1
|
Biersack B, Höpfner M. Emerging role of MYB transcription factors in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:15. [PMID: 38835346 PMCID: PMC11149108 DOI: 10.20517/cdr.2023.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 06/06/2024]
Abstract
Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University of Bayreuth, Bayreuth 95440, Germany
| | - Michael Höpfner
- Institute for Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
2
|
Fry EA, Niehans GE, Kratzke RA, Kai F, Inoue K. Survival of Lung Cancer Patients Dependent on the LOH Status for DMP1, ARF, and p53. Int J Mol Sci 2020; 21:E7971. [PMID: 33120969 PMCID: PMC7662351 DOI: 10.3390/ijms21217971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the world, and accounts for more solid tumor deaths than any other carcinomas. The prognostic values of DMP1, ARF, and p53-loss are unknown in lung cancer. We have conducted survival analyses of non-small cell lung cancer (NSCLC) patients from the University of Minnesota VA hospital and those from the Wake Forest University Hospital. Loss of Heterozygosity (LOH) for hDMP1 was found in 26 of 70 cases (37.1%), that of the ARF/INK4a locus was found in 33 of 70 (47.1%), and that of the p53 locus in 43 cases (61.4%) in the University of Minnesota samples. LOH for hDMP1 was associated with favorable prognosis while that of p53 predicted worse prognosis. The survival was much shorter for ARF-loss than INK4a-loss, emphasizing the importance of ARF in human NSCLC. The adverse effect of p53 LOH on NSCLC patients' survival was neutralized by simultaneous loss of the hDMP1 locus in NSCLC and breast cancer, suggesting the possible therapy of epithelial cancers with metastatic ability.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| | | | - Robert A. Kratzke
- Dept. of Medicine, University of Minnesota Medical Center, Masonic Cancer Institute, Minneapolis, MN 55455, USA;
| | - Fumitake Kai
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA; (E.A.F.); (F.K.)
| |
Collapse
|
3
|
Abstract
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRβ in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
4
|
Inoue K, Fry EA. Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN Network. Cancer Invest 2018; 36:520-536. [PMID: 30396285 PMCID: PMC6500763 DOI: 10.1080/07357907.2018.1533965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/25/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
Abstract
Recent studies have indicated that EGR1 is a direct regulator of tumor suppressors including TGFβ1, PTEN, and p53. The Myb-like transcription factor Dmp1 is a physiological regulator of the Arf-p53 pathway through transactivation of the Arf promoter and physical interaction of p53. The Dmp1 promoter has binding sites for Egr proteins, and Egr1 is a target for Dmp1. Crosstalks between p53 and PTEN have been reported. The Egr1-Dmp1-Arf-p53-Pten pathway displays multiple modes of interaction with each other, suggesting the existence of a functional network of tumor suppressors that maintain normal cell growth and prevent the emergence of incipient cancer cells.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences,
Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences,
Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
5
|
Fry EA, Mallakin A, Inoue K. Translocations involving ETS family proteins in human cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000281. [PMID: 30542624 PMCID: PMC6287620 DOI: 10.15761/icst.1000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | | | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
6
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
7
|
Inoue K, Fry EA. Aberrant Expression of p14 ARF in Human Cancers: A New Biomarker? TUMOR & MICROENVIRONMENT 2018; 1:37-44. [PMID: 30740529 PMCID: PMC6364748 DOI: 10.4103/tme.tme_24_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ARF and INK4a genes are located on the CDKN2a locus, both showing tumor suppressive activity. ARF has been shown to monitor potentially harmful oncogenic signalings, making early stage cancer cells undergo senescence or programmed cell death to prevent cancer. Conversely, INK4a detects both aging and incipient cancer cell signals, and thus these two gene functions are different. The efficiency of detection of oncogenic signals is more efficient for the for the former than the latter in the mouse system. Both ARF and INK4a genes are inactivated by gene deletion, promoter methylation, frame shift, aberrant splicing although point mutations for the coding region affect only the latter. Recent studies show the splicing alterations that affect only ARF or both ARF and INK4a genes suggesting that ARF is inactivated in human tumors more frequently than what was previously thought. The ARF gene is activated by E2Fs and Dmp1 transcription factors while it is repressed by Bmi1, Tbx2/3, Twist1, and Pokemon nuclear proteins. It is also regulated at protein levels by Arf ubiquitin ligase named ULF, MKRN1, and Siva1. The prognostic value of ARF overexpression is controversial since it is induced in early stage cancer cells to eliminate pre-malignant cells (better prognosis); however, it may also indicate that the tumor cells have mutant p53 associated with worse prognosis. The ARF tumor suppressive protein can be used as a biomarker to detect early stage cancer cells as well as advanced stage tumors with p53 inactivation.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, NC 27157
| |
Collapse
|
8
|
Kendig RD, Kai F, Fry EA, Inoue K. Stabilization of the p53-DNA Complex by the Nuclear Protein Dmp1α. Cancer Invest 2017; 35:301-312. [PMID: 28406729 PMCID: PMC6262109 DOI: 10.1080/07357907.2017.1303505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/14/2016] [Accepted: 03/03/2017] [Indexed: 01/19/2023]
Abstract
We recently reported the existence of a physical interaction between the Myb-like transcription factor Dmp1 (Dmtf1) and p53 in which Dmp1 antagonized polyubiquitination of p53 by Mdm2 and promoted its nuclear localization. Dmp1 significantly stabilized p53-DNA complexes on promoters that contained p53-consensus sequences, which were either supershifted or disrupted with antibodies to Dmp1. Lysates from mice injected with doxorubicin showed that Dmp1 bound to p21Cip1, Bbc3, and Thbs1 gene regulatory regions in a p53-dependent fashion. Our data suggest that acceleration of DNA-binding of p53 by Dmp1 is a critical process for Dmp1 to increase the p53 function in Arf-deficient cells.
Collapse
Affiliation(s)
- Robert D Kendig
- a Department of Pathology , Wake Forest University School of Medicine , Winston-Salem , North Carolina , USA
| | - Fumitake Kai
- a Department of Pathology , Wake Forest University School of Medicine , Winston-Salem , North Carolina , USA
| | - Elizabeth A Fry
- a Department of Pathology , Wake Forest University School of Medicine , Winston-Salem , North Carolina , USA
| | - Kazushi Inoue
- a Department of Pathology , Wake Forest University School of Medicine , Winston-Salem , North Carolina , USA
| |
Collapse
|
9
|
Kim J, Choi S, Saxena N, Singh AK, Singh I, Won JS. Regulation of STAT3 and NF-κB activations by S-nitrosylation in multiple myeloma. Free Radic Biol Med 2017; 106:245-253. [PMID: 28232202 PMCID: PMC5826580 DOI: 10.1016/j.freeradbiomed.2017.02.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
Abstract
Numerous reports suggest that aberrant activations of STAT3 and NF-κB promote survival and proliferation of multiple myeloma (MM) cells. In the present report, we demonstrate that a synthetic S-nitrosothiol compound, S-nitroso-N-acetylcysteine (SNAC), inhibits proliferation and survival of multiple MM cells via S-nitrosylation-dependent inhibition of STAT3 and NF-κB. In human MM cells (e.g. U266, H929, and IM-9 cells), SNAC treatment increased S-nitrosylation of STAT3 and NF-κB and inhibited their activities. Consequently, SNAC treatment resulted in MM cell cycle arrest at G1/S check point and inhibited their proliferation. SNAC also decreased the expression of cell survival factors and increased the activities of caspases, thus increased sensitivity of MM cells to melphalan, a chemotherapeutic agent for MM. In U266 xenografted mice, SNAC treatment decreased the activity of STAT3 and reduced the growth of human CD138 positive cells (U266 cells) in the bone marrow and also reduced their production of human IgE into the serum. Taken together, these data document the S-nitrosylation mediated inhibition of MM cell proliferation and cell survival via inhibition of STAT3 and NF-κB pathways and its efficacy in animal model of MM.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Seungho Choi
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Nishant Saxena
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States; Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC 29401, United States
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, United States.
| |
Collapse
|
10
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
11
|
Tian N, Li J, Shi J, Sui G. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform. Int J Mol Sci 2017; 18:ijms18030191. [PMID: 28257090 PMCID: PMC5372486 DOI: 10.3390/ijms18030191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Alternative pre-mRNA splicing is a crucial process that allows the generation of diversified RNA and protein products from a multi-exon gene. In tumor cells, this mechanism can facilitate cancer development and progression through both creating oncogenic isoforms and reducing the expression of normal or controllable protein species. We recently demonstrated that an alternative cyclin D-binding myb-like transcription factor 1 (DMTF1) pre-mRNA splicing isoform, DMTF1β, is increasingly expressed in breast cancer and promotes mammary tumorigenesis in a transgenic mouse model. Aberrant pre-mRNA splicing is a typical event occurring for many cancer-related functional proteins. In this review, we introduce general aberrant pre-mRNA splicing in cancers and discuss its therapeutic application using our recent discovery of the oncogenic DMTF1 isoform as an example. We also summarize new insights in designing novel targeting strategies of cancer therapies based on the understanding of deregulated pre-mRNA splicing mechanisms.
Collapse
Affiliation(s)
- Na Tian
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Jialiang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
12
|
Fry EA, Taneja P, Inoue K. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu. Int J Cancer 2017; 140:495-503. [PMID: 27553713 PMCID: PMC5159240 DOI: 10.1002/ijc.30399] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Greater Noida, UP 201306, India
| | - Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
13
|
Fry EA, Taneja P, Inoue K. Clinical applications of mouse models for breast cancer engaging HER2/neu. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2016; 3:593-603. [PMID: 28133539 PMCID: PMC5267336 DOI: 10.15761/icst.1000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Knowledge Park III, Greater Noida 201306, India
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
14
|
Inoue K, Fry EA. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer. Int J Cancer 2016; 139:33-41. [PMID: 26802432 PMCID: PMC5047959 DOI: 10.1002/ijc.30003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022]
Abstract
Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1β (p53-independent) splice variants, and the DMP1β/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1β protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (β/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
15
|
Inoue K, Fry EA. Novel Molecular Markers for Breast Cancer. BIOMARKERS IN CANCER 2016; 8:25-42. [PMID: 26997872 PMCID: PMC4790586 DOI: 10.4137/bic.s38394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/16/2016] [Accepted: 02/14/2016] [Indexed: 01/15/2023]
Abstract
The use of molecular biomarkers assures that breast cancer (BC) patients receive optimal treatment. Established biomarkers, such as estrogen receptor, progesterone receptor, HER2, and Ki67, have been playing significant roles in the subcategorization of BC to predict the prognosis and decide the specific therapy to each patient. Antihormonal therapy using 4-hydroxytamoxifen or aromatase inhibitors have been employed in patients whose tumor cells express hormone receptors, while monoclonal antibody to HER2 has been administered to HER2-positive BCs. Although new therapeutic agents have been developed in the past few decades, many patients still die of the disease due to relapse; thus, novel molecular markers that predict therapeutic failure and those that can be targets for specific therapy are expected. We have chosen four of such molecules by reviewing recent publications, which are cyclin E, B-Myb, Twist, and DMP1β. The oncogenicity of these molecules has been demonstrated in vivo and/or in vitro through studies using transgenic mice or siRNAs, and their expressions have been shown to be associated with shortened overall or disease-free survival of BC patients. The former three molecules have been shown to accelerate epithelial-mesenchymal transition that is often associated with cancer stem cell-ness and metastasis; all these four can be novel therapeutic targets as well. Thus, large prospective studies employing immunohistochemistry will be needed to establish the predictive values of these molecules in patients with BC.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| | - Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
16
|
Abstract
Cyclin D1 binds and activates cyclin-dependent kinases 4/6 (Cdk4/6) to phosphorylate the retinoblastoma (RB) family proteins, relieving E2F/DPs from the negative restraint of RB proteins and histone deacetylases. The cyclin D-Cdk4/6 complexes activate cyclin E/Cdk2 through titration of the Cdk inhibitors p21Cip1/p27Kip1. Cyclin E/Cdk2 further phosphorylates RBs, thereby activating E2F/DPs, and cells enter the S phase of the cell cycle. Cyclin D-Cdk4/6 also phosphorylates MEP50 subunit of the protein arginine methyltransferase 5 (PRMT5), which cooperates with cyclin D1 to drive lymphomagenesis in vivo. Activated PRMPT5 causes arginine methylation of p53 to suppress expression of pro-apoptotic and anti-proliferative target genes, explaining the molecular mechanism for tumorigenesis. Cyclin D1 physically interacts with transcription factors such as estrogen receptor, androgen receptor, and Myb family proteins to regulate gene expression in Cdk-independent fashion. Dmp1 is a Myb-like protein that quenches the oncogenic signals from activated Ras or HER2 by inducing Arf/p53-dependent cell cycle arrest. Cyclin D1 binds to Dmp1α to activate both Arf and Ink4a promoters to induce cell cycle arrest or apoptosis in non-transformed cells to prevent them from neoplastic transformation. Dmp1-deficiency significantly accelerates mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Cyclin D1 interferes with ligand activation of PPARγ involved in cellular differentiation; it also physically interacts with histone deacetylases (HDACs) and p300 to repress gene expression. It has also been shown that cyclin D1 accelerates tumorigenesis through transcriptional activation of miR-17/20 and Dicer1 which, in turn, represses cyclin D1 expression. Identification of cyclin D1-binding proteins/promoters will be essential for further clarification of its biological activities.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
17
|
Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer 2015; 138:1577-85. [PMID: 26132471 DOI: 10.1002/ijc.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Donna P Frazier
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| |
Collapse
|
18
|
Fry EA, Taneja P, Maglic D, Zhu S, Sui G, Inoue K. Dmp1α inhibits HER2/neu-induced mammary tumorigenesis. PLoS One 2013; 8:e77870. [PMID: 24205004 PMCID: PMC3812138 DOI: 10.1371/journal.pone.0077870] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 08/29/2013] [Indexed: 01/09/2023] Open
Abstract
Our recent study shows a pivotal role of Dmp1 in quenching hyperproliferative signals from HER2 to the Arf-p53 pathway as a safety mechanism to prevent breast carcinogenesis. To directly demonstrate the role of Dmp1 in preventing HER2/neu-driven oncogenic transformation, we established Flag-Dmp1α transgenic mice (MDTG) under the control of the mouse mammary tumor virus (MMTV) promoter. The mice were viable but exhibited poorly developed mammary glands with markedly reduced milk production; thus more than half of parous females were unable to support the lives of new born pups. The mammary glands of the MDTG mice had very low Ki-67 expression but high levels of Arf, Ink4a, p53, and p21Cip1, markers of senescence and accelerated aging. In all strains of generated MDTG;neu mice, tumor development was significantly delayed with decreased tumor weight. Tumors from MDTG;neu mice expressed Flag-Dmp1α and Ki-67 in a mutually exclusive fashion indicating that transgenic Dmp1α prevented tumor growth in vivo. Genomic DNA analyses showed that the Dmp1α transgene was partially lost in half of the MDTG;neu tumors, and Western blot analyses showed Dmp1α protein downregulation in 80% of the cases. Our data demonstrate critical roles of Dmp1 in preventing mammary tumorigenesis and raise the possibility of treating breast cancer by restoring Dmp1α expression.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Extracellular Matrix Proteins/physiology
- Female
- Gene Dosage
- Humans
- Immunoenzyme Techniques
- Mammary Neoplasms, Experimental/etiology
- Mammary Neoplasms, Experimental/mortality
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Transgenic
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, ErbB-2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Pankaj Taneja
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Dejan Maglic
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Sinan Zhu
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail: (GS); (KI)
| | - Kazushi Inoue
- Department of Pathology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
- * E-mail: (GS); (KI)
| |
Collapse
|
19
|
Cooperation between Dmp1 loss and cyclin D1 overexpression in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1339-1350. [PMID: 23938323 DOI: 10.1016/j.ajpath.2013.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/10/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023]
Abstract
Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1-cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1-induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1(+/+);MMTV-cyclin D1 and Dmp1(+/+);MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer.
Collapse
|
20
|
Vivo M, Ranieri M, Sansone F, Santoriello C, Calogero RA, Calabrò V, Pollice A, La Mantia G. Mimicking p14ARF phosphorylation influences its ability to restrain cell proliferation. PLoS One 2013; 8:e53631. [PMID: 23308265 PMCID: PMC3538741 DOI: 10.1371/journal.pone.0053631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/03/2012] [Indexed: 11/29/2022] Open
Abstract
The INK4a/ARF locus on the short arm of chromosome 9 is one of the most frequently altered loci in human cancer. It is generally accepted that ARF is involved in oncogenic checkpoint pathways by sensitizing incipient cancer cells to undergo growth arrest or apoptosis through both p53-dependent and independent pathways. While intensive studies have been focused on ARF activation at the transcriptional level, only recently mechanisms governing ARF turnover have been identified. Here, we show for the first time that p14ARF is a PKC target. Prediction analysis showed many potential phosphorylation sites in PKC consensus sequences within ARF protein, and, among them, the threonine at position 8 was the most conserved. Substitution of this threonine influences both ARF stability and localization. Furthermore, a phosphomimetic ARF mutation reduces the ability to arrest cell growth although the ability to bind MDM2 and stabilize p53 result unaffected. Thus we propose that phosphorylation of ARF in both immortalized and tumor cell lines could be a mechanism to escape ARF surveillance following proliferative and oncogenic stress.
Collapse
Affiliation(s)
- Maria Vivo
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MV); (GLM)
| | - Michela Ranieri
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Federica Sansone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Cristina Santoriello
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | | | - Viola Calabrò
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Alessandra Pollice
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
| | - Girolama La Mantia
- Department of Structural and Functional Biology, University of Naples “Federico II”, Naples, Italy
- * E-mail: (MV); (GLM)
| |
Collapse
|
21
|
Frazier DP, Kendig RD, Kai F, Maglic D, Sugiyama T, Morgan RL, Fry EA, Lagedrost SJ, Sui G, Inoue K. Dmp1 physically interacts with p53 and positively regulates p53's stability, nuclear localization, and function. Cancer Res 2012; 72:1740-50. [PMID: 22331460 DOI: 10.1158/0008-5472.can-11-2410] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The transcription factor Dmp1 is a Ras/HER2-activated haplo-insufficient tumor suppressor that activates the Arf/p53 pathway of cell-cycle arrest. Recent evidence suggests that Dmp1 may activate p53 independently of Arf in certain cell types. Here, we report findings supporting this concept with the definition of an Arf-independent function for Dmp1 in tumor suppression. We found that Dmp1 and p53 can interact directly in mammalian cells via the carboxyl-terminus of p53 and the DNA-binding domain of Dmp1. Expression of Dmp1 antagonized ubiquitination of p53 by Mdm2 and promoted nuclear localization of p53. Dmp1-p53 binding significantly increased the level of p53, independent of the DNA-binding activity of Dmp1. Mechanistically, p53 target genes were activated synergistically by the coexpression of Dmp1 and p53 in p53(-/-);Arf(-/-) cells, and genotoxic responses of these genes were hampered more dramatically in Dmp1(-/-) and p53(-/-) cells than in Arf(-/-) cells. Together, our findings identify a robust new mechanism of p53 activation mediated by direct physical interaction between Dmp1 and p53.
Collapse
Affiliation(s)
- Donna P Frazier
- Department of Pathology and Cancer Biology, and Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The cell-cycle status of hematopoietic stem cells (HSCs) is tightly regulated, most likely to balance maintenance of stem-cell status through quiescence and expansion/differentiation of the hematopoietic system. Tumor-suppressor genes (TSGs), with their cell cycle-regulatory functions, play important roles in HSC regulation. The cyclin-D binding myb-like transcription factor 1 (Dmtf1) was recently recognized as a TSG involved in human cancers by repressing oncogenic Ras/Raf signaling. However, the role of Dmtf1 in the hematopoietic system is entirely unknown. In the present study, we demonstrate that Dmtf1 regulates HSC function under both steady-state and stress conditions. Dmtf1(-/-) mice showed increased blood cell counts in multiple parameters, and their progenitor cells had increased proliferation and accelerated cell-cycle progression. In addition, long-term HSCs from Dmtf1(-/-) mice had a higher self-renewal capacity that was clearly demonstrated in secondary recipients in serial transplantation studies. Dmtf1(-/-) BM cells showed hyper proliferation after 5-fluorouracil-induced myeloablation. Steady-state expression and Induction of CDKN1a (p21) and Arf were impaired in HSCs from Dmtf1(-/-) mice. The function of Dmtf1 was mediated by both Arf-dependent and Arf-independent pathways. Our results implicate Dmtf1 in the regulation of HSC function through novel cell cycle-regulatory mechanisms.
Collapse
|
23
|
Taneja P, Maglic D, Kai F, Sugiyama T, Kendig RD, Frazier DP, Willingham MC, Inoue K. Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development. Cancer Res 2010; 70:9084-94. [PMID: 21062982 DOI: 10.1158/0008-5472.can-10-0159] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression stimulates cell growth in p53-mutated cells while it inhibits cell proliferation in those with wild-type p53, but the molecular mechanism is unknown. The Dmp1 promoter was activated by HER2/neu through the phosphatidylinositol-3'-kinase-Akt-NF-κB pathway, which in turn stimulated Arf transcription. Binding of p65 and p52 subunits of NF-κB was shown to the Dmp1 promoter and that of Dmp1 to the Arf promoter on HER2/neu overexpression. Both Dmp1 and p53 were induced in premalignant lesions from mouse mammary tumor virus-neu mice, and mammary tumorigenesis was significantly accelerated in both Dmp1+/- and Dmp1-/- mice. Selective deletion of Dmp1 and/or overexpression of Tbx2/Pokemon was found in >50% of wild-type HER2/neu carcinomas, although the involvement of Arf, Mdm2, or p53 was rare. Tumors from Dmp1+/-, Dmp1-/-, and wild-type neu mice with hemizygous Dmp1 deletion showed significant downregulation of Arf and p21Cip1/WAF1, showing p53 inactivity and more aggressive phenotypes than tumors without Dmp1 deletion. Notably, endogenous hDMP1 mRNA decreased when HER2 was depleted in human breast cancer cells. Our study shows the pivotal roles of Dmp1 in HER2/neu-p53 signaling and breast carcinogenesis.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Epithelial Cells/metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- Gene Expression
- Humans
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Molecular Sequence Data
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Pankaj Taneja
- Departments of Pathology and Cancer Biology and Graduate Program in Molecular Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Mallakin A, Sugiyama T, Kai F, Taneja P, Kendig RD, Frazier DP, Maglic D, Matise LA, Willingham MC, Inoue K. The Arf-inducing transcription factor Dmp1 encodes a transcriptional activator of amphiregulin, thrombospondin-1, JunB and Egr1. Int J Cancer 2010; 126:1403-16. [PMID: 19816943 DOI: 10.1002/ijc.24938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dmp1 (Dmtf1) encodes a Myb-like transcription factor implicated in tumor suppression through direct activation of the Arf-p53 pathway. The human DMP1 gene is frequently deleted in non-small cell lung cancers, especially those that retain wild-type INK4a/ARF and/or p53. To identify novel genes that are regulated by Dmp1, transcriptional profiles of lung tissue from Dmp1-null and wild-type mice were generated using the GeneChip Microarray. Comparative analysis of gene expression changes between the two groups resulted in identification of numerous genes that may be regulated by Dmp1. Notably, amphiregulin (Areg), thrombospondin-1 (Tsp-1), JunB, Egr1, adrenomedullin (Adm), Bcl-3 and methyl-CpG binding domain protein 1 (Mbd1) were downregulated in the lungs from Dmp1-null mice while Gas1 and Ect2 genes were upregulated. These target genes were chosen for further analyses since they are involved in cell proliferation, transcription, angiogenesis/metastasis, apoptosis, or DNA methylation, and thus could account for the tumor suppressor phenotype of Dmp1. Dmp1 directly bound to the genomic loci of Areg, Tsp-1, JunB and Egr1. Significant upregulation or downregulation of the novel Dmp1 target genes was observed upon transient expression of Dmp1 in alveolar epithelial cells, an effect which was nullified by the inhibition of de novo mRNA synthesis. Interestingly, these genes and their protein products were significantly downregulated or upregulated in the lungs from Dmp1-heterozygous mice as well. Identification of novel Dmp1 target genes not only provides insights into the effects of Dmp1 on global gene expression, but also sheds light on the mechanism of haploid insufficiency of Dmp1 in tumor suppression.
Collapse
Affiliation(s)
- Ali Mallakin
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, Taneja NK, Inoue K. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 2009; 9:423-40. [PMID: 19580428 DOI: 10.1586/erm.09.31] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse mammary tumor virus (MMTV) long terminal repeat (LTR)-driven transgenic mice are excellent models for breast cancer as they allow for the targeted expression of various oncogenes and growth factors in neoplastic transformation of mammary glands. Numerous MMTV-LTR-driven transgenic mouse models of breast cancer have been created in the past three decades, including MMTV-neu/ErbB2, cyclin D1, cyclin E, Ras, Myc, int-1 and c-rel. These transgenic mice develop mammary tumors with different latency, histology and invasiveness, reflecting the oncogenic pathways activated by the transgene. Recently, homologous sequences of the env gene of MMTV have been identified in approximately 40% of human breast cancers, but not in normal breast or other types of cancers, suggesting possible involvement of mammary tumor virus in human breast carcinogenesis. Accumulating evidence demonstrates the association of MMTV provirus with progesterone receptor, p53 mutations and advanced-stage breast cancer. Thus, the detection of MMTV-like sequences may have diagnostic value to predict the clinical outcome of breast cancer patients.
Collapse
Affiliation(s)
- Pankaj Taneja
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hiss DC, Gabriels GA. Implications of endoplasmic reticulum stress, the unfolded protein response and apoptosis for molecular cancer therapy. Part II: targeting cell cycle events, caspases, NF-κB and the proteasome. Expert Opin Drug Discov 2009; 4:907-21. [PMID: 23480539 DOI: 10.1517/17460440903055032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS), the unfolded protein response (UPR) and apoptosis signal transduction pathways are fundamental to normal cellular homeostasis and survival, but are exploited by cancer cells to promote the cancer phenotype. OBJECTIVE Collateral activation of ERS and UPR role players impact on cell growth, cell cycle arrest or apoptosis, genomic stability, tumour initiation and progression, tumour aggressiveness and drug resistance. An understanding of these processes affords promising prospects for specific cancer drug targeting of the ERS, UPR and apoptotic pathways. METHOD This review (Part II of II) brings forward the latest developments relevant to the molecular connections among cell cycle regulators, caspases, NF-κB, and the proteasome with ERS and UPR signalling cascades, their functions in apoptosis induction, apoptosis resistance and oncogenesis, and how these relationships can be exploited for targeted cancer therapy. CONCLUSION Overall, ERS, the UPR and apoptosis signalling cascades (the molecular therapeutic targets) and the development of drugs that attack these targets signify a success story in cancer drug discovery, but a more reductionist approach is necessary to determine the precise molecular switches that turn on antiapoptotic and pro-apoptotic programmes.
Collapse
Affiliation(s)
- Donavon C Hiss
- Head, Molecular Oncology Research Programme, University of the Western Cape, Department of Medical BioSciences, Bellville, 7535, South Africa +27 21 959 2334 ; +27 959 1563 ;
| | | |
Collapse
|
27
|
Abstract
The Ras-activated transcription factor DMP1 can stimulate Arf transcription to promote p53-dependent cell arrest. One recent study deepens the pathophysiologic significance of this pathway in cancer, first, by identifying DMP1 losses in human lung cancers that lack ARF/p53 mutations, and second, by demonstrating that Dmp1 deletions in the mouse are sufficient to promote K-ras-induced lung tumorigenesis via mechanisms consistent with a disruption of Arf/p53 suppressor function. These findings prompt further investigations of the prognostic value of DMP1 alterations in human cancers and the oncogenic events that can cooperate with DMP1 inactivation to drive tumorigenesis.
Collapse
Affiliation(s)
- Kazushi Inoue
- Departments of Pathology and Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, North Carolina, USA.
| | | | | | | | | |
Collapse
|
28
|
Sugiyama T, Frazier DP, Taneja P, Morgan RL, Willingham MC, Inoue K. Role of DMP1 and its future in lung cancer diagnostics. Expert Rev Mol Diagn 2008; 8:435-47. [PMID: 18598225 DOI: 10.1586/14737159.8.4.435] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lung cancer is the most lethal carcinoma worldwide. Mutations of p53, inactivation of p16(INK4a), and overexpression of cyclins E, A and B are independently associated with poor prognoses of patients, while the prognostic value of cyclin D1 or RB expression is inconclusive. Cyclin D binding myb-like protein 1 (Dmp1) encodes a DNA binding protein that receives signals from oncogenic Ras and functions as a tumor suppressor by activating the Arf-p53 [corrected] pathway. Dmp1 has been shown to be haplo-insufficient for tumor suppression in mouse models including K-ras-mediated lung carcinogenesis. The human DMP1 gene is located on chromosome 7q21, and our recent results revealed that the hDMP1 gene is deleted, but not mutated or silenced, in approximately 40 % of human non-small-cell lung carcinomas. These cases typically retained wild-type ARF and p53 and expressed very low levels of the hDMP1 protein. Thus, hDMP1 loss could be a novel diagnostic marker for non-small-cell lung carcinomas.
Collapse
Affiliation(s)
- Takayuki Sugiyama
- The Department of Pathology & Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-0001, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Sugiyama T, Frazier DP, Taneja P, Kendig RD, Morgan RL, Matise LA, Lagedrost SJ, Inoue K. Signal transduction involving the dmp1 transcription factor and its alteration in human cancer. Clin Med Oncol 2008; 2:209-19. [PMID: 21892281 PMCID: PMC3161675 DOI: 10.4137/cmo.s548] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dmp1 (cyclin D-interacting myb-like protein 1; also called Dmtf1) is a transcription factor that has been isolated in a yeast two-hybrid screen through its binding property to cyclin D2. Dmp1 directly binds to and activates the Arf promoter and induces Arf-p53-dependent cell cycle arrest in primary cells. D-type cyclins usually inhibit Dmp1-mediated transcription in a Cdk-independent fashion; however, Dmp1 shows synergistic effects with D-cyclins on the Arf promoter. Ras or Myc oncogene-induced tumor formation is accelerated in both Dmp1+/− and Dmp1−/− mice with no significant differences between Dmp1+/− and Dmp1−/−. Thus, Dmp1 is haplo-insufficient for tumor suppression. Tumors from Dmp1−/− or Dmp1+/− mice often retain wild-type Arf and p53, suggesting that Dmp1 is a physiological regulator of the Arf-p53 pathway. The Dmp1 promoter is activated by oncogenic Ras-Raf signaling, while it is repressed by physiological mitogenic stimuli, overexpression of E2F proteins, and genotoxic stimuli mediated by NF-κB. The human DMP1 gene (hDMP1) is located on chromosome 7q21 and is hemizygously deleted in approximately 40% of human lung cancers, especially those that retain normal INK4a/ARF and P53 loci. Thus, hDMP1 is clearly involved in human carcinogenesis, and tumors with hDMP1 deletion may constitute a discrete disease entity.
Collapse
Affiliation(s)
- Takayuki Sugiyama
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, N.C. 27157-0001, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Mallakin A, Sugiyama T, Taneja P, Matise LA, Frazier DP, Choudhary M, Hawkins GA, D'Agostino RB, Willingham MC, Inoue K. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell 2007; 12:381-94. [PMID: 17936562 PMCID: PMC2239345 DOI: 10.1016/j.ccr.2007.08.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 07/27/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Dmp1 (Dmtf1) is activated by oncogenic Ras-Raf signaling and induces cell-cycle arrest in an Arf, p53-dependent fashion. The survival of K-ras(LA) mice was shortened by approximately 15 weeks in both Dmp1(+/-) and Dmp1(-/-) backgrounds, the lung tumors of which showed significantly decreased frequency of p53 mutations compared to Dmp1(+/+). Approximately 40% of K-ras(LA) lung tumors from Dmp1(+/+) mice lost one allele of the Dmp1 gene, suggesting the primary involvement of Dmp1 in K-ras-induced tumorigenesis. Loss of heterozygosity (LOH) of the hDMP1 gene was detectable in approximately 35% of human lung carcinomas, which was found in mutually exclusive fashion with LOH of INK4a/ARF or that of P53. Thus, DMP1 is a pivotal tumor suppressor for both human and murine lung cancers.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Animals
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Cyclin-Dependent Kinase Inhibitor p16/metabolism
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Humans
- Loss of Heterozygosity
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Promoter Regions, Genetic
- Signal Transduction/genetics
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Ali Mallakin
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Takayuki Sugiyama
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Pankaj Taneja
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Lauren A. Matise
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Donna P. Frazier
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Mayur Choudhary
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Gregory A. Hawkins
- Division of Human Genomics, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Ralph B. D'Agostino
- Department of Biostatistical Science, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Mark C. Willingham
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- The Department of Cancer Biology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157
- Corresponding author, Phone: 336-716-5863; FAX: 336-716-6757; E-mail:
| |
Collapse
|