1
|
Incze E, Mangó K, Fekete F, Kiss ÁF, Póti Á, Harkó T, Moldvay J, Szüts D, Monostory K. Potential Association of Cytochrome P450 Copy Number Alteration in Tumour with Chemotherapy Resistance in Lung Adenocarcinoma Patients. Int J Mol Sci 2023; 24:13380. [PMID: 37686184 PMCID: PMC10487787 DOI: 10.3390/ijms241713380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Resistance to anticancer agents is a major obstacle to efficacious tumour therapy and responsible for high cancer-related mortality rates. Some resistance mechanisms are associated with pharmacokinetic variability in anticancer drug exposure due to genetic polymorphisms of drug-metabolizing cytochrome P450 (CYP) enzymes, whereas variations in tumoural metabolism as a consequence of CYP copy number alterations are assumed to contribute to the selection of resistant cells. A high-throughput quantitative polymerase chain reaction (qPCR)-based method was developed for detection of CYP copy number alterations in tumours, and a scoring system improved the identification of inappropriate reference genes that underwent deletion/multiplication in tumours. The copy numbers of both the target (CYP2C8, CYP3A4) and the reference genes (ALB, B2M, BCKDHA, F5, CD36, MPO, TBP, RPPH1) established in primary lung adenocarcinoma by the qPCR-based method were congruent with those determined by next-generation sequencing (for 10 genes, slope = 0.9498, r2 = 0.72). In treatment naïve adenocarcinoma samples, the copy number multiplication of paclitaxel-metabolizing CYP2C8 and/or CYP3A4 was more prevalent in non-responder patients with progressive disease/exit than in responders with complete remission. The high-throughput qPCR-based method can become an alternative approach to next-generation sequencing in routine clinical practice, and identification of altered CYP copy numbers may provide a promising biomarker for therapy-resistant tumours.
Collapse
Affiliation(s)
- Evelyn Incze
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői 26, H-1085 Budapest, Hungary
| | - Katalin Mangó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
- Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői 26, H-1085 Budapest, Hungary
| | - Ferenc Fekete
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
| | - Ádám Ferenc Kiss
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
| | - Tünde Harkó
- Department of Pathology, National Korányi Institute of Pulmonology, Pihenő 1, H-1121 Budapest, Hungary;
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, Pihenő 1, H-1121 Budapest, Hungary;
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
| | - Katalin Monostory
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok 2, H-1117 Budapest, Hungary; (E.I.); (K.M.); (F.F.); (Á.F.K.); (Á.P.); (D.S.)
| |
Collapse
|
2
|
Scudeler MM, Manóchio C, Braga Pinto AJ, Santos Cirino HD, da Silva CS, Rodrigues-Soares F. Breast cancer pharmacogenetics: a systematic review. Pharmacogenomics 2023; 24:107-122. [PMID: 36475975 DOI: 10.2217/pgs-2022-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer was declared the most prevalent type of cancer in 2020. Among other factors, treatment response can be affected by genetic polymorphisms - which is the focus of pharmacogenetics - and ethnicity is also a contributing factor in this context. Relevant genes in disease treatment pathways were selected to evaluate treatment response from the pharmacogenetic perspective; polymorphism frequencies and ethnic and continental representation across the available literature were also assessed through a systematic review. The identified associations and gaps have been described in this study with the purpose that, in the future, treatments can be personalized and thus be more effective, safer, and accessible to all.
Collapse
Affiliation(s)
- Mariana M Scudeler
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Caíque Manóchio
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Alex J Braga Pinto
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Heithor Dos Santos Cirino
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cléber S da Silva
- Departamento de Ginecologia e Obstetrícia, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Cirurgia de Mama, Hospital Hélio Angotti, Uberaba, Minas Gerais, 38010-180, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| |
Collapse
|
3
|
Zheng YZ, Li JY, Ning LW, Xie N. Predictive and Prognostic Value of TRIM58 Protein Expression in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:475-487. [PMID: 36578908 PMCID: PMC9790805 DOI: 10.2147/bctt.s387209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Introduction Tripartite motif-containing protein (TRIM) family members play crucial roles in carcinogenesis and chemotherapy resistance. In this study, we aimed to determine whether TRIM58 protein expression is related to patient responses to neoadjuvant therapy (NAT) and their survival outcome. Methods Immunohistochemistry was performed on female breast cancer samples from biopsies before NAT in Shenzhen Second People's Hospital. Univariate and multivariate logistic regression tests were used to analyze the association between TRIM58 protein expression and pathological complete response (pCR). The Cox proportional hazards model was used to calculate the adjusted hazard ratio (HR) with a 95% confidence interval (95% CI). The Kaplan-Meier plotter database was used to analyze the prognostic value of TRIM58. Results High TRIM58 expression was associated with small tumor size in all the patients (n = 58). Multivariate analysis suggested that low TRIM58 expression was an independent predictive factor for higher pCR (odds ratio = 0.06, 95% CI 0.005-0.741, P = 0.028). The Kaplan-Meier Plotter dataset suggested that the TRIM58 high-expression group showed a worse 5-year overall survival than the low-expression group (HR = 1.34, 95% CI 1.07-1.67, P = 0.01). Pathway analysis revealed the potential mechanisms of TRIM58 in chemoresistance. Discussion Our study suggests that TRIM58 is a promising biomarker for both neoadjuvant chemosensitivity and long-term clinical outcomes in breast cancer. It may also help to identify candidate responders and determine treatment strategies.
Collapse
Affiliation(s)
- Yi-Zi Zheng
- Department of Thyroid and Breast Surgery, Shenzhen Breast Tumor Research Center for Diagnosis and Treatment, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jia-Ying Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China,Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Lv-Wen Ning
- Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Ni Xie
- Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China,Correspondence: Ni Xie, Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, 3002 Sungang West Road, Shenzhen, 518035, Guangdong, People’s Republic of China, Tel +86-13501580802, Fax +86-0755-83003435, Email
| |
Collapse
|
4
|
Guijosa A, Freyria A, Espinosa‐Fernandez JR, Estrada‐Mena FJ, Armenta‐Quiroga AS, Ortega‐Treviño MF, Catalán R, Antonio‐Aguirre B, Villarreal‐Garza C, Perez‐Ortiz AC. Pharmacogenetics of taxane-induced neurotoxicity in breast cancer: Systematic review and meta-analysis. Clin Transl Sci 2022; 15:2403-2436. [PMID: 35892315 PMCID: PMC9579387 DOI: 10.1111/cts.13370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Taxane-based chemotherapy regimens are used as first-line treatment for breast cancer. Neurotoxicity, mainly taxane-induced peripheral neuropathy (TIPN), remains the most important dose-limiting adverse event. Multiple genes may be associated with TIPN; however, the strength and direction of the association remain unclear. For this reason, we systematically reviewed observational studies of TIPN pharmacogenetic markers in breast cancer treatment. We conducted a systematic search of terms alluding to breast cancer, genetic markers, taxanes, and neurotoxicity in Ovid, ProQuest, PubMed, Scopus, Virtual Health, and Web of Science. We assessed the quality of evidence and bias profile. We extracted relevant variables and effect measures. Whenever possible, we performed random-effects gene meta-analyses and examined interstudy heterogeneity with meta-regression models and subgroup analyses. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and STrengthening the REporting of Genetic Association Studies (STREGA) reporting guidance. A total of 42 studies with 19,431 participants were included. These evaluated 262 single-nucleotide polymorphisms (SNPs) across 121 genes. We conducted meta-analyses on 23 genes with 60 SNPs (19 studies and 6246 participants). Thirteen individual SNPs (ABCB1-rs2032582, ABCB1-rs3213619, BCL6/-rs1903216, /CAND1-rs17781082, CYP1B1-rs1056836, CYP2C8-rs10509681, CYP2C8-rs11572080, EPHA5-rs7349683, EPHA6-rs301927, FZD3-rs7001034, GSTP1-rs1138272, TUBB2A-rs9501929, and XKR4-rs4737264) and the overall SNPs' effect in four genes (CYP3A4, EphA5, GSTP1, and SLCO1B1) were statistically significantly associated with TIPN through meta-analysis. In conclusion, through systematic review and meta-analysis, we found that polymorphisms, and particularly 13 SNPs, are associated with TIPN, suggesting that genetics does play a role in interindividual predisposition. Further studies could potentially use these findings to develop individual risk profiles and guide decision making.
Collapse
Affiliation(s)
| | - Ana Freyria
- School of MedicineUniversidad PanamericanaMexico CityMexico
| | | | | | | | | | - Rodrigo Catalán
- School of MedicineUniversidad PanamericanaMexico CityMexico,Thoracic Oncology UnitInstituto Nacional de CancerologíaMexico CityMexico
| | | | - Cynthia Villarreal‐Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de MonterreySan Pedro Garza GarcíaNuevo LeónMexico
| | - Andric C. Perez‐Ortiz
- School of MedicineUniversidad PanamericanaMexico CityMexico,Transplant CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
5
|
Derouane F, van Marcke C, Berlière M, Gerday A, Fellah L, Leconte I, Van Bockstal MR, Galant C, Corbet C, Duhoux FP. Predictive Biomarkers of Response to Neoadjuvant Chemotherapy in Breast Cancer: Current and Future Perspectives for Precision Medicine. Cancers (Basel) 2022; 14:3876. [PMID: 36010869 PMCID: PMC9405974 DOI: 10.3390/cancers14163876] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
Pathological complete response (pCR) after neoadjuvant chemotherapy in patients with early breast cancer is correlated with better survival. Meanwhile, an expanding arsenal of post-neoadjuvant treatment strategies have proven beneficial in the absence of pCR, leading to an increased use of neoadjuvant systemic therapy in patients with early breast cancer and the search for predictive biomarkers of response. The better prediction of response to neoadjuvant chemotherapy could enable the escalation or de-escalation of neoadjuvant treatment strategies, with the ultimate goal of improving the clinical management of early breast cancer. Clinico-pathological prognostic factors are currently used to estimate the potential benefit of neoadjuvant systemic treatment but are not accurate enough to allow for personalized response prediction. Other factors have recently been proposed but are not yet implementable in daily clinical practice or remain of limited utility due to the intertumoral heterogeneity of breast cancer. In this review, we describe the current knowledge about predictive factors for response to neoadjuvant chemotherapy in breast cancer patients and highlight the future perspectives that could lead to the better prediction of response, focusing on the current biomarkers used for clinical decision making and the different gene signatures that have recently been proposed for patient stratification and the prediction of response to therapies. We also discuss the intratumoral phenotypic heterogeneity in breast cancers as well as the emerging techniques and relevant pre-clinical models that could integrate this biological factor currently limiting the reliable prediction of response to neoadjuvant systemic therapy.
Collapse
Affiliation(s)
- Françoise Derouane
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Cédric van Marcke
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Martine Berlière
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Gynecology (GYNE), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Amandine Gerday
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Gynecology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Latifa Fellah
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Isabelle Leconte
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Radiology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Mieke R. Van Bockstal
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Christine Galant
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Department of Pathology, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Cyril Corbet
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Francois P. Duhoux
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
6
|
Single-nucleotide polymorphisms and the effectiveness of taxane-based chemotherapy in premenopausal breast cancer: a population-based cohort study in Denmark. Breast Cancer Res Treat 2022; 194:353-363. [PMID: 35501422 PMCID: PMC9239972 DOI: 10.1007/s10549-022-06596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/04/2022] [Indexed: 11/28/2022]
Abstract
Purpose Taxane-based chemotherapy is the primary treatment for premenopausal breast cancer. Although being inconsistent, research suggests that variant alleles alter pharmacokinetics through reduced function of OATP transporters (limiting hepatic uptake), CYP-450 enzymes (hampering drug metabolism), and ABC transporters (decreasing clearance). Reduced function of DNA repair enzymes may hamper effectiveness through dose-limiting toxicities. We investigated whether single-nucleotide polymorphisms (SNPs) were associated with breast cancer recurrence or mortality in premenopausal women diagnosed with breast cancer. Methods We conducted a population-based cohort study of premenopausal women diagnosed with non-distant metastatic breast cancer in Denmark during 2007‒2011, when guidelines recommended adjuvant combination chemotherapy (taxanes, anthracyclines, and cyclophosphamide). Using archived formalin-fixed paraffin-embedded primary tumor tissue, we genotyped 26 SNPs using TaqMan assays. Danish health registries provided data on breast cancer recurrence (through September 25, 2017) and death (through December 31, 2019). We fit Cox regression models to calculate crude hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and mortality across genotypes. Results Among 2,262 women, 249 experienced recurrence (cumulative incidence: 13%) and 259 died (cumulative incidence: 16%) during follow-up (median 7.0 and 10.1 years, respectively). Mortality was increased in variant carriers of GSTP1 rs1138272 (HR: 1.30, 95% CI 0.95–1.78) and CYP3A rs10273424 (HR: 1.33, 95% CI 0.98–1.81). SLCO1B1 rs2306283 (encoding OATP1B1) variant carriers had decreased recurrence (HR: 0.82, 95% CI 0.64–1.07) and mortality (HR: 0.77, 95% CI 0.60–0.98). Conclusion Docetaxel effectiveness was influenced by SNPs in GSTP1, CYP3A, and SLCO1B1 in premenopausal women with non-distant metastatic breast cancer, likely related to altered docetaxel pharmacokinetics. These SNPs may help determine individual benefit from taxane-based chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-022-06596-2.
Collapse
|
7
|
Zhao Y, Wang X, Liu Y, Wang HY, Xiang J. The effects of estrogen on targeted cancer therapy drugs. Pharmacol Res 2022; 177:106131. [DOI: 10.1016/j.phrs.2022.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
8
|
Luo B, Yan D, Yan H, Yuan J. Cytochrome P450: Implications for human breast cancer. Oncol Lett 2021; 22:548. [PMID: 34093769 PMCID: PMC8170261 DOI: 10.3892/ol.2021.12809] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The treatment options for breast cancer include endocrine therapy, targeted therapy and chemotherapy. However, some patients with triple-negative breast cancer cannot benefit from these methods. Therefore, novel therapeutic targets should be developed. The cytochrome P450 enzyme (CYP) is a crucial metabolic oxidase, which is involved in the metabolism of endogenous and exogenous substances in the human body. Some products undergoing the metabolic pathway of the CYP enzyme, such as hydroxylated polychlorinated biphenyls and 4-chlorobiphenyl, are toxic to humans and are considered to be potential carcinogens. As a class of multi-gene superfamily enzymes, the subtypes of CYPs are selectively expressed in breast cancer tissues, especially in the basal-like type. In addition, CYPs are essential for the activation or inactivation of anticancer drugs. The association between CYP expression and cancer risk, tumorigenesis, progression, metastasis and prognosis has been widely reported in basic and clinical studies. The present review describes the current findings regarding the importance of exploring metabolic pathways of CYPs and gene polymorphisms for the development of vital therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Bin Luo
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Honglin Yan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Abdul Aziz AA, Md Salleh MS, Yahya MM, Zakaria AD, Ankathil R. Genetic Association of CYP1B1 4326 C>G Polymorphism with Disease-Free Survival in TNBC Patients Undergoing TAC Chemotherapy Regimen. Asian Pac J Cancer Prev 2021; 22:1319-1324. [PMID: 33906328 PMCID: PMC8325143 DOI: 10.31557/apjcp.2021.22.4.1319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) which is treated with taxane, adriamycin and cyclophosphamide (TAC) chemotherapy regimen show variation in treatment response. CYP1B1 4326 C>G polymorphism has been implicated in contributing to the differences in treatment response in various types of cancers. AIM The objective of the present study was to investigate whether this polymorphism modulate the risk of disease recurrence in TNBC patients undergoing TAC chemotherapy regimen. METHODS Blood samples of 76 immunohistochemistry confirmed TNBC patients were recruited. The genotyping of CYP1B1 4326 C>G polymorphism was carried out using PCR-RFLP technique. The genotype patterns were categorized into homozygous wildtype, heterozygous and homozygous variant. Kaplan-Meier analysis followed by Cox proportional hazard regression model were performed to evaluate the TNBC patients' recurrence risk. RESULTS Out of 76 TNBC patients, 25 (33.0%) showed disease recurrence after one-year evaluation. Kaplan Meier analysis showed that TNBC patients who are carriers of CYP1B1 4326 GG variant genotypes (37.0%) had a significantly lower probability of disease-free rates as compared to TNBC patients who are carriers of CYP1B1 4326 CC/CG genotypes (71.0%). Univariate and multivariate Cox analysis demonstrated that TNBC patients who carried CYP1B1 4326 GG variant genotype had a significantly higher risk of recurrence with HR: 2.50 and HR: 4.18 respectively, even after adjustment as compared to TNBC patients who were carriers of CYP1B1 4326 CC and CG genotypes. CONCLUSION Our results demonstrate the potential use of CYP1B1 4325 GG variant genotype as a candidate biomarker in predicting risk of recurrence in TNBC patients undergoing TAC chemotherapy regimen.
Collapse
Affiliation(s)
- Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| | - Md Salzihan Md Salleh
- Department of Pathology School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| | - Maya Mazuwin Yahya
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| | - Andee Dzulkarnaen Zakaria
- Department of Surgery, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
10
|
Hertz DL. Exploring pharmacogenetics of paclitaxel- and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 2021; 17:227-239. [PMID: 33401943 DOI: 10.1080/17425255.2021.1856367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Peripheral neuropathy (PN) is an adverse effect of several classes of chemotherapy including the taxanes. Predictive PN biomarkers could inform individualized taxane treatment to reduce PN and enhance therapeutic outcomes. Pharmacogenetics studies of taxane-induced PN have focused on genes involved in pharmacokinetics, including enzymes and transporters. Contradictory findings from these studies prevent translation of genetic biomarkers into clinical practice. Areas covered: This review discusses the progress toward identifying pharmacogenetic predictors of PN by assessing the evidence for two independent associations; the effect of pharmacogenetics on taxane pharmacokinetics and the evidence that taxane pharmacokinetics affects PN. Assessing these direct relationships allows the reader to understand the progress toward individualized taxane treatment and future research opportunities. Expert opinion: Paclitaxel pharmacokinetics is a major determinant of PN. Additional clinical trials are needed to confirm the clinical benefit of individualized dosing to achieve target paclitaxel exposure. Genetics does not meaningfully contribute to paclitaxel pharmacokinetics and may not be useful to inform dosing. However, genetics may contribute to PN sensitivity and could be useful for estimating patients' optimal paclitaxel exposure. For docetaxel, genetics has not been demonstrated to have a meaningful effect on pharmacokinetics and there is no evidence that pharmacokinetics determines PN.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy , Ann Arbor, MI, United States
| |
Collapse
|
11
|
Muth M, Ojara FW, Kloft C, Joerger M. Role of TDM-based dose adjustments for taxane anticancer drugs. Br J Clin Pharmacol 2020; 87:306-316. [PMID: 33247980 DOI: 10.1111/bcp.14678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 01/14/2023] Open
Abstract
The classical taxanes (paclitaxel, docetaxel), the newer taxane cabazitaxel and the nanoparticle-bound nab-paclitaxel are among the most widely used anticancer drugs. Still, the optimal use and the value of pharmacological personalization of the taxanes is still controversial. We give an overview on the pharmacological properties of the taxanes, including metabolism, pharmacokinetics-pharmacodynamic relations and aspects in the clinical use of taxanes. The latter includes the ongoing debate on the most effective and safe regimen, the recommended initial dose, and pharmacological dosing individualization. The taxanes are among the most widely used anticancer drugs in patients with solid malignancies. Despite their longtime use in clinical routine, the optimal dosing strategy (weekly versus 3-weekly) or optimal average dose (cabazitaxel, nab-paclitaxel) has not been fully resolved, as it may differ according to tumour entity and line of treatment. The value of pharmacological individualization of the taxanes (TDM, TCI) has been partly explored for 3-weekly paclitaxel and docetaxel, but remains mostly unexplored for cabazitaxel and nab-paclitaxel at present.
Collapse
Affiliation(s)
- Marsilla Muth
- Department of Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Francis Williams Ojara
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany.,Graduate Research Training Program PharMetrX, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Markus Joerger
- Department of Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| |
Collapse
|
12
|
Lin H, Hu B, He X, Mao J, Wang Y, Wang J, Zhang T, Zheng J, Peng Y, Zhang F. Overcoming Taxol-resistance in A549 cells: A comprehensive strategy of targeting P-gp transporter, AKT/ERK pathways, and cytochrome P450 enzyme CYP1B1 by 4-hydroxyemodin. Biochem Pharmacol 2020; 171:113733. [DOI: 10.1016/j.bcp.2019.113733] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
|
13
|
Bomane A, Gonçalves A, Ballester PJ. Paclitaxel Response Can Be Predicted With Interpretable Multi-Variate Classifiers Exploiting DNA-Methylation and miRNA Data. Front Genet 2019; 10:1041. [PMID: 31708973 PMCID: PMC6823251 DOI: 10.3389/fgene.2019.01041] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022] Open
Abstract
To address the problem of resistance to paclitaxel treatment, we have investigated to which extent is possible to predict Breast Cancer (BC) patient response to this drug. We carried out a large-scale tumor-based prediction analysis using data from the US National Cancer Institute’s Genomic Data Commons. These data sets comprise the responses of BC patients to paclitaxel along with six molecular profiles of their tumors. We assessed 10 Machine Learning (ML) algorithms on each of these profiles and evaluated the resulting 60 classifiers on the same BC patients. DNA methylation and miRNA profiles were the most informative overall. In combination with these two profiles, ML algorithms selecting the smallest subset of molecular features generated the most predictive classifiers: a complexity-optimized XGBoost classifier based on CpG island methylation extracted a subset of molecular factors relevant to predict paclitaxel response (AUC = 0.74). A CpG site methylation-based Decision Tree (DT) combining only 2 of the 22,941 considered CpG sites (AUC = 0.89) and a miRNA expression-based DT employing just 4 of the 337 analyzed mature miRNAs (AUC = 0.72) reveal the molecular types associated to paclitaxel-sensitive and resistant BC tumors. A literature review shows that features selected by these three classifiers have been individually linked to the cytotoxic-drug sensitivities and prognosis of BC patients. Our work leads to several molecular signatures, unearthed from methylome and miRNome, able to anticipate to some extent which BC tumors respond or not to paclitaxel. These results may provide insights to optimize paclitaxel-therapies in clinical practice.
Collapse
Affiliation(s)
- Alexandra Bomane
- Cancer Research Center of Marseille, CRCM, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Paris, France
| | - Anthony Gonçalves
- Cancer Research Center of Marseille, CRCM, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Paris, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille, CRCM, INSERM, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Paris, France
| |
Collapse
|
14
|
Ji N, Yang Y, Cai CY, Wang JQ, Lei ZN, Wu ZX, Cui Q, Yang DH, Chen ZS, Kong D. Midostaurin Reverses ABCB1-Mediated Multidrug Resistance, an in vitro Study. Front Oncol 2019; 9:514. [PMID: 31275850 PMCID: PMC6591272 DOI: 10.3389/fonc.2019.00514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Overexpression of ABC transporters in cancer cells is an underlying mechanism of multidrug resistance (MDR), leading to insensitive response to chemotherapeutic strategies. Thus, MDR is often results in treatment failure in the clinic. In this study, we found midostaurin, a Food and Drug Administration (FDA)-approved anti-leukemia drug, can antagonize ATP-binding cassette subfamily B member 1 (ABCB1)-mediated MDR. Our results indicated that midostaurin has the capacity to antagonize ABCB1-mediated MDR, while no significant reversal effect was found on ATP-binding cassette subfamily G member 2 (ABCG2)-mediated MDR. Our subsequent resistance mechanism studies showed that midostaurin directly inhibited the efflux function of the ABCB1 transporter without alteration of the expression level or the subcellular localization of ABCB1 transporter. In addition, midostaurin inhibited the ATPase activity of ABCB1 transporter in a dose-dependent manner. Moreover, our in silico docking study predicted that midostaurin could interact with the substrate-binding sites of ABCB1 transporter. This novel finding could provide a promising treatment strategy that co-administrating midostaurin with anticancer drugs in the clinic could overcome MDR and improve the efficiency of cancer treatment.
Collapse
Affiliation(s)
- Ning Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Research Center, School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
15
|
Marcath LA, Kidwell KM, Robinson AC, Vangipuram K, Burness ML, Griggs JJ, Poznak CV, Schott AF, Hayes DF, Henry NL, Hertz DL. Patients carrying CYP2C8*3 have shorter systemic paclitaxel exposure. Pharmacogenomics 2018; 20:95-104. [PMID: 30520341 DOI: 10.2217/pgs-2018-0162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM First, evaluate if patients carrying putatively diminished activity CYP2C8 genotype have longer paclitaxel exposure (e.g., time above threshold concentration of 0.05 μM [Tc >0.05]). Second, screen additional pharmacogenes for associations with Tc >0.05. Methods: Pharmacogene panel genotypes were translated into genetic phenotypes for associations with Tc >0.05 (n = 58). RESULTS Patients with predicted low-activity CYP2C8 had shorter Tc >0.05 after adjustment for age, body surface area and race (9.65 vs 11.03 hrs, β = 5.47, p = 0.02). This association was attributed to CYP2C8*3 (p = 0.006), not CYP2C8*4 (p = 0.58). Patients with predicted low-activity SLCO1B1 had longer Tc >0.05 (12.12 vs 10.15 hrs, β = 0.85, p = 0.012). CONCLUSION Contrary to previous publications, CYP2C8*3 may confer increased paclitaxel metabolic activity. SLCO1B1 and CYP2C8 genotype may explain some paclitaxel pharmacokinetic variability.
Collapse
Affiliation(s)
- Lauren A Marcath
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kelley M Kidwell
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Adam C Robinson
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Kiran Vangipuram
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Monika L Burness
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer J Griggs
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine Van Poznak
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anne F Schott
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel F Hayes
- University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Norah Lynn Henry
- Department of Internal Medicine, Division of Oncology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA.,University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, Hua Gan S, Ankathil R. Single-nucleotide polymorphisms and mRNA expression of CYP1B1 influence treatment response in triple negative breast cancer patients undergoing chemotherapy. J Genet 2018; 97:1185-1194. [PMID: 30555068 DOI: 10.1007/s12041-018-1013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 10/27/2022]
Abstract
Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
Collapse
Affiliation(s)
- Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ji N, Yang Y, Cai CY, Lei ZN, Wang JQ, Gupta P, Teng QX, Chen ZS, Kong D, Yang DH. VS-4718 Antagonizes Multidrug Resistance in ABCB1- and ABCG2-Overexpressing Cancer Cells by Inhibiting the Efflux Function of ABC Transporters. Front Pharmacol 2018; 9:1236. [PMID: 30425643 PMCID: PMC6218957 DOI: 10.3389/fphar.2018.01236] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/11/2018] [Indexed: 01/13/2023] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is one of the most important mechanisms responsible for multi-drug resistance (MDR). VS-4718, a tyrosine kinase inhibitor targeting focal adhesion kinase (FAK) with a potential anticancer effect, is currently evaluated in clinical trials. In this study, we investigated whether VS-4718 could reverse MDR mediated by ABC transporters, including ABCB1, ABCG2, and ABCC1. The results showed that VS-4718 significantly reversed ABCB1- and ABCG2-mediated MDR, but not MDR mediated by ABCC1. Treatment of VS-4718 did not alter the protein level and subcellular localization of ABCB1 or ABCG2. Mechanism studies indicated that the reversal effects of VS-4718 were related to attenuation of the efflux activity of ABCB1 and ABCG2 transporters. ATPase analysis indicated that VS-4718 stimulated the ATPase activity of ABCB1 and ABCG2. Docking study showed that VS-4718 interacted with the substrate-binding sites of both ABCB1 and ABCG2, suggesting that VS-4718 may affect the activity of ABCB1 and ABCG2 competitively. This study provided a novel insight for MDR cancer treatment. It indicated that combination of VS-4718 with antineoplastic drugs could attenuate MDR mediated by ABCB1 or ABCG2 in ABCB1- or ABCG2-overexpressing cancer cells.
Collapse
Affiliation(s)
- Ning Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
18
|
Ji N, Yang Y, Lei ZN, Cai CY, Wang JQ, Gupta P, Xian X, Yang DH, Kong D, Chen ZS. Ulixertinib (BVD-523) antagonizes ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Biochem Pharmacol 2018; 158:274-285. [PMID: 30431011 DOI: 10.1016/j.bcp.2018.10.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Abstract
Ulixertinib (BVD-523) is a highly potent, selective, and reversible ERK1/2 inhibitor and is currently in clinical development for the treatment of advanced solid tumors. In this study, we investigated whether ulixertinib could antagonize multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters. The results showed that ulixertinib, at non-toxic concentrations, significantly reversed ATP-binding cassette subfamily B member 1 (ABCB1)- and ATP-binding cassette subfamily G member 2 (ABCG2)-mediated MDR. In ABCB1-overexpressing cells, ulixertinib antagonized MDR by attenuating the efflux function of ABCB1. Similarly, in ABCG2-overexpressing cells, ulixertinib inhibited the efflux activity of ABCG2 and reversed resistance to substrate anticancer drugs. The reversal effects of ulixertinib were not related to the down-regulation or change of subcellular localization of ABCB1 or ABCG2. Mechanistic investigations revealed that ulixertinib stimulated the ATPase activity of both ABCB1 and ABCG2 in a concentration-dependent manner, and the in silico docking study predicted that ulixertinib could interact with the substrate-binding sites of both ABCB1 and ABCG2. Our finding provides a clue into a novel treatment strategy: a combination of ulixertinib with anticancer drugs to attenuate MDR mediated by ABCB1 or ABCG2 in cancer cells overexpressing these transporters.
Collapse
Affiliation(s)
- Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Xiaomeng Xian
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
19
|
Ji N, Yang Y, Cai CY, Lei ZN, Wang JQ, Gupta P, Shukla S, Ambudkar SV, Kong D, Chen ZS. Selonsertib (GS-4997), an ASK1 inhibitor, antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells. Cancer Lett 2018; 440-441:82-93. [PMID: 30315846 DOI: 10.1016/j.canlet.2018.10.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 01/26/2023]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is one of the most important mechanisms responsible for the development of multidrug resistance (MDR). Selonsertib, a serine/threonine kinase inhibitor, targets apoptosis signal-regulating kinase 1 (ASK1) and is now in phase III clinical trial for the treatment of non-alcoholic steatohepatitis (NASH). In this study, we investigated whether selonsertib could reverse MDR-mediated by ABC transporters, including ABCB1, ABCG2, ABCC1 and ABCC10. The results showed that selonsertib significantly reversed ABCB1- and ABCG2-mediated MDR, but not MDR-mediated by ABCC1 or ABCC10. Mechanism studies indicated that the reversal effect of selonsertib was related to the attenuation of the efflux activity of ABCB1 and ABCG2 transporters, without the protein level decrease or change in the subcellular localization of ABCB1 or ABCG2. Selonsertib stimulated the ATPase activity of ABCB1 and ABCG2 in a concentration-dependent manner, and in silico docking study showed selonsertib could interact with the substrate-binding sites of both ABCB1 and ABCG2. This study provides a clue into a novel treatment strategy, which includes a combination of selonsertib with antineoplastic drugs to attenuate MDR-mediated by ABCB1 or ABCG2 in cancer cells overexpressing these transporters.
Collapse
Affiliation(s)
- Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, 20892, USA
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
20
|
Di Francia R, Atripaldi L, Di Martino S, Fierro C, Muto T, Crispo A, Rossetti S, Facchini G, Berretta M. Assessment of Pharmacogenomic Panel Assay for Prediction of Taxane Toxicities: Preliminary Results. Front Pharmacol 2017; 8:797. [PMID: 29163177 PMCID: PMC5682021 DOI: 10.3389/fphar.2017.00797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023] Open
Abstract
Backbone: Paclitaxel and docetaxel are the primary taxane anticancer drugs regularly used to treat, breast, gastric, ovarian, head/neck, lung, and genitourinary neoplasm. Suspension of taxane treatments compromising patient benefits is more frequently caused by peripheral neuropathy and allergy, than to tumor progression. Several strategies for preventing toxicity have been investigated so far. Recently, findings on the genetic variants associated with toxicity and resistance to taxane-based chemotherapy have been reported. Methods: An extensive panel of five polymorphisms on four candidate genes (ABCB1, CYP2C8*3, CYP3A4*1B, XRCC3), previously validated as significant markers related to paclitaxel and Docetaxel toxicity, are analyzed and discussed. We genotyped 76 cancer patients, and 35 of them received paclitaxel or docetaxel-based therapy. What is more, an early outline evaluation of the genotyping costs and benefit was assessed. Results: Out of 35 patients treated with a taxane, six (17.1%) had adverse neuropathy events. Pharmacogenomics analysis showed no correlation between candidate gene polymorphisms and toxicity, except for the XRCC3 AG+GG allele [OR 2.61 (95% CI: 0.91–7.61)] which showed a weak significant trend of risk of neurotoxicities vs. the AG allele [OR 1.52 (95% CI: 0.51–4.91)] P = 0.03. Summary: Based on our experimental results and data from the literature, we propose a useful and low-cost genotyping panel assay for the prevention of toxicity in patients undergoing taxane-based therapy. With the individual pharmacogenomics profile, clinicians will have additional information to plan the better treatment for their patients to minimize toxicity and maximize benefits, including determining cost-effectiveness for national healthcare sustainability.
Collapse
Affiliation(s)
- Raffaele Di Francia
- Hematology-Oncology Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Napoli, Italy
| | - Luigi Atripaldi
- Hematology and Cellular Immunology (Clinical Biochemistry), A.O. dei Colli Monaldi Hospital, Naples, Italy
| | | | - Carla Fierro
- Hematology and Cellular Immunology (Clinical Biochemistry), A.O. dei Colli Monaldi Hospital, Naples, Italy
| | - Tommaso Muto
- Hematology and Cellular Immunology (Clinical Biochemistry), A.O. dei Colli Monaldi Hospital, Naples, Italy
| | - Anna Crispo
- Epidemiology-Oncology Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale" IRCCS, Napoli, Italy
| | - Sabrina Rossetti
- Medical Oncology Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale", Napoli, Italy
| | - Gaetano Facchini
- Medical Oncology Unit, Istituto Nazionale Tumori, Fondazione "G. Pascale", Napoli, Italy
| | | |
Collapse
|
21
|
Kus T, Aktas G, Kalender ME, Demiryurek AT, Ulasli M, Oztuzcu S, Sevinc A, Kul S, Camci C. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel. Onco Targets Ther 2016; 9:5073-80. [PMID: 27574448 PMCID: PMC4990373 DOI: 10.2147/ott.s106574] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. METHODS From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV) 175 mg/m(2) every 3 weeks for four cycles, or IV 80 mg/m(2) weekly for 12 cycles, and IV 100 mg/m(2) docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. RESULTS Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172-6.493, P: 0.017) compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033-4.941, P: 0.038) compared to GG genotype. For FDGF4 gene with AG and GG genotype, OR was 1.879 (95% CI: 1.001-3.525, P: 0.048) compared to AA genotype with regard to any grade of neuropathy risk. We could not find any other association of other genotypes with neurotoxicity grades. CONCLUSION ABCB1 3435 TT genotype and CYP3A4 392 AA/AG genotypes may be used as predictors of neurotoxicity during taxane chemotherapy.
Collapse
Affiliation(s)
- Tulay Kus
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Gokmen Aktas
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Mehmet Emin Kalender
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | | | - Mustafa Ulasli
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Alper Sevinc
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| | - Seval Kul
- Department of Biostatistics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Celaletdin Camci
- Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey
| |
Collapse
|
22
|
Stewart DA, Winnike JH, McRitchie SL, Clark RF, Pathmasiri WW, Sumner SJ. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences. J Proteome Res 2016; 15:3225-40. [PMID: 27447733 DOI: 10.1021/acs.jproteome.6b00430] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.
Collapse
Affiliation(s)
- Delisha A Stewart
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Jason H Winnike
- David H. Murdock Research Institute , Kannapolis, North Carolina 28081, United States
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Robert F Clark
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Wimal W Pathmasiri
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| | - Susan J Sumner
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International , Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
23
|
Chang I, Mitsui Y, Fukuhara S, Gill A, Wong DK, Yamamura S, Shahryari V, Tabatabai ZL, Dahiya R, Shin DM, Tanaka Y. Loss of miR-200c up-regulates CYP1B1 and confers docetaxel resistance in renal cell carcinoma. Oncotarget 2016; 6:7774-87. [PMID: 25860934 PMCID: PMC4480715 DOI: 10.18632/oncotarget.3484] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 12/22/2022] Open
Abstract
Despite high protein expression and enzymatic activity of cytochrome P450 1B1 (CYP1B1) in renal cell cancer (RCC), its functional significance has not been elucidated. Here we explored the functional role and regulatory mechanism of CYP1B1 in RCC. Reduction of CYP1B1 levels fail to prevent in vitro tumorigenicity such as proliferation, apoptosis, and cell cycle progression of RCC cells. Moreover, the expression levels are not associated with tumor type, stage, Fuhrman grade and 5-year survival probability after surgery. Instead, alteration of CYP1B1 expression regulates the chemosensitivity of RCC cells to docetaxel suggesting its critical contribution to the chemoresistance. Additionally, miR-200c, which is significantly down-regulated in RCC regulates CYP1B1 expression and activity. An inverse association was also observed between the expression levels of miR-200c and CYP1B1 protein in RCC tissues. Finally, alteration of miR-200c levels affects the chemosensitivity of RCC cells. Restoration of docetaxel resistance by exogenous expression of CYP1B1 in miR-200c-over-expressing cells indicates that CYP1B1 is a functional target of miR-200c. These results suggest that CYP1B1 up-regulation mediated by low miR-200c is one of the mechanisms underlying resistance of RCC cells to docetaxel. Therefore, expression of CYP1B1 and miR-200c in RCC may be useful as a prediction for docetaxel response.
Collapse
Affiliation(s)
- Inik Chang
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yozo Mitsui
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Shinichiro Fukuhara
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Ankurpreet Gill
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Darryn K Wong
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Soichiro Yamamura
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Varahram Shahryari
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Z Laura Tabatabai
- Department of Pathology, Veterans Affairs Medical Center and University of California, San Francisco, California, United States of America
| | - Rajvir Dahiya
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yuichiro Tanaka
- Department of Surgery and Division of Urology, Veterans Affairs Medical Center, San Francisco, California, United States of America.,Department of Urology, University of California, San Francisco, California, United States of America
| |
Collapse
|
24
|
Patel JN, Papachristos A. Personalizing chemotherapy dosing using pharmacological methods. Cancer Chemother Pharmacol 2015; 76:879-96. [PMID: 26298089 DOI: 10.1007/s00280-015-2849-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE Given the toxic nature and narrow therapeutic index of traditional chemotherapeutics, better methods of dose and therapy selection are critical. Pharmacological methods, including pharmacogenomics and pharmacokinetics, offer a practical method to enrich drug exposure, reduce toxicity, and improve quality of life for patients. METHODS PubMed and key abstracts from the American Society of Clinical Oncology (ASCO) and American Association for Cancer Research (AACR) were searched until July 2015 for clinical data relating to pharmacogenomic- and/or pharmacokinetic-guided dosing of anticancer drugs. RESULTS Based on the results returned from a thorough search of the literature and the plausibility of utilizing pharmacogenomic and/or pharmacokinetic methods to personalize chemotherapy dosing, we identified several chemotherapeutic agents with the potential for therapy individualization. We highlight the available data, clinical validity, and utility of using pharmacogenomics to personalize therapy for tamoxifen, 5-fluorouracil, mercaptopurine, and irinotecan, in addition to using pharmacokinetics to personalize dosing for 5-fluorouracil, busulfan, methotrexate, taxanes, and topotecan. CONCLUSION A concerted effort should be made by researchers to further elucidate the role of pharmacological methods in personalizing chemotherapy dosing to optimize the risk-benefit profile. Clinicians should be aware of the clinical validity, utility, and availability of pharmacogenomic- and pharmacokinetic-guided therapies in clinical practice, to ultimately allow optimal dosing for each and every cancer patient.
Collapse
Affiliation(s)
- Jai N Patel
- Department of Cancer Pharmacology, Levine Cancer Institute, Carolinas HealthCare System, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | | |
Collapse
|
25
|
Szalai R, Ganczer A, Magyari L, Matyas P, Bene J, Melegh B. Interethnic differences of cytochrome P450 gene polymorphisms may influence outcome of taxane therapy in Roma and Hungarian populations. Drug Metab Pharmacokinet 2015; 30:453-6. [PMID: 26507668 DOI: 10.1016/j.dmpk.2015.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/24/2015] [Accepted: 08/03/2015] [Indexed: 11/18/2022]
Abstract
Taxanes are widely used microtubule-stabilizing chemotherapeutic agents in the treatment of cancers. Several cytochrome P450 gene variants have been proven to influence taxane metabolism and therapy. The purpose of this work was to determine the distribution of genetic variations of CYP1B1, CYP2C8 and CYP3A5 genes as the first report on taxane metabolizer cytochrome P450 gene polymorphisms in Roma and Hungarian populations. A total of 397 Roma and 412 Hungarian healthy subjects were genotyped for CYP1B1 c.4326C > G, CYP2C8 c.792C > G and CYP3A5 c.6986A > G variant alleles by PCR-RFLP assay and direct sequencing. We found significant differences in the frequencies of homozygous variant genotypes of CYP1B1 4326 GG (p = 0.002) and CYP3A5 6986 GG (p < 0.001) between Roma and Hungarian populations. Regarding minor allele frequencies, for CYP2C8 a significantly increased prevalence was found in 792G allele frequency in the Hungarian population compared to the Roma population (5.83% vs. 2.14%, p = 0.001). Our results can be used as possible predictive factors in population specific treatment algorithms to developing effective programs for a better outcome in patients treated with taxanes.
Collapse
Affiliation(s)
- Renata Szalai
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, H-7624 Pecs, Ifjusag 20, Hungary
| | - Alma Ganczer
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary
| | - Lili Magyari
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, H-7624 Pecs, Ifjusag 20, Hungary
| | - Petra Matyas
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary
| | - Judit Bene
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary
| | - Bela Melegh
- University of Pecs, Clinical Center, Department of Medical Genetics, H-7624 Pecs, Szigeti 12, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, H-7624 Pecs, Ifjusag 20, Hungary.
| |
Collapse
|
26
|
Bosó V, Herrero MJ, Santaballa A, Palomar L, Megias JE, de la Cueva H, Rojas L, Marqués MR, Poveda JL, Montalar J, Aliño SF. SNPs and taxane toxicity in breast cancer patients. Pharmacogenomics 2015; 15:1845-58. [PMID: 25495407 DOI: 10.2217/pgs.14.127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM In order to identify genetic variants associated with taxanes toxicity, a panel with 47 SNPs in 20 genes involved in taxane pathways was designed. PATIENTS & METHODS Genomic DNA of 113 breast cancer patients was analyzed (70 taking docetaxel, 43 taking paclitaxel). RESULTS Two SNPs associated with docetaxel toxicity were identified: CYP3A4*1B with infusion-related reactions; and ERCC1 Gln504Lys with mucositis (p≤0.01). Regarding paclitaxel toxicity: CYP2C8 HapC and CYP2C8 rs1934951 were associated with anemia; and ERCC1 Gln504Lys with neuropathy (p≤0.01). CONCLUSION Genes involved in DNA repair mechanisms and reactive oxygen species levels influence taxane toxicity in cancer patients treated with chemotherapy schemes not containing platinum. These findings could lead to better treatment selection for breast cancer patients.
Collapse
Affiliation(s)
- Virginia Bosó
- Pharmacogenetics Unit, Pharmacy Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Clinical Significance of ABCG2 Haplotype-tagging Single Nucleotide Polymorphisms in Patients With Unresectable Non-Small Cell Lung Cancer Treated With First-line Platinum-based Chemotherapy. Am J Clin Oncol 2015; 38:294-9. [PMID: 23689644 DOI: 10.1097/coc.0b013e318297f333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The ATP-binding cassette (ABC) ABCG2, involved in multidrug resistance (MDR) in cancer cells, plays an integral role in drug resistance. Single nucleotide polymorphisms (SNPs) have been identified in many MDR-associated ABC genes that seem to influence drug sensitivity/resistance through various mechanisms. Therefore, we investigated whether ABCG2 haplotype-tagging SNPs (htSNPs) were associated with clinical outcomes in patients with unresectable non-small cell lung cancer (NSCLC) treated with front-line platinum-based chemotherapy. PATIENTS AND METHODS We genotyped 4 ABCG2 htSNPs for 129 unresectable NSCLC cases treated with first-line platinum-based chemotherapy. Clinical characteristics, treatment outcomes, and predictive value of the htSNPs in patient response, survival, and adverse events related to platinum-based chemotherapy were analyzed according to each ABCG2 htSNP using the χ test, Kaplan-Meier method, and Cox proportional hazard model. RESULTS The rs2725264 was significantly related to overall survival (OS) (P=0.018, log-rank test). The median survival duration (in months) for patients with the rs2725264 T/T, T/C, and C/C genotypes was 35.75 (95% confidence interval [CI], 24.25-47.25), 34.25 (hazard ratio [HR] 1.27 [0.68 to 2.35]; 95% CI, 27.16-41.34), and 14.89 (HR 3.22 [1.26 to 8.24], 95% CI, 13.86-15.92), respectively. The rs2725264 was identified as an independent factor by Cox proportional hazard model analysis (P=0.028). In the taxane-based groups, OS was associated with rs2725264 (P=0.041), whereas in the gemcitabine-based groups, OS was associated with rs4148149 (P=0.014). CONCLUSIONS Our data suggest ABCG2 htSNPs rs2725264 (overall group and taxane-platinum combination group) and rs4148149 (gemcitabine-platinum combination group) were associated with OS in unresectable NSCLC patients treated with first-line platinum-based chemotherapy. Thus, the ABCG2 htSNP rs2725264 may be independently associated with OS in unresectable NSCLC patients treated with first-line platinum-based chemotherapy.
Collapse
|
28
|
Are pharmacogenomic biomarkers an effective tool to predict taxane toxicity and outcome in breast cancer patients? Literature review. Cancer Chemother Pharmacol 2015. [PMID: 26198313 DOI: 10.1007/s00280-015-2818-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Breast cancer is a heterogeneous disease, characterized by various molecular phenotypes that correlate with different prognosis and response to treatments. Taxanes are some of the most active chemotherapeutic agents for breast cancer; however, their utilization is limited, due to hematologic and cumulative neurotoxicity on treated patients. To understand why only some patients experience severe adverse effects and why patients respond and develop resistance with different rates to taxane therapy, the metabolic pathways of these drugs should be completely unraveled. The variant forms of several genes, related to taxane pharmacokinetics, can be indicative markers of clinical parameters, such as toxicity or outcome. METHODS The search of the data has been conducted through PubMed database, presenting clinical data, clinical trials and basic research restricted to English language until June 2015. RESULTS We studied the literature in order to find any possible association between the major pharmacogenomic variants and specific taxane-related toxicity and patient outcome. We found that the data of these studies are sometimes discordant, due to both the small number of enrolled patients and the heterogeneity of the examined population. CONCLUSIONS Among all analyzed genes, only CYP1B1 and ABCB1 resulted the strongest candidates to become biomarkers of clinical response to taxane therapy in breast cancer, although their utilization still remains an experimental procedure. In the future, greater studies on genetic polymorphisms should be performed in order to identify differentiating signatures for patients with higher toxicity and with resistant or responsive outcome, before the administration of taxanes.
Collapse
|
29
|
Dumont A, Pannier D, Ducoulombier A, Tresch E, Chen J, Kramar A, Révillion F, Peyrat JP, Bonneterre J. ERCC1 and CYP1B1 polymorphisms as predictors of response to neoadjuvant chemotherapy in estrogen positive breast tumors. SPRINGERPLUS 2015; 4:327. [PMID: 26180747 PMCID: PMC4493257 DOI: 10.1186/s40064-015-1053-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 11/16/2022]
Abstract
Purpose Neoadjuvant chemotherapy (NCT) using anthracyclines and taxanes is a standard treatment for locally advanced breast cancer. Efficacy of NCT is however variable among patients and predictive markers are expected to guide the selection of patients who will benefit from NCT. A promising approach stand with polymorphisms located in genes encoding drug transporters, drug metabolizing enzymes and target genes which can affect drug efficacy. Our study investigated the potential of 37 polymorphisms to predict response to NCT in breast cancer. Methods 118 women with breast adenocarcinoma were treated with FEC100 and taxotere. Genotyping was performed on germline DNA using the BioMark platform (Fluidigm). Pathological complete response (pCR) according to Sataloff criteria was correlated to clinical characteristics and genotypes using univariate and multivariate analyses. Results 25 patients (21.2%) reached complete pathologic response. pCR rate is increased in SBRIII (p = 0.009), ER negative (p = 0.005) and triple negative (p = 0.006) tumors. pCR rate is significantly increased for patients carrying at least one variant allele for BRCA1, ERCC1 or SLCO1B3, and for patients homozygous for CYP1B1. The combination of ERCC1 and CYP1B1 polymorphisms is a potential predictor of NCT response in breast cancer (pCR rate reached 50 vs 21.2% for unselected patients), and particularly in ER + breast cancer subtype where pCR rate reached 41.2 vs 13.5% for unselected patients. Conclusions This study is the first to report ERCC1, BRCA1 and SLCO1B3 as markers of response to NCT in breast cancer. ERCC1/CYP1B1 combination might be of particular interest to predict response to NCT in breast cancer and particularly to help NCT indication for ER+ breast tumors. Electronic supplementary material The online version of this article (doi:10.1186/s40064-015-1053-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélie Dumont
- Laboratoire d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Diane Pannier
- Département de Sénologie, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Agnès Ducoulombier
- Département de Sénologie, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Emmanuelle Tresch
- Unité de Méthodologie et Biostatistique, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Jinying Chen
- Laboratoire d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Andrew Kramar
- Unité de Méthodologie et Biostatistique, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Françoise Révillion
- Laboratoire d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Jean-Philippe Peyrat
- Laboratoire d'Oncologie Moléculaire Humaine, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| | - Jacques Bonneterre
- Département de Sénologie, Centre Oscar Lambret, 3 rue Frédéric Combemale, BP 307, 59020 Lille Cedex, France
| |
Collapse
|
30
|
Ciccolini J, Fanciullino R, Serdjebi C, Milano G. Pharmacogenetics and breast cancer management: current status and perspectives. Expert Opin Drug Metab Toxicol 2015; 11:719-29. [PMID: 25690018 DOI: 10.1517/17425255.2015.1008447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Breast cancer has benefited from a number of innovative therapeutics over the last decade. Cytotoxics, hormone therapy, targeted therapies and biologics can now be given to ensure optimal management of patients. As life expectancy of breast cancer patients has been significantly stretched and that several lines of treatment are now made available, determining the best drug or drug combinations to be primarily given and the best dosing and scheduling for each patient is critical for ensuring an optimal toxicity/efficacy balance. AREAS COVERED Defining patient's characteristics at the tumor level (pharmacogenomics) and the constitutional level (pharmacogenetics) is a rising trend in oncology. This review covers the latest strategies based upon the search of relevant biomarkers for efficacy, resistance and toxicity to be undertaken at the bedside to shift towards precision medicine in breast cancer patients. EXPERT OPINION In the expanding era of bioguided medicine, identifying relevant and clinically validated biomarkers from the plethora of published material remains an uneasy task. Sorting the variety of genetic and molecular markers that have been investigated over the last decade on their level of evidence and addressing the issue of drug exposure should help to improve the management of breast cancer therapy.
Collapse
Affiliation(s)
- Joseph Ciccolini
- SMARTc Pharmacokinetics Unit, UMR S_911 CRO2, AMU , Marseille , France
| | | | | | | |
Collapse
|
31
|
Pavlíková N, Bartoňová I, Balušíková K, Kopperova D, Halada P, Kovář J. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 2014; 333:1-10. [PMID: 25557873 DOI: 10.1016/j.yexcr.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
Resistance of cancer cells to chemotherapeutic agents is one of the main causes of treatment failure. In order to detect proteins potentially involved in the mechanism of resistance to taxanes, we assessed differences in protein expression in MCF-7 breast cancer cells that are sensitive to paclitaxel and in the same cells with acquired resistance to paclitaxel (established in our lab). Proteins were separated using two-dimensional electrophoresis. Changes in their expression were determined and proteins with altered expression were identified using mass spectrometry. Changes in their expression were confirmed using western blot analysis. With these techniques, we found three proteins expressed differently in resistant MCF-7 cells, i.e., thyroid hormone-interacting protein 6 (TRIP6; upregulated to 650%), heat shock protein 27 (HSP27; downregulated to 50%) and cathepsin D (downregulated to 28%). Silencing of TRIP6 expression by specific siRNA leads to decreased number of grown resistant MCF-7 cells. In the present study we have pointed at some new directions in the studies of the mechanism of resistance to paclitaxel in breast cancer cells.
Collapse
Affiliation(s)
- Nela Pavlíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Irena Bartoňová
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dana Kopperova
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Halada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology,v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Kovář
- Department of Cell & Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Zhu Z, Mu Y, Qi C, Wang J, Xi G, Guo J, Mi R, Zhao F. CYP1B1 enhances the resistance of epithelial ovarian cancer cells to paclitaxel in vivo and in vitro. Int J Mol Med 2014; 35:340-8. [PMID: 25516145 PMCID: PMC4292762 DOI: 10.3892/ijmm.2014.2041] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer (OC) is the most frequent cause of mortality among gynecological malignancies, with a 5-year survival rate of approximately 30%. The standard regimen for OC therapy includes a platinum agent combined with a taxane, to which the patients frequently acquire resistance. Resistance arises from the oxidation of anticancer drugs by CYP1B1, a cytochrome P450 enzyme overexpressed in malignant OC. The aim of the present study was to determine the role of CYP1B1 expression in the drug resistance of OC to the taxane, paclitaxel (PTX). Immunohistochemical staining was used to assess CYP1B1 expression in a panel of ovarian samples (53 primary cancer samples, 14 samples of metastastic cancer, 30 benign tumor samples and 19 normal tissue samples). Semi-quantitative RT-PCR was also performed to determine CYP1B1 expression in several OC cell lines. Finally, we used proliferation and toxicity assays, as well as a mouse xenograft model using nude mice to determine whether α-naphthoflavone (ANF), a CYP1B1 specific inhibitor, reduces resistance to PTX. CYP1B1 was overexpressed in the samples from primary and metastatic loci of epithelial ovarian cancers. In some cell lines, PTX induced CYP1B1 expression, which resulted in drug resistance. Exposure to ANF reduced drug resistance and enhanced the sensitivity of OC cells to PTX in vitro and in vivo. The expression profile of CYP1B1 suggests that it has the potential to be a useful diagnostic marker and prognostic factor for malignant OC. The inhibition of CYP1B1 expression by specific agents may provide a novel therapeutic strategy for the treatment of patients resistant to PTX and may improve the prognosis of these patients.
Collapse
Affiliation(s)
- Zhuangyan Zhu
- Department of Obstetrics and Gynecology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Yaqin Mu
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Caixia Qi
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Jian Wang
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Guoping Xi
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Juncheng Guo
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Ruoran Mi
- Department of Obstetrics and Gynecology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fuxi Zhao
- Institute of Immunology, Shanxi Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| |
Collapse
|
33
|
Abstract
Minimizing toxicity while maximizing efficacy is a common goal in the treatment of any condition but its importance is underscored in the discipline of oncology because of the serious nature of many chemotherapeutic toxicities and the risk of cancer recurrence or disease progression. The challenge of achieving an optimal therapeutic index is especially augmented in the elderly population because of age-related metabolism changes and interacting concurrent medications. Additional factors, such as germline mutations in drug-metabolizing enzymes and other pharmacogenomic alterations, may have more pronounced effects in elderly patients, given their predisposition to altered pharmacokinetics and pharmacodynamics with resulting increased risk of toxicity. Examples of the possible interplay of these factors will be discussed using tamoxifen, paclitaxel, codeine, and fluorouracil as starting points. Limited participation of the elderly in many cancer trials, especially trials assessing drug exposure, makes much knowledge on the interaction of these patient and environmental factors speculative in nature but presents an opportunity for future research to achieve better optimization of chemotherapeutic agents in the elderly.
Collapse
|
34
|
Tulsyan S, Chaturvedi P, Singh AK, Agarwal G, Lal P, Agrawal S, Mittal RD, Mittal B. Assessment of clinical outcomes in breast cancer patients treated with taxanes: multi-analytical approach. Gene 2014; 543:69-75. [PMID: 24704000 DOI: 10.1016/j.gene.2014.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/30/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
Polymorphisms in genes encoding CYPs (Phase I) and ABCB1 (Phase III) enzymes may attribute to variability of efficacy of taxanes. The present study aims to find the influence of CYP and ABCB1 gene polymorphisms on taxanes based clinical outcomes. 132 breast cancer patients treated with taxanes based chemotherapy were genotyped for CYP3A4*1B, CYP3A5*3, CYP1B1*3, CYP2C8*3, ABCB1 1236C>T, 2677G>T/A and 3435C>T polymorphisms using PCR-RFLP. Associations of genetic variants with clinical outcomes in terms of response in 58 patients receiving neo-adjuvant chemotherapy (NACT), and chemo-toxicity in 132 patients were studied. Multifactor dimensionality reduction (MDR) analysis was performed to evaluate higher order gene-gene interactions with clinical outcomes. Pathological response to taxane based NACT was associated with GA genotype as well as A allele of CYP3A5*3 polymorphism (Pcorr=0.0465, Pcorr=0.0465). Similarly, association was found in dominant model of CYP3A5*3 polymorphism with responders (Pcorr=0.0465). Haplotype analysis further revealed ACYP3A4-ACYP3A5 haplotype to be significantly associated with responders (Pcorr=0.048). In assessing toxicity, significant association of variant (TT) genotype and T allele of ABCB1 2677G>T/A polymorphism, was found with 'grade 1 or no leucopenia' (Pcorr=0.0465, Pcorr=0.048). On evaluating higher order gene-gene interaction models by MDR analysis, CYP3A5*3; ABCB11236C>T and ABCB1 2677G>T/A; ABCB1 3435C>T and CYP1B1*3 showed significant association with treatment response, grade 2-4 anemia and dose delay/reduction due to neutropenia (P=0.024, P=0.004, P=0.026), respectively. Multi-analytical approaches may provide a better assessment of pharmacogenetic based treatment outcomes in breast cancer patients treated with taxanes.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms, Male/drug therapy
- Breast Neoplasms, Male/epidemiology
- Breast Neoplasms, Male/genetics
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/genetics
- Drug Resistance, Neoplasm/genetics
- Drug-Related Side Effects and Adverse Reactions/epidemiology
- Drug-Related Side Effects and Adverse Reactions/genetics
- Female
- Genetic Association Studies
- Haplotypes
- Humans
- Male
- Middle Aged
- Taxoids/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Sonam Tulsyan
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pankaj Chaturvedi
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Abhishek Kumar Singh
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Gaurav Agarwal
- Department of Endocrine & Breast Surgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Punita Lal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sushma Agrawal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rama Devi Mittal
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Balraj Mittal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
35
|
PharmGKB summary: very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 8. Pharmacogenet Genomics 2014; 23:721-8. [PMID: 23962911 DOI: 10.1097/fpc.0b013e3283653b27] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Patel JN, Fuchs CS, Owzar K, Chen Z, McLeod HL. Gastric cancer pharmacogenetics: progress or old tripe? Pharmacogenomics 2014; 14:1053-64. [PMID: 23837480 DOI: 10.2217/pgs.13.88] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains the second most frequent cause of cancer-related mortality. While surgery is traditionally the initial treatment for early-stage disease, the addition of chemotherapy has been shown to significantly increase overall survival and progression-free survival in advanced and metastatic stages of disease. However, despite the incorporation of newer chemotherapies and regimens into gastric cancer clinical trials, the response rate and median overall survival for treated patients has not significantly improved throughout the years; therefore, newer therapeutic approaches to improve upon the medication selection process are warranted. Treatment and dose selection based on patient factors, such as genetic variation, may provide a more rational and potentially more powerful means of personalizing chemotherapy. This review provides an update on the current status of pharmacogenetic studies regarding germline DNA mutations that may alter response to chemotherapeutic agents used to treat gastric cancer, including perspectives on clinical translation and future work.
Collapse
Affiliation(s)
- Jai N Patel
- UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina, Chapel Hill, NC 27599-7361, USA
| | | | | | | | | |
Collapse
|
37
|
Hertz DL. Germline pharmacogenetics of paclitaxel for cancer treatment. Pharmacogenomics 2014; 14:1065-84. [PMID: 23837481 DOI: 10.2217/pgs.13.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Paclitaxel is a highly effective chemotherapeutic agent used in a variety of solid tumors. Some paclitaxel-treated patients experience the intended therapeutic response with manageable side effects, while others have minimal response and/or severe toxicity. This variability in treatment outcome is partially determined by variability in drug exposure (pharmacokinetics) and by patient and tumor sensitivity (pharmacodynamics). Both pharmacokinetics and pharmacodynamics are dictated in part by common variants in the germline genome, known as SNPs. This article reviews the published literature on paclitaxel pharmacogenetics in cancer, focusing primarily on polymorphisms in genes relevant to paclitaxel pharmacokinetics and discusses preliminary work on pharmacodynamic genes and genome-wide association studies.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical, Social, & Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
38
|
Krens SD, McLeod HL, Hertz DL. Pharmacogenetics, enzyme probes and therapeutic drug monitoring as potential tools for individualizing taxane therapy. Pharmacogenomics 2013; 14:555-74. [PMID: 23556452 DOI: 10.2217/pgs.13.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The taxanes are a class of chemotherapeutic agents that are widely used in the treatment of various solid tumors. Although taxanes are highly effective in cancer treatment, their use is associated with serious complications attributable to large interindividual variability in pharmacokinetics and a narrow therapeutic window. Unpredictable toxicity occurrence necessitates close patient monitoring while on therapy and adverse effects frequently require decreasing, delaying or even discontinuing taxane treatment. Currently, taxane dosing is based primarily on body surface area, ignoring other factors that are known to dictate variability in pharmacokinetics or outcome. This article discusses three potential strategies for individualizing taxane treatment based on patient information that can be collected before or during care. The clinical implementation of pharmacogenetics, enzyme probes or therapeutic drug monitoring could enable clinicians to personalize taxane treatment to enhance efficacy and/or limit toxicity.
Collapse
Affiliation(s)
- Stefanie D Krens
- UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina at Chapel Hill, 120 Mason Farm Road, CB 7361, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
39
|
Kudlowitz D, Muggia F. Defining risks of taxane neuropathy: insights from randomized clinical trials. Clin Cancer Res 2013; 19:4570-7. [PMID: 23817688 DOI: 10.1158/1078-0432.ccr-13-0572] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensory neuropathy is a common but difficult to quantify complication encountered during treatment of various cancers with taxane-containing regimens. Docetaxel, paclitaxel, and its nanoparticle albumin-bound formulation have been extensively studied in randomized clinical trials comparing various dose and schedules for the treatment of breast, lung, and ovarian cancers. This review highlights differences in extent of severe neuropathies encountered in such randomized trials and seeks to draw conclusions in terms of known pharmacologic factors that may lead to neuropathy. This basic knowledge provides an essential background for exploring pharmacogenomic differences among patients in relation to their susceptibility of developing severe manifestations. In addition, the differences highlighted may lead to greater insight into drug and basic host factors (such as age, sex, and ethnicity) contributing to axonal injury from taxanes.
Collapse
Affiliation(s)
- David Kudlowitz
- New York University School of Medicine and Cancer Institute, New York, New York 10016, USA
| | | |
Collapse
|
40
|
Yu L, Shi D, Ma L, Zhou Q, Zeng S. Influence ofCYP2C8polymorphisms on the hydroxylation metabolism of paclitaxel, repaglinide and ibuprofen enantiomersin vitro. Biopharm Drug Dispos 2013; 34:278-87. [DOI: 10.1002/bdd.1842] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/04/2013] [Accepted: 03/18/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Lushan Yu
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Da Shi
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Liping Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| | - Quan Zhou
- Department of Pharmacy, the 2nd Affiliated Hospital, School of Medicine; Zhejiang University; Zhejiang; Zhejiang Province; China
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences; Zhejiang University; Hangzhou; 310058; China
| |
Collapse
|
41
|
Jabir RS, Naidu R, Annuar MABA, Ho GF, Munisamy M, Stanslas J. Pharmacogenetics of taxanes: impact of gene polymorphisms of drug transporters on pharmacokinetics and toxicity. Pharmacogenomics 2013; 13:1979-88. [PMID: 23215890 DOI: 10.2217/pgs.12.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interindividual variability in drug response and the emergence of adverse drug effects are the main causes of treatment failure in cancer therapy. Functional membrane drug transporters play important roles in altering pharmacokinetic profile, resistance to treatment, toxicity and patient survival. Pharmacogenetic studies of these transporters are expected to provide new approaches for optimizing therapy. Taxanes are approved for the treatment of various cancers. Circulating taxanes are taken up by SLCO1B3 into hepatocytes. The CYP450 enzymes CYP3A4, CYP3A5 and CYP2C8 are responsible for the conversion of taxanes into their metabolites. Ultimately, ABCB1 and ABCC2 will dispose the metabolites into bile canaliculi. Polymorphisms of genes encoding for proteins involved in the transport and clearance of taxanes reduce excretion of the drugs, leading to development of toxicity in patients. This review addresses current knowledge on genetic variations of transporters affecting taxanes pharmacokinetics and toxicity, and provides insights into future direction for personalized medicine.
Collapse
Affiliation(s)
- Rafid Salim Jabir
- Pharmacotherapeutics Unit, Department of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | |
Collapse
|
42
|
Westbrook K, Stearns V. Pharmacogenomics of breast cancer therapy: an update. Pharmacol Ther 2013; 139:1-11. [PMID: 23500718 DOI: 10.1016/j.pharmthera.2013.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 12/13/2022]
Abstract
Clinical and histopathologic characteristics of breast cancer have long played an important role in treatment decision-making. Well-recognized prognostic factors include tumor size, node status, presence or absence of metastases, tumor grade, and hormone receptor expression. High tumor grade, presence of hormone receptors, and HER2-positivity are a few predictive markers of response to chemotherapy, endocrine manipulations, and anti-HER2 agents, respectively. However, there is much heterogeneity of outcomes in patients with similar clinical and pathologic features despite equivalent treatment regimens. Some of the differences in response to specific therapies can be attributed to somatic tumor characteristics, such as degree of estrogen receptor expression and HER2 status. In recent years, there has been great interest in evaluating the role that pharmacogenetics/pharmacogenomics, or variations in germline DNA, play in alteration of drug metabolism and activity, thus leading to disparate outcomes among patients with similar tumor characteristics. The utility of these variations in treatment decision-making remains debated. Here we review the data available to date on genomic variants that may influence response to drugs commonly used to treat breast cancer. While none of the variants reported to date have demonstrated clinical utility, ongoing prospective studies and increasing understanding of pharmacogenetics will allow us to better predict risk of toxicity or likelihood of response to specific treatments and to provide a more personalized therapy.
Collapse
Affiliation(s)
- Kelly Westbrook
- Duke University Medical Center, Duke Cancer Institute, Breast Cancer Program, DUMC Box 3893, 10 Searle Dr., Sealy Mudd Bldg. Room 449A, Durham, NC 27710, United States.
| | | |
Collapse
|
43
|
Vianna-Jorge R, Festa-Vasconcellos JS, Goulart-Citrangulo SMT, Leite MS. Functional polymorphisms in xenobiotic metabolizing enzymes and their impact on the therapy of breast cancer. Front Genet 2013; 3:329. [PMID: 23346096 PMCID: PMC3551254 DOI: 10.3389/fgene.2012.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/29/2012] [Indexed: 01/21/2023] Open
Abstract
Breast cancer is the top cancer among women, and its incidence is increasing worldwide. Although the mortality tends to decrease due to early detection and treatment, there is great variability in the rates of clinical response and survival, which makes breast cancer one of the most appealing targets for pharmacogenomic studies. The recognition that functional CYP2D6 polymorphisms affect tamoxifen pharmacokinetics has motivated the attempts of using CYP2D6 genotyping for predicting breast cancer outcomes. In addition to tamoxifen, the chemotherapy of breast cancer includes combinations of cytotoxic drugs, which are substrates for various xenobiotic metabolizing enzymes. Because of these drugs’ narrow therapeutic window, it has been postulated that impaired biotransformation could lead to increased toxicity. In the present review, we performed a systematic search of all published data exploring associations between polymorphisms in xenobiotic metabolizing enzymes and clinical outcomes of breast cancer. We retrieved 43 original articles involving either tamoxifen or other chemotherapeutic protocols, and compiled all information regarding response or toxicity. The data indicate that, although CYP2D6 polymorphisms can indeed modify tamoxifen pharmacokinetics, CYP2D6 genotyping alone is not enough for predicting breast cancer outcomes. The studies involving other chemotherapeutic protocols explored a great diversity of pharmacogenetic targets, but the number of studies for each functional polymorphism is still very limited, with usually no confirmation of positive associations. In conclusion, the application of pharmacogenetics to predict breast cancer outcomes and to select one individual’s chemotherapeutic protocol is still far from clinical routine. Although some very interesting results have been produced, no clear practical recommendations are recognized yet.
Collapse
Affiliation(s)
- Rosane Vianna-Jorge
- Programa de Farmacologia, Coordenação de Pesquisa, Instituto Nacional do Câncer Rio de Janeiro, Brazil ; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
44
|
Schnepf R, Zolk O. Effect of the ATP-binding cassette transporter ABCG2 on pharmacokinetics: experimental findings and clinical implications. Expert Opin Drug Metab Toxicol 2013; 9:287-306. [PMID: 23289909 DOI: 10.1517/17425255.2013.742063] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The ATP-binding cassette transporter ABCG2 can actively extrude a broad range of endogenous and exogenous substrates across biological membranes. Thereby, ABCG2 limits oral drug bioavailability, mediates hepatobiliary and renal excretion and participates functionally in the blood-brain barrier. AREAS COVERED The paper provides a review of the clinical evidence of the role of ABCG2 in the bioavailability and brain disposition of drugs. It also sheds light on the value of experimental/preclinical data in predicting the role of ABCG2 in pharmacokinetics in humans. EXPERT OPINION Experimental studies indicate that ABCG2 may limit the oral bioavailability and brain penetration of many drugs. ABCG2 has also been recognized as an important determinant of the disposition of some drugs in humans. For example, loss-of-function variants of ABCG2 affect the pharmacokinetics and pharmacodynamics of rosuvastatin in a clinically significant manner. Moreover, clinically relevant pharmacokinetic drug-drug interactions have been attributed to ABCG2 inhibition. However, examples from human studies are still rare compared with the overwhelming evidence from experimental studies. The large degree of functional redundancy of ABCG2 with other transporters such as P-glycoprotein may explain the rare occurrence of ABCG2-dependent drug-drug interactions in humans. Providing clinicians with consolidated information on the clinically relevant interactions of drugs with ABCG2 remains a matter of future exploration.
Collapse
Affiliation(s)
- Rebecca Schnepf
- Friedrich-Alexander Universität Erlangen-Nürnberg, Institute of Experimental and Clinical Pharmacology and Toxicology, Fahrstr. 17, 91054 Erlangen, Germany.
| | | |
Collapse
|
45
|
González-Neira A. Pharmacogenetics of chemotherapy efficacy in breast cancer. Pharmacogenomics 2012; 13:677-90. [PMID: 22515610 DOI: 10.2217/pgs.12.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Large differences are observed in chemotherapy response between breast cancer patients, with a substantial part of this variability being explained by genetic factors. Polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters and drug targets influence the pharmacokinetics and pharmacodynamics of these anticancer drugs, leading to differences in therapeutic efficacy. Pharmacogenetic investigations of breast cancer therapeutics focused on these candidate loci have been performed. This article summarizes the status of research to identify polymorphisms in genes that influence response to the chemotherapeutic agents used in breast cancer treatment and suggests future directions for this line of research. Understanding the genetic factors that predispose patients to poor treatment outcomes will help guide individualized therapeutic strategies to obtain maximal benefit.
Collapse
Affiliation(s)
- Anna González-Neira
- Human Genotyping Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain.
| |
Collapse
|
46
|
|
47
|
Dong N, Yu J, Wang C, Zheng X, Wang Z, Di L, Song G, Zhu B, Che L, Jia J, Jiang H, Zhou X, Wang X, Ren J. Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J Cancer Res Clin Oncol 2012; 138:1197-203. [PMID: 22426923 DOI: 10.1007/s00432-012-1183-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Docetaxel plus capecitabine, a commonly used chemotherapeutic regimen for metastatic breast cancer (MBC), is highly variable in its effectiveness. We aimed to investigate whether allelic variants of cytochrome P450 (CYP450) affected objective response, progression-free survival (PFS), and overall survival (OS) in MBC. PATIENTS AND METHODS 79 SNPs in CYP450, whose minor allele frequency were ≥ 10%, were genotyped in 69 MBC patients who were treated with docetaxel plus capecitabine. Pearson's χ(2) test or Fisher's exact test was used to investigate the influence of SNPs on objective response as appropriate. Log-rank test was used to assess the association between SNPs and survival outcomes. RESULTS There is no significant association between polymorphisms and both objective response and OS. Only one SNP, CYP1A1 rs1048943 A>G (Ile462Val), was significantly associated with PFS (P = 0.0003). Multivariate analysis confirmed its prognostic significance for PFS (P = 0.004). CONCLUSION CYP1A1 rs1048943 A>G (Ile462Val) polymorphism is a potential prognostic marker for survival outcome after docetaxel plus capecitabine chemotherapy in MBC patients. However, confirmatory study is needed to validate this finding.
Collapse
Affiliation(s)
- Ningning Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Medical Oncology, Peking University Cancer Hospital and Institute, 52 Fucheng Rd, Haidian District, Beijing 100142, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lustberg MB, Pant S, Ruppert AS, Shen T, Wei Y, Chen L, Brenner L, Shiels D, Jensen RR, Berger M, Mrozek E, Ramaswamy B, Grever M, Au JL, Wientjes MG, Shapiro CL. Phase I/II trial of non-cytotoxic suramin in combination with weekly paclitaxel in metastatic breast cancer treated with prior taxanes. Cancer Chemother Pharmacol 2012; 70:49-56. [PMID: 22729159 DOI: 10.1007/s00280-012-1887-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/05/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE Suramin, a polysulfonated naphthylurea, inhibits the actions of polypeptide growth factors including acidic and basic fibroblast growth factors (aFGF and bFGF), which confer broad spectrum chemotherapy resistance. We hypothesized that suramin at non-cytotoxic doses in combination with weekly paclitaxel would be well tolerated and demonstrate anti-tumor activity. METHODS Women with metastatic breast cancer who had been previously treated with a taxane in the adjuvant or metastatic setting were eligible. The primary objective of the phase I was to determine the dose of intravenous (IV) weekly suramin that resulted in plasma concentrations between 10 and 50 umol/l over 8-48 h (or the target range) in combination with IV 80 mg/m(2) of weekly paclitaxel. The primary objective of the phase II trial was to determine the anti-tumor activity of the dosing regimen defined in phase I. Therapy was continued until disease progression or development of unacceptable toxicity. RESULTS Thirty-one patients were enrolled (9: phase I; 22: phase II). In phase I, no dose-limiting toxicities were observed. Pharmacokinetics during the first cycle showed suramin concentrations within the target range for 21 of 24 weekly treatments (88 %). In phase II, the objective response rate (ORR) was 23 % (95 % CI 8-45 %), the median progression-free survival was 3.4 months (95 % CI 2.1-4.9 months), and the median overall survival was 11.2 months (95 % CI 6.6-16.0 months). CONCLUSIONS Non-cytotoxic doses of suramin in combination with weekly paclitaxel were well tolerated. The efficacy was below the pre-specified criteria required to justify further investigation.
Collapse
Affiliation(s)
- Maryam B Lustberg
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, B421 Starling-Loving Hall, 320 West 10th Avenue, Columbus, OH 43210-1240, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mooiman KD, Goey AKL, Meijerman I, Beijnen JH, Schellens JHM. Letter to the editor regarding "A prospective, controlled study of the botanical compound mixture LCS101 for chemotherapy-induced hematological complications in breast cancer" by Yaal-Hahoshen et al. (The Oncologist 2011;16:1197-1202). Oncologist 2012; 17:740-1; author reply 742-3. [PMID: 22511266 DOI: 10.1634/theoncologist.2011-0413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Hertz DL, Motsinger-Reif AA, Drobish A, Winham SJ, McLeod HL, Carey LA, Dees EC. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res Treat 2012; 134:401-10. [PMID: 22527101 DOI: 10.1007/s10549-012-2054-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/30/2012] [Indexed: 01/08/2023]
Abstract
Paclitaxel is one of the most frequently used chemotherapeutic agents for the treatment of breast cancer patients. Using a candidate gene approach, we hypothesized that polymorphisms in genes relevant to the metabolism and transport of paclitaxel are associated with treatment efficacy and toxicity. Patient and tumor characteristics and treatment outcomes were collected prospectively for breast cancer patients treated with paclitaxel-containing regimens in the neoadjuvant setting. Treatment response was measured before and after each phase of treatment by clinical tumor measurement and categorized according to RECIST criteria, while toxicity data were collected from physician notes. The primary endpoint was achievement of clinical complete response (cCR) and secondary endpoints included clinical response rate (complete response+partial response) and grade 3+ peripheral neuropathy. The genotypes and haplotypes assessed were CYP1B1*3, CYP2C8*3, CYP3A4*1B/CYP3A5*3C, and ABCB1*2. A total of 111 patients were included in this study. Overall, cCR was 30.1% to the paclitaxel component. CYP2C8*3 carriers (23/111, 20.7%) had higher rates of cCR (55% vs. 23%; OR=3.92 [95% CI: 1.46-10.48], corrected p=0.046). In the secondary toxicity analysis, we observed a trend toward greater risk of severe neuropathy (22% vs. 8%; OR=3.13 [95% CI: 0.89-11.01], uncorrected p=0.075) in subjects carrying the CYP2C8*3 variant. Other polymorphisms interrogated were not significantly associated with response or toxicity. Patients carrying CYP2C8*3 are more likely to achieve clinical complete response from neoadjuvant paclitaxel treatment, but may also be at increased risk of experiencing severe peripheral neurotoxicity.
Collapse
Affiliation(s)
- Daniel L Hertz
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, CB 7361, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | |
Collapse
|