of neuroblastomas using responses to distinct BH3 death domains providing a BH3 response profile and directly confirmed survival dependencies. We found that viable neuroblastoma cells and primary tumors are primed for death with tonic sequestration of Bim, a direct activator of apoptosis, by either Bcl-2 or Mcl-1, providing a survival dependency that predicts the activity of Bcl-2 antagonists. The Bcl-2/Bcl-xL/Bcl-w inhibitor ABT-737 showed single-agent activity against only Bim:Bcl-2 primed tumor xenografts. Durable complete regressions were achieved in combination with noncurative chemotherapy even for highest risk molecular subtypes with MYCN amplification and activating ALK mutations. Furthermore, the use of unique isogenic cell lines from patients at diagnosis and at the time of relapse showed that therapy resistance was not mediated by upregulation of Bcl-2 homologues or loss of Bim priming, but by repressed Bak/Bax activation. Together, our findings provide a classification system that identifies tumors with clinical responses to Bcl-2 antagonists, defines Mcl-1 as the principal mediator of Bcl-2 antagonist resistance at diagnosis, and isolates the therapy resistant phenotype to the mitochondria.
Collapse
Affiliation(s)
- Kelly C Goldsmith
- Division of Hematology/Oncology, Aflac Children's Cancer Center, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Celecoxib is a multifaceted drug with promising anticancer properties. A number of studies have been conducted that implicate the compound in modulating the expression of Bcl-2 family members and mitochondria-mediated apoptosis. The growing data surrounding the role of celecoxib in the regulation of the mitochondrial death pathway provides a platform for ongoing debate. Studies that describe celecoxib's properties as a BH3 mimic or as a direct inhibitor of Bcl-2 are not available. The motivations for this review are: to provide the basis for the development of novel compounds that modulate Bcl-2 expression using celecoxib as a structural starting point and to encourage additional biological studies (such as binding and enzymatic assays) that would provide information regarding celecoxib's role as a Bcl-2 antagonist. The current review summarizes work that identifies the role of celecoxib in blocking the activity of Bcl-2.
Collapse
|
16
|
Predictive Bcl-2 family binding models rooted in experiment or structure. J Mol Biol 2012; 422:124-44. [PMID: 22617328 DOI: 10.1016/j.jmb.2012.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/23/2022]
Abstract
Proteins of the Bcl-2 family either enhance or suppress programmed cell death and are centrally involved in cancer development and resistance to chemotherapy. BH3 (Bcl-2 homology 3)-only Bcl-2 proteins promote cell death by docking an α-helix into a hydrophobic groove on the surface of one or more of five pro-survival Bcl-2 receptor proteins. There is high structural homology within the pro-death and pro-survival families, yet a high degree of interaction specificity is nevertheless encoded, posing an interesting and important molecular recognition problem. Understanding protein features that dictate Bcl-2 interaction specificity is critical for designing peptide-based cancer therapeutics and diagnostics. In this study, we present peptide SPOT arrays and deep sequencing data from yeast display screening experiments that significantly expand the BH3 sequence space that has been experimentally tested for interaction with five human anti-apoptotic receptors. These data provide rich information about the determinants of Bcl-2 family specificity. To interpret and use the information, we constructed two simple data-based models that can predict affinity and specificity when evaluated on independent data sets within a limited sequence space. We also constructed a novel structure-based statistical potential, called STATIUM, which is remarkably good at predicting Bcl-2 affinity and specificity, especially considering it is not trained on experimental data. We compare the performance of our three models to each other and to alternative structure-based methods and discuss how such tools can guide prediction and design of new Bcl-2 family complexes.
Collapse
|
17
|
Pinto M, Orzaez MDM, Delgado-Soler L, Perez JJ, Rubio-Martinez J. Rational design of new class of BH3-mimetics as inhibitors of the Bcl-xL protein. J Chem Inf Model 2011; 51:1249-58. [PMID: 21528891 DOI: 10.1021/ci100501d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Bcl-2 family of proteins plays an important role in the intrinsic pathway of cell apoptosis. Overexpression of pro-survival members of this family of proteins is often associated with the development of many types of cancer and confers resistance against conventional therapeutic treatments. Accordingly, antagonism of its protective function has emerged as an encouraging anticancer strategy. In the present work, we use a pharmacophore for describing interaction between the BH3 domain of different pro-apoptotic members and the pro-survival protein Bcl-x(L) in order to identify new lead compounds. In the strategy followed in the present work, the pharmacophore was derived from molecular dynamics studies of different Bcl-x(L)/BH3 complexes. This pharmacophore was later used as query for 3D database screening. Hits obtained from the search were computationally assessed, and a subset proposed for in vitro testing. Two of the 15 compounds assayed were found able to disrupt the Bcl-x(L)/Bak(BH3) complex with IC(50) values in the lower micromolar range. Finally, docking studies were performed to explore the binding mode of these compounds to Bcl-x(L) for further modifications.
Collapse
Affiliation(s)
- Marta Pinto
- Department of Physical Chemistry, University of Barcelona (UB), Barcelona, Spain
| | | | | | | | | |
Collapse
|
18
|
Ruttekolk IR, Chakrabarti A, Richter M, Duchardt F, Glauner H, Verdurmen WPR, Rademann J, Brock R. Coupling to polymeric scaffolds stabilizes biofunctional peptides for intracellular applications. Mol Pharmacol 2011; 79:692-700. [PMID: 21247935 DOI: 10.1124/mol.110.068296] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we demonstrate that coupling to N-hydroxypropyl methacrylamide (HPMA) copolymer greatly enhances the activity of apoptosis-inducing peptides inside cells. Peptides corresponding to the BH3 domain of Bid were coupled to a thioester-activated HPMA (28.5 kDa) via native chemical ligation in a simple one-pot synthesis. Peptides and polymer conjugates were introduced into cells either by electroporation or by conjugation to the cell-penetrating peptide nona-arginine. The molecular basis of the increased activity is elucidated in detail. Loading efficiency and intracellular residence time were assessed by confocal microscopy. Fluorescence correlation spectroscopy was used as a separation-free analytical technique to determine proteolytic degradation in crude cell lysates. HPMA conjugation strongly increased the half-life of the peptides in crude cell lysates and inside cells, revealing proteolytic protection as the basis for higher activity.
Collapse
Affiliation(s)
- Ivo R Ruttekolk
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, López JA, Lakhani SR, Brown MP, Khanna KK. Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 2011; 32:650-8. [PMID: 21310941 DOI: 10.1093/carcin/bgr028] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The clinical and pathologic heterogeneity of human breast cancer has long been recognized. Now, molecular profiling has enriched our understanding of breast cancer heterogeneity and yielded new prognostic and predictive information. Despite recent therapeutic advances, including the HER2-specific agent, trastuzumab, locoregional and systemic disease recurrence remain an ever-present threat to the health and well being of breast cancer survivors. By definition, disease recurrence originates from residual treatment-resistant cells, which regenerate at least the initial breast cancer phenotype. The discovery of the normal breast stem cell has re-ignited interest in the identity and properties of breast cancer stem-like cells and the relationship of these cells to the repopulating ability of treatment-resistant cells. The cancer stem cell model of breast cancer development contrasts with the clonal evolution model, whereas the mixed model draws on features of both. Although the origin and identity of breast cancer stem-like cells is contentious, treatment-resistant cells survive and propagate only because aberrant and potentially druggable signaling pathways are recruited. As a means to increase the rates of breast cancer cure, several approaches to specific targeting of the treatment-resistant cell population exist and include methods for addressing the problem of radioresistance in particular.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Signal Transduction Lab, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
The Bcl-2-associated death promoter (BAD) lowers the threshold at which the Bcl-2-interacting domain death agonist (BID) triggers mitochondria disintegration. J Theor Biol 2011; 271:114-23. [DOI: 10.1016/j.jtbi.2010.11.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 11/17/2022]
|
21
|
Simpson PT, Vargas AC, Al-Ejeh F, Khanna KK, Chenevix-Trench G, Lakhani SR. Application of molecular findings to the diagnosis and management of breast disease: recent advances and challenges. Hum Pathol 2011; 42:153-65. [DOI: 10.1016/j.humpath.2010.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/23/2010] [Accepted: 07/29/2010] [Indexed: 12/20/2022]
|
22
|
Fulda S. Targeting apoptosis pathways in childhood malignancies. Cancer Lett 2010; 332:369-73. [PMID: 21036468 DOI: 10.1016/j.canlet.2010.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/02/2010] [Accepted: 10/04/2010] [Indexed: 12/17/2022]
Abstract
Evasion of apoptosis (programmed cell death) is a characteristic feature of human cancers including childhood malignancies. Since cytotoxic therapies such as chemotherapy or radiotherapy trigger apoptosis as a primary mechanism of action, resistance to apoptosis can also lead to treatment resistance. Studies on apoptosis pathways in childhood malignancies yielded a series of key molecules that can now be exploited as molecular targets for the development of targeted therapies. This strategy is anticipated to open novel perspectives for more effective treatment options for children with cancer.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
23
|
Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 2010; 29:6085-98. [DOI: 10.1038/onc.2010.407] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737-induced mitochondrial membrane permeabilization. PLoS One 2010; 5:e9924. [PMID: 20360986 PMCID: PMC2847598 DOI: 10.1371/journal.pone.0009924] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/01/2010] [Indexed: 12/13/2022] Open
Abstract
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.
Collapse
|
25
|
Scatizzi JC, Hutcheson J, Pope RM, Firestein GS, Koch AE, Mavers M, Smason A, Agrawal H, Haines GK, Chandel NS, Hotchkiss RS, Perlman H. Bim-Bcl-2 homology 3 mimetic therapy is effective at suppressing inflammatory arthritis through the activation of myeloid cell apoptosis. ACTA ACUST UNITED AC 2010; 62:441-51. [PMID: 20112357 DOI: 10.1002/art.27198] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a destructive autoimmune disease characterized by an increased inflammation in the joint. Therapies that activate the apoptotic cascade may have potential for use in RA; however, few therapeutic agents fit this category. The purpose of this study was to examine the potential of Bim, an agent that mimics the action of Bcl-2 homology 3 (BH3) domain-only proteins that have shown success in preclinical studies of cancer, in the treatment of autoimmune disease. METHODS Synovial tissues from RA and osteoarthritis patients were analyzed for the expression of Bim and CD68 using immunohistochemistry. Macrophages from Bim(-/-) mice were examined for their response to lipopolysaccharide (LPS) using flow cytometry, real-time polymerase chain reaction analysis, enzyme-linked immunosorbent assay, and immunoblotting. Bim(-/-) mice were stimulated with thioglycollate or LPS and examined for macrophage activation and cytokine production. Experimental arthritis was induced using the K/BxN serum-transfer model. A mimetic peptide corresponding to the BH3 domain of Bim (TAT-BH3) was administered as a prophylactic agent and as a therapeutic agent. Edema of the ankles and histopathologic analysis of ankle tissue sections were used to determine the severity of arthritis, its cellular composition, and the degree of apoptosis. RESULTS The expression of Bim was reduced in RA synovial tissue as compared with controls, particularly in macrophages. Bim(-/-) macrophages displayed elevated expression of markers of inflammation and secreted more interleukin-1beta following stimulation with LPS or thioglycollate. TAT-BH3 ameliorated arthritis development, reduced the number of myeloid cells in the joint, and enhanced apoptosis without inducing cytotoxicity. CONCLUSION These data demonstrate that BH3 mimetic therapy may have significant potential for the treatment of RA.
Collapse
|
26
|
Raucher D, Moktan S, Massodi I, Bidwell GL. Therapeutic peptides for cancer therapy. Part II - cell cycle inhibitory peptides and apoptosis-inducing peptides. Expert Opin Drug Deliv 2009; 6:1049-64. [PMID: 19743895 DOI: 10.1517/17425240903158909] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. OBJECTIVE The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that arrest the cell cycle by mimicking CDK inhibitors or induce apoptosis directly are discussed. METHODS The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. RESULTS/CONCLUSION Inhibition of cancer cell proliferation directly using peptides that arrest the cell cycle or induce apoptosis is a promising strategy. Peptides can be designed that interact very specifically with cyclins and/or cyclin-dependent kinases and with members of apoptotic cascades. Use of these peptides is not limited by their design, as a rational approach to peptide design is much less challenging than the design of small molecule inhibitors of specific protein-protein interactions. However, the limitations of peptide therapy lie in the poor pharmacokinetic properties of these large, often charged molecules. Therefore, overcoming the drug delivery hurdles could open the door for effective peptide therapy, thus making an entirely new class of molecules useful as anticancer drugs.
Collapse
Affiliation(s)
- Drazen Raucher
- The University of Mississippi Medical Center, Department of Biochemistry, Jackson, 39216, USA.
| | | | | | | |
Collapse
|
27
|
Goldsmith KC, Lestini BJ, Gross M, Ip L, Bhumbla A, Zhang X, Zhao H, Liu X, Hogarty MD. BH3 response profiles from neuroblastoma mitochondria predict activity of small molecule Bcl-2 family antagonists. Cell Death Differ 2009; 17:872-82. [PMID: 19893570 PMCID: PMC3690273 DOI: 10.1038/cdd.2009.171] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bcl-2 family proteins regulate mitochondrial apoptosis downstream of diverse stressors. Cancer cells frequently deregulate Bcl-2 proteins leading to chemoresistance. We have optimized a platform for solid tumors in which Bcl-2 family resistance patterns are inferred. Functional mitochondria were isolated from neuroblastoma cell lines, exposed to distinct BH3-domain peptides, and assayed for cytochrome c release. Such BH3 profiles revealed three patterns of cytochrome c response. A subset had a dominant NoxaBH3 response implying Mcl1-dependence. These cells were more sensitive to small molecules that antagonize Mcl1 (AT-101) than those that antagonize Bcl-2, Bcl-xL and Bcl-w (ABT-737). A second subset had a dominant BikBH3 response, implying a Bcl-xL/-w dependence, and was exquisitely sensitive to ABT-737 (IC50 <200 nM). Finally, most neuroblastoma cell lines derived at relapse were relatively resistant to pro-death BH3 peptides and Bcl-2 antagonists. Our findings define heterogeneity for apoptosis resistance in neuroblastoma, help triage emerging Bcl-2 antagonists for clinical use, and provide a platform for studies to characterize post-therapy resistance mechanisms for neuroblastoma and other solid tumors.
Collapse
Affiliation(s)
- K C Goldsmith
- The Children's Hospital of Philadelphia, Philadelphia, 19104-4318, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Resistance to apoptosis (programmed cell death) is a characteristic feature of human cancers including childhood malignancies. Further, evasion of apoptosis is a frequent cause of treatment resistance, since most anti-cancer therapies, for example chemo- or radiotherapy act primarily by inducing apoptosis in cancer cells. Over the last two decades, the dissection of apoptosis pathways in pediatric tumors has resulted in the identification of many key molecules that may serve as molecular targets for drug discovery. Accordingly, components of the apoptotic cascade are currently exploited for the development of rationally designed molecular targeted therapies. This approach is expected to open new and more effective approaches for the treatment of childhood cancers.
Collapse
|
29
|
Lestini BJ, Goldsmith KC, Fluchel MN, Liu X, Chen NL, Goyal B, Pawel BR, Hogarty MD. Mcl1 downregulation sensitizes neuroblastoma to cytotoxic chemotherapy and small molecule Bcl2-family antagonists. Cancer Biol Ther 2009; 8:1587-95. [PMID: 19556859 DOI: 10.4161/cbt.8.16.8964] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neuroblastoma (NB) is a common, highly lethal pediatric cancer, with treatment failures largely attributable to the emergence of chemoresistance. The pro-survival Bcl2 homology (BH) proteins critically regulate apoptosis, and may represent important therapeutic targets for restoring drug sensitivity in NB. We used a human NB tumor tissue microarray to survey the expression of pro-survival BH proteins Mcl1 and Bcl2, and correlated expression to clinical prognostic factors and survival. Primary NB tumors heterogeneously expressed Mcl1 or Bcl2, with high expression correlating to high-risk phenotype. Co-expression is infrequent (11%), but correlates to reduced survival. Using RNA interference, we investigated the functional relevance of Mcl1 and Bcl2 in high-risk NB cell lines (SK-N-AS, IMR-5, NLF). Mcl1 knockdown induced apoptosis in all NB cell lines, while Bcl2 knockdown inhibited only NLF, suggesting functional heterogeneity. Finally, we determined the relevance of Mcl1 in resistance to conventional chemotherapy (etoposide, doxorubicin) and small molecule Bcl2-family antagonists (ABT-737 and AT-101). Mcl1 silencing augmented sensitivity to chemotherapeutics 2- to 300-fold, while Bcl2 silencing did not, even in Bcl2-sensitive NLF cells. Resistance to ABT-737, which targets Bcl2/-w/-x, was overcome by Mcl1 knockdown. AT-101, which also neutralizes Mcl1, had single-agent cytotoxicity, further augmented by Mcl1 knockdown. In conclusion, Mcl1 appears a predominant pro-survival protein contributing to chemoresistance in NB, and Mcl1 inactivation may represent a novel therapeutic strategy. Optimization of compounds with higher Mcl1 affinity, or combination with additional Mcl1 antagonists, may enhance the clinical utility of this approach.
Collapse
Affiliation(s)
- Brian J Lestini
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Medulloblastoma and neuroblastoma are malignant embryonal childhood tumours of the central and peripheral nervous systems, respectively, which often show poor clinical prognosis due to resistance to current chemotherapy. Both these tumours have deficient apoptotic machineries adopted from their respective progenitor cells. This review focuses on the specific background for tumour development, and highlights biological pathways that present potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- John Inge Johnsen
- Department of Woman and Child Health, Karolinska Institutet, Astrid Lindgren Children's Hospital, Childhood Cancer Research Unit, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Orzáez M, Gortat A, Mondragón L, Pérez-Payá E. Peptides and peptide mimics as modulators of apoptotic pathways. ChemMedChem 2009; 4:146-60. [PMID: 19021159 DOI: 10.1002/cmdc.200800246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Programmed cell death is an important and stringently controlled process. Aberrancies in its control mechanisms can lead to disease; overactive apoptosis can cause neurodegenerative disorders, whereas deficient apoptotic activity can lead to cancer. Therefore, controlling apoptotic pathways with peptides is showing increasing promise as a strategy in drug development.Programmed cell death or apoptosis is a noninvasive and strictly regulated cellular process required for organism development and tissue homeostasis. Deficiencies in apoptotic pathways are the source of many diseases such as cancer, neurodegenerative and autoimmune diseases, and disorders related to an inappropriate loss of cells such as heart failure, stroke, and liver injury. Validation of the various points of intervention as targets for drug development has been the subject of a vast number of studies. Peptides are essential tools for drug discovery, as well as preclinical and pharmaceutical drug development.
Collapse
Affiliation(s)
- Mar Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 2009; 29:2570-81. [PMID: 19273585 DOI: 10.1128/mcb.00166-09] [Citation(s) in RCA: 1163] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While hypoxia-inducible factor (HIF) is a major actor in the cell survival response to hypoxia, HIF also is associated with cell death. Several studies implicate the HIF-induced putative BH3-only proapoptotic genes bnip3 and bnip3l in hypoxia-mediated cell death. We, like others, do not support this assertion. Here, we clearly demonstrate that the hypoxic microenvironment contributes to survival rather than cell death by inducing autophagy. The ablation of Beclin1, a major actor of autophagy, enhances cell death under hypoxic conditions. In addition, the ablation of BNIP3 and/or BNIP3L triggers cell death, and BNIP3 and BNIP3L are crucial for hypoxia-induced autophagy. First, while the small interfering RNA-mediated ablation of either BNIP3 or BNIP3L has little effect on autophagy, the combined silencing of these two HIF targets suppresses hypoxia-mediated autophagy. Second, the ectopic expression of both BNIP3 and BNIP3L in normoxia activates autophagy. Third, 20-mer BH3 peptides of BNIP3 or BNIP3L are sufficient in initiating autophagy in normoxia. Herein, we propose a model in which the atypical BH3 domains of hypoxia-induced BNIP3/BNIP3L have been designed to induce autophagy by disrupting the Bcl-2-Beclin1 complex without inducing cell death. Hypoxia-induced autophagy via BNIP3 and BNIP3L is clearly a survival mechanism that promotes tumor progression.
Collapse
|
33
|
Abstract
A vast portion of human disease results when the process of apoptosis is defective. Disorders resulting from inappropriate cell death range from autoimmune and neurodegenerative conditions to heart disease. Conversely, prevention of apoptosis is the hallmark of cancer and confounds the efficacy of cancer therapeutics. In the search for optimal targets that would enable the control of apoptosis, members of the BCL-2 family of anti- and pro-apoptotic factors have figured prominently. Development of BCL-2 antisense approaches, small molecules, and BH3 peptidomimetics has met with both success and failure. Success-because BCL-2 proteins play essential roles in apoptosis. Failure-because single targets for drug development have limited scope. By examining the activity of the BCL-2 proteins in relation to the mitochondrial landscape and drawing attention to the significant mitochondrial membrane alterations that ensue during apoptosis, we demonstrate the need for a broader based multi-disciplinary approach for the design of novel apoptosis-modulating compounds in the treatment of human disease.
Collapse
Affiliation(s)
- Kathleen N. Nemec
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| | - Annette R. Khaled
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
34
|
Shoemaker AR, Mitten MJ, Adickes J, Ackler S, Refici M, Ferguson D, Oleksijew A, O'Connor JM, Wang B, Frost DJ, Bauch J, Marsh K, Tahir SK, Yang X, Tse C, Fesik SW, Rosenberg SH, Elmore SW. Activity of the Bcl-2 family inhibitor ABT-263 in a panel of small cell lung cancer xenograft models. Clin Cancer Res 2008; 14:3268-77. [PMID: 18519752 DOI: 10.1158/1078-0432.ccr-07-4622] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to characterize the activity of the Bcl-2 protein family inhibitor ABT-263 in a panel of small cell lung cancer (SCLC) xenograft models. EXPERIMENTAL DESIGN A panel of 11 SCLC xenograft models was established to evaluate the efficacy of ABT-263. Single agent activity was examined on a continuous dosing schedule in each of these models. The H146 model was used to further evaluate dose and schedule, comparison to standard cytotoxic agents, and induction of apoptosis. RESULTS ABT-263 exhibited a range of antitumor activity, leading to complete tumor regression in several models. Significant regressions of tumors as large as 1 cc were also observed. The efficacy of ABT-263 was also quite durable; in several cases, minimal tumor regrowth was noted several weeks after the cessation of treatment. Antitumor effects were equal or superior to that of several clinically approved cytotoxic agents. Regression of large established tumors was observed through several cycles of therapy and efficacy was retained in a Pgp-1 overexpressing line. Significant efficacy was observed on several dose and therapeutic schedules and was associated with significant induction of apoptosis. CONCLUSIONS ABT-263 is a potent, orally bioavailable inhibitor of Bcl-2 family proteins that has recently entered clinical trials. The efficacy data reported here suggest that SCLC is a promising area of clinical investigation with this agent.
Collapse
Affiliation(s)
- Alex R Shoemaker
- Global Pharmaceutical Research and Development, Abbott, Abbott Park, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Del Gaizo Moore V, Letai A. Rational design of therapeutics targeting the BCL-2 family: are some cancer cells primed for death but waiting for a final push? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:159-75. [PMID: 18437895 DOI: 10.1007/978-1-4020-6554-5_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A mechanism for circumventing apoptosis prevalent in many cancer cells is the overexpression of antiapoptotic BCL-2 family members. Upregulated expression of BCL-2 may be required to permit ongoing death signaling without a cellular response. Therefore, antagonizing BCL-2 function may cause death in many cancer cells. The selection for expression of BCL-2 or other antiapoptotic proteins during oncogenesis may derive from these proteins' ability to bind and sequester proapoptotic BH3-only proteins. This situation may be advantageous from a therapeutic viewpoint because cancer cells may be distinguished from normal cells by being primed with death signals. There are several strategies currently under investigation that may lead to improved treatment of many cancers by taking advantage of these differences.
Collapse
Affiliation(s)
- Victoria Del Gaizo Moore
- Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Dana 530B, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Abstract
The success of molecularly targeted agents (MTA) in the treatment of cancer has led to the investigation of their use in combination with other MTAs and with conventional chemotherapies. An overview of the MTAs that have emerged as Food and Drug Administration-approved drugs is presented, along with a framework for the consideration of how MTAs can best be combined to maximize therapeutic effect.
Collapse
Affiliation(s)
- Eunice L Kwak
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
37
|
Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat 2007; 10:218-34. [PMID: 18054518 DOI: 10.1016/j.drup.2007.09.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
The increased incidence of malignant melanoma in the last decades, its high mortality and pronounced therapy resistance pose an enormous challenge. Important therapeutic targets for melanoma are the induction of apoptosis and suppression of survival pathways. Preclinical studies have demonstrated the efficacy of pro-apoptotic Bcl-2 proteins and of death receptor ligands to trigger apoptosis in melanoma cells. In the clinical setting, BH3 domain mimics and death receptor agonists are therefore considered as promising, specific novel treatments to add to the conventional pro-apoptotic strategies such as chemo- or radiotherapy. However, constitutively activated survival pathways, in particular the mitogen-activated protein kinases, protein kinase B/Akt and nuclear factor (NF)-kappaB, all may work in concert to prevent effective therapy. Thus, selective biologicals developed with the aim to inhibit pro-survival signaling are currently tested in melanoma. For highly therapy-resistant tumors such as melanoma, development of novel drug combinations will be essential, and combinations of survival inhibitors and pro-apoptotic mediators appear most promising. The challenge of the near future will be to make a rational choice of the multiple possible combinations and protocols. This review gives a critical overview of proteins involved in melanoma chemoresistance, which are targets for current drug development leading to the best choice for future trials.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
38
|
Leber B, Lin J, Andrews DW. Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 2007; 12:897-911. [PMID: 17453159 PMCID: PMC2868339 DOI: 10.1007/s10495-007-0746-4] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Permeabilization of the outer mitochondrial membrane is the point of no return in most programmed cell deaths. This critical step is mainly regulated by the various protein-protein and protein-membrane interactions of the Bcl-2 family proteins. The two main models for regulation of mitochondrial outer membrane permeabilization, direct activation and displacement do not account for all of the experimental data and both largely neglect the importance of the membrane. We propose the embedding together model to emphasize the critical importance of Bcl-2 family protein interactions with and within membranes. The embedding together model proposes that both pro- and anti-apoptotic Bcl-2 family proteins engage in similar dynamic interactions that are governed by membrane dependent conformational changes and culminate in either aborted or productive membrane permeabilization depending on the final oligomeric state of pro-apoptotic Bax and/or Bak.
Collapse
Affiliation(s)
- Brian Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Jialing Lin
- Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | - David W. Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
39
|
Meng XW, Lee SH, Kaufmann SH. Apoptosis in the treatment of cancer: a promise kept? Curr Opin Cell Biol 2006; 18:668-76. [PMID: 17049222 DOI: 10.1016/j.ceb.2006.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 10/03/2006] [Indexed: 10/24/2022]
Abstract
A common feature of cancer cells is their ability to evade apoptosis as a result of alterations that block cell death signaling pathways. The extensive research efforts that elucidated these signaling pathways over the past decade have set the stage for the development of therapeutic agents that either kill cancer cells selectively or reset their apoptotic threshold. Over the past two years a number of these agents have been evaluated in preclinical and clinical trials. The results of these studies suggest that it might soon be possible to modulate apoptosis in cancer cells for therapeutic benefit.
Collapse
Affiliation(s)
- Xue Wei Meng
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|