1
|
Dhokia V, Albati A, Smith H, Thomas G, Macip S. A second generation of senotherapies: the development of targeted senolytics, senoblockers and senoreversers for healthy ageing. Biochem Soc Trans 2024; 52:1661-1671. [PMID: 38940746 DOI: 10.1042/bst20231066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Cellular senescence, a form of terminal cell cycle arrest, is as a key driver of organismal ageing and an important factor in age-related diseases. Insights into the senescent phenotype have led to the development of novel therapeutic strategies, collectively known as senotherapies, that aim to ameliorate the detrimental effects of senescent cell accumulation in tissues. The senotherapeutic field has rapidly evolved over the past decade, with clinical translation of the first drugs discovered currently underway. What began as the straightforward removal of senescent cells using repurposed compounds, which were given the name of senolytics, has grown into an expanding field that uses different state of the art approaches to achieve the goal of preventing the build-up of senescent cells in the body. Here, we summarize the emergence of a new generation of senotherapies, based on improving the efficacy and safety of the original senolytics by making them targeted, but also branching out into drugs that prevent senescence (senoblockers) or revert it (senoreversers).The use of nanotechnology, specific antibodies, cell-based approaches and restored immunosurveillance is likely to revolutionize the field of senotherapies in the near future, hopefully allowing it to realize its full clinical potential.
Collapse
Affiliation(s)
- Vinesh Dhokia
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Amal Albati
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Hannah Smith
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
| | - Gethin Thomas
- The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, U.K
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Barcelona, Spain
- Department of Molecular and Cell Biology, University of Leicester, Leicester, U.K
- The Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, U.K
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| |
Collapse
|
2
|
Wu X, Wang S, Guo Y, Zeng S. Overexpression of KAT8 induces a failure in early embryonic development in mice. Theriogenology 2024; 221:31-37. [PMID: 38537319 DOI: 10.1016/j.theriogenology.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
Embryo quality is strongly associated with subsequent embryonic developmental efficiency. However, the detailed function of lysine acetyltransferase 8 (KAT8) during early embryonic development in mice remains elusive. In this study, we reported that KAT8 played a pivotal role in the first cleavage of mouse embryos. Immunostaining results revealed that KAT8 predominantly accumulated in the nucleus throughout the entire embryonic developmental process. Kat8 overexpression (Kat8-OE) was correlated with early developmental potential of embryos to the blastocyst stage. We also found that Kat8-OE embryos showed spindle-assembly defects and chromosomal misalignment, and that Kat8-OE in embryos led to increased levels of reactive oxygen species (ROS), accumulation of phosphorylated γH2AX by affecting the expression of critical genes related to mitochondrial respiratory chain and antioxidation pathways. Subsequently, cellular apoptosis was activated as confirmed by TUNEL (Terminal Deoxynucleotidyl Transferase mediated dUTP Nick-End Labeling) assay. Furthermore, we revealed that KAT8 was related to regulating the acetylation status of H4K16 in mouse embryos, and Kat8-OE induced the hyperacetylation of H4K16, which might be a key factor for the defective spindle/chromosome apparatus. Collectively, our data suggest that KAT8 constitutes an important regulator of spindle assembly and redox homeostasis during early embryonic development in mice.
Collapse
Affiliation(s)
- Xuan Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiwei Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Guo
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shenming Zeng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Forbes M, Kempa R, Mastrobuoni G, Rayman L, Pietzke M, Bayram S, Arlt B, Spruessel A, Deubzer HE, Kempa S. L-Glyceraldehyde Inhibits Neuroblastoma Cell Growth via a Multi-Modal Mechanism on Metabolism and Signaling. Cancers (Basel) 2024; 16:1664. [PMID: 38730615 PMCID: PMC11083149 DOI: 10.3390/cancers16091664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Glyceraldehyde (GA) is a three-carbon monosaccharide that can be present in cells as a by-product of fructose metabolism. Bruno Mendel and Otto Warburg showed that the application of GA to cancer cells inhibits glycolysis and their growth. However, the molecular mechanism by which this occurred was not clarified. We describe a novel multi-modal mechanism by which the L-isomer of GA (L-GA) inhibits neuroblastoma cell growth. L-GA induces significant changes in the metabolic profile, promotes oxidative stress and hinders nucleotide biosynthesis. GC-MS and 13C-labeling was employed to measure the flow of carbon through glycolytic intermediates under L-GA treatment. It was found that L-GA is a potent inhibitor of glycolysis due to its proposed targeting of NAD(H)-dependent reactions. This results in growth inhibition, apoptosis and a redox crisis in neuroblastoma cells. It was confirmed that the redox mechanisms were modulated via L-GA by proteomic analysis. Analysis of nucleotide pools in L-GA-treated cells depicted a previously unreported observation, in which nucleotide biosynthesis is significantly inhibited. The inhibitory action of L-GA was partially relieved with the co-application of the antioxidant N-acetyl-cysteine. We present novel evidence for a simple sugar that inhibits cancer cell proliferation via dysregulating its fragile homeostatic environment.
Collapse
Affiliation(s)
- Martin Forbes
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Richard Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Guido Mastrobuoni
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Liam Rayman
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Matthias Pietzke
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Mass Spectrometry Facility, MaxPlanck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Safak Bayram
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Birte Arlt
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Annika Spruessel
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Hematology and Oncology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berliner Institut für Gesundheitsforschung (BIH), Anna-Louisa-Karsch-Strase 2, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, Invalidenstr. 80, 10115 Berlin, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC), Charité and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str. 28, 10115 Berlin, Germany
| |
Collapse
|
4
|
Foglietta F, Macrì M, Panzanelli P, Francovich A, Durando G, Garello F, Terreno E, Serpe L, Canaparo R. Ultrasound boosts doxorubicin efficacy against sensitive and resistant ovarian cancer cells. Eur J Pharm Biopharm 2023; 183:119-131. [PMID: 36632905 DOI: 10.1016/j.ejpb.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/10/2023]
Abstract
Ovarian cancer (OC) is characterised by the highest mortality of all gynaecological malignancies, frequent relapses, and the development of resistance to drug therapy. Sonodynamic therapy (SDT) is an innovative anticancer approach that combines a chemical/drug (sonosensitizer) with low-intensity ultrasound (US), which are both harmless per sé, with the sonosensitizer being acoustically activated, thus yielding localized cytotoxicity often via reactive oxygen species (ROS) generation. Doxorubicin (Doxo) is a potent chemotherapeutic drug that has also been recommended as a first-line treatment against OC. This research work aims to investigate whether Doxo can be used at very low concentrations, in order to avoid its significant side effects, as a sonosensitiser under US exposure to promote cancer cell death in Doxo non-resistant (A2780/WT) and Doxo resistant (A2780/ADR) human OC cell lines. Moreover, since recurrence is an important issue in OC, we have also investigated whether the proposed SDT with Doxo induces immunogenic cell death (ICD) and thus hinders OC recurrence. Our results show that the sonodynamic anticancer approach with Doxo is effective in both A2780/WT and A2780/ADR cell lines, and that it proceeds via a ROS-dependent mechanism of action and immune sensitization that is based on the activation of the ICD pathway.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Manuela Macrì
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Via Cherasco 15, 10126 Torino, Italy
| | - Andrea Francovich
- Institut de Physiologie, Université de Fribourg, Fribourg 1770, Switzerland
| | - Gianni Durando
- National Institute of Metrological Research (INRIM), Strada delle Cacce 91, 10135 Torino, Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy.
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy
| |
Collapse
|
5
|
Zhu Z, Zhou X, Du H, Cloer EW, Zhang J, Mei L, Wang Y, Tan X, Hepperla AJ, Simon JM, Cook JG, Major MB, Dotti G, Liu P. STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203718. [PMID: 36445063 PMCID: PMC9875608 DOI: 10.1002/advs.202203718] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/10/2022] [Indexed: 05/02/2023]
Abstract
STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.
Collapse
Affiliation(s)
- Zhichuan Zhu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xin Zhou
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Hongwei Du
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Erica W. Cloer
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jiaming Zhang
- Department of Oral MedicineInfection and ImmunityHarvard School of Dental MedicineBostonMA02115USA
| | - Liu Mei
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Ying Wang
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Xianming Tan
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of BiostatisticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Austin J. Hepperla
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeremy M. Simon
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Carolina Institute for Developmental DisabilitiesThe University of North Carolina at Chapel HillChapel HillNC27599USA
- UNC Neuroscience CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of GeneticsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jeanette Gowen Cook
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Michael B. Major
- Department of Cell Biology and PhysiologyDepartment of OtolaryngologyWashington University in St. LouisSt. LouisMO63130USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNC27599USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNC27599USA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNC27599USA
| |
Collapse
|
6
|
ROS-Related miRNAs Regulate Immune Response and Chemoradiotherapy Sensitivity in Hepatocellular Carcinoma by Comprehensive Analysis and Experiment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4713518. [PMID: 35585886 PMCID: PMC9110211 DOI: 10.1155/2022/4713518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) plays an essential role in the development of cancer. Here, we chose ROS-related miRNAs for consensus clustering analysis and ROS score construction. We find that ROS is extremely associated with prognosis, tumor immune microenvironment (TIME), gene mutations, N6-methyladenosine (m6A) methylation, and chemotherapy sensitivity in hepatocellular carcinoma (HCC). Mechanistically, ROS may affect the prognosis of HCC patients in numerous ways. Moreover, miR-210-3p and miR-106a-5p significantly increased the ROS level and stagnated cell cycle at G2/M in HCC; the results were more obvious in cells after ionizing radiation (IR). Finally, the two miRNAs suppressed cell proliferation, migration, and invasion and promoted apoptosis in huh7 and smmc7721 cells. It indicated that ROS might affect the prognosis of HCC patients through immune response and increase the sensitivity of HCC patients to radiotherapy and chemotherapy.
Collapse
|
7
|
Disrupted mitochondrial homeostasis coupled with mitotic arrest generates antineoplastic oxidative stress. Oncogene 2022; 41:427-443. [PMID: 34773075 PMCID: PMC8755538 DOI: 10.1038/s41388-021-02105-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) serve as critical signals in various cellular processes. Excessive ROS cause cell death or senescence and mediates the therapeutic effect of many cancer drugs. Recent studies showed that ROS increasingly accumulate during G2/M arrest, the underlying mechanism, however, has not been fully elucidated. Here, we show that in cancer cells treated with anticancer agent TH287 or paclitaxel that causes M arrest, mitochondria accumulate robustly and produce excessive mitochondrial superoxide, which causes oxidative DNA damage and undermines cell survival and proliferation. While mitochondrial mass is greatly increased in cells arrested at M phase, the mitochondrial function is compromised, as reflected by reduced mitochondrial membrane potential, increased SUMOylation and acetylation of mitochondrial proteins, as well as an increased metabolic reliance on glycolysis. CHK1 functional disruption decelerates cell cycle, spares the M arrest and attenuates mitochondrial oxidative stress. Induction of mitophagy and blockade of mitochondrial biogenesis, measures that reduce mitochondrial accumulation, also decelerate cell cycle and abrogate M arrest-coupled mitochondrial oxidative stress. These results suggest that cell cycle progression and mitochondrial homeostasis are interdependent and coordinated, and that impairment of mitochondrial homeostasis and the associated redox signaling may mediate the antineoplastic effect of the M arrest-inducing chemotherapeutics. Our findings provide insights into the fate of cells arrested at M phase and have implications in cancer therapy.
Collapse
|
8
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
9
|
Huang R, Chen H, Liang J, Li Y, Yang J, Luo C, Tang Y, Ding Y, Liu X, Yuan Q, Yu H, Ye Y, Xu W, Xie X. Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy. J Cancer 2021; 12:5543-5561. [PMID: 34405016 PMCID: PMC8364652 DOI: 10.7150/jca.54699] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) play a dual role in the initiation, development, suppression, and treatment of cancer. Excess ROS can induce nuclear DNA, leading to cancer initiation. Not only that, but ROS also inhibit T cells and natural killer cells and promote the recruitment and M2 polarization of macrophages; consequently, cancer cells escape immune surveillance and immune defense. Furthermore, ROS promote tumor invasion and metastasis by triggering epithelial-mesenchymal transition in tumor cells. Interestingly, massive accumulation of ROS inhibits tumor growth in two ways: (1) by blocking cancer cell proliferation by suppressing the proliferation signaling pathway, cell cycle, and the biosynthesis of nucleotides and ATP and (2) by inducing cancer cell death via activating endoplasmic reticulum stress-, mitochondrial-, and P53- apoptotic pathways and the ferroptosis pathway. Unfortunately, cancer cells can adapt to ROS via a self-adaption system. This review highlighted the bidirectional regulation of ROS in cancer. The study further discussed the application of massively accumulated ROS in cancer treatment. Of note, the dual role of ROS in cancer and the self-adaptive ability of cancer cells should be taken into consideration for cancer prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xiang Xie
- Public Center of Experimental Technology, The school of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| |
Collapse
|
10
|
Chong SJF, Iskandar K, Lai JXH, Qu J, Raman D, Valentin R, Herbaux C, Collins M, Low ICC, Loh T, Davids M, Pervaiz S. Serine-70 phosphorylated Bcl-2 prevents oxidative stress-induced DNA damage by modulating the mitochondrial redox metabolism. Nucleic Acids Res 2021; 48:12727-12745. [PMID: 33245769 PMCID: PMC7736805 DOI: 10.1093/nar/gkaa1110] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
Bcl-2 phosphorylation at serine-70 (S70pBcl2) confers resistance against drug-induced apoptosis. Nevertheless, its specific mechanism in driving drug-resistance remains unclear. We present evidence that S70pBcl2 promotes cancer cell survival by acting as a redox sensor and modulator to prevent oxidative stress-induced DNA damage and execution. Increased S70pBcl2 levels are inversely correlated with DNA damage in chronic lymphocytic leukemia (CLL) and lymphoma patient-derived primary cells as well as in reactive oxygen species (ROS)- or chemotherapeutic drug-treated cell lines. Bioinformatic analyses suggest that S70pBcl2 is associated with lower median overall survival in lymphoma patients. Empirically, sustained expression of the redox-sensitive S70pBcl2 prevents oxidative stress-induced DNA damage and cell death by suppressing mitochondrial ROS production. Using cell lines and lymphoma primary cells, we further demonstrate that S70pBcl2 reduces the interaction of Bcl-2 with the mitochondrial complex-IV subunit-5A, thereby reducing mitochondrial complex-IV activity, respiration and ROS production. Notably, targeting S70pBcl2 with the phosphatase activator, FTY720, is accompanied by an enhanced drug-induced DNA damage and cell death in CLL primary cells. Collectively, we provide a novel facet of the anti-apoptotic Bcl-2 by demonstrating that its phosphorylation at serine-70 functions as a redox sensor to prevent drug-induced oxidative stress-mediated DNA damage and execution with potential therapeutic implications.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kartini Iskandar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jolin Xiao Hui Lai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Jianhua Qu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Rebecca Valentin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Herbaux
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mary Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ivan Cherh Chiet Low
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University of Healthcare System (NUHS), Singapore, Singapore
| | - Matthew Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.,NUS Graduate School of Integrative Science and Engineering, NUS, Singapore, Singapore.,National University Cancer Institute, NUHS, Singapore, Singapore.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
11
|
Rubini E, Paglia G, Cannella D, Macone A, Di Sotto A, Gullì M, Altieri F, Eufemi M. β-Hexachlorocyclohexane: A Small Molecule with a Big Impact on Human Cellular Biochemistry. Biomedicines 2020; 8:biomedicines8110505. [PMID: 33207735 PMCID: PMC7698094 DOI: 10.3390/biomedicines8110505] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Organochlorine pesticides (OCPs) belong to a heterogeneous class of organic compounds blacklisted by the Stockholm Convention in 2009 due to their harmful impact on human health. Among OCPs, β-hexachlorocyclohexane (β-HCH) is one of the most widespread and, at the same time, poorly studied environmental contaminant. Due to its physicochemical properties, β-HCH is the most hazardous of all HCH isomers; therefore, clarifying the mechanisms underlying its molecular action could provide further elements to draw the biochemical profile of this OCP. For this purpose, LNCaP and HepG2 cell lines were used as models and were subjected to immunoblot, immunofluorescence, and RT-qPCR analysis to follow the expression and mRNA levels, together with the distribution, of key biomolecules involved in the intracellular responses to β-HCH. In parallel, variations in redox homeostasis and cellular bioenergetic profile were monitored to have a complete overview of β-HCH effects. Obtained results strongly support the hypothesis that β-HCH could be an endocrine disrupting chemical as well as an activator of AhR signaling, promoting the establishment of an oxidative stress condition and a cellular metabolic shift toward aerobic glycolysis. In this altered context, β-HCH can also induce DNA damage through H2AX phosphorylation, demonstrating its multifaceted mechanisms of action.
Collapse
Affiliation(s)
- Elisabetta Rubini
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (G.P.); (A.M.); (F.A.)
- PhotoBioCatalysis Unit–Bio-Cat, Interfaculty School of Bioengineers, Université libre de Bruxelles, CP245, Bd du Triomphe, 1050 Brussels, Belgium;
| | - Giuliano Paglia
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (G.P.); (A.M.); (F.A.)
| | - David Cannella
- PhotoBioCatalysis Unit–Bio-Cat, Interfaculty School of Bioengineers, Université libre de Bruxelles, CP245, Bd du Triomphe, 1050 Brussels, Belgium;
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (G.P.); (A.M.); (F.A.)
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.D.S.); (M.G.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.D.S.); (M.G.)
| | - Fabio Altieri
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (G.P.); (A.M.); (F.A.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (G.P.); (A.M.); (F.A.)
- Correspondence: ; Tel.: +39-06-4991-0598
| |
Collapse
|
12
|
Molinaro C, Martoriati A, Pelinski L, Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers (Basel) 2020; 12:E2863. [PMID: 33027952 PMCID: PMC7601307 DOI: 10.3390/cancers12102863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Organometallics, such as copper compounds, are cancer chemotherapeutics used alone or in combination with other drugs. One small group of copper complexes exerts an effective inhibitory action on topoisomerases, which participate in the regulation of DNA topology. Copper complexes inhibitors of topoisomerases 1 and 2 work by different molecular mechanisms, analyzed herein. They allow genesis of DNA breaks after the formation of a ternary complex, or act in a catalytic mode, often display DNA intercalative properties and ROS production, and sometimes display dual effects. These amplified actions have repercussions on the cell cycle checkpoints and death effectors. Copper complexes of topoisomerase inhibitors are analyzed in a broader synthetic view and in the context of cancer cell mutations. Finally, new emerging treatment aspects are depicted to encourage the expansion of this family of highly active anticancer drugs and to expend their use in clinical trials and future cancer therapy.
Collapse
Affiliation(s)
- Caroline Molinaro
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Alain Martoriati
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| | - Lydie Pelinski
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France;
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; (C.M.); (A.M.)
| |
Collapse
|
13
|
He P, Li Z, Xu F, Ru G, Huang Y, Lin E, Peng S. AMPK Activity Contributes to G2 Arrest and DNA Damage Decrease via p53/p21 Pathways in Oxidatively Damaged Mouse Zygotes. Front Cell Dev Biol 2020; 8:539485. [PMID: 33015052 PMCID: PMC7505953 DOI: 10.3389/fcell.2020.539485] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
In zygotes, the capacity of G2/M checkpoint and DNA repair mechanisms to respond to DNA damage varies depending on different external stressors. In our previous studies, we found that mild oxidative stress induced a G2/M phase delay in mouse zygotes fertilized in vitro, due to the activation of the spindle assembly checkpoint. However, it is unclear whether the G2/M phase delay involves G2 arrest, triggered by activation of the G2/M checkpoint, and whether AMPK, a highly conserved cellular energy sensor, is involved in G2 arrest and DNA damage repair in mouse zygotes. Here, we found that mouse zygotes treated with 0.03 mM H2O2 at 7 h post-insemination (G1 phase), went into G2 arrest in the first cleavage. Furthermore, phosphorylated H2AX, a specific DNA damage and repair marker, can be detected since the early S phase. We also observed that oxidative stress induced phosphorylation and activation of AMPK. Oxidative stress-activated AMPK first localized in the cytoplasm of the mouse zygotes in the late G1 phase and then translocated to the nucleus from the early S phase. Overall, most of the activated AMPK accumulated in the nuclei of mouse zygotes arrested in the G2 phase. Inhibition of AMPK activity with Compound C and SBI-0206965 abolished oxidative stress-induced G2 arrest, increased the activity of CDK1, and decreased the induction of cell cycle regulatory proteins p53 and p21. Moreover, bypassing G2 arrest after AMPK inhibition aggravated oxidative stress-induced DNA damage at M phase, increased the apoptotic rate of blastocysts, and reduced the formation rate of 4-cell embryos and blastocysts. Our results suggest the G2/M checkpoint and DNA repair mechanisms are operative in coping with mild oxidative stress-induced DNA damage. Further, AMPK activation plays a vital role in the regulation of the oxidative stress-induced G2 arrest through the inhibition of CDK1 activity via p53/p21 pathways, thereby facilitating the repair of DNA damage and the development and survival of oxidative stress-damaged embryos. Our study provides insights into the molecular mechanisms underlying oxidative-stress induced embryonic developmental arrest, which is crucial for the development of novel strategies to ensure viable embryo generation.
Collapse
Affiliation(s)
- Pei He
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Key Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zhiling Li
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Guangdong Key Laboratory of Medical Molecular Imaging, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Zhiling Li,
| | - Feng Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Gaizhen Ru
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yue Huang
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - En Lin
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sanfeng Peng
- Department of Reproductive Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
14
|
Srinivas US, Tan BWQ, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol 2019; 25:101084. [PMID: 30612957 PMCID: PMC6859528 DOI: 10.1016/j.redox.2018.101084] [Citation(s) in RCA: 1299] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are a group of short-lived, highly reactive, oxygen-containing molecules that can induce DNA damage and affect the DNA damage response (DDR). There is unequivocal pre-clinical and clinical evidence that ROS influence the genotoxic stress caused by chemotherapeutics agents and ionizing radiation. Recent studies have provided mechanistic insight into how ROS can also influence the cellular response to DNA damage caused by genotoxic therapy, especially in the context of Double Strand Breaks (DSBs). This has led to the clinical evaluation of agents modulating ROS in combination with genotoxic therapy for cancer, with mixed success so far. These studies point to context dependent outcomes with ROS modulator combinations with Chemotherapy and radiotherapy, indicating a need for additional pre-clinical research in the field. In this review, we discuss the current knowledge on the effect of ROS in the DNA damage response, and its clinical relevance.
Collapse
Affiliation(s)
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Haematology-Oncology, National University Hospital, Singapore.
| |
Collapse
|
15
|
Curcumin restores hepatic epigenetic changes in propylthiouracil(PTU) Induced hypothyroid male rats: A study on DNMTs, MBDs, GADD45a, C/EBP-β and PCNA. Food Chem Toxicol 2019; 123:169-180. [DOI: 10.1016/j.fct.2018.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
|
16
|
An evaluation of genotoxicity in human neuronal-type cells subjected to oxidative stress under an extremely low frequency pulsed magnetic field. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 775-776:31-7. [DOI: 10.1016/j.mrgentox.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 12/28/2022]
|
17
|
Montero J, Dutta C, van Bodegom D, Weinstock D, Letai A. p53 regulates a non-apoptotic death induced by ROS. Cell Death Differ 2013; 20:1465-74. [PMID: 23703322 PMCID: PMC3792438 DOI: 10.1038/cdd.2013.52] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/28/2013] [Accepted: 04/11/2013] [Indexed: 02/08/2023] Open
Abstract
DNA damage induced by reactive oxygen species and several chemotherapeutic agents promotes both p53 and poly (ADP-ribose) polymerase (PARP) activation. p53 activation is well known to regulate apoptotic cell death, whereas robust activation of PARP-1 has been shown to promote a necrotic cell death associated with energetic collapse. Here we identify a novel role for p53 in modulating PARP enzymatic activity to regulate necrotic cell death. In mouse embryonic fibroblasts, human colorectal and human breast cancer cell lines, loss of p53 function promotes resistance to necrotic, PARP-mediated cell death. We therefore demonstrate that p53 can regulate both necrotic and apoptotic cell death, mutations or deletions in this tumor-suppressor protein may be selected by cancer cells to provide not only their resistance to apoptosis but also to necrosis, and explain resistance to chemotherapy and radiation even when it kills via non-apoptotic mechanisms.
Collapse
Affiliation(s)
- J Montero
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA
| | - C Dutta
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA
| | - D van Bodegom
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA
| | - D Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA
| | - A Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Chuang JY, Chang WC, Hung JJ. Hydrogen peroxide induces Sp1 methylation and thereby suppresses cyclin B1 via recruitment of Suv39H1 and HDAC1 in cancer cells. Free Radic Biol Med 2011; 51:2309-18. [PMID: 22036763 DOI: 10.1016/j.freeradbiomed.2011.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022]
Abstract
Sp1 is an important transcription factor for a number of genes that regulate cell growth and survival. Sp1 is an anchor protein that recruits other factors to regulate its target genes positively or negatively, but the mechanism of its functional switch by which positive or negative coregulators are recruited is not clear. In this study, we found that Sp1 could be methylated and that methylation was maintained by treatment with pargyline, a lysine-specific demethylase 1 (LSD1) inhibitor or knock LSD1 down directly. Hydrogen peroxide treatment increased the methylation of Sp1 and repressed Sp1 transcriptional activity. Investigation of the mechanism by which methylation decreased Sp1 activity found that methylation of Sp1 increased the recruitment of Su(var) 3-9 homologue 1(Suv39H1) and histone deacetylase 1 (HDAC1) to the cyclin B1 promoter, resulting in deacetylation and methylation of histone H3 and subsequent downregulation of cyclin B1. Finally, downregulation of cyclin B1 led to cell cycle arrest at the G2 phase. These results show that methylation of Sp1 causes it to act as a negative regulator by recruiting Suv39H1 and HDAC1 to induce chromatin remodeling. This finding that methylation acts as a functional switch provides new insight into the modulation of Sp1 transcriptional activity.
Collapse
Affiliation(s)
- Jian-Ying Chuang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
19
|
Poehlmann A, Habold C, Walluscheck D, Reissig K, Bajbouj K, Ullrich O, Hartig R, Gali-Muhtasib H, Diestel A, Roessner A, Schneider-Stock R. Cutting edge: Chk1 directs senescence and mitotic catastrophe in recovery from G₂ checkpoint arrest. J Cell Mol Med 2011; 15:1528-41. [PMID: 20716119 PMCID: PMC3823197 DOI: 10.1111/j.1582-4934.2010.01143.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Besides the well-understood DNA damage response via establishment of G2 checkpoint arrest, novel studies focus on the recovery from arrest by checkpoint override to monitor cell cycle re-entry. The aim of this study was to investigate the role of Chk1 in the recovery from G2 checkpoint arrest in HCT116 (human colorectal cancer) wt, p53–/– and p21–/– cell lines following H2O2 treatment. Firstly, DNA damage caused G2 checkpoint activation via Chk1. Secondly, overriding G2 checkpoint led to (i) mitotic slippage, cell cycle re-entry in G1 and subsequent G1 arrest associated with senescence or (ii) premature mitotic entry in the absence of p53/p21WAF1 causing mitotic catastrophe. We revealed subtle differences in the initial Chk1-involved G2 arrest with respect to p53/p21WAF1: absence of either protein led to late G2 arrest instead of the classic G2 arrest during checkpoint initiation, and this impacted the release back into the cell cycle. Thus, G2 arrest correlated with downstream senescence, but late G2 arrest led to mitotic catastrophe, although both cell cycle re-entries were linked to upstream Chk1 signalling. Chk1 knockdown deciphered that Chk1 defines long-term DNA damage responses causing cell cycle re-entry. We propose that recovery from oxidative DNA damage-induced G2 arrest requires Chk1. It works as cutting edge and navigates cells to senescence or mitotic catastrophe. The decision, however, seems to depend on p53/p21WAF1. The general relevance of Chk1 as an important determinant of recovery from G2 checkpoint arrest was verified in HT29 colorectal cancer cells.
Collapse
Affiliation(s)
- Angela Poehlmann
- Department of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Back JH, Rezvani HR, Zhu Y, Guyonnet-Duperat V, Athar M, Ratner D, Kim AL. Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent Inhibition of sirtuin 1. J Biol Chem 2011; 286:19100-8. [PMID: 21471201 DOI: 10.1074/jbc.m111.240598] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA-damaging agents can induce premature senescence in cancer cells, which contributes to the static effects of cancer. However, senescent cancer cells may re-enter the cell cycle and lead to tumor relapse. Understanding the mechanisms that control the viability of senescent cells may be helpful in eliminating these cells before they can regrow. Treating human squamous cell carcinoma (SCC) cells with the anti-cancer compounds, resveratrol and doxorubicin, triggered p53-independent premature senescence by invoking oxidative stress-mediated DNA damage. This process involved the mTOR-dependent phosphorylation of SIRT1 at serine 47, resulting in the inhibition of the deacetylase activity of SIRT1. SIRT1 phosphorylation caused concomitant increases in p65/RelA NF-κB acetylation and the expression of an anti-apoptotic Bfl-1/A1. SIRT1 physically interacts with the mTOR-Raptor complex, and a single amino acid substitution in the TOS (TOR signaling) motif in the SIRT1 prevented Ser-47 phosphorylation and Bfl-1/A1 induction. The pharmacologic and genetic inhibition of mTOR, unphosphorylatable S47A, or F474A TOS mutants restored SIRT1 deacetylase activity, blocked Bfl-1/A1 induction, and sensitized prematurely senescent SCC cells for apoptosis. We further show that the treatment of UVB-induced SCCs with doxorubicin transiently stabilized tumor growth but was followed by tumor regrowth upon drug removal in p53(+/-)/SKH-1 mice. The subsequent treatment of stabilized SCCs with rapamycin decreased tumor size and induced caspase-3 activation. These results demonstrate that the inhibition of SIRT1 by mTOR fosters survival of DNA damage-induced prematurely senescent SCC cells via Bfl-1/A1 in the absence of functional p53.
Collapse
Affiliation(s)
- Jung Ho Back
- Department of Dermatology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Jiang Z, Jin S, Yalowich JC, Brown KD, Rajasekaran B. The mismatch repair system modulates curcumin sensitivity through induction of DNA strand breaks and activation of G2-M checkpoint. Mol Cancer Ther 2010; 9:558-68. [PMID: 20145018 PMCID: PMC2837109 DOI: 10.1158/1535-7163.mct-09-0627] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The highly conserved mismatch (MMR) repair system corrects postreplicative errors and modulates cellular responses to genotoxic agents. Here, we show that the MMR system strongly influences cellular sensitivity to curcumin. Compared with MMR-proficient cells, isogenically matched MMR-deficient cells displayed enhanced sensitivity to curcumin. Similarly, cells suppressed for MLH1 or MSH2 expression by RNA interference displayed increased curcumin sensitivity. Curcumin treatment generated comparable levels of reactive oxygen species and the mutagenic adduct 8-oxo-guanine in MMR-proficient and MMR-deficient cells; however, accumulation of gammaH2AX foci, a marker for DNA double-strand breaks (DSB), occurred only in MMR-positive cells in response to curcumin treatment. Additionally, MMR-positive cells showed activation of Chk1 and induction of G(2)-M cell cycle checkpoint following curcumin treatment and inhibition of Chk1 by UCN-01 abrogated Chk1 activation and heightened apoptosis in MMR-proficient cells. These results indicate that curcumin triggers the accumulation of DNA DSB and induction of a checkpoint response through a MMR-dependent mechanism. Conversely, in MMR-compromised cells, curcumin-induced DSB is significantly blunted, and as a result, cells fail to undergo cell cycle arrest, enter mitosis, and die through mitotic catastrophe. The results have potential therapeutic value, especially in the treatment of tumors with compromised MMR function.
Collapse
Affiliation(s)
- Zhihua Jiang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
22
|
Yasuda S, Yogosawa S, Izutani Y, Nakamura Y, Watanabe H, Sakai T. Cucurbitacin B induces G2
arrest and apoptosis via
a reactive oxygen species-dependent mechanism in human colon adenocarcinoma SW480 cells. Mol Nutr Food Res 2009; 54:559-65. [DOI: 10.1002/mnfr.200900165] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
McCrann DJ, Yang D, Chen H, Carroll S, Ravid K. Upregulation of Nox4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle 2009; 8:902-8. [PMID: 19221493 PMCID: PMC2744814 DOI: 10.4161/cc.8.6.7900] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our recent reports indicated that polyploidization of aortic vascular smooth muscle cells (VSMC) serves as a biomarker for aging, and that the polyploid state is linked to a higher incidence of senescence in vivo. Here, we found that NADPH oxidase 4 (Nox4) expression is augmented in VSMC from aortas of old rats and that Nox4 levels are increased in polyploid VSMC in comparison to diploid cells in vivo. Seeking to determine if Nox4 upregulation plays a causal role in the accumulation of polyploid cells, we performed ploidy analysis on primary VSMC transduced with Nox4 adenovirus. We observed a consistent accumulation of polyploid cells and a concomitant decrease in the percentage of diploid cells in Nox4 overexpressing cells in comparison to controls or to cells overexpressing dominant negative Nox4. Further exploration of this phenomenon in VSMC cultures identified a Nox4-induced decrease in the chromosome passenger protein, survivin, whose absence and mislocalization during polyploidization was previously shown to induce VSMC polyploidy. Taken together, our study is the first to show increased Nox4 levels in VSMC during aging, and to demonstrate its role in induction of polyploidy in this lineage.
Collapse
Affiliation(s)
- Donald J McCrann
- Department of Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
24
|
Romagnoli S, Fasoli E, Vaira V, Falleni M, Pellegrini C, Catania A, Roncalli M, Marchetti A, Santambrogio L, Coggi G, Bosari S. Identification of potential therapeutic targets in malignant mesothelioma using cell-cycle gene expression analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:762-70. [PMID: 19218339 DOI: 10.2353/ajpath.2009.080721] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cell-cycle defects are responsible for cancer onset and growth. We studied the expression profile of 60 genes involved in cell cycle in a series of malignant mesotheliomas (MMs), normal pleural tissues, and MM cell cultures using a quantitative polymerase chain reaction-based, low-density array. Nine genes were significantly deregulated in MMs compared with normal controls. Seven genes were overexpressed in MMs, including the following: CDKN2C, cdc6, cyclin H, cyclin B1, CDC2, FoxM1, and Chk1, whereas Ube1L and cyclin D2 were underexpressed. Chk1 is a principal mediator of cell-cycle checkpoints in response to genotoxic stress. We confirmed the overexpression of Chk1 in an independent set of 87 MMs by immunohistochemistry using tissue microarrays. To determine whether Chk1 down-regulation would affect cell-cycle control and cell survival, we transfected either control or Chk1 siRNA into two mesothelioma cell lines and a nontumorigenic (Met5a) cell line. Results showed that Chk1 knockdown increased the apoptotic fraction of MM cells and induced an S phase block in Met5a cells. Furthermore, Chk1 silencing sensitized p53-null MM cells to both an S phase block and apoptosis in the presence of doxorubicin. Our results indicate that cell-cycle gene expression analysis by quantitative polymerase chain reaction can identify potential targets for novel therapies. Chk1 knockdown could provide a novel therapeutic approach to arrest cell-cycle progression in MM cells, thus increasing the rate of cell death.
Collapse
Affiliation(s)
- Solange Romagnoli
- Division of Pathology, Department of Medicine, Surgery, and Dentistry, University of Milan Medical School, A.O.S. Paolo, Via A. Di Rudinì 8, 20142 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Burns DM, Richter JD. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2009; 22:3449-60. [PMID: 19141477 DOI: 10.1101/gad.1697808] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytoplasmic polyadenylation element-binding protein (CPEB) stimulates polyadenylation and translation in germ cells and neurons. Here, we show that CPEB-regulated translation is essential for the senescence of human diploid fibroblasts. Knockdown of CPEB causes skin and lung cells to bypass the M1 crisis stage of senescence; reintroduction of CPEB into the knockdown cells restores a senescence-like phenotype. Knockdown cells that have bypassed senescence undergo little telomere erosion. Surprisingly, knockdown of exogenous CPEB that induced a senescence-like phenotype results in the resumption of cell growth. CPEB knockdown cells have fewer mitochondria than wild-type cells and resemble transformed cells by having reduced respiration and reactive oxygen species (ROS), normal ATP levels, and enhanced rates of glycolysis. p53 mRNA contains cytoplasmic polyadenylation elements in its 3' untranslated region (UTR), which promote polyadenylation. In CPEB knockdown cells, p53 mRNA has an abnormally short poly(A) tail and a reduced translational efficiency, resulting in an approximately 50% decrease in p53 protein levels. An shRNA-directed reduction in p53 protein by about 50% also results in extended cellular life span, reduced respiration and ROS, and increased glycolysis. Together, these results suggest that CPEB controls senescence and bioenergetics in human cells at least in part by modulating p53 mRNA polyadenylation-induced translation.
Collapse
Affiliation(s)
- David M Burns
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
26
|
Wang X, Wang J, Lin S, Geng Y, Wang J, Jiang B. Sp1 is involved in H2O2-induced PUMA gene expression and apoptosis in colorectal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:44. [PMID: 18811981 PMCID: PMC2570657 DOI: 10.1186/1756-9966-27-44] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 09/24/2008] [Indexed: 12/22/2022]
Abstract
Background Reactive oxygen species (ROS) are intricately involved in tumor progression through effects on proliferation, apoptosis and metastasis. But how ROS works is not well understood. In previous study, we found PUMA (p53-upregulated modulator of apoptosis) played an important role in oxaliplatin-induced apoptosis. In the present study, we detect the role of PUMA in H2O2-induced apoptosis in colorectal cancer cells and investigate the potential mechanism. Methods and results We showed that H2O2 stimulated the activity of a 493 PUMA promoter reporter gene construct. Suppressing the expression of PUMA abrogated H2O2-induced apoptosis. Deletion of the Sp1-binding sites also decreased the transactivation of PUMA promoter by H2O2. Furthermore, induction of PUMA promoter activity by H2O2 was abrogated by PFT-α (a p53 inhibitor) and Mithramycin A (a Sp1 inhibitor), as compared with PFT-α alone. To determine the effects of Sp1 on PUMA in H2O2-induced apoptosis, procaspase 3, procaspase 9 and procaspase 8 expression was assessed. Mithramycin A and PFT-α also reduced H2O2-induced apoptosis synergistically and abrogated the expression of procaspase 3 and procaspase 9. Conclusion Our findings suggest that PUMA plays a role in H2O2-induced apoptosis, and that Sp1 works together with p53 in the regulation of H2O2-induced PUMA expression and apoptosis in colorectal cancer cells. This study provides important regulatory insights in the mechanisms of ROS in colorectal cancer.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Chk1 is a protein kinase that is the effector molecule in the G2 DNA damage checkpoint. Chk1 homologues have an N-terminal kinase domain, and a C-terminal domain of approximately 200 amino acids that contains activating phosphorylation sites for the ATM/R kinases, though the mechanism of activation remains unknown. Structural studies of the human Chk1 kinase domain show an open conformation; the activity of the kinase domain alone is substantially higher in vitro than full-length Chk1, and coimmunoprecipitation studies suggest the C-terminal domain may contain an autoinhibitory activity. However, we show that truncation of the C-terminal domain inactivates Chk1 in vivo. We identify additional mutations within the C-terminal domain that activate ectopically expressed Chk1 without the need for activating phosphorylation. When expressed from the endogenous locus, activated alleles show a temperature-sensitive loss of function, suggesting these mutations confer a semiactive state to the protein. Intragenic suppressors of these activated alleles cluster to regions in the catalytic domain on the face of the protein that interacts with substrate, suggesting these are the regions that interact with the C-terminal domain. Thus, rather than being an autoinhibitory domain, the C-terminus of Chk1 also contains domains critical for adopting an active configuration.
Collapse
Affiliation(s)
- Ana Kosoy
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
28
|
Pichiorri F, Ishii H, Okumura H, Trapasso F, Wang Y, Huebner K. Molecular parameters of genome instability: Roles of fragile genes at common fragile sites. J Cell Biochem 2008; 104:1525-33. [DOI: 10.1002/jcb.21560] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82:273-99. [PMID: 18443763 DOI: 10.1007/s00204-008-0304-z] [Citation(s) in RCA: 326] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 04/03/2008] [Indexed: 02/06/2023]
Abstract
Oxidative stress can be defined as the imbalance between cellular oxidant species production and antioxidant capability. Reactive oxygen species (ROS) are involved in a variety of different cellular processes ranging from apoptosis and necrosis to cell proliferation and carcinogenesis. In fact, molecular events, such as induction of cell proliferation, decreased apoptosis, and oxidative DNA damage have been proposed to be critically involved in carcinogenesis. Carcinogenicity and aging are characterized by a set of complex endpoints, which appear as a series of molecular reactions. ROS can modify many intracellular signaling pathways including protein phosphatases, protein kinases, and transcription factors, suggesting that the majority of the effects of ROS are through their actions on signaling pathways rather than via non-specific damage of macromolecules; however, exact mechanisms by which redox status induces cells to proliferate or to die, and how oxidative stress can lead to processes evoking tumor formation are still under investigation.
Collapse
|
30
|
Abstract
In response to DNA damage, cells activate checkpoints to delay cell cycle progression and allow time for completion of DNA repair before commitment to S-phase or mitosis. During G2, many proteins collaborate to activate Chk1, an effector protein kinase that ensures the mitotic cyclin-dependent kinase remains in an inactive state. This checkpoint is ancient in origin and highly conserved from fission yeast to humans. Work from many groups has led to a detailed description of the spatiotemporal control of signaling events leading to Chk1 activation. However, to survive DNA damage in G2, the checkpoint must be inactivated to allow resumption of cell cycling and entry into mitosis. Though only beginning to be understood, here we review current data regarding checkpoint termination signals acting on Chk1 and its' upstream regulators.
Collapse
Affiliation(s)
- Teresa M. Calonge
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York NY 10029
| | - Matthew J. O'Connell
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York NY 10029
| |
Collapse
|
31
|
McCrann DJ, Nguyen HG, Jones MR, Ravid K. Vascular smooth muscle cell polyploidy: An adaptive or maladaptive response? J Cell Physiol 2008; 215:588-92. [DOI: 10.1002/jcp.21363] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Youn CK, Song PI, Kim MH, Kim JS, Hyun JW, Choi SJ, Yoon SP, Chung MH, Chang IY, You HJ. Human 8-oxoguanine DNA glycosylase suppresses the oxidative stress induced apoptosis through a p53-mediated signaling pathway in human fibroblasts. Mol Cancer Res 2007; 5:1083-98. [PMID: 17951408 DOI: 10.1158/1541-7786.mcr-06-0432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) is the main defense enzyme against mutagenic effects of cellular 7,8-dihydro-8-oxoguanine. In this study, we investigated the biological role of hOGG1 in DNA damage-related apoptosis induced by hydrogen peroxide (H(2)O(2))-derived oxidative stress. The down-regulated expression of hOGG1 by its small interfering RNA prominently triggers the H(2)O(2)-induced apoptosis in human fibroblasts GM00637 and human lung carcinoma H1299 cells via the p53-mediated apoptotic pathway. However, the apoptotic responses were specifically inhibited by hOGG1 overexpression. The p53-small interfering RNA transfection into the hOGG1-deficient GM00637 markedly inhibited the H(2)O(2)-induced activation of p53-downstream target proteins such as p21, Noxa, and caspase-3/7, which eventually resulted in the increased cell viability. Although the cell viability of hOGG1-knockdown H1299 p53 null cells was similar to that of the hOGG1 wild-type H1299, after the overexpression of p53 the hOGG1-knockdown H1299 showed the significantly decreased cell viability compared with that of the hOGG1 wild-type H1299 at the same experimental condition. Moreover, the array comparative genome hybridization analyses revealed that the hOGG1-deficient GM00637 showed more significant changes in the copy number of large regions of their chromosomes in response to H(2)O(2) treatment. Therefore, we suggest that although p53 is a major modulator of apoptosis, hOGG1 also plays a pivotal role in protecting cells against the H(2)O(2)-induced apoptosis at the upstream of the p53-dependent pathway to confer a survival advantage to human fibroblasts and human lung carcinomas through maintaining their genomic stability.
Collapse
Affiliation(s)
- Cha-Kyung Youn
- Korean DNA Repair Research Center, Department of Pharmacology, Chosun University School of Medicine, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Caino MC, Oliva JL, Jiang H, Penning TM, Kazanietz MG. Benzo[a]pyrene-7,8-dihydrodiol promotes checkpoint activation and G2/M arrest in human bronchoalveolar carcinoma H358 cells. Mol Pharmacol 2007; 71:744-50. [PMID: 17114299 DOI: 10.1124/mol.106.032078] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are potent carcinogens that require metabolic activation inside cells. The proximate carcinogens PAH-diols can be converted to o-quinones by aldo-keto reductases (AKRs) or to diol-epoxides by cytochrome P450 (P450) enzymes. We assessed the effect of benzo[a]pyrene-7,8-dihydrodiol (BPD) on proliferation in p53-null bronchoalveolar carcinoma H358 cells. BPD treatment led to a significant inhibition of proliferation and arrest in G2/M in H358 cells. The relative contribution of the AKR and P450 pathways to cell cycle arrest was assessed. Overexpression of AKR1A1 did not affect cell proliferation or cell cycle progression, and benzo[a]pyrene-7,8-dione did not cause any noticeable effect on cell growth, suggesting that AKR1A1 metabolic products were not involved in the antiproliferative effect of BPD. On the other hand, blockade of P450 induction or inhibition of P450 activity greatly impaired the effect of BPD. Moreover, P450 induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin significantly enhanced the antiproliferative effect of BPD. Mechanistic studies revealed that BPD caused a DNA damage response, Chk1 activation, and accumulation of phospho-Cdc2 (Tyr15) in H358 cells, effects that were impaired by an ataxia-telangectasia mutated (ATM)/ATM-related (ATR) inhibitor. Similar results were observed in human bronchoepithelial BEAS-2B cells, arguing for analogous mechanisms in tumorigenic and immortalized nontumorigenic cells lacking functional p53. Our data suggest that a p53-independent pathway operates in lung epithelial cells in response to BPD that involves P450 induction and subsequent activation of the ATR/ATM/Chk1 damage check-point pathway and cell cycle arrest in G2/M.
Collapse
Affiliation(s)
- M Cecilia Caino
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | | | |
Collapse
|
34
|
Hardy M, Chalier F, Ouari O, Finet JP, Rockenbauer A, Kalyanaraman B, Tordo P. Mito-DEPMPO synthesized from a novel NH2-reactive DEPMPO spin trap: a new and improved trap for the detection of superoxide. Chem Commun (Camb) 2007:1083-5. [PMID: 17325813 DOI: 10.1039/b616076j] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mito-DEPMPO, a new DEPMPO analogue bearing a triphenylphosphonium group, was synthesized via a novel NH2-reactive DEPMPO. The half-life of the Mito-DEPMPO superoxide adduct was estimated to be ca. 40 min. Using Mito-DEPMPO, reactive oxygen species generated in intact mitochondria were detected and characterized by EPR.
Collapse
Affiliation(s)
- Micael Hardy
- SREP, UMR 6517 CNRS et Universités Aix-Marseille 1, 2 et 3, Centre de Saint Jérôme, 13013 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Cannizzaro A, Verga Falzacappa CV, Martinelli M, Misiti S, Brunetti E, Bucci B. O2/3 exposure inhibits cell progression affecting cyclin B1/cdk1 activity in SK-N-SH while induces apoptosis in SK-N-DZ neuroblastoma cells. J Cell Physiol 2007; 213:115-25. [PMID: 17477375 DOI: 10.1002/jcp.21097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In search for innovative therapeutic agents for children neuroblastoma, the oxygen therapy could be considered an alternative anti-tumoral treatment. Given the physiochemical properties of O(2/3) gas mixture including fairly low aqueous solubility and spreading, and the interesting perspective of hyperoxia, we analyzed the inhibitory effect of O(2/3) treatment on two human neuroblastoma cell lines (SK-N-SH and SK-N-DZ). In this study, we demonstrated that O(2/3) treatment was able to induce cell growth inhibition and cell cycle perturbation in both cell lines. We observed an arrest at G(2) phase, accompanied by an alteration in the expression and localization of cyclin B1/cdk1 complex and a reduction in its activity in SK-N-SH cells. This reduction was consistent with the increase in both Wee1 and chk1 protein levels. On the contrary, O(2/3) induced apoptosis in SK-N-DZ cells via caspase 3 activation and Poly ADP-ribose polymerase-1 (PARP) cleavage, associated with an increase in the pro-apoptotic Bax protein. Consequently, we considered the possibility of improving the responsiveness to chemotherapeutic agents such as Cisplatin, Etoposide, and Gemcitabine in combination with O(2/3) treatment. The combined treatments produced a stronger cell inhibitory effect than Cisplatin and Etoposide used alone in SK-N-SH cells. On the contrary, the combination data were not significantly different from O(2/3) treatment alone in SK-N-DZ cells, thus suggesting that the obtained changes in cell growth inhibition were due to the effect of O(2/3) alone.
Collapse
Affiliation(s)
- A Cannizzaro
- AFAR-Centro Ricerca S. Pietro, Fatebenefratelli Hospital, Roma, Italy
| | | | | | | | | | | |
Collapse
|