1
|
Wang T, Sun N, Ma Y, Zhang S. Recent Advances in the Development of Sigma Receptor (Radio)Ligands and Their Application in Tumors. ACS Pharmacol Transl Sci 2025; 8:951-977. [PMID: 40242588 PMCID: PMC11997895 DOI: 10.1021/acsptsci.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer ranks among the top triumvirate leading causes of human deaths worldwide. The pathological mechanisms are notably intricate, demonstrating proliferative and metastatic capabilities, which complicate therapeutic interventions. The sigma-1 receptor (σ1R) plays a crucial role in tumor survival and migration, while the sigma-2 receptor (σ2R) is intimately associated with tumor proliferation. This review encapsulated the investigation concerning σ1R and σ2R in neoplasms and rigorously summarized the ligands and radio-ligands development and their tumor applications, such as antitumor cell proliferation and PET/SPECT imaging in tumors. A comprehensive classification discussion was undertaken regarding the chemical structures and emphasized the possibility of dual/multitargeted ligands. Ultimately, we discussed the effects of chiral structures and the pharmacological characteristics of ligands on affinity and pharmacokinetic features in vivo, particularly concerning radiopharmaceuticals. This review functions as a beneficial resource, fostering ligand deployment and stimulating the generation of innovative ideas for developing innovative radiopharmaceuticals.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
- School
of Medical Imaging, North Sichuan Medical
College, NanChong 637100, China
- Department
of Nuclear Medicine, Affiliated Hospital
of North Sichuan Medical College, North Sichuan Medical College, NanChong 637000, China
| | - Na Sun
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Yanxi Ma
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Song Zhang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| |
Collapse
|
2
|
Fotakopoulos G, Gatos C, Georgakopoulou VE, Christodoulidis G, Kagkouras I, Trakas N, Foroglou N. Exploring the Role of Sigma Receptors in the Treatment of Cancer: A Narrative Review. Cureus 2024; 16:e70946. [PMID: 39502961 PMCID: PMC11537387 DOI: 10.7759/cureus.70946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the association of sigma receptors (SRs) and their selective ligands (because the molecular characteristics of the same SRs, particularly sigma-2 receptor {S2R}, are not completely clear) in carcinogenesis, their potential use as antitumor agents, and their great utility in tumor imaging. The ion channels and transporters enhance the cell's ability to adapt to the metabolic conditions encountered in the tumor tissue. The high expression of SRs in the proliferating cells compared with those at rest indicates that this is a significant clinical biomarker for determining the proliferative status of solid tumors using functional PET imaging techniques. The association of SRs in the pathophysiology of cancer cells is a result of the high concentration of S1R and S2R binding sites observed in various tumor cell lines and tissues. It would also be remarkable to determine if SRs are involved in metastasis and other metastatic cell behaviors such as adhesion, secretion, motility, and penetration. An absolute challenge for research in this field is to develop an integrated model that describes the molecular mechanisms of sigma receptors, incorporating their known biological and pathophysiological roles.
Collapse
Affiliation(s)
| | - Charalabos Gatos
- Neurosurgery, General University Hospital of Larissa, Larissa, GRC
| | | | | | | | | | - Nikolaos Foroglou
- Neurosurgery, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, GRC
| |
Collapse
|
3
|
Munguia-Galaviz FJ, Miranda-Diaz AG, Cardenas-Sosa MA, Echavarria R. Sigma-1 Receptor Signaling: In Search of New Therapeutic Alternatives for Cardiovascular and Renal Diseases. Int J Mol Sci 2023; 24:ijms24031997. [PMID: 36768323 PMCID: PMC9916216 DOI: 10.3390/ijms24031997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Cardiovascular and renal diseases are among the leading causes of death worldwide, and regardless of current efforts, there is a demanding need for therapeutic alternatives to reduce their progression to advanced stages. The stress caused by diseases leads to the activation of protective mechanisms in the cell, including chaperone proteins. The Sigma-1 receptor (Sig-1R) is a ligand-operated chaperone protein that modulates signal transduction during cellular stress processes. Sig-1R interacts with various ligands and proteins to elicit distinct cellular responses, thus, making it a potential target for pharmacological modulation. Furthermore, Sig-1R ligands activate signaling pathways that promote cardioprotection, ameliorate ischemic injury, and drive myofibroblast activation and fibrosis. The role of Sig-1R in diseases has also made it a point of interest in developing clinical trials for pain, neurodegeneration, ischemic stroke, depression in patients with heart failure, and COVID-19. Sig-1R ligands in preclinical models have significantly beneficial effects associated with improved cardiac function, ventricular remodeling, hypertrophy reduction, and, in the kidney, reduced ischemic damage. These basic discoveries could inform clinical trials for heart failure (HF), myocardial hypertrophy, acute kidney injury (AKI), and chronic kidney disease (CKD). Here, we review Sig-1R signaling pathways and the evidence of Sig-1R modulation in preclinical cardiac and renal injury models to support the potential therapeutic use of Sig-1R agonists and antagonists in these diseases.
Collapse
Affiliation(s)
- Francisco Javier Munguia-Galaviz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Division de Ciencias de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzman 49000, Jalisco, Mexico
| | - Alejandra Guillermina Miranda-Diaz
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Miguel Alejandro Cardenas-Sosa
- Departamento de Fisiologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Raquel Echavarria
- CONACYT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Jalisco, Mexico
- Correspondence:
| |
Collapse
|
4
|
Chomchoei C, Brimson JM, Brimson S. Repurposing fluoxetine to treat lymphocytic leukemia: Apoptosis induction, sigma-1 receptor upregulation, inhibition of IL-2 cytokine production, and autophagy induction. Expert Opin Ther Targets 2022; 26:1087-1097. [PMID: 36620917 DOI: 10.1080/14728222.2022.2166829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Childhood cancer has a cure rate of as low as 15% in low-income countries, suggesting a need for cheaper treatment options. Fluoxetine is a thoroughly safety-tested drug that may target the sigma-1 receptor (σ1-R). RESEARCH DESIGN AND METHODS Using the human leukemic cell line, Jurkat, we investigated the effects of fluoxetine on cell survival using XTT and trypan blue staining. Apoptosis was measured using AnnexinV/PI staining and western blot analysis of caspase cleavage. IL-2 secretion of Jurkat cells in response to PHA/PMA was measured using ELISA, and the expression of AKT/pAKT and the σ1-R were measured using western blotting. RESULTS Fluoxetine-induced apoptosis and G-2 cell cycle arrest. Fluoxetine reduced IL-2 secretion dose-dependently and could be further potentiated by σ1-R antagonist BD1047 (P < 0.05). Fluoxetine inhibited pAKT six hours post-treatment (P < 0.05). The expression of the σ1-R showed a significant increase between 12 to 48 hours in Jurkat cells (P < 0.05). At the same time, there was a substantial increase in autophagy. CONCLUSIONS Fluoxetine may have the potential for acute leukemia treatment. Co-treatment with a σ1-R antagonist increases fluoxetine-induced apoptosis, possibly targeting AKT phosphorylation and autophagy activation.
Collapse
Affiliation(s)
- Chanichon Chomchoei
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - James Michael Brimson
- Innovation and International Affair, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products for Neuroprotection and Anti-ageing Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Fallica AN, Pittalà V, Modica MN, Salerno L, Romeo G, Marrazzo A, Helal MA, Intagliata S. Recent Advances in the Development of Sigma Receptor Ligands as Cytotoxic Agents: A Medicinal Chemistry Perspective. J Med Chem 2021; 64:7926-7962. [PMID: 34076441 PMCID: PMC8279423 DOI: 10.1021/acs.jmedchem.0c02265] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Since their discovery
as distinct receptor proteins, the specific
physiopathological role of sigma receptors (σRs) has been deeply
investigated. It has been reported that these proteins, classified
into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation,
and tumor aggressiveness. As a result, the development of selective
σR ligands with potential antitumor properties attracted significant
attention as an emerging theme in cancer research. This perspective
deals with the recent advances of σR ligands as novel cytotoxic
agents, covering articles published between 2010 and 2020. An up-to-date
description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic
activities has been provided, including major pharmacophore models
and comprehensive structure–activity relationships for each
main class of σR ligands.
Collapse
Affiliation(s)
- Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Maria N Modica
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Romeo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Mohamed A Helal
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, sixth of October, Giza 12578, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Sebastiano Intagliata
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
6
|
Pontisso I, Combettes L. Role of Sigma-1 Receptor in Calcium Modulation: Possible Involvement in Cancer. Genes (Basel) 2021; 12:139. [PMID: 33499031 PMCID: PMC7911422 DOI: 10.3390/genes12020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.
Collapse
Affiliation(s)
- Ilaria Pontisso
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| | - Laurent Combettes
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
7
|
Oyer HM, Sanders CM, Kim FJ. Small-Molecule Modulators of Sigma1 and Sigma2/TMEM97 in the Context of Cancer: Foundational Concepts and Emerging Themes. Front Pharmacol 2019; 10:1141. [PMID: 31695608 PMCID: PMC6816035 DOI: 10.3389/fphar.2019.01141] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
There are two known subtypes of the so-called sigma receptors, Sigma1 and Sigma2. Sigma1 (encoded by the SIGMAR1 gene and also known as Sigma-1 receptor, S1R) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein that allosterically modulates the activity of its associated proteins. Sigma2, recently identified as transmembrane protein 97 (TMEM97), is an integral membrane protein implicated in cellular cholesterol homeostasis. A number of publications over the past two decades have suggested a role for both sigma proteins in tumor biology. Although there is currently no clinically used anti-cancer drug that targets Sigma1 or Sigma2/TMEM97, a growing body of evidence supports the potential of small-molecule compounds with affinity for these proteins, putative sigma ligands, as therapeutic agents to treat cancer. In preclinical models, these compounds have been reported to inhibit cancer cell proliferation, survival, adhesion, and migration; furthermore, they have been demonstrated to suppress tumor growth, to alleviate cancer-associated pain, and to exert immunomodulatory properties. Here, we will address the known knowns and the known unknowns of Sigma1 and Sigma2/TMEM97 ligand actions in the context of cancer. This review will highlight key discoveries and published evidence in support of a role for sigma proteins in cancer and will discuss several fundamental questions regarding the physiological roles of sigma proteins in cancer and sigma ligand mechanism of action.
Collapse
Affiliation(s)
- Halley M Oyer
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Christina M Sanders
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Felix J Kim
- Department of Cancer Biology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Tesei A, Cortesi M, Zamagni A, Arienti C, Pignatta S, Zanoni M, Paolillo M, Curti D, Rui M, Rossi D, Collina S. Sigma Receptors as Endoplasmic Reticulum Stress "Gatekeepers" and their Modulators as Emerging New Weapons in the Fight Against Cancer. Front Pharmacol 2018; 9:711. [PMID: 30042674 PMCID: PMC6048940 DOI: 10.3389/fphar.2018.00711] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the interest aroused by sigma receptors (SRs) in the area of oncology, their role in tumor biology remains enigmatic. The predominant subcellular localization and main site of activity of SRs are the endoplasmic reticulum (ER). Current literature data, including recent findings on the sigma 2 receptor subtype (S2R) identity, suggest that SRs may play a role as ER stress gatekeepers. Although SR endogenous ligands are still unknown, a wide series of structurally unrelated compounds able to bind SRs have been identified. Currently, the identification of novel antiproliferative molecules acting via SR interaction is a challenging task for both academia and industry, as shown by the fact that novel anticancer drugs targeting SRs are in the preclinical-stage pipeline of pharmaceutical companies (i.e., Anavex Corp. and Accuronix). So far, no clinically available anticancer drugs targeting SRs are still available. The present review focuses literature advancements and provides a state-of-the-art overview of SRs, with emphasis on their involvement in cancer biology and on the role of SR modulators as anticancer agents. Findings from preclinical studies on novel anticancer drugs targeting SRs are presented in brief.
Collapse
Affiliation(s)
- Anna Tesei
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Alice Zamagni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Chiara Arienti
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Sara Pignatta
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRCCS), Meldola, Italy
| | - Mayra Paolillo
- Pharmacology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Curti
- Laboratory of Cellular and Molecular Neuropharmacology, Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, Pavia, Italy
| | - Marta Rui
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Rossi
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Simona Collina
- Medicinal Chemistry and Pharmaceutical Technology Section, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Arena E, Dichiara M, Floresta G, Parenti C, Marrazzo A, Pittalà V, Amata E, Prezzavento O. Novel Sigma-1 receptor antagonists: from opioids to small molecules: what is new? Future Med Chem 2018; 10:231-256. [PMID: 29185346 DOI: 10.4155/fmc-2017-0164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Sigma-1 (σ1) receptor has been identified as a chaperone protein that interacts with other proteins, such as N-methyl-D-aspartate (NMDA) and opioid receptors, modulating their activity. σ1 receptor antagonists have been developed to obtain useful compounds for the treatment of psychoses, pain, drug abuse and cancer. Some interesting compounds such as E-5842 (5) and MS-377 (24), haloperidol and piperazine derivatives, respectively, were endowed with high affinity for σ1 receptors (Ki σ1 = 4 and 73 nM; Ki σ2 = 220 and 6900, respectively). They were developed for the treatment of psychotic disorders and 5 also underwent Phase II clinical trials suggesting interesting potential therapeutic applications. Here, σ1 receptor antagonists have been grouped based on chemical structure and reviewed according to structure-activity relationship and potential therapeutic role.
Collapse
Affiliation(s)
- Emanuela Arena
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Maria Dichiara
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
- Department of Chemical Sciences, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Agostino Marrazzo
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Emanuele Amata
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| | - Orazio Prezzavento
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A Doria 6, 95125 Catania, Italy
| |
Collapse
|
10
|
Weng TY, Tsai SYA, Su TP. Roles of sigma-1 receptors on mitochondrial functions relevant to neurodegenerative diseases. J Biomed Sci 2017; 24:74. [PMID: 28917260 PMCID: PMC5603014 DOI: 10.1186/s12929-017-0380-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone that resides mainly at the mitochondrion-associated endoplasmic reticulum (ER) membrane (called the MAMs) and acts as a dynamic pluripotent modulator in living systems. At the MAM, the Sig-1R is known to play a role in regulating the Ca2+ signaling between ER and mitochondria and in maintaining the structural integrity of the MAM. The MAM serves as bridges between ER and mitochondria regulating multiple functions such as Ca2+ transfer, energy exchange, lipid synthesis and transports, and protein folding that are pivotal to cell survival and defense. Recently, emerging evidences indicate that the MAM is critical in maintaining neuronal homeostasis. Thus, given the specific localization of the Sig-1R at the MAM, we highlight and propose that the direct or indirect regulations of the Sig-1R on mitochondrial functions may relate to neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). In addition, the promising use of Sig-1R ligands to rescue mitochondrial dysfunction-induced neurodegeneration is addressed.
Collapse
Affiliation(s)
- Tzu-Yu Weng
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Triad Bldg. suite 3512, 333 Cassell Drive, Baltimore, MD 21224 USA
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shang-Yi Anne Tsai
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Triad Bldg. suite 3512, 333 Cassell Drive, Baltimore, MD 21224 USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, IRP, NIDA/NIH, Triad Bldg. suite 3512, 333 Cassell Drive, Baltimore, MD 21224 USA
| |
Collapse
|
11
|
Georgiadis MO, Karoutzou O, Foscolos AS, Papanastasiou I. Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity. Molecules 2017; 22:E1408. [PMID: 28841173 PMCID: PMC6151391 DOI: 10.3390/molecules22091408] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023] Open
Abstract
Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy.
Collapse
Affiliation(s)
- Markos-Orestis Georgiadis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Olga Karoutzou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Angeliki-Sofia Foscolos
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| | - Ioannis Papanastasiou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece.
| |
Collapse
|
12
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
13
|
Nicholson H, Mesangeau C, McCurdy CR, Bowen WD. Sigma-2 Receptors Play a Role in Cellular Metabolism: Stimulation of Glycolytic Hallmarks by CM764 in Human SK-N-SH Neuroblastoma. J Pharmacol Exp Ther 2016; 356:232-43. [PMID: 26574517 PMCID: PMC4746495 DOI: 10.1124/jpet.115.228387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022] Open
Abstract
Sigma-2 receptors are attractive antineoplastic targets due to their ability to induce apoptosis and their upregulation in rapidly proliferating cancer cells compared with healthy tissue. However, this role is inconsistent with overexpression in cancer, which is typically associated with upregulation of prosurvival factors. Here, we report a novel metabolic regulatory function for sigma-2 receptors. CM764 [6-acetyl-3-(4-(4-(2-amino-4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one] binds with Ki values of 86.6 ± 2.8 and 3.5 ± 0.9 nM at the sigma-1 and sigma-2 receptors, respectively. CM764 increased reduction of MTT [3-[4,5 dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide] in human SK-N-SH neuroblastoma compared with untreated cells, an effect not due to proliferation. This effect was attenuated by five different sigma antagonists, including CM572 [3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)-6-isothiocyanatobenzo[d]oxazol-2(3H)-one], which has no significant affinity for sigma-1 receptors. This effect was also observed in MG-63 osteosarcoma and HEK293T cells, indicating that this function is not exclusive to neuroblastoma or to cancer cells. CM764 produced an immediate, robust, and transient increase in cytosolic calcium, consistent with sigma-2 receptor activation. Additionally, we observed an increase in the total NAD(+)/NADH level and the ATP level in CM764-treated SK-N-SH cells compared with untreated cells. After only 4 hours of treatment, basal levels of reactive oxygen species were reduced by 90% in cells treated with CM764 over untreated cells, and HIF1α and VEGF levels were increased after 3-24 hours of treatment. These data indicate that sigma-2 receptors may play a role in induction of glycolysis, representing a possible prosurvival function for the sigma-2 receptor that is consistent with its upregulation in cancer cells compared with healthy tissue.
Collapse
Affiliation(s)
- Hilary Nicholson
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| | - Christophe Mesangeau
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| | - Christopher R McCurdy
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| | - Wayne D Bowen
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island (H.N., W.D.B.); and Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (C.M., C.R.M.)
| |
Collapse
|
14
|
Happy M, Dejoie J, Zajac CK, Cortez B, Chakraborty K, Aderemi J, Sauane M. Sigma 1 Receptor antagonist potentiates the anti-cancer effect of p53 by regulating ER stress, ROS production, Bax levels, and caspase-3 activation. Biochem Biophys Res Commun 2015; 456:683-8. [PMID: 25511708 DOI: 10.1016/j.bbrc.2014.12.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023]
Abstract
Over the last years, many improvements have been made in the treatment of breast cancer; however, novel and less toxic therapies are still needed, especially for relapsing and chemo-resistant patients. Here, we analyzed the therapeutic potential of p53 and Rimcazole, a Sigma 1 Receptor antagonist. Rimcazole and p53 are being evaluated in preclinical and clinical trials, respectively. While p53 is a promising antitumor therapeutic agent, antagonists of Sigma 1 Receptor also inhibit tumor cell survival and induce apoptosis. Our current study demonstrates for the first time the synergistic effect of p53 in combination with the Sigma 1 Receptor antagonist Rimcazole. Furthermore, we show that shRNA knockdown of Sigma 1 Receptor in combination with p53, lead to a similar synergistic effect, and that this synergistic effect, in breast cancer growth suppression occurs independent of p53 status. Furthermore, this combination treatment induced ER stress, p38 MAPK activation, ROS production, and proteins involved in apoptosis (caspases-3, Bax) in breast cancer cells. Combining these therapeutic anti-cancer molecules provides an innovative approach for potentially treating human breast cancer.
Collapse
Affiliation(s)
- Mireille Happy
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | - Jordan Dejoie
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | - Cynthia K Zajac
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | - Briseida Cortez
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | - Karabi Chakraborty
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | - Joseph Aderemi
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States
| | - Moira Sauane
- Department of Biological Sciences Herbert H. Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468, United States.
| |
Collapse
|
15
|
Rybczynska AA, de Bruyn M, Ramakrishnan NK, de Jong JR, Elsinga PH, Helfrich W, Dierckx RA, van Waarde A. In Vivo Responses of Human A375M Melanoma to a σ Ligand: 18F-FDG PET Imaging. J Nucl Med 2013; 54:1613-20. [DOI: 10.2967/jnumed.113.122655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Crottès D, Guizouarn H, Martin P, Borgese F, Soriani O. The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol 2013; 4:175. [PMID: 23882221 PMCID: PMC3712323 DOI: 10.3389/fphys.2013.00175] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
Originally mistaken as an opioid receptor, the sigma-1 receptor (Sig1R) is a ubiquitous membrane protein that has been involved in many cellular processes. While the precise function of Sig1R has long remained mysterious, recent studies have shed light on its role and the molecular mechanisms triggered. Sig1R is in fact a stress-activated chaperone mainly associated with the ER-mitochondria interface that can regulate cell survival through the control of calcium homeostasis. Sig1R functionally regulates ion channels belonging to various molecular families and it has thus been involved in neuronal plasticity and central nervous system diseases. Interestingly, Sig1R is frequently expressed in tumors but its function in cancer has not been yet clarified. In this review, we discuss the current understanding of Sig1R. We suggest herein that Sig1R shapes cancer cell electrical signature upon environmental conditions. Thus, Sig1R may be used as a novel therapeutic target to specifically abrogate pro-invasive functions of ion channels in cancer tissue.
Collapse
Affiliation(s)
- David Crottès
- Université de Nice, UMR 7277 Nice, France ; Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091, Université de Nice Nice, France
| | | | | | | | | |
Collapse
|
17
|
Luedtke RR, Perez E, Yang SH, Liu R, Vangveravong S, Tu Z, Mach RH, Simpkins JW. Neuroprotective effects of high affinity Σ1 receptor selective compounds. Brain Res 2012; 1441:17-26. [PMID: 22285434 PMCID: PMC4054954 DOI: 10.1016/j.brainres.2011.12.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/08/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
We previously reported that the antipsychotic drug haloperidol, a multifunctional D2-like dopamine and sigma receptor subtype antagonist, has neuroprotective properties. In this study we further examined the association between neuroprotection and receptor antagonism by evaluating a panel of novel compounds with varying affinity at sigma and D2-like dopamine receptors. These compounds were evaluated using an in vitro cytotoxicity assay that utilizes a hippocampal-derived cell line, HT-22, in the presence or absence of varying concentrations (5 to 20 mM) of glutamate. While haloperidol was found to be a potent neuroprotective agent in this in vitro cell assay, the prototypic sigma 1 receptor agonist (+)-pentazocine was found not to be neuroprotective. Subsequently, the potency for the neuroprotection of HT-22 cells was evaluated for a) three SV series indoles which have nMolar affinity at D2-like receptors but varying affinity at sigma 1 receptor and b) two benzyl phenylacetamides sigma 1 receptor selective compounds which bind with low affinity at D2-like receptors but have nMolar affinity for the sigma 1 receptor. We observed that cytoprotection correlated with the affinity of the compounds for sigma 1 receptors. Based upon results from the HT-22 cell-based in vitro assay, two phenylacetamides, LS-127 and LS-137, were further evaluated in vivo using a transient middle cerebral artery occlusion (t-MCAO) model of stroke. At a dose of 100 μg/kg, both LS-127 and LS-137 attenuated infarct volume by approximately 50%. These studies provide further evidence that sigma 1 receptor selective compounds can provide neuroprotection in cytotoxic situations. These results also demonstrate that sigma 1 receptor selective benzyl phenylacetamides are candidate pharmacotherapeutic agents that could be used to minimize neuronal death after a stroke or head trauma.
Collapse
Affiliation(s)
- Robert R Luedtke
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Megalizzi V, Le Mercier M, Decaestecker C. Sigma receptors and their ligands in cancer biology: overview and new perspectives for cancer therapy. Med Res Rev 2010; 32:410-27. [DOI: 10.1002/med.20218] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Marie Le Mercier
- Department of Pathology; Erasme University Hospital; Brussels Belgium
| | - Christine Decaestecker
- Laboratory of Toxicology; Institute of Pharmacy; Brussels Belgium
- Laboratory of Image Synthesis and Analysis; Faculty of Applied Sciences; Université Libre de Bruxelles (ULB); Brussels Belgium
| |
Collapse
|
19
|
Hayashi T, Su TP. Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010; 51:381-98. [PMID: 20213551 PMCID: PMC3155710 DOI: 10.1007/978-90-481-8622-8_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite substantial data elucidating the roles of cholesterol in lipid rafts at the plasma membrane, the roles of cholesterol and related lipids in lipid raft microdomains at the level of subcellular membrane, such as the endoplasmic reticulum (ER) membrane, remain less understood. Growing evidence, however, begins to unveil the importance of cholesterol and lipids on the lipid raft at the ER membrane. A few ER proteins including the sigma-1 receptor chaperone were identified at lipid raft-like microdomains of the ER membrane. The sigma-1 receptor, which is highly expressed at a subdomain of ER membrane directly apposing mitochondria and known as the mitochondria-associated ER membrane or MAM, has been shown to associate with steroids as well as cholesterol. The sigma-1 receptor has been implicated in ER lipid metabolisms/transports, lipid raft reconstitution at the plasma membrane, trophic factor signalling, cellular differentiation, and cellular protection against beta-amyloid-induced neurotoxicity. Recent studies on sigma-1 receptor chaperones and other ER proteins clearly suggest that cholesterol, in concert with those ER proteins, may regulate several important functions of the ER including folding, degradation, compartmentalization, and segregation of ER proteins, and the biosynthesis of sphingolipids.
Collapse
Affiliation(s)
- Teruo Hayashi
- National Institute on Drug Abuse, Department of Health and Human Services, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
20
|
Abstract
Originally considered an enigmatic protein, the sigma-1 receptor has recently been identified as a unique ligand-regulated molecular chaperone in the endoplasmic reticulum of cells. This discovery causes us to look back at the many proposed roles of this receptor, even before its molecular function was identified, in many diseases such as methamphetamine or cocaine addiction, amnesia, pain, depression, Alzheimer's disease, stroke, retinal neuroprotection, HIV infection, and cancer. In this review, we examine the reports that have clearly shown an agonist-antagonist relationship regarding sigma-1 receptors in models of those diseases and also review the relatively known mechanisms of action of sigma-1 receptors in an attempt to spur the speculation of readers on how the sigma-1 receptor at the endoplasmic reticulum might relate to so many diseases. We found that the most prominent action of sigma-1 receptors in biological systems including cell lines, primary cultures, and animals is the regulation and modulation of voltage-regulated and ligand-gated ion channels, including Ca(2+)-, K(+)-, Na(+), Cl(-), and SK channels, and NMDA and IP3 receptors. We found that the final output of the action of sigma-1 receptor agonists is to inhibit all above-mentioned voltage-gated ion channels, while they potentiate ligand-gated channels. The inhibition or potentiation induced by agonists is blocked by sigma-1 receptor antagonists. Other mechanisms of action of sigma-1 receptors, and to some extent those of sigma-2 receptors, were also considered. We conclude that the sigma-1 and sigma-2 receptors represent potential fruitful targets for therapeutic developments in combating many human diseases.
Collapse
Affiliation(s)
- Tangui Maurice
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases, INSERM U. 710, 34095 Montpellier Cedex 5, France
- University of Montpellier II, EPHE, CC 105, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
- EPHE, 75017 Paris, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA-NIH, Suite 3304, 333 Cassell Drive, Baltimore, MD 21224
| |
Collapse
|
21
|
Abstract
Chaperones are proteins that assist the correct folding of other protein clients either when the clients are being synthesized or at their functional localities. Chaperones are responsible for certain diseases. The sigma-1 receptor is recently identified as a receptor chaperone whose activity can be activated/deactivated by specific ligands. Under physiological conditions, the sigma-1 receptor chaperones the functional IP3 receptor at the endoplasmic reticulum and mitochondrion interface to ensure proper Ca(2+) signaling from endoplasmic reticulum into mitochondrion. However, under pathological conditions whereby cells encounter enormous stress that results in the endoplasmic reticulum losing its global Ca(2+) homeostasis, the sigma-1 receptor translocates and counteracts the arising apoptosis. Thus, the sigma-1 receptor is a receptor chaperone essential for the metabotropic receptor signaling and for the survival against cellular stress. The sigma-1 receptor has been implicated in many diseases including addiction, pain, depression, stroke, and cancer. Whether the chaperone activity of the sigma-1 receptor attributes to those diseases awaits further investigation.
Collapse
Affiliation(s)
- Shang-Yi Tsai
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Teruo Hayashi
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Tomohisa Mori
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| |
Collapse
|
22
|
Hayashi T, Su TP. An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 2008; 12:45-58. [PMID: 18076369 DOI: 10.1517/14728222.12.1.45] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sigma1 receptor is an intracellular molecule that shares no homology with any mammalian proteins. sigma1 receptors normally localize at the endoplasmic reticulum and regulate a variety of signal transductions including intracellular Ca2+ dynamics and neurotrophic factor signaling. In the brain, sigma1 receptors are known to regulate the activity of diverse ion channels via protein-protein interactions. Accumulated evidences strongly indicate that the activation/upregulation of sigma1 receptors promotes the neuronal differentiation as well as a robust antiapoptotic action. In animals, sigma1 receptor agonists exhibit an antidepressant-like action. Furthermore, the agonists enhanced neuronal survival eventhough they were administered several hours after a brain ischemia. Thus, primary clinical targets of sigma1 receptor ligands are proposed to include stroke, neurodegenerative disorders and depression. Ligands for the sigma1 receptor may constitute a new class of therapeutic drugs targeting an endoplasmic reticular protein.
Collapse
Affiliation(s)
- Teruo Hayashi
- IRP, NIDA-NIH, Cellular Pathobiology Unit, Development and Plasticity Section, Cellular Neurobiology Research Branch, Room 3418, Triad building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|