1
|
Jones TM, Espitia CM, Ooi A, Bauman JE, Carew JS, Nawrocki ST. Targeted CUL4A inhibition synergizes with cisplatin to yield long-term survival in models of head and neck squamous cell carcinoma through a DDB2-mediated mechanism. Cell Death Dis 2022; 13:350. [PMID: 35428778 PMCID: PMC9012827 DOI: 10.1038/s41419-022-04798-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
Abstract
Patients with late-stage and human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) continue to have a very poor prognosis. The development of more effective novel therapies that improve overall survival and overcome drug resistance is an urgent priority. Here we report that HNSCC tumors significantly overexpress NEDD8 and exhibit high sensitivity to the first-in-class NEDD8-activating enzyme (NAE) inhibitor pevonedistat. Additional studies established that disruption of NEDD8-mediated protein turnover with pevonedistat dramatically augmented cisplatin-induced DNA damage and apoptosis in HNSCC models. Further analysis revealed that the specific pevonedistat target CUL4A played an essential role in driving the synergy of the pevonedistat and cisplatin combination. Targeted inhibition of CUL4A resulted in significant downregulation in Damage Specific DNA binding protein 2 (DDB2), a DNA-damage recognition protein that promotes nucleotide excision repair and resistance to cisplatin. Silencing of CUL4A or DDB2 enhanced cisplatin-induced DNA damage and apoptosis in a manner similar to that of pevonedistat demonstrating that targeted inhibition of CUL4A may be a novel approach to augment cisplatin therapy. Administration of pevonedistat to mice bearing HNSCC tumors significantly decreased DDB2 expression in tumor cells, increased DNA damage and potently enhanced the activity of cisplatin to yield tumor regression and long-term survival of all animals. Our findings provide strong rationale for clinical investigation of CUL4A inhibition with pevonedistat as a novel strategy to augment the efficacy of cisplatin therapy for patients with HNSCC and identify loss of DDB2 as a key pharmacodynamic mediator controlling sensitivity to this regimen.
Collapse
Affiliation(s)
- Trace M Jones
- University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Aikseng Ooi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
2
|
Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair. PLoS Genet 2021; 17:e1009356. [PMID: 33544716 PMCID: PMC7891740 DOI: 10.1371/journal.pgen.1009356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/18/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
We have gained considerable insight into the mechanisms which recognize and repair DNA damage, but how they adapt to extreme environmental challenges remains poorly understood. Cavefish have proven to be fascinating models for exploring the evolution of DNA repair in the complete absence of UV-induced DNA damage and light. We have previously revealed that the Somalian cavefish Phreatichthys andruzzii, lacks photoreactivation repair via the loss of light, UV and ROS-induced photolyase gene transcription mediated by D-box enhancer elements. Here, we explore whether other systems repairing UV-induced DNA damage have been similarly affected in this cavefish model. By performing a comparative study using P. andruzzii and the surface-dwelling zebrafish, we provide evidence for a conservation of sunlight-regulated Nucleotide Excision Repair (NER). Specifically, the expression of the ddb2 gene which encodes a key NER recognition factor is robustly induced following exposure to light, UV and oxidative stress in both species. As in the case of the photolyase genes, D-boxes in the ddb2 promoter are sufficient to induce transcription in zebrafish. Interestingly, despite the loss of D-box-regulated photolyase gene expression in P. andruzzii, the D-box is required for ddb2 induction by visible light and oxidative stress in cavefish. However, in the cavefish ddb2 gene this D-box-mediated induction requires cooperation with an adjacent, highly conserved E2F element. Furthermore, while in zebrafish UV-induced ddb2 expression results from transcriptional activation accompanied by stabilization of the ddb2 mRNA, in P. andruzzii UV induces ddb2 expression exclusively via an increase in mRNA stability. Thus, we reveal plasticity in the transcriptional and post transcriptional mechanisms regulating the repair of sunlight-induced DNA damage under long-term environmental challenges.
Collapse
|
3
|
Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R, Johnson DG. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle 2020; 19:2260-2269. [PMID: 32787501 PMCID: PMC7513849 DOI: 10.1080/15384101.2020.1801190] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
The E2F1 transcription factor and RB tumor suppressor are best known for their roles in regulating the expression of genes important for cell cycle progression but, they also have transcription-independent functions that facilitate DNA repair at sites of damage. Depending on the type of DNA damage, E2F1 can recruit either the GCN5 or p300/CBP histone acetyltransferases to deposit different histone acetylation marks in flanking chromatin. At DNA double-strand breaks, E2F1 also recruits RB and the BRG1 ATPase to remodel chromatin and promote loading of the MRE11-RAD50-NBS1 complex. Knock-in mouse models demonstrate important roles for E2F1 post-translational modifications in regulating DNA repair and physiological responses to DNA damage. This review highlights how E2F1 moonlights in DNA repair, thus revealing E2F1 as a versatile protein that recruits many of the same chromatin-modifying enzymes to sites of DNA damage to promote repair that it recruits to gene promoters to regulate transcription.
Collapse
Affiliation(s)
- Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Renier Velez-Cruz
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Anup K. Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jie Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
4
|
Bellone RR, Liu J, Petersen JL, Mack M, Singer-Berk M, Drögemüller C, Malvick J, Wallner B, Brem G, Penedo MC, Lassaline M. A missense mutation in damage-specific DNA binding protein 2 is a genetic risk factor for limbal squamous cell carcinoma in horses. Int J Cancer 2017; 141:342-353. [PMID: 28425625 DOI: 10.1002/ijc.30744] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/04/2017] [Indexed: 01/30/2023]
Abstract
Squamous cell carcinoma (SCC) is the most common cancer of the equine eye, frequently originating at the limbus, with the potential to invade the cornea, cause visual impairment, and result in loss of the eye. Several breeds of horses have a high occurrence of limbal SCC implicating a genetic basis for limbal SCC predisposition. Pedigree analysis in the Haflinger breed supports a simple recessive mode of inheritance and a genome-wide association study (N = 23) identified a 1.5 Mb locus on ECA12 significantly associated with limbal SCC (Pcorrected = 0.04). Sequencing the most physiologically relevant gene from this locus, damage specific DNA binding protein 2 (DDB2), identified a missense mutation (c.1013 C > T p.Thr338Met) that was strongly associated with limbal SCC (P = 3.41 × 10-10 ). Genotyping 42 polymorphisms narrowed the ECA12 candidate interval to 483 kb but did not identify another variant that was more strongly associated. DDB2 binds to ultraviolet light damaged DNA and recruits other proteins to perform global genome nucleotide excision repair. Computational modeling predicts this mutation to be deleterious by altering conformation of the β loop involved in photolesion recognition. This DDB2 variant was also detected in two other closely related breeds with reported cases of ocular SCC, the Belgian and the Percheron, suggesting it may also be a SCC risk factor in these breeds. Furthermore, in humans xeroderma pigmentosum complementation group E, a disease characterized by sun sensitivity and increased risk of cutaneous SCC and melanomas, is explained by mutations in DDB2. Cross-species comparison remains to be further evaluated.
Collapse
Affiliation(s)
- Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Jiayin Liu
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska - Lincoln, Lincoln, NE
| | - Maura Mack
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Moriel Singer-Berk
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | | | - Julia Malvick
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Barbara Wallner
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Institute of Animal Breeding and Genetics, Vienna, Austria
| | - Gottfried Brem
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Institute of Animal Breeding and Genetics, Vienna, Austria
| | - M Cecilia Penedo
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Mary Lassaline
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
5
|
Avior Y, Lezmi E, Yanuka D, Benvenisty N. Modeling Developmental and Tumorigenic Aspects of Trilateral Retinoblastoma via Human Embryonic Stem Cells. Stem Cell Reports 2017; 8:1354-1365. [PMID: 28392220 PMCID: PMC5425613 DOI: 10.1016/j.stemcr.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide a platform for studying human development and understanding mechanisms underlying diseases. Retinoblastoma-1 (RB1) is a key regulator of cell cycling, of which biallelic inactivation initiates retinoblastoma, the most common congenital intraocular malignancy. We developed a model to study the role of RB1 in early development and tumor formation by generating RB1-null hESCs using CRISPR/Cas9. RB1−/− hESCs initiated extremely large teratomas, with neural expansions similar to those of trilateral retinoblastoma tumors, in which retinoblastoma is accompanied by intracranial neural tumors. Teratoma analysis further revealed a role for the transcription factor ZEB1 in RB1-mediated ectoderm differentiation. Furthermore, RB1−/− cells displayed mitochondrial dysfunction similar to poorly differentiated retinoblastomas. Screening more than 100 chemotherapies revealed an RB1–/–-specific cell sensitivity to carboplatin, exploiting their mitochondrial dysfunction. Together, our work provides a human pluripotent cell model for retinoblastoma and sheds light on developmental and tumorigenic roles of RB1. RB1-null hESCs were generated using CRISPR/Cas9 RB1−/− hESCs generate large, neural-enriched teratomas, possibly by ZEB1 activation RB1 inactivation triggers aberrant mitochondrial abundance and function Unbiased drug screening found that carboplatin specifically targets RB1-null cells
Collapse
Affiliation(s)
- Yishai Avior
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Elyad Lezmi
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Dorit Yanuka
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
6
|
MiR-141 Inhibits Gastric Cancer Proliferation by Interacting with Long Noncoding RNA MEG3 and Down-Regulating E2F3 Expression. Dig Dis Sci 2015; 60:3271-82. [PMID: 26233544 DOI: 10.1007/s10620-015-3782-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND MiR-141 and long noncoding RNA MEG3 have been independently reported to be tumor suppressor genes in various cancers. However, their expression has never been previously associated with gastric cancer (GC). AIMS To investigate the interaction of miR-141 and MEG3 in GC. METHODS QRT-PCR was used to detect miR-141, MEG3, and E2F3 in gastric tissues and cells. CCK-8 and flow cytometry analysis were used to detect cell functions. Western blot and luciferase activity were used to identify E2F3 as one of the direct targets of miR-141. RESULTS We found that expression of both miR-141 and MEG3 was significantly reduced in GC compared with levels in matched nonmalignant tissues. Positive correlation between miR-141 and MEG3 was found in both tumor tissues and control tissues. Furthermore, the over-expression of either miR-141 or MEG3 in 7901 and MKN45 cells inhibited cell proliferation and cell cycle progression and promoted cell apoptosis. E2F3 was identified as a target of miR-141, and its inhibition significantly reduced MEG3 expression. E2F3 expression was also found to be negatively associated with both MEG3 and miR-141. E2F3 over-expression partly reversed the changes caused by transfection of miR-141 mimic, and inhibition of miR-141 or MEG3 overrides MEG3- or miR-141-induced modulation of cell growth in GC. CONCLUSIONS These findings together suggested that miR-141 could be interacting with MEG3 and targeting E2F3, and these factors may play important anti-tumor effects in GC pathogenesis and provide therapeutic targets in the clinics.
Collapse
|
7
|
Biswas AK, Mitchell DL, Johnson DG. E2F1 responds to ultraviolet radiation by directly stimulating DNA repair and suppressing carcinogenesis. Cancer Res 2014; 74:3369-77. [PMID: 24741006 DOI: 10.1158/0008-5472.can-13-3216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In response to DNA damage, the E2F1 transcription factor is phosphorylated at serine 31 (serine 29 in mouse) by the ATM or ATR kinases, which promotes E2F1 protein stabilization. Phosphorylation of E2F1 also leads to the recruitment of E2F1 to sites of DNA damage, where it functions to enhance DNA repair. To study the role of this E2F1 phosphorylation event in vivo, a knock-in mouse model was generated, in which serine 29 was mutated to alanine. The S29A mutation impairs E2F1 stabilization in response to ultraviolet (UV) radiation and doxorubicin treatment, but has little effect on the expression of E2F target genes. The apoptotic and proliferative responses to acute UV radiation exposure are also similar between wild-type and E2f1(S29A/) (S29A) mice. As expected, the S29A mutation prevents E2F1 association with damaged DNA and reduces DNA repair efficiency. Moreover, E2f1(S29A/) (S29A) mice display increased sensitivity to UV-induced skin carcinogenesis. This knock-in mouse model thus links the ability of E2F1 to directly promote DNA repair with the suppression of tumor development.
Collapse
Affiliation(s)
- Anup Kumar Biswas
- Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - David L Mitchell
- Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TexasAuthors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| | - David G Johnson
- Authors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TexasAuthors' Affiliations: Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park; and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
8
|
Choi SY, Jang H, Roe JS, Kim ST, Cho EJ, Youn HD. Phosphorylation and ubiquitination-dependent degradation of CABIN1 releases p53 for transactivation upon genotoxic stress. Nucleic Acids Res 2013; 41:2180-90. [PMID: 23303793 PMCID: PMC3575827 DOI: 10.1093/nar/gks1319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CABIN1 acts as a negative regulator of p53 by keeping p53 in an inactive state on chromatin. Genotoxic stress causes rapid dissociation of CABIN1 and activation of p53. However, its molecular mechanism is still unknown. Here, we reveal the phosphorylation- and ubiquitination-dependent degradation of CABIN1 upon DNA damage, releasing p53 for transcriptional activation. The DNA-damage-signaling kinases, ATM and CHK2, phosphorylate CABIN1 and increase the degradation of CABIN1 protein. Knockdown or overexpression of these kinases influences the stability of CABIN1 protein showing that their activity is critical for degradation of CABIN1. Additionally, CABIN1 was found to undergo ubiquitin-dependent proteasomal degradation mediated by the CRL4DDB2 ubiquitin ligase complex. Both phosphorylation and ubiquitination of CABIN1 appear to be relevant for controlling the level of CABIN1 protein upon genotoxic stress.
Collapse
Affiliation(s)
- Soo-Youn Choi
- Department of Biomedical Sciences, Department of Biochemistry and Molecular Biology, National Creative Research Center for Epigenome Reprogramming Network, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
9
|
Demetriou SK, Ona-Vu K, Sullivan EM, Dong TK, Hsu SW, Oh DH. Defective DNA repair and cell cycle arrest in cells expressing Merkel cell polyomavirus T antigen. Int J Cancer 2012; 131:1818-27. [PMID: 22261839 DOI: 10.1002/ijc.27440] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 01/03/2012] [Indexed: 11/09/2022]
Abstract
The pathways by which Merkel cell polyomavirus (MCV) infection contributes to the formation of Merkel cell carcinomas are important for understanding the pathogenesis of these cancers. We hypothesized that MCV T antigen suppresses normal responses to ultraviolet radiation (UVR)-induced DNA damage. An MCV-infected cell line (MKL-1) exhibited UVR hypersensitivity, impaired repair of DNA lesions and cell cycle arrest after UVR, as well as reduced levels of the DNA damage recognition protein, XPC. When ectopically expressed in uninfected UISO cells, mutant but not wild-type T antigen resulted in loss of repair of UVR-induced cyclobutane pyrimidine dimers and reductions in XPC, p53 and p21 levels, whereas both wild-type and mutant T antigen inhibited cell cycle arrest after UVR. Similarly, only mutant T antigen in normal fibroblasts inhibited DNA repair and XPC expression, while both mutant and wild-type T antigens produced cell cycle dysregulation. Wild-type T antigen expression produced large T, 57 kT and small T antigens while mutant T antigen was only detectable as a truncated large T antigen protein. Expression of wild-type large T antigen but not small T antigen inhibited the G1 checkpoint in UISO cells, but neither wild-type large T nor small T antigens affected DNA repair, suggesting that large T antigen generates cell cycle defects, and when mutated may also impair DNA repair. These results indicate that T antigen expression by MCV can inhibit key responses to UVR-induced DNA damage and suggest that progressive MCV-mediated abrogation of genomic stability may be involved in Merkel cell carcinogenesis.
Collapse
|
10
|
Xing J, Dinney CP, Shete S, Huang M, Hildebrandt MA, Chen Z, Gu J. Comprehensive pathway-based interrogation of genetic variations in the nucleotide excision DNA repair pathway and risk of bladder cancer. Cancer 2012; 118:205-15. [PMID: 21692063 PMCID: PMC3178723 DOI: 10.1002/cncr.26224] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 01/26/2011] [Accepted: 04/04/2011] [Indexed: 11/08/2022]
Abstract
BACKGROUND Growing evidence suggests that single nucleotide polymorphisms (SNPs) in nucleotide excision repair (NER) pathway genes play an important role in bladder cancer etiology. However, only a limited number of genes and variations in this pathway have been evaluated to date. METHODS In this study, the authors applied a comprehensive pathway-based approach to assess the effects of 207 tagging and potentially functional SNPs in 26 NER genes on bladder cancer risk using a large case-control study that included 803 bladder cancer cases and 803 controls. RESULTS In total, 17 SNPs were associated significantly with altered bladder cancer risk (P < .05), of which, 7 SNPs retained noteworthiness after they were assessed with a Bayesian approach for the probability of false discovery. The most noteworthy SNP was reference SNP 11132186 (rs11132186) in the inhibitor of growth family, member 2 (ING2) gene. Compared with the major allele-containing genotypes, the odds ratio was 0.52 (95% confidence interval, 0.32-0.83; P = .005) for the homozygous variant genotype. Three additional ING2 variants also exhibited significant associations with bladder cancer risk. Significant gene-smoking interactions were observed for 3 of the top 17 SNPs. Furthermore, through an exploratory classification and regression tree (CART) analysis, potential gene-gene interactions were identified. CONCLUSIONS In this a large association study of the NER pathway and the risk of bladder cancer, several novel predisposition variants were identified along with potential gene-gene and gene-environment interactions in modulating bladder cancer risk. The results reinforce the importance of a comprehensive, pathway-focused, and tagging SNP-based candidate gene approach to identify low-penetrance cancer susceptibility loci.
Collapse
Affiliation(s)
- Jinliang Xing
- State Key Laboratory of Cancer Biology, Cell Engineering Research Centre & Department of Cell Biology, Fourth Military Medical University, Xi’an, 710032, P. R. China
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michelle A. Hildebrandt
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Zhinan Chen
- State Key Laboratory of Cancer Biology, Cell Engineering Research Centre & Department of Cell Biology, Fourth Military Medical University, Xi’an, 710032, P. R. China
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
11
|
Ocone A, Sanguinetti G. Reconstructing transcription factor activities in hierarchical transcription network motifs. ACTA ACUST UNITED AC 2011; 27:2873-9. [PMID: 21903631 DOI: 10.1093/bioinformatics/btr487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION A knowledge of the dynamics of transcription factors is fundamental to understand the transcriptional regulation mechanism. Nowadays, an experimental measure of transcription factor activities in vivo represents a challenge. Several methods have been developed to infer these activities from easily measurable quantities such as mRNA expression of target genes. A limitation of these methods is represented by the fact that they rely on very simple single-layer structures, typically consisting of one or more transcription factors regulating a number of target genes. RESULTS We present a novel statistical inference methodology to reverse engineer the dynamics of transcription factors in hierarchical network motifs such as feed-forward loops. The approach we present is based on a continuous time representation of the system where the high-level master transcription factor is represented as a two state Markov jump process driving a system of differential equations. We solve the inference problem using an efficient variational approach and demonstrate our method on simulated data and two real datasets. The results on real data show that the predictions of our approach can capture biological behaviours in a more effective way than single-layer models of transcription, and can lead to novel biological insights. AVAILABILITY http://homepages.inf.ed.ac.uk/gsanguin/software.html CONTACT g.sanguinetti@ed.ac.uk SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Andrea Ocone
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
| | | |
Collapse
|
12
|
Lin CY, Tan BCM, Liu H, Shih CJ, Chien KY, Lin CL, Yung BYM. Dephosphorylation of nucleophosmin by PP1β facilitates pRB binding and consequent E2F1-dependent DNA repair. Mol Biol Cell 2010; 21:4409-17. [PMID: 20962268 PMCID: PMC3002393 DOI: 10.1091/mbc.e10-03-0239] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We report a new pathway through which PP1β signals to nucleophosmin (NPM) in response to DNA damage. UV induces dephosphorylation of NPM at multiple sites, leading to enhancement of complex formation between NPM and retinoblastoma tumor suppressor protein and the subsequent upregulation of E2F1. Consequently, such signaling pathway potentiates the cellular DNA repair capacity. Nucleophosmin (NPM) is an important phosphoprotein with pleiotropic functions in various cellular processes. Although phosphorylation has been postulated as an important functional determinant, possible regulatory roles of this modification on NPM are not fully characterized. Here, we find that NPM is dephosphorylated on various threonine residues (Thr199 and Thr234/237) in response to UV-induced DNA damage. Further experiments indicate that the serine/threonine protein phosphatase PP1β is a physiological NPM phosphatase under both the genotoxic stress and growth conditions. As a consequence, NPM in its hypophosphorylated state facilitates DNA repair. Finally, our results suggest that one possible mechanism of this protective response lies in enhanced NPM-retinoblastoma tumor suppressor protein (pRB) interaction, leading to the relief of the repressive pRB–E2F1 circuitry and the consequent transcriptional activation of E2F1 and several downstream DNA repair genes. Thus, this study unveils a key phosphatase of NPM and highlights a novel mechanism by which the PP1β–NPM pathway contributes to cellular DNA damage response.
Collapse
Affiliation(s)
- Chiao Yun Lin
- Department of Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Nucleotide excision repair (NER) is the primary DNA repair pathway that removes helix-distorting DNA strand damage induced by ultraviolet light irradiation or chemical carcinogens to ensure genome integrity. While the core NER proteins that carry out damage recognition, excision, and repair reactions have been identified and extensively characterized, and the NER pathway has been reconstituted in vitro, the regulatory pathways that govern the threshold levels of NER have not been fully elucidated. This mini-review focuses on recently discovered transcriptional and post-translational mechanisms that specify the capacity of NER, and suggests the potential implications of modulating NER activity in cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Liren Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Jennifer Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Cornell Graduate School of Medical Sciences, New York, NY 10065
| |
Collapse
|
14
|
Biedermann S, Hellmann H. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:404-15. [PMID: 20128879 DOI: 10.1111/j.1365-313x.2010.04157.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The integrity of the genome is a fundamental prerequisite for the well-being of all living organisms. Critical for the genomic integrity are effective DNA damage detection mechanisms that enable the cell to rapidly activate the necessary repair machinery. Here, we describe Arabidopsis thaliana ATCSA-1, which is an ortholog of the mammalian Cockayne Syndrome type-A protein involved in transcription-coupled DNA repair processes. ATCSA-1 is a critical component for initiating the repair of UV-B-induced DNA lesions, and, together with the damage-specific DNA binding protein 2 (DDB2), is necessary for light-independent repair processes in Arabidopsis. The transcriptional profile of both genes revealed that ATCSA-1 is strongly expressed in most tissues, whereas DDB2 is only weakly expressed, predominantly in the root tips and anthers of flowers. In contrast to ATCSA-1, DDB2 expression is rapidly inducible by UV treatment. Like DDB2, ATCSA-1 is localized to the nucleus, and assembles with DDB1 and CUL4 proteins into a complex. ATCSA-1 is an unstable protein that is degraded in a 26S proteasome-dependent manner. Overall, the results presented here form a functional description of a plant Cockayne syndrome factor A (CSA) ortholog, and demonstrate the importance of ATCSA-1 for UV-B tolerance.
Collapse
Affiliation(s)
- Sascha Biedermann
- School of Biological Sciences, Washington State University, Pullman, 99164, WA, USA
| | | |
Collapse
|
15
|
Guo R, Chen J, Zhu F, Biswas AK, Berton TR, Mitchell DL, Johnson DG. E2F1 localizes to sites of UV-induced DNA damage to enhance nucleotide excision repair. J Biol Chem 2010; 285:19308-15. [PMID: 20413589 DOI: 10.1074/jbc.m110.121939] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E2F1 transcription factor is a well known regulator of cell proliferation and apoptosis, but its role in the DNA damage response is less clear. Using a local UV irradiation technique and immunofluorescence staining, E2F1 is shown to accumulate at sites of DNA damage. Localization of E2F1 to UV-damaged DNA requires the ATM and Rad3-related (ATR) kinase and serine 31 of E2F1 but not an intact DNA binding domain. E2F1 deficiency does not appear to affect the expression of nucleotide excision repair (NER) factors, such as XPC and XPA. However, E2F1 depletion does impair the recruitment of NER factors to sites of damage and reduces the efficiency of DNA repair. E2F1 mutants unable to bind DNA or activate transcription retain the ability to stimulate NER. These findings demonstrate that E2F1 has a direct, non-transcriptional role in DNA repair involving increased recruitment of NER factors to sites of damage.
Collapse
Affiliation(s)
- Ruifeng Guo
- Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, Texas 78957, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sun NK, Sun CL, Lin CH, Pai LM, Chao CCK. Damaged DNA-binding protein 2 (DDB2) protects against UV irradiation in human cells and Drosophila. J Biomed Sci 2010; 17:27. [PMID: 20398405 PMCID: PMC2864207 DOI: 10.1186/1423-0127-17-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/17/2010] [Indexed: 11/23/2022] Open
Abstract
Background We observed previously that cisplatin-resistant HeLa cells were cross-resistant to UV light due to accumulation of DDB2, a protein implicated in DNA repair. More recently, we found that cFLIP, which represents an anti-apoptotic protein whose level is induced by DDB2, was implicated in preventing apoptosis induced by death-receptor signaling. In the present study, we investigated whether DDB2 has a protective role against UV irradiation and whether cFLIP is also involved in this process. Methods We explored the role of DDB2 in mediating UV resistance in both human cells and Drosophila. To do so, DDB2 was overexpressed by using a full-length open reading frame cDNA. Conversely, DDB2 and cFLIP were suppressed by using antisense oligonucleotides. Cell survival was measured using a colony forming assay. Apoptosis was monitored by examination of nuclear morphology, as well as by flow cytometry and Western blot analyses. A transcription reporter assay was also used to assess transcription of cFLIP. Results We first observed that the cFLIP protein was upregulated in UV-resistant HeLa cells. In addition, the cFLIP protein could be induced by stable expression of DDB2 in these cells. Notably, the anti-apoptotic effect of DDB2 against UV irradiation was largely attenuated by knockdown of cFLIP with antisense oligonucleotides in HeLa cells. Moreover, overexpression of DDB2 did not protect against UV in VA13 and XP-A cell lines which both lack cFLIP. Interestingly, ectopic expression of human DDB2 in Drosophila dramatically inhibited UV-induced fly death compared to control GFP expression. On the other hand, expression of DDB2 failed to rescue a different type of apoptosis induced by the genes Reaper or eiger. Conclusion Our results show that DDB2 protects against UV stress in a cFLIP-dependent manner. In addition, the protective role of DDB2 against UV irradiation was found to be conserved in divergent living organisms such as human and Drosophila. In addition, UV irradiation may activate a cFLIP-regulated apoptotic pathway in certain cells.
Collapse
Affiliation(s)
- Nian-Kang Sun
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Lin PS, McPherson LA, Chen AY, Sage J, Ford JM. The role of the retinoblastoma/E2F1 tumor suppressor pathway in the lesion recognition step of nucleotide excision repair. DNA Repair (Amst) 2009; 8:795-802. [PMID: 19376752 PMCID: PMC2700215 DOI: 10.1016/j.dnarep.2009.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 01/27/2023]
Abstract
The retinoblastoma Rb/E2F tumor suppressor pathway plays a major role in the regulation of mammalian cell cycle progression. The pRb protein, along with closely related proteins p107 and p130, exerts its anti-proliferative effects by binding to the E2F family of transcription factors known to regulate essential genes throughout the cell cycle. We sought to investigate the role of the Rb/E2F1 pathway in the lesion recognition step of nucleotide excision repair (NER) in mouse embryonic fibroblasts (MEFs). Rb-/-, p107-/-, p130-/- MEFs repaired both cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) at higher efficiency than did wildtype cells following UV-C irradiation. The expression of damaged DNA binding gene DDB2 involved in the DNA lesion recognition step was elevated in the Rb family-deficient MEFs. To determine if the enhanced DNA repair in the absence of the Rb gene family is due to the derepression of E2F1, we assayed the ability of E2F1-deficient cells to repair damaged DNA and demonstrated that E2F1-/- MEFs are impaired for the removal of both CPDs and 6-4PPs. Furthermore, wildtype cells induced a higher expression of DDB2 and xeroderma pigmentosum gene XPC transcript levels than did E2F1-/- cells following UV-C irradiation. Using an E2F SiteScan algorithm, we uncovered a putative E2F-responsive element in the XPC promoter upstream of the transcription start site. We showed with chromatin immunoprecipitation assays the binding of E2F1 to the XPC promoter in a UV-dependent manner, suggesting that E2F1 is a transcriptional regulator of XPC. Our study identifies a novel E2F1 gene target and further supports the growing body of evidence that the Rb/E2F1 tumor suppressor pathway is involved in the regulation of the DNA lesion recognition step of nucleotide excision repair.
Collapse
Affiliation(s)
- Patrick S. Lin
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Lisa A. McPherson
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Aubrey Y. Chen
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford CA 94305
- Department of Genetics, Division of Oncology, Stanford University School of Medicine, Stanford CA 94305
| | - James M. Ford
- Department of Medicine, Stanford University School of Medicine, Stanford CA 94305
- Department of Pediatrics, Stanford University School of Medicine, Stanford CA 94305
- Department of Genetics, Division of Oncology, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
18
|
Pines A, Backendorf C, Alekseev S, Jansen JG, de Gruijl FR, Vrieling H, Mullenders LHF. Differential activity of UV-DDB in mouse keratinocytes and fibroblasts: impact on DNA repair and UV-induced skin cancer. DNA Repair (Amst) 2008; 8:153-61. [PMID: 18996499 DOI: 10.1016/j.dnarep.2008.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
UV-damaged DNA-binding protein (UV-DDB) is essential for global genome nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers (CPD) and accelerates repair of 6-4 photoproducts (6-4PP). The high UV-induced skin cancer susceptibility of mice compared to man has been attributed to low expression of the UV-DDB subunit DDB2 in mouse skin cells. However, DDB2 knockout mice exhibit enhanced UVB skin carcinogenesis indicating that DDB2 protects mice against UV-induced skin cancer. To resolve these apparent contradictory findings, we systematically investigated the NER capacity of mouse fibroblasts and keratinocytes. Compared to fibroblasts, keratinocytes exhibited an increased level of UV-DDB activity, contained significantly higher levels of other NER proteins (i.e. XPC and XPB) and displayed efficient repair of CPD. At low UVB dosages, the difference in skin cancer susceptibility between DDB2 KO and wild type mice was even much more pronounced than previously reported with high dose UVB exposures. Hence, our observations show that mouse keratinocytes express sufficient levels of UV-DDB for efficient repair of photolesions and efficient protection against UV-induced skin cancer at physiological relevant UV exposure.
Collapse
Affiliation(s)
- Alex Pines
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Morris MA, Dawson CW, Wei W, O'Neil JD, Stewart SE, Jia J, Bell AI, Young LS, Arrand JR. Epstein–Barr virus-encoded LMP1 induces a hyperproliferative and inflammatory gene expression programme in cultured keratinocytes. J Gen Virol 2008; 89:2806-2820. [DOI: 10.1099/vir.0.2008/003970-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SCC12F cells are a line of keratinocytes that retain the capacity for terminal differentiation in vitro. We showed previously that the Epstein–Barr virus (EBV)-encoded oncogene latent membrane protein 1 (LMP1) altered SCC12F morphology in vitro, downregulated cell–cell-adhesion molecule expression and promoted cell motility. In organotypic raft culture, LMP1-expressing cells failed to stratify and formed poorly organized structures which displayed impaired terminal differentiation. To understand better the mechanism(s) by which LMP1 induces these effects, we generated SCC12F cells in which LMP1 expression is inducible. Following induction, these cells exhibited phenotypic changes similar to those observed previously and allowed us to investigate the effects of LMP1 expression on cellular pathways associated with growth, differentiation and morphology. Using microarrays and a number of confirmatory techniques, we identified sets of differentially expressed genes that are characteristically expressed in inflammatory and hyperproliferative epidermis, including chemokines, cytokines and their receptors, growth factors involved in promoting epithelial cell motility and proliferation and signalling molecules that regulate actin filament reorganization and cell movement. Among the genes whose expression was differentially induced significantly by LMP1, the induction of IL-1β and IL-1α was of particular interest, as many of the LMP1-regulated genes identified are established targets of these cytokines. Our findings suggest that alterations in the IL-1 signalling network may be responsible for many of the changes in host-cell gene expression induced in response to LMP1. Identification of these LMP1-regulated genes helps to define the mechanism(s) by which this oncoprotein influences cellular pathways that regulate terminal differentiation, cell motility and inflammation.
Collapse
Affiliation(s)
- Mhairi A. Morris
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Christopher W. Dawson
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Wenbin Wei
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - John D. O'Neil
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Suzanne E. Stewart
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Junying Jia
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew I. Bell
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - Lawrence S. Young
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| | - John R. Arrand
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
20
|
Abstract
The retinoblastoma (RB) tumour suppressor gene is functionally inactivated in a broad range of paediatric and adult cancers, and a plethora of cellular functions and partners have been identified for the RB protein. Data from human tumours and studies from mouse models indicate that loss of RB function contributes to both cancer initiation and progression. However, we still do not know the identity of the cell types in which RB normally prevents cancer initiation in vivo, and the specific functions of RB that suppress distinct aspects of the tumorigenic process are poorly understood.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
21
|
Chen D, Yu Z, Zhu Z, Lopez CD. E2F1 regulates the base excision repair gene XRCC1 and promotes DNA repair. J Biol Chem 2008; 283:15381-9. [PMID: 18348985 PMCID: PMC2397471 DOI: 10.1074/jbc.m710296200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/12/2008] [Indexed: 11/06/2022] Open
Abstract
The E2F1 transcription factor activates S-phase-promoting genes, mediates apoptosis, and stimulates DNA repair through incompletely understood mechanisms. XRCC1 (x-ray repair cross-complementing group 1) protein is important for efficient single strand break/base excision repair. Although both damage and proliferative signals increase XRCC1 levels, the mechanisms regulating XRCC1 transcription remain unclear. To study these upstream mechanisms, the XRCC1 promoter was cloned into a luciferase reporter. Ectopic expression of wild-type E2F1, but not an inactive mutant E2F1(132E), activated the XRCC1 promoter-luciferase reporter, and deletion of predicted E2F1 binding sites in the promoter attenuated E2F1-induced activation. Endogenous XRCC1 expression increased in cells conditionally expressing wild-type, but not mutant E2F1, and methyl methanesulfonate-induced DNA damage stimulated XRCC1 expression in E2F1(+/+) but not E2F1(-/-) mouse embryo fibroblasts (MEFs). Additionally, E2F1(-/-) MEFs displayed attenuated DNA repair after methyl methanesulfonate-induced damage compared with E2F1(+/+) MEFs. Moreover, Chinese hamster ovary cells with mutant XRCC1 (EM9) were more sensitive to E2F1-induced apoptosis compared with Chinese hamster ovary cells with wild-type XRCC1 (AA8). These results provide new mechanistic insight into the role of the E2F pathway in maintaining genomic stability.
Collapse
Affiliation(s)
| | | | | | - Charles D. Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
22
|
Kattan Z, Marchal S, Brunner E, Ramacci C, Leroux A, Merlin JL, Domenjoud L, Dauça M, Becuwe P. Damaged DNA binding protein 2 plays a role in breast cancer cell growth. PLoS One 2008; 3:e2002. [PMID: 18431487 PMCID: PMC2291195 DOI: 10.1371/journal.pone.0002002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/05/2008] [Indexed: 12/23/2022] Open
Abstract
The Damaged DNA binding protein 2 (DDB2), is involved in nucleotide excision repair as well as in other biological processes in normal cells, including transcription and cell cycle regulation. Loss of DDB2 function may be related to tumor susceptibility. However, hypothesis of this study was that DDB2 could play a role in breast cancer cell growth, resulting in its well known interaction with the proliferative marker E2F1 in breast neoplasia. DDB2 gene was overexpressed in estrogen receptor (ER)-positive (MCF-7 and T47D), but not in ER-negative breast cancer (MDA-MB231 and SKBR3) or normal mammary epithelial cell lines. In addition, DDB2 expression was significantly (3.0-fold) higher in ER-positive than in ER-negative tumor samples (P = 0.0208) from 16 patients with breast carcinoma. Knockdown of DDB2 by small interfering RNA in MCF-7 cells caused a decrease in cancer cell growth and colony formation. Inversely, introduction of the DDB2 gene into MDA-MB231 cells stimulated growth and colony formation. Cell cycle distribution and 5 Bromodeoxyuridine incorporation by flow cytometry analysis showed that the growth-inhibiting effect of DDB2 knockdown was the consequence of a delayed G1/S transition and a slowed progression through the S phase of MCF-7 cells. These results were supported by a strong decrease in the expression of S phase markers (Proliferating Cell Nuclear Antigen, cyclin E and dihydrofolate reductase). These findings demonstrate for the first time that DDB2 can play a role as oncogene and may become a promising candidate as a predictive marker in breast cancer.
Collapse
Affiliation(s)
- Zilal Kattan
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Sophie Marchal
- Centre Alexis Vautrin, UMR 7039 Institut Polytechnique de Lorraine/Université Henri Poincaré-Nancy Université/ CNRS, Vandoeuvre les Nancy, France
| | - Emilie Brunner
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Carole Ramacci
- Unité de Biologie des Tumeurs du Centre Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France
| | - Agnès Leroux
- Unité de Biologie des Tumeurs du Centre Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France
| | - Jean Louis Merlin
- Unité de Biologie des Tumeurs du Centre Alexis Vautrin, EA3452 Nancy Université, Vandoeuvre lès Nancy, France
| | - Lionel Domenjoud
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Michel Dauça
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
| | - Philippe Becuwe
- Laboratoire de Biologie Cellulaire du Développement, EA 3446 Université Henri Poincaré-Nancy Université, Vandoeuvre-lès-Nancy, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Plesca D, Crosby ME, Gupta D, Almasan A. E2F4 function in G2: maintaining G2-arrest to prevent mitotic entry with damaged DNA. Cell Cycle 2007; 6:1147-52. [PMID: 17507799 PMCID: PMC2596058 DOI: 10.4161/cc.6.10.4259] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mammalian cells undergo cell cycle arrest in response to DNA damage through multiple checkpoint mechanisms. One such checkpoint pathway maintains genomic integrity by delaying mitotic progression in response to genotoxic stress. Transition though the G2 phase and entry into mitosis is considered to be regulated primarily by cyclin B1 and its associated catalytically active partner Cdk1. While not necessary for its initiation, the p130 and Rb-dependent target genes have emerged as being important for stable maintenance of a G2 arrest. It was recently demonstrated that by interacting with p130, E2F4 is present in the nuclei and plays a key role in the maintenance of this stable G2 arrest. Increased E2F4 levels and its translocation to the nucleus following genotoxic stress result in downregulation of many mitotic genes and as a result promote a G0-like state. Irradiation of E2F4-depleted cells leads to enhanced cellular DNA double-strand breaks that may be measured by comet assays. It also results in cell death that is characterized by caspase activation, sub-G1 and sub-G2 DNA content, and decreased clonogenic cell survival. Here we review these recent findings and discuss the mechanisms of G2 phase checkpoint activation and maintenance with a particular focus on E2F4.
Collapse
Affiliation(s)
- Dragos Plesca
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- School of Biomedical Sciences; Kent State University; Kent, Ohio USA
| | - Meredith E. Crosby
- Department of Environmental Health Sciences; Case Western Reserve University; Cleveland, Ohio USA
| | - Damodar Gupta
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- Department of Radiation Oncology; Cleveland Clinic; Cleveland, Ohio USA
| | - Alexandru Almasan
- Department of Cancer Biology; The Lerner Research Institute; Cleveland, Ohio USA
- Department of Radiation Oncology; Cleveland Clinic; Cleveland, Ohio USA
| |
Collapse
|