1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Chapa-Dubocq XR, Rodríguez-Graciani KM, Escobales N, Javadov S. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants (Basel) 2023; 12:1517. [PMID: 37627512 PMCID: PMC10451443 DOI: 10.3390/antiox12081517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrion, known as the "powerhouse" of the cell, regulates ion homeostasis, redox state, cell proliferation and differentiation, and lipid synthesis. The inner mitochondrial membrane (IMM) controls mitochondrial metabolism and function. It possesses high levels of proteins that account for ~70% of the membrane mass and are involved in the electron transport chain, oxidative phosphorylation, energy transfer, and ion transport, among others. The mitochondrial matrix volume plays a crucial role in IMM remodeling. Several ion transport mechanisms, particularly K+ and Ca2+, regulate matrix volume. Small increases in matrix volume through IMM alterations can activate mitochondrial respiration, whereas excessive swelling can impair the IMM topology and initiates mitochondria-mediated cell death. The opening of mitochondrial permeability transition pores, the well-characterized phenomenon with unknown molecular identity, in low- and high-conductance modes are involved in physiological and pathological increases of matrix volume. Despite extensive studies, the precise mechanisms underlying changes in matrix volume and IMM structural remodeling in response to energy and oxidative stressors remain unknown. This review summarizes and discusses previous studies on the mechanisms involved in regulating mitochondrial matrix volume, IMM remodeling, and the crosstalk between these processes.
Collapse
Affiliation(s)
| | | | | | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR 00936-5067, USA; (X.R.C.-D.); (K.M.R.-G.); (N.E.)
| |
Collapse
|
3
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
4
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
5
|
Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166297. [PMID: 34718119 DOI: 10.1016/j.bbadis.2021.166297] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Cell death is now understood to be a highly regulated process that contributes to normal development and tissue homeostasis, alongside its role in the etiology of various pathological conditions. Through detailed molecular analysis, we have come to know that all cells do not always die in the same way, and that there are at least 7 processes involved, including: apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and autophagy-mediated cell death. These processes act as pieces in the mosaic of cardiomyocyte cell death, which come together depending on context and stimulus. This review details each individual process, as well as highlights how they come together to produce various cardiac pathologies. By knowing how the pieces go together we can aim towards the development of efficacious therapeutics, which will enable us to prevent cardiomyocyte loss in the face of stress, both reducing mortality and improving quality of life.
Collapse
Affiliation(s)
- Matthew D Martens
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Jason Karch
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada.
| |
Collapse
|
6
|
Fursultiamine Prevents Drug-Induced Ototoxicity by Reducing Accumulation of Reactive Oxygen Species in Mouse Cochlea. Antioxidants (Basel) 2021; 10:antiox10101526. [PMID: 34679662 PMCID: PMC8533091 DOI: 10.3390/antiox10101526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Drug-induced hearing loss is a major type of acquired sensorineural hearing loss. Cisplatin and aminoglycoside antibiotics have been known to cause ototoxicity, and excessive accumulation of intracellular reactive oxygen species (ROS) are suggested as the common major pathology of cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Fursultiamine, also called thiamine tetrahydrofurfuryl disulfide, is a thiamine disulfide derivative that may have antioxidant effects. To evaluate whether fursultiamine can prevent cisplatin- and kanamycin-induced ototoxicity, we investigated their preventive potential using mouse cochlear explant culture system. Immunofluorescence staining of mouse cochlear hair cells showed that fursultiamine pretreatment reduced cisplatin- and kanamycin-induced damage to both inner and outer hair cells. Fursultiamine attenuated mitochondrial ROS accumulation as evidenced by MitoSOX Red staining and restored mitochondrial membrane potential in a JC-1 assay. In addition, fursultiamine pretreatment reduced active caspase-3 and TUNEL signals after cisplatin or kanamycin treatment, indicating that fursultiamine decreased apoptotic hair cell death. This study is the first to show a protective effect of fursultiamine against cisplatin- and aminoglycoside antibiotics-induced ototoxicity. Our results suggest that fursultiamine could act as an antioxidant and anti-apoptotic agent against mitochondrial oxidative stress.in cochlear hair cells.
Collapse
|
7
|
Impact of high salt diets on CHOP-mediated apoptosis and renal fibrosis in a rat model. Mol Biol Rep 2021; 48:6423-6433. [PMID: 34436723 DOI: 10.1007/s11033-021-06644-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Prolonged and excessive salt intake accelerates oxidative stress in kidney tissues, which brings about ER stress. The PERK/ATF4/CHOP/BCL-2 signaling pathway has an essential role in ER stress-induced apoptosis. The present study aimed to investigate the effect of high salt diets on the development of renal fibrosis through CHOP-mediated apoptosis. METHODS AND RESULTS Twenty-five male Wistar rats were randomly divided into five groups (n = 5 each). Groups 1-5 were treated with 0%, 0.5%, 1%, 1.2%, 1.5% of NaCl dissolved in distilled water, respectively, for 8 weeks. To detect the degree of renal tubular damage, urinary KIM-1 was measured. The slides of renal tissues were stained via Masson's Trichrome staining methods for fibrosis detection. The relative gene expression of ATF4, CHOP, and BCl-2 in renal tissues were analyzed using the qRT-PCR method. The results revealed no significant difference between the urea, creatinine, and urine flow rate of the rats receiving different concentrations of NaCl (groups 2-5) and those of the control group (group 1). The rats treated with 1.5% NaCl (group 5) showed significant elevations in urinary KIM-1 and the mRNA level of CHOP compared to the control group. Mild renal fibrosis was also observed in group 5. CONCLUSIONS Excessive salt intake leads to fibrosis as it induces the PERK/ATF4/CHOP/BCL-2 signaling pathway in renal tissues. KIM-1 is detectable in urine before the impairment of renal function which can be used as a diagnostic marker to prevent the development of progressive renal failure.
Collapse
|
8
|
Bridging the Gap Between Nature and Antioxidant Setbacks: Delivering Gallic Acid to Mitochondria. Methods Mol Biol 2021. [PMID: 34118037 DOI: 10.1007/978-1-0716-1262-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Research on mitochondria-targeted active molecules became a hot topic in the past decade. Development of mitochondria permeability transition pore (mPTP )-targeting agents with clinical applications is needed not only because of the importance of the target in several diseases but also due to the fact that the current developed molecules have shown poor clinical success. In fact, only a reduced percentage reach mitochondria , effectively preventing pathological mPTP opening. The mitochondrial-targeting strategies should be a promising solution to increase the selectivity of compounds to the mPTP , reducing also their potential side effects. Chemical conjugation of bioactive molecules with a lipophilic cation such as the triphenylphosphonium (TPP +) has been established as a robust strategy to specifically target mitochondria . Phytochemicals such as hydroxybenzoic acids are normal constituents of the human diet. These molecules display beneficial healthy effects, ranging from antioxidant action through diverse mechanisms to modulation of mitochondrial-related apoptotic system, although their therapeutic application is limited due to pharmacokinetic drawbacks. Accordingly, the development of a new antioxidant based on the dietary benzoic acid-gallic acid -is described as well as the demonstration of its mitochondriotropic characteristics.
Collapse
|
9
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
10
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
11
|
Fan J, Martinez-Arguelles DB, Papadopoulos V. Genome-wide expression analysis of a new class of lncRNAs driven by SINE B2. Gene 2020; 768:145332. [PMID: 33278552 DOI: 10.1016/j.gene.2020.145332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/13/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
Repetitive short interspersed elements B2 (SINE B2) have been shown to possess two promoters: polymerase III promoter for producing short B2-S RNAs and polymerase II promoter for driving the expression of long non-coding RNA (B2-AS lncRNAs). Using a B2-antisense (B2-AS) transcript sequence from the SINE B2 resident in mitochondrial translocator protein gene (Tspo) locus, we constructed a B2-AS specific RNA library and identified 96,862 sequences encoding potential B2-mediated lncRNAs, of which 55,592 lncRNAs with more than 390 nt in length possess a feature of potential genomic locus-specific effect. In addition, small RNA-Northern hybridization showed that the new B2-AS lncRNAs are constantly degraded by the Dicer1 enzyme, a finding further confirmed by in vitro Dicer1 enzyme digestion. B2-AS lncRNAs regulate the expression of target genes in a different fashion than B2-S RNAs. Genome-wide cross-comparison with mRNA mapping showed a total of 904 mRNA loci directly targeted by B2-AS lncRNAs, suggesting a locus-specific effect of the B2-AS lncRNAs and a general effect of B2-S RNAs.
Collapse
Affiliation(s)
- Jinjiang Fan
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
12
|
Kalashnyk O, Lykhmus O, Uspenska K, Izmailov M, Komisarenko S, Skok M. Mitochondrial α7 nicotinic acetylcholine receptors are displaced from complexes with VDAC1 to form complexes with Bax upon apoptosis induction. Int J Biochem Cell Biol 2020; 129:105879. [PMID: 33147521 DOI: 10.1016/j.biocel.2020.105879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission in muscles and autonomic ganglia and regulate cytokine and neurotransmitter release in the brain and non-excitable cells. The α7 nAChRs localized in the outer membrane of mitochondria regulate cytochrome c release stimulated by apoptosis-inducing agents. However, the mechanisms through which nAChRs influence mitochondrial permeability remain obscure. Here we put an aim to explore the interaction of nAChRs with voltage-dependent anion channels (VDAC1) and pro-apoptotic protein Bax in the course of apoptosis induction. By using molecular modeling in silico, it was shown that both Bax and VDAC1 can bind within the 4th transmembrane portion (M4) of nAChR subunits. Experimentally, α7 nAChR-Bax and α7 nAChR-VDAC1 complexes were identified by sandwich ELISA in mitochondria isolated from astrocytoma U373 cells. Stimulating apoptosis of U373 cells by H2O2 disrupted α7-VDAC complexes and favored formation of α7-Bax complexes accompanied by cytochrome c release from mitochondria. α7-selective agonist PNU282987 or type 2 positive allosteric modulator PNU120596 disrupted α7-Bax and returned α7 nAChR to complex with VDAC1 resulting in attenuation of cytochrome c release. It is concluded that mitochondrial nAChRs regulate apoptosis-induced mitochondrial channel formation by modulating the interplay of apoptosis-related proteins in mitochondria outer membrane.
Collapse
Affiliation(s)
- Olena Kalashnyk
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Olena Lykhmus
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Kateryna Uspenska
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Mykhailo Izmailov
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Sergiy Komisarenko
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine
| | - Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01054 Kyiv, Ukraine.
| |
Collapse
|
13
|
Esparza-Moltó PB, Cuezva JM. Reprogramming Oxidative Phosphorylation in Cancer: A Role for RNA-Binding Proteins. Antioxid Redox Signal 2020; 33:927-945. [PMID: 31910046 DOI: 10.1089/ars.2019.7988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Cancer is a major disease imposing high personal and economic burden draining large part of National Health Care and Research budgets worldwide. In the last decade, research in cancer has underscored the reprogramming of metabolism to an enhanced aerobic glycolysis as a major trait of the cancer phenotype with great potential for targeted therapy. Recent Advances: Mitochondria are essential organelles in metabolic reprogramming for controlling the production of biological energy through oxidative phosphorylation (OXPHOS) and the supply of metabolic precursors that sustain proliferation. In addition, mitochondria are critical hubs that integrate different signaling pathways that control cellular metabolism and cell fate. The mitochondrial ATP synthase plays a fundamental role in OXPHOS and cellular signaling. Critical Issues: This review overviews mitochondrial metabolism and OXPHOS, and the major changes reported in the expression and function of mitochondrial proteins of OXPHOS in oncogenesis and in cellular differentiation. We summarize the prominent role that RNA-binding proteins (RNABPs) play in the sorting and localized translation of nuclear-encoded mRNAs that help define the mitochondrial cell-type-specific phenotype. Moreover, we emphasize the mechanisms that contribute to restrain the activity and expression of the mitochondrial ATP synthase in carcinomas, and illustrate that the dysregulation of proteins that control energy metabolism correlates with patients' survival. Future Directions: Future research should elucidate the mechanisms and RNABPs that promote the specific alterations of the mitochondrial phenotype in carcinomas arising from different tissues with the final aim of developing new therapeutic strategies to treat cancer.
Collapse
Affiliation(s)
- Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Efficacy and Safety of Human Serum Albumin-Cisplatin Complex in U87MG Xenograft Mouse Models. Int J Mol Sci 2020; 21:ijms21217932. [PMID: 33114661 PMCID: PMC7663476 DOI: 10.3390/ijms21217932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II), CDDP) is a chemotherapeutic drug widely used against many solid tumors. A pharmacokinetics study found that CDDP can bind to human serum albumin (HSA), which is the most abundant plasma protein in serum. HSA has the advantage of being a nanocarrier and can accumulate in tumors by passive targeting and active targeting mediated by the secreted protein acidic and rich in cysteine (SPARC). In this study, we investigated the possibility of using a CDDP-HSA complex (HSA-CDDP) as a SPARC-mediated therapeutic agent. To investigate the HSA-dependent therapeutic effect of HSA-CDDP, we used two types of U87MG glioma cells that express SPARC differently. HSA-CDDP was highly taken up in SPARC expressing cells and this uptake was enhanced with exogenous SPARC treatment in cells with low expression of SPARC. The cytotoxicity of HSA-CDDP was also higher in SPARC-expressing cells. In the tumor model, HSA-CDDP showed a similar tumor growth and survival rate to CDDP only in SPARC-expressing tumor models. The biosafety test indicated that HSA-CDDP was less nephrotoxic than CDDP, based on blood markers and histopathology examination. Our findings show that HSA-CDDP has the potential to be a novel therapeutic agent for SPARC-expressing tumors, enhancing the tumor targeting effect by HSA and reducing the nephrotoxicity of CDDP.
Collapse
|
15
|
Zhang L, Townsend DM, Morris M, Maldonado EN, Jiang YL, Broome AM, Bethard JR, Ball LE, Tew KD. Voltage-Dependent Anion Channels Influence Cytotoxicity of ME-344, a Therapeutic Isoflavone. J Pharmacol Exp Ther 2020; 374:308-318. [PMID: 32546528 PMCID: PMC7372917 DOI: 10.1124/jpet.120.000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/19/2020] [Indexed: 01/27/2023] Open
Abstract
ME-344 is a second-generation cytotoxic isoflavone with anticancer activity promulgated through interference with mitochondrial functions. Using a click chemistry version of the drug together with affinity-enriched mass spectrometry, voltage-dependent anion channels (VDACs) 1 and 2 were identified as drug targets. To determine the importance of VDAC1 or 2 to cytotoxicity, we used lung cancer cells that were either sensitive (H460) or intrinsically resistant (H596) to the drug. In H460 cells, depletion of VDAC1 and VDAC2 by small interfering RNA impacted ME-344 effects by diminishing generation of reactive oxygen species (ROS), preventing mitochondrial membrane potential dissipation, and moderating ME-344-induced cytotoxicity and mitochondrial-mediated apoptosis. Mechanistically, VDAC1 and VDAC2 knockdown prevented ME-344-induced apoptosis by inhibiting Bax mitochondrial translocation and cytochrome c release as well as apoptosis in these H460 cells. We conclude that VDAC1 and 2, as mediators of the response to oxidative stress, have roles in modulating ROS generation, Bax translocation, and cytochrome c release during mitochondrial-mediated apoptosis caused by ME-344. SIGNIFICANCE STATEMENT: Dissecting preclinical drug mechanisms are of significance in development of a drug toward eventual Food and Drug Administration approval.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Danyelle M Townsend
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Morgan Morris
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Eduardo N Maldonado
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Yu-Lin Jiang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Jennifer R Bethard
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
16
|
Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules 2020; 10:biom10070998. [PMID: 32635556 PMCID: PMC7408088 DOI: 10.3390/biom10070998] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation.
Collapse
Affiliation(s)
- Massimo Bonora
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Correspondence: (M.B.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Daniela Ramaccini
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Gaia Pedriali
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Asrat Endrias Kahsay
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
- Correspondence: (M.B.); (P.P.)
| |
Collapse
|
17
|
Duplaquet L, Leroy C, Vinchent A, Paget S, Lefebvre J, Vanden Abeele F, Lancel S, Giffard F, Paumelle R, Bidaux G, Heliot L, Poulain L, Furlan A, Tulasne D. Control of cell death/survival balance by the MET dependence receptor. eLife 2020; 9:50041. [PMID: 32091387 PMCID: PMC7039684 DOI: 10.7554/elife.50041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022] Open
Abstract
Control of cell death/survival balance is an important feature to maintain tissue homeostasis. Dependence receptors are able to induce either survival or cell death in presence or absence of their ligand, respectively. However, their precise mechanism of action and their physiological importance are still elusive for most of them including the MET receptor. We evidence that pro-apoptotic fragment generated by caspase cleavage of MET localizes to the mitochondria-associated membrane region. This fragment triggers a calcium transfer from endoplasmic reticulum to mitochondria, which is instrumental for the apoptotic action of the receptor. Knock-in mice bearing a mutation of MET caspase cleavage site highlighted that p40MET production is important for FAS-driven hepatocyte apoptosis, and demonstrate that MET acts as a dependence receptor in vivo. Our data shed light on new signaling mechanisms for dependence receptors’ control of cell survival/death balance, which may offer new clues for the pathophysiology of epithelial structures.
Collapse
Affiliation(s)
- Leslie Duplaquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Catherine Leroy
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Audrey Vinchent
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Sonia Paget
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Jonathan Lefebvre
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | | | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Florence Giffard
- Normandie Université, UNICAEN, INSERM U1086 ANTICIPE, UNICANCER, Cancer Centre F. Baclesse, Caen, France
| | - Réjane Paumelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Gabriel Bidaux
- Univ. Lille, CNRS, UMR8523 - PhLAM - laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Laurent Heliot
- Univ. Lille, CNRS, UMR8523 - PhLAM - laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - Laurent Poulain
- Normandie Université, UNICAEN, INSERM U1086 ANTICIPE, UNICANCER, Cancer Centre F. Baclesse, Caen, France
| | - Alessandro Furlan
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France.,Univ. Lille, CNRS, UMR8523 - PhLAM - laboratoire de Physique des Lasers, Atomes et Molécules, Lille, France
| | - David Tulasne
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T - Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| |
Collapse
|
18
|
Nguyen CN, Nguyen KVA, Eom S, Choi YJ, Kang LJ, Lee J, Kim C, Lee S, Lee SG, Lee JH. Regulation of p21 expression for anti-apoptotic activity of DDX3 against sanguinarine-induced cell death on intrinsic pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153096. [PMID: 31568920 DOI: 10.1016/j.phymed.2019.153096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND DDX3 plays a role in multicellular pathways, especially exerting an anti-apoptotic effect on extrinsic apoptosis. However, studies on the role of DDX3 in intrinsic apoptosis are lacking. PURPOSE In this study, we aimed to study the bio-function of DDX3 anti-apoptotic activity in the intrinsic pathway using HeLa cells treated with sanguinarine. STUDY DESIGN Screening of apoptosis-inducing agents found that sanguinarine was the most effective. After treatment with sanguinarine, cell viability, caspase-3 activity, and intrinsic gene expression were analyzed. FACS assays were used to analyze the effect of overexpression and knockdown of DDX3 to determine its role on intrinsic apoptosis. The relationship between DDX3 and the inhibition of p21 and apoptosis was investigated. RESULTS Sanguinarine was determined to be the most effective intrinsic apoptosis-inducing agent in HeLa cervical cancer cells. DDX3 upregulated anti-apoptotic gene expression (Bcl-xL, cyclin D1, cyclin E, and cyclin B1) and downregulated pro-apoptotic gene expression (caspase-3, Bax) after sanguinarine treatment. The apoptotic cell death rate increased from 8.74% (sanguinarine-treated control) to 17.6% after the knockdown of DDX3 but decreased to 5.29% after DDX3 overexpression. The results implied that p21 might be involved in the toxicity of sanguinarine to HeLa cells. Overexpression and knockdown of DDX3 under sanguinarine-treated conditions showed that DDX3 inhibited p21 expression in sanguinarine-treated HeLa cells. Notably, when we tested p21 expression among eight mutants located in the functional residues of DDX3 (S90A, S90E, T204A, T204E, GET, NEAD, LAT, and HRISR) under sanguinarine-treated conditions, only the S90E mutation in DDX3 had an effect on the inhibition of p21 expression and levels of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic genes (Bcl-xL, cyclin D1, cyclin E, and cyclin B1), as well as DDX3. CONCLUSION Taken together, the results suggest that the S90E residue is important for the regulation of p21 expression responsible for the anti-apoptotic activity of DDX3 in HeLa cells treated with sanguinarine. A model of the antiapoptotic function of DDX3 on sanguinarine-treated HeLa cells was proposed to understand the molecular mechanism of the intrinsic apoptosis inhibition in cervical cancer cells.
Collapse
Affiliation(s)
- Cam Ngoc Nguyen
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Khoa V A Nguyen
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Sanung Eom
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Yeo-Jin Choi
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Li-Jung Kang
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Jaeeun Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Chaelin Kim
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Shinhui Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea
| | - Seong-Gene Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea.
| | - Jun-Ho Lee
- Department of Biotechnology, Chonnam National University, Address: #4-415, Gwangju 61886, Republic of Korea.
| |
Collapse
|
19
|
Seo JH, Park HS, Park SS, Kim CJ, Kim DH, Kim TW. Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder. Exp Neurol 2019; 322:113043. [PMID: 31446079 DOI: 10.1016/j.expneurol.2019.113043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/24/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related condition that can be triggered by witnessing or experiencing a life-threatening event, such as a war, natural disaster, terrorist attack, major accident, or assault. PTSD is caused by dysfunction of the hippocampus and causes problems associated with brain functioning, such as anxiety, depression, and cognitive impairment. Exercise is known to have a positive effect on brain function, especially in the hippocampus. In this study, we investigated the effect of aerobic exercise on mitochondrial function and neuroplasticity in the hippocampus as well as behavioral changes in animal models of PTSD. Exposure to severe stress resulted in mitochondrial dysfunction in the hippocampus, including impaired Ca2+ homeostasis, an increase in reactive oxygen species such as H2O2, a decrease in the O2 respiration rate, and overexpression of membrane permeability transition pore-related proteins, including voltage-dependent anion channel, adenine nucleotide translocase, and cyclophilin-D. Exposure to extreme stress also decreased neuroplasticity by increasing apoptosis and decreasing the brain-derived neurotrophic factor level and neurogenesis, resulting in increased anxiety, depression, and cognitive impairment. The impairments in mitochondrial function and neuroplasticity in the hippocampus, as well as anxiety, depression, and cognitive impairment, were all improved by exercise. Exercise-induced improvement of the brain-derived neurotrophic factor level in particular might alter mitochondrial function, neuroplasticity, and the rate of apoptosis in the hippocampus. Therefore, exercise might be an important non-pharmacological intervention for the prevention and treatment of the pathobiology of PTSD.
Collapse
Affiliation(s)
- Jin-Hee Seo
- Department of Adapted physical education, Baekseok University, Cheonan, Republic of Korea
| | - Hye-Sang Park
- Department of Kinesiology, College of public health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA
| | - Sang-Seo Park
- Department of physiology, College of medicine, Kyung Hee University, Seoul, Republic of Korea; Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of physiology, College of medicine, Kyung Hee University, Seoul, Republic of Korea; Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- College of Sports science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae-Woon Kim
- Department of physiology, College of medicine, Kyung Hee University, Seoul, Republic of Korea; Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea; Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Ijaz B, Ahmad W, Das T, Shabbiri K, Husnain T, Hassan S. HCV infection causes cirrhosis in human by step-wise regulation of host genes involved in cellular functioning and defense during fibrosis: Identification of bio-markers. Genes Dis 2019; 6:304-317. [PMID: 32042870 PMCID: PMC6997584 DOI: 10.1016/j.gendis.2019.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic Hepatitis C Viral (HCV) infection is a leading health problem worldwide and resulted in fibrotic scar formation, and finally liver-cirrhosis. Although contemporary therapies can partially reverse this destructive process, the rehabilitation is too slow and unsuitable for all chronic infections. The current study elucidates the mechanism of disease progression from early (F1) to moderate (F2, F3), and to severe fibrosis (F4)/cirrhosis in HCV genotype 3a infected patients to find out new candidates as potential disease progression markers and antiviral therapeutic agents. A total of 550 genes were found differentially regulated in the four fibrosis stages and grouped in 22 classes according to their biological functions. Gene set enrichment (GSEA) and Ingenuity pathway analysis (IPA) were used to identify the regulation of crucial biological functions and pathways involved in HCV progression. HCV differentially regulated the expression of genes involved in apoptosis, cell structure, signal transduction, proliferation, metabolism, cytokine signaling, immune response, cell adhesion and maintenance, and post translational modifications by pathway analysis. There was an increasing trend of proliferative and cell growth related genes and shutting down of immune response as the disease progress mild to moderate to advanced stage cirrhosis. The myriad of changes in gene expression showed more chances of developing liver cancer in patients infected with HCV genotype 3a in a systematic manner. The identified gene set can act as disease markers for prediction, whether the fibrosis lead to cirrhosis and its association with end stage liver disease development.
Collapse
Affiliation(s)
- Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Waqar Ahmad
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,School of Biological Sciences, The University of Queensland, Australia.,College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Trina Das
- Division of Transplantation, Department of Surgery, School of Medicine, University of Washington, Seattle, WA, USA
| | - Khadija Shabbiri
- School of Biological Sciences, The University of Queensland, Australia
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sajida Hassan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Gboxin is an oxidative phosphorylation inhibitor that targets glioblastoma. Nature 2019; 567:341-346. [PMID: 30842654 PMCID: PMC6655586 DOI: 10.1038/s41586-019-0993-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/06/2019] [Indexed: 01/18/2023]
Abstract
Cancer specific inhibitors reflective of unique metabolic needs, are rare. We describe a novel small molecule, Gboxin, that specifically inhibits primary mouse and human glioblastoma (GBM) cell growth but not mouse embryo fibroblasts or neonatal astrocytes. Gboxin rapidly and irreversibly compromises GBM oxygen consumption. Reliant on its positive charge, Gboxin associates with mitochondrial oxidative phosphorylation complexes in a proton gradient dependent manner and inhibits F0F1 ATP synthase activity. Gboxin resistant cells require a functional mitochondrial permeability transition pore that regulates pH impeding matrix accumulation. Administration of a pharmacologically stable Gboxin analog inhibits GBM allografts and patient derived xenografts. Gboxin toxicity extends to established human cancer cell lines of diverse organ origin and exposes the elevated proton gradient pH in cancer cell mitochondria as a new mode of action for antitumor reagent development.
Collapse
|
22
|
Bhattacharjee A, Prasad SK, Banerjee O, Singh S, Banerjee A, Bose A, Pal S, Maji BK, Mukherjee S. Targeting mitochondria with folic acid and vitamin B 12 ameliorates nicotine mediated islet cell dysfunction. ENVIRONMENTAL TOXICOLOGY 2018; 33:988-1000. [PMID: 29972271 DOI: 10.1002/tox.22586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
Nicotine, one of the well-known highly toxic components of cigarette smoke, causes a number of adverse health effects and diseases. Our previous study has shown that nicotine induces reactive oxygen species (ROS) in islet cell and disrupts islet cell mitochondrial membrane potential (ΔΨm). However, supplementation with folic acid and vitamin B12 were found effective against nicotine induced changes in pancreatic islet cells. But the toxicological effects and underlying mechanisms of nicotine-induced mitochondrial dysfunction is still unknown. In this study, nicotine exposure decreases mitochondrial enzymes (pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, aconitase, malate dehydrogenase) activities by increasing cytosolic Ca2+ level which may contribute to increased mitochondrial ROS production by raising its flow to mitochondria. This in turn produces malondialdehyde and nitric oxide (NO) with a concomitant decrease in the activities of antioxidative enzymes and glutathione levels leading to loss of ΔΨm. Simultaneously, nicotine induces pancreatic islet cell apoptosis by modulating ΔΨm via increased cytosolic Ca2+ level, altered Bcl-2, Bax, cytochrome c, caspase-9, PARP expressions which were prevented by the supplementation of folic acid and vitamin B12 . In conclusion, nicotine alters islet cell mitochondrial redox status, apoptotic machinery, and enzymes to cause disruption in the ΔΨm and supplementation of folic acid and vitamin B12 possibly blunted all these mitochondrial alterations. Therefore, this study may help to determine the pathophysiology of nicotine-mediated islet cell mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ankita Bhattacharjee
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Shilpi Kumari Prasad
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Oly Banerjee
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Siddhartha Singh
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Arnab Banerjee
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Ananya Bose
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Swagata Pal
- Department of Physiology, Raja Peary Mohan College, Uttarpara, Kotrung, Hooghly, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology, Serampore College, Serampore, Hooghly, West Bengal, India
| |
Collapse
|
23
|
Treulen F, Arias ME, Aguila L, Uribe P, Felmer R. Cryopreservation induces mitochondrial permeability transition in a bovine sperm model. Cryobiology 2018; 83:65-74. [DOI: 10.1016/j.cryobiol.2018.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023]
|
24
|
Solano-Gálvez SG, Abadi-Chiriti J, Gutiérrez-Velez L, Rodríguez-Puente E, Konstat-Korzenny E, Álvarez-Hernández DA, Franyuti-Kelly G, Gutiérrez-Kobeh L, Vázquez-López R. Apoptosis: Activation and Inhibition in Health and Disease. Med Sci (Basel) 2018; 6:E54. [PMID: 29973578 PMCID: PMC6163961 DOI: 10.3390/medsci6030054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
There are many types of cell death, each involving multiple and complex molecular events. Cell death can occur accidentally when exposed to extreme physical, chemical, or mechanical conditions, or it can also be regulated, which involves a genetically coded complex machinery to carry out the process. Apoptosis is an example of the latter. Apoptotic cell death can be triggered through different intracellular signalling pathways that lead to morphological changes and eventually cell death. This is a normal and biological process carried out during maturation, remodelling, growth, and development in tissues. To maintain tissue homeostasis, regulatory, and inhibitory mechanisms must control apoptosis. Paradoxically, these same pathways are utilized during infection by distinct intracellular microorganisms to evade recognition by the immune system and therefore survive, reproduce and develop. In cancer, neoplastic cells inhibit apoptosis, thus allowing their survival and increasing their capability to invade different tissues and organs. The purpose of this work is to review the generalities of the molecular mechanisms and signalling pathways involved in apoptosis induction and inhibition. Additionally, we compile the current evidence of apoptosis modulation during cancer and Leishmania infection as a model of apoptosis regulation by an intracellular microorganism.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Jack Abadi-Chiriti
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Luis Gutiérrez-Velez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Eduardo Rodríguez-Puente
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Enrique Konstat-Korzenny
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Diego-Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| | - Giorgio Franyuti-Kelly
- Medical IMPACT, Infectious Disease Department, Mexico City 53900, Estado de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Instituto Nacional de Cardiología, Mexico City, 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucán Estado de México 52786, México.
| |
Collapse
|
25
|
Lee YJ, Lee C. Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway. Virus Res 2018; 253:112-123. [PMID: 29940190 PMCID: PMC7114866 DOI: 10.1016/j.virusres.2018.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/09/2018] [Accepted: 06/20/2018] [Indexed: 01/23/2023]
Abstract
Porcine deltacoronavirus (PDCoV), a newly discovered enteric coronavirus, is a causative agent of severe clinical diarrhea and intestinal pathological damage in piglets. As a first step toward understanding the effect of PDCoV on host cells, we elucidated mechanisms underlying the process of apoptotic cell death after PDCoV infection. The use of a pan-caspase inhibitor resulted in the inhibition of PDCoV-induced apoptosis and reduction of PDCoV replication, suggestive of the association of a caspase-dependent pathway. Furthermore, PDCoV infection necessitated the activation of the initiator caspase-9 responsible for the intrinsic mitochondrial apoptosis pathway. Experimental data indicated that PDCoV infection led to Bax-mediated mitochondrial outer membrane permeabilization (MOMP), resulting in specific relocation of the mitochondrial cytochrome c (cyt c) into the cytoplasm. Treatment with cyclosporin A (CsA), an inhibitor of mitochondrial permeability transition pore (MPTP) opening, significantly suppressed PDCoV-triggered apoptosis and viral replication. Moreover, cyt c release was completely abrogated in PDCoV-infected cells in the presence of CsA, suggesting the critical role of MPTP in intrinsic apoptosis in response to PDCoV infection. Altogether, our results indicate that PDCoV infection stimulates MOMP either via Bax recruitment or MPTP opening to permit the release of apoptogenic cyt c into the cytoplasm, thereby leading to execution of the caspase-dependent intrinsic apoptosis pathway to facilitate viral replication in vitro.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Changhee Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
26
|
Accumulation of prohibitin is a common cellular response to different stressing stimuli and protects melanoma cells from ER stress and chemotherapy-induced cell death. Oncotarget 2018; 8:43114-43129. [PMID: 28562344 PMCID: PMC5522132 DOI: 10.18632/oncotarget.17810] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Melanoma is responsible for most deaths among skin cancers and conventional and palliative care chemotherapy are limited due to the development of chemoresistance. We used proteomic analysis to identify cellular responses that lead to chemoresistance of human melanoma cell lines to cisplatin. A systems approach to the proteomic data indicated the participation of specific cellular processes such as oxidative phosphorylation, mitochondrial organization and homeostasis, as well as the unfolded protein response (UPR) to be required for the survival of cells treated with cisplatin. Prohibitin (PHB) was among the proteins consistently accumulated, interacting with the functional clusters associated with resistance to cisplatin. We showed PHB accumulated at different levels in melanoma cell lines under stressing stimuli, such as (i) treatment with temozolomide (TMZ), dacarbazine (DTIC) and cisplatin; (ii) serum deprivation; (iii) tunicamycin, an UPR inducer. Prohibitin accumulated in the mitochondria of melanoma cells after cisplatin and tunicamycin treatment and its de novo accumulation led to chemoresistance melanoma cell lines. In contrast, PHB knock-down sensitized melanoma cells to cisplatin and tunicamycin treatment. We conclude that PHB participates in the survival of cells exposed to different stress stimuli, and can therefore serve as a target for the sensitization of melanoma cells to chemotherapy.
Collapse
|
27
|
Jodeiri Farshbaf M, Kiani-Esfahani A. Succinate dehydrogenase: Prospect for neurodegenerative diseases. Mitochondrion 2017; 42:77-83. [PMID: 29225013 DOI: 10.1016/j.mito.2017.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/25/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022]
Abstract
Onset of Alzheimer's, Parkinson's and Huntington's diseases as neurodegenerative disorders is increased by age. Alleviation of clinical symptoms and protection of neurons against degeneration are the main aspects of researches to establish new therapeutic strategies. Many studies have shown that mitochondria play crucial roles in high energy demand tissues like brain. Impairments in mitochondrial activity and physiology can makes neurons vulnerable to stress and degeneration. Succinate dehydrogenase (SDH) connects tricarboxylic cycle to the electron transport chain. Therefore, dysfunction of the SDH could impair mitochondrial activity, ATP generation and energy hemostasis in the cell. Exceed lipid synthesis, induction of the excitotoxicity in neurodegenerative disorders could be controlled by SDH through direct and indirect mechanism. In addition, mutation in SDH correlates with the onset of neurodegenerative disorders. Therefore, SDH could behave as a key regulator in neuroprotection. This review will present recent findings which are about SDH activity and related pathways which could play important roles in neuronal survival. Additionally, we will discuss about all possibilities which candidate SDH as a neuroprotective agent.
Collapse
Affiliation(s)
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan 816513-1378, Iran
| |
Collapse
|
28
|
Persian Gulf Stonefish (Pseudosynanceia melanostigma) Venom Fractions Selectively Induce Apoptosis on Cancerous Hepatocytes from Hepatocellular Carcinoma Through ROS-Mediated Mitochondrial Pathway. HEPATITIS MONTHLY 2017. [DOI: 10.5812/hepatmon.11842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
29
|
Pérez-Hernández M, Moros M, Stepien G, Del Pino P, Menao S, de Las Heras M, Arias M, Mitchell SG, Pelaz B, Gálvez EM, de la Fuente JM, Pardo J. Multiparametric analysis of anti-proliferative and apoptotic effects of gold nanoprisms on mouse and human primary and transformed cells, biodistribution and toxicity in vivo. Part Fibre Toxicol 2017; 14:41. [PMID: 29073907 PMCID: PMC5658988 DOI: 10.1186/s12989-017-0222-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Background The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. Methods Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. Results Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. Conclusion Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health. Electronic supplementary material The online version of this article (10.1186/s12989-017-0222-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain. .,Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - María Moros
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Institute of Applied Sciences and Intelligent Systems-CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Italy
| | - Grazyna Stepien
- Fundación Instituto Universitario de Nanociencia de Aragón (FINA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pablo Del Pino
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sebastián Menao
- Departamento de Bioquímica clínica. H.C.U. Lozano Blesa, 50009, Zaragoza, Spain
| | - Marcelo de Las Heras
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Maykel Arias
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Scott G Mitchell
- Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Beatriz Pelaz
- Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS) y Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eva M Gálvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
| | - Jesús M de la Fuente
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.,Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, Zaragoza, Spain
| | - Julián Pardo
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Centro de Investigación Biomédica de Aragón (CIBA), Universidad de Zaragoza, 50009, Zaragoza, Spain.,Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain.,Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, 50009, Zaragoza, Spain.,Aragón I+D Foundation (ARAID), Gobierno de Aragón, Zaragoza, Spain
| |
Collapse
|
30
|
Liu D, Hu Y, Guo Y, Zhu Z, Lu B, Wang X, Huang Y. Mycoplasma-associated multidrug resistance of hepatocarcinoma cells requires the interaction of P37 and Annexin A2. PLoS One 2017; 12:e0184578. [PMID: 28976984 PMCID: PMC5627893 DOI: 10.1371/journal.pone.0184578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma infection has been reported to be associated with cancer migration, invasion, epithelial-mesenchymal transition as well as the resistance to nucleoside analogues chemotherapeutic drugs. In this study, we found that the sensitivity of hepatocarcinoma cells to Cisplatin, Gemcitabine and Mitoxantrone was increased by mycoplasma elimination. Similar to the effect of anti-mycoplasma agent, interrupting the interaction between Mycoplasma hyorhinis membrane protein P37 and Annexin A2 of host cells using the N-terminal of ANXA2 polypeptide enhanced the sensitivity of HCC97L cells to Gemcitabine and Mitoxantrone. Meanwhile, we did not observe any changes in expression or distribution of multidrug resistance associated transporters, ATP-Binding Cassette protein B1, C1 and G2, on the removal of mycoplasma. These results suggest that mycoplasma induces a resistance to multiple drugs in hepatocarcinoma cells which required the interaction of P37 and Annexin A2. The pathway downstream this interaction needs to be explored.
Collapse
Affiliation(s)
- Danyang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuelan Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YH); (XW)
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- * E-mail: (YH); (XW)
| |
Collapse
|
31
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Wang W, Fernandez-Sanz C, Sheu SS. Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1991-2001. [PMID: 28918113 DOI: 10.1016/j.bbadis.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
Abstract
Recent advancement in mitochondrial research has significantly extended our knowledge on the role and regulation of mitochondria in health and disease. One important breakthrough is the delineation of how mitochondrial morphological changes, termed mitochondrial dynamics, are coupled to the bioenergetics and signaling functions of mitochondria. In general, it is believed that fusion leads to an increased mitochondrial respiration efficiency and resistance to stress-induced dysfunction while fission does the contrary. This concept seems not applicable to adult cardiomyocytes. The mitochondria in adult cardiomyocytes exhibit fragmented morphology (tilted towards fission) and show less networking and movement as compared to other cell types. However, being the most energy-demanding cells, cardiomyocytes in the adult heart possess vast number of mitochondria, high level of energy flow, and abundant mitochondrial dynamics proteins. This apparent discrepancy could be explained by recently identified new functions of the mitochondrial dynamics proteins. These "non-canonical" roles of mitochondrial dynamics proteins range from controlling inter-organelle communication to regulating cell viability and survival under metabolic stresses. Here, we summarize the newly identified non-canonical roles of mitochondrial dynamics proteins. We focus on how these fission and fusion independent roles of dynamics proteins regulate mitochondrial bioenergetics. We also discuss potential molecular mechanisms, unique intracellular location, and the cardiovascular disease relevance of these non-canonical roles of the dynamics proteins. We propose that future studies are warranted to differentiate the canonical and non-canonical roles of dynamics proteins and to identify new approaches for the treatment of heart diseases. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
33
|
Lytovchenko O, Kunji ERS. Expression and putative role of mitochondrial transport proteins in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:641-654. [PMID: 28342810 DOI: 10.1016/j.bbabio.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Oleksandr Lytovchenko
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
34
|
Kuznetsov AV, Javadov S, Saks V, Margreiter R, Grimm M. Synchronism in mitochondrial ROS flashes, membrane depolarization and calcium sparks in human carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:418-431. [PMID: 28279675 DOI: 10.1016/j.bbabio.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
Mitochondria are major producers of reactive oxygen species (ROS) in many cells including cancer cells. However, complex interrelationships between mitochondrial ROS (mitoROS), mitochondrial membrane potential (ΔΨm) and Ca2+ are not completely understood. Using human carcinoma cells, we further highlight biphasic ROS dynamics: - gradual mitoROS increase followed by mitoROS flash. Also, we demonstrate heterogeneity in rates of mitoROS generation and flash initiation time. Comparing mitochondrial and near-extra-mitochondrial signals, we show that mechanisms of mitoROS flashes in single mitochondria, linked to mitochondrial permeability transition pore opening (ΔΨm collapse) and calcium sparks, may involve flash triggering by certain levels of external ROS released from the same mitochondria. In addition, mitochondria-mitochondria interactions can produce wave propagations of mitoROS flashes and ΔΨm collapses in cancer cells similar to phenomena of ROS-induced ROS release (RIRR). Our data suggest that in cancer cells RIRR, activation of mitoROS flashes and mitochondrial depolarization may involve participation of extramitochondrial-ROS produced either by individual mitochondria and/or by neighboring mitochondria. This could represent general mechanisms in ROS-ROS signaling with suggested role in both mitochondrial and cellular physiology and signaling.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U884, University Joseph Fourier, Grenoble, France
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
35
|
Bustos PL, Volta BJ, Perrone AE, Milduberger N, Bua J. A homolog of cyclophilin D is expressed in Trypanosoma cruzi and is involved in the oxidative stress-damage response. Cell Death Discov 2017; 3:16092. [PMID: 28179991 PMCID: PMC5292771 DOI: 10.1038/cddiscovery.2016.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
Mitochondria have an important role in energy production, homeostasis and cell death. The opening of the mitochondrial permeability transition pore (mPTP) is considered one of the key events in apoptosis and necrosis, modulated by cyclophilin D (CyPD), a crucial component of this protein complex. In Trypanosoma cruzi, the protozoan parasite that causes Chagas disease, we have previously described that mitochondrial permeability transition occurs after oxidative stress induction in a cyclosporin A-dependent manner, a well-known cyclophilin inhibitor. In the present work, a mitochondrial parasite cyclophilin, named TcCyP22, which is homolog to the mammalian CyPD was identified. TcCyP22-overexpressing parasites showed an enhanced loss of mitochondrial membrane potential and loss of cell viability when exposed to a hydrogen peroxide stimulus compared with control parasites. Our results describe for the first time in a protozoan parasite that a mitochondrial cyclophilin is a component of the permeability transition pore and is involved in regulated cell death induced by oxidative stress.
Collapse
Affiliation(s)
- Patricia L Bustos
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Bibiana J Volta
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán , Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
| | - Alina E Perrone
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán , Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina
| | - Natalia Milduberger
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina; CAECIHS, Universidad Abierta Interamericana, Av. Montes de Oca 745, 2º piso, C1270AAH, Buenos Aires, Argentina
| | - Jacqueline Bua
- Instituto Nacional de Parasitología 'Dr. Mario Fatala Chabén'- A.N.L.I.S. Malbrán, Av. Paseo Colón 568, C1063AC S, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina; CAECIHS, Universidad Abierta Interamericana, Av. Montes de Oca 745, 2º piso, C1270AAH, Buenos Aires, Argentina
| |
Collapse
|
36
|
Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, Azuma YT, Kuwamura M, Yamaji R, Takeuchi T. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death. J Biol Chem 2017; 292:4727-4742. [PMID: 28167533 PMCID: PMC5377786 DOI: 10.1074/jbc.m116.759084] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/23/2017] [Indexed: 01/24/2023] Open
Abstract
Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH aggregation specifically induces mitochondrial dysfunction via PTP opening, leading to cell death.
Collapse
Affiliation(s)
| | | | - Takeya Kubo
- From the Laboratory of Veterinary Pharmacology
| | | | | | - Takeshi Izawa
- the Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka 5988531, Japan
| | | | - Mitsuru Kuwamura
- the Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Science, Osaka Prefecture University, Izumisano, Osaka 5988531, Japan
| | | | | |
Collapse
|
37
|
Liu Y, Zhi D, Li M, Liu D, Wang X, Wu Z, Zhang Z, Fei D, Li Y, Zhu H, Xie Q, Yang H, Li H. Shengmai Formula suppressed over-activated Ras/MAPK pathway in C. elegans by opening mitochondrial permeability transition pore via regulating cyclophilin D. Sci Rep 2016; 6:38934. [PMID: 27982058 PMCID: PMC5159904 DOI: 10.1038/srep38934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 11/16/2016] [Indexed: 12/01/2022] Open
Abstract
Since about 30% of all human cancers contain mutationally activated Ras, down regulating the over-activation of Ras/MAPK pathway represents a viable approach for treating cancers. Over-activation of Ras/MAPK pathway is accompanied by accumulation of reactive oxygen species (ROS). One approach for developing anti-cancer drugs is to target ROS production and their accumulation. To test this idea, we have employed C. elegans of let-60 (gf) mutant, which contain over-activated let-60 (the homolog of mammalian ras) and exhibit tumor-like symptom of multivulva phenotype, to determine whether anti-oxidants can affect their tumor-like phenotype. Specifically we studied the effect of Shengmai formula (SM), a traditional Chinese medicine that has strong anti-oxidant activity, on the physiology of let-60 (gf) mutants. Unexpectedly, we found that SM treatment led to the opening of mitochondrial permeability transition pore by regulating cyclophilin D and then triggered oxidative stress and related signaling pathway activation, including p53, JNK, and p38/MAPK pathways. Finally, SM induced mitochondrial pathway of apoptosis and inhibited the tumor-like symptom of the multivulva phenotype of let-60(gf) mutants. Our results provide evidences to support that SM act as a pro-oxidant agent and could serve as a potential drug candidate for combating over-activated Ras-related cancer.
Collapse
Affiliation(s)
- Yan Liu
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Dejuan Zhi
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Menghui Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Dongling Liu
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin Wang
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Zhengrong Wu
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Zhanxin Zhang
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Dongqing Fei
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Yang Li
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Hongmei Zhu
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Qingjian Xie
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hui Yang
- Institute of Biology, Academy of Sciences, Lanzhou 730000, Gansu province, P.R. China.
| | - Hongyu Li
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
38
|
Wu CH, Lin YW, Wu TF, Ko JL, Wang PH. Clinical implication of voltage-dependent anion channel 1 in uterine cervical cancer and its action on cervical cancer cells. Oncotarget 2016; 7:4210-25. [PMID: 26716410 PMCID: PMC4826200 DOI: 10.18632/oncotarget.6704] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/29/2015] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry were performed to investigate the influence of human nonmetastatic clone 23 type 1 (nm23-H1), a metastasis-associated gene on proteomic alterations in cancer cells of the uterine cervix. It was validated by RT-PCR and Western blot analysis. The expression of voltage-dependent anion channel 1 (VDAC1) was increased in nm23-H1 gene silenced SiHa or CaSki cervical cancer cells. The clinical implication was shown that cervical cancer tissues with positive VDAC1 immunoreactivity exhibited deep stromal invasion (>10 mm in depth) and large tumor size (> 4 cm in diameter). Cervical cancer patients with positive VDAC1 immunoreactivity displayed higher recurrence and poorer overall survival than those with negative VDAC1. Silencing of VDAC1 reduced cell proliferation and migratory ability. Mitochondrial membrane potential was decreased and reactive oxygen species generation was increased in the VDAC1 gene-silenced cervical cancer cells. Cell cycle progression and autophagy were not changed in VDAC1 silencing cells. The cytotoxicity of cisplatin was significantly enhanced by knockdown of cellular VDAC1 and the compounds that interfere with hexokinase binding to VDAC. Therapeutic strategies may be offered using VDAC1 as a target to reduce cell growth and migration, enhance the synergistic therapeutic efficacy of cisplatin and reduce cisplatin dose-limiting toxicity.
Collapse
Affiliation(s)
- Chih-Hsien Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tzu-Fan Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
39
|
Song T, Wang Z, Zhang Z. Substituted indole Mcl-1 inhibitors: a patent evaluation (WO2015148854A1). Expert Opin Ther Pat 2016; 26:1227-1238. [DOI: 10.1080/13543776.2016.1240786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ting Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Ziqian Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, China
| |
Collapse
|
40
|
The metabolomic signature of hematologic malignancies. Leuk Res 2016; 49:22-35. [PMID: 27526405 DOI: 10.1016/j.leukres.2016.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
The ongoing accumulation of knowledge raises hopes that understanding tumor metabolism will provide new ways for predicting, diagnosing, and even treating cancers. Some metabolic biomarkers are at present routinely utilized to diagnose cancer and metabolic alterations of tumors are being confirmed as therapeutic targets. The growing utilization of metabolomics in clinical research may rapidly turn it into one of the most potent instruments used to detect and fight tumor. In fact, while the current state and trends of high throughput metabolomics profiling focus on the purpose of discovering biomarkers and hunting for metabolic mechanism, a prospective direction, namely reprogramming metabolomics, highlights the way to use metabolomics approach for the aim of treatment of disease by way of reconstruction of disturbed metabolic pathways. In this review, we present an ample summary of the current clinical appliances of metabolomics in hematological malignancies.
Collapse
|
41
|
Wu CH, Huang CC, Hung CH, Yao FY, Wang CJ, Chang YC. Delphinidin-rich extracts of Hibiscus sabdariffa L. trigger mitochondria-derived autophagy and necrosis through reactive oxygen species in human breast cancer cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
42
|
Novoderezhkina EA, Zhivotovsky BD, Gogvadze VG. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death. Mol Biol 2016. [DOI: 10.1134/s0026893316010167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Bianchi G, Martella R, Ravera S, Marini C, Capitanio S, Orengo A, Emionite L, Lavarello C, Amaro A, Petretto A, Pfeffer U, Sambuceti G, Pistoia V, Raffaghello L, Longo VD. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models. Oncotarget 2016; 6:11806-19. [PMID: 25909219 PMCID: PMC4494906 DOI: 10.18632/oncotarget.3688] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/25/2022] Open
Abstract
Tumor chemoresistance is associated with high aerobic glycolysis rates and reduced oxidative phosphorylation, a phenomenon called "Warburg effect" whose reversal could impair the ability of a wide range of cancer cells to survive in the presence or absence of chemotherapy. In previous studies, Short-term-starvation (STS) was shown to protect normal cells and organs but to sensitize different cancer cell types to chemotherapy but the mechanisms responsible for these effects are poorly understood. We tested the cytotoxicity of Oxaliplatin (OXP) combined with a 48hour STS on the progression of CT26 colorectal tumors. STS potentiated the effects of OXP on the suppression of colon carcinoma growth and glucose uptake in both in vitro and in vivo models. In CT26 cells, STS down-regulated aerobic glycolysis, and glutaminolysis, while increasing oxidative phosphorylation. The STS-dependent increase in both Complex I and Complex II-dependent O(2) consumption was associated with increased oxidative stress and reduced ATP synthesis. Chemotherapy caused additional toxicity, which was associated with increased succinate/Complex II-dependent O(2) consumption, elevated oxidative stress and apoptosis .These findings indicate that the glucose and amino acid deficiency conditions imposed by STS promote an anti-Warburg effect characterized by increased oxygen consumption but failure to generate ATP, resulting in oxidative damage and apoptosis.
Collapse
Affiliation(s)
| | | | - Silvia Ravera
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, Milan, Section of Genoa, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Annamaria Orengo
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Laura Emionite
- Animal facility, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Adriana Amaro
- Functional Genomics, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | - Ulrich Pfeffer
- Functional Genomics, IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa and IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia Istituto G. Gaslini, Genoa, Italy
| | | | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
44
|
Vaikundamoorthy R, Sundaramoorthy R, Krishnamoorthy V, Vilwanathan R, Rajendran R. Marine steroid derived from Acropora formosa enhances mitochondrial-mediated apoptosis in non-small cell lung cancer cells. Tumour Biol 2016; 37:10517-31. [DOI: 10.1007/s13277-016-4947-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/29/2016] [Indexed: 01/16/2023] Open
|
45
|
Tatematsu Y, Hayashi H, Taguchi R, Fujita H, Yamamoto A, Ohkura K. Effect of N-Phenylanthranilic Acid Scaffold Nonsteroidal Anti-inflammatory Drugs on the Mitochondrial Permeability Transition. Biol Pharm Bull 2016; 39:278-84. [DOI: 10.1248/bpb.b15-00717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yohei Tatematsu
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Hiroki Hayashi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Ryo Taguchi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Haruhi Fujita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Atsushi Yamamoto
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| | - Kazuto Ohkura
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science
| |
Collapse
|
46
|
Pourahmad J, Salimi A, Saharkhiz M, Motallebi A, Seydi E, Mohseni A, Nazemi M. Standardized Extract of the Persian Gulf Sponge, Axinella Sinoxea Selectively Induces Apoptosis through Mitochondria in Human Chronic Lymphocytic Leukemia Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.6000/1927-7229.2015.04.04.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
47
|
Salimi A, Roudkenar MH, Sadeghi L, Mohseni A, Seydi E, Pirahmadi N, Pourahmad J. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria. Redox Biol 2015; 6:461-471. [PMID: 26418626 PMCID: PMC4588415 DOI: 10.1016/j.redox.2015.08.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
To investigate the effects ofellagic acid (EA) on the cytotoxicity, B-lymphocytes isolated from CLL patients and healthy individuals. Flow cytometric assay was used to measure the percentage of apoptosis versus necrosis, intracellular active oxygen radicals (ROS), mitochondrial membrane potential (MMP) and the caspase-3 activity and then mitochondria were isolated from both groups B-lymphocytes and parameters of mitochondrial toxicity was investigated. Based on our results EA decreased the percentage of viable cells and induced apoptosis. EA increased ROS formation, mitochondria swelling, MMP decrease and cytochrome c release in mitochondria isolated from CLL BUT NOT healthy B-lymphocytes while pre-treatment with cyclosporine A and Butylated hydroxyl toluene (BHT) prevented these effects. Our results suggest that EA can act as an anti cancer candidate by directly and selectively targeting mitochondria could induce apoptosis through mitochondria pathway with increasing ROS production which finally ends in cytochrome c release, caspase 3 activation and apoptosis in cancerous B-lymphocytes isolated from CLL patients.
Collapse
Affiliation(s)
- Ahmad Salimi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Leila Sadeghi
- Shohadaye Tajrish Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Enayatollah Seydi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahal Pirahmadi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Shiraz University, Shiraz, Iran
| | - Jalal Pourahmad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
|
49
|
Wang L, Hu T, Shen J, Zhang L, Chan RLY, Lu L, Li M, Cho CH, Wu WKK. Dihydrotanshinone I induced apoptosis and autophagy through caspase dependent pathway in colon cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1079-87. [PMID: 26547530 DOI: 10.1016/j.phymed.2015.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Dihydrotanshinone I (DHTS) was previously reported to exhibit the most potent anti-cancer activity among several tanshinones in colon cancer cells. Its cytotoxic action was reactive oxygen species (ROS) dependent but p53 independent. PURPOSE To further study the anti-cancer activity of DHTS and its molecular mechanisms of action in colon cancer both in vitro and in vivo. METHODS Caspase activity was detected by fluorescence assay. Apoptosis was detected by flow cytometry and TUNEL assay. Protein levels were analyzed by western blotting. Knockdown of target gene was achieved by siRNA transfection. Formation of LC3B puncta and activation of caspase-3 were detected by confocal fluorescence microscope. In vivo anti-colon cancer activity of DHTS was observed in xenograft tumors in NOD/SCID mice. RESULTS Anti-colon cancer activity of DHTS by inducing apoptosis and autophagy was observed both in vitro and in vivo. Mitochondria mediated caspase dependent pathway was essential in DHTS-induced cytotoxicity. The apoptosis induced by DHTS was suppressed by knockdown of apoptosis inducing factor (AIF), inhibition of caspase-3/9 but was increased after knockdown of caspase-2. Meantime, knockdown of caspase-2, pretreatment with Z-VAD-fmk or NAC (N-Acety-L-Cysteine) efficiently inhibited the autophagy induced by DHTS. A crosstalk between cytochrome c and AIF was also reported. CONCLUSION DHTS-induced caspase and ROS dependent apoptosis and autophagy were mediated by mitochondria in colon cancer. DHTS could be a promising leading compound for the development of anti-tumor agent or be developed as an adjuvant drug for colon cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China.
| | - Tao Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - Jing Shen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - Lin Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - Ruby Lok-Yi Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - Lan Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - Mingxing Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - Chi Hin Cho
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, NT, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
50
|
Regulation of Bcl-xL-ATP Synthase Interaction by Mitochondrial Cyclin B1-Cyclin-Dependent Kinase-1 Determines Neuronal Survival. J Neurosci 2015; 35:9287-301. [PMID: 26109654 DOI: 10.1523/jneurosci.4712-14.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The survival of postmitotic neurons needs continuous degradation of cyclin B1, a mitotic protein accumulated aberrantly in the damaged brain areas of Alzheimer's disease and stroked patients. Degradation of cyclin B1 takes place in the proteasome after ubiquitylation by the anaphase-promoting complex/cyclosome (APC/C)-cadherin 1 (Cdh1), an E3 ubiquitin ligase that is highly active in neurons. However, during excitotoxic damage-a hallmark of neurological disorders-APC/C-Cdh1 is inactivated, causing cyclin B1 stabilization and neuronal death through an unknown mechanism. Here, we show that an excitotoxic stimulus in rat cortical neurons in primary culture promotes cyclin B1 accumulation in the mitochondria, in which it binds to, and activates, cyclin-dependent kinase-1 (Cdk1). The cyclin B1-Cdk1 complex in the mitochondria phosphorylates the anti-apoptotic protein B-cell lymphoma extra-large (Bcl-xL), leading to its dissociation from the β subunit of F1Fo-ATP synthase. The subsequent inhibition of ATP synthase activity causes complex I oxidative damage, mitochondrial inner membrane depolarization, and apoptotic neuronal death. These results unveil a previously unrecognized role for mitochondrial cyclin B1 in the oxidative damage associated with neurological disorders.
Collapse
|