1
|
Zhao G, Dong H, Dai L, Xie H, Sun H, Zhang J, Wang Q, Xu C, Yin K. Proteomics analysis of Toxoplasma gondii merozoites reveals regulatory proteins involved in sexual reproduction. Microb Pathog 2024; 186:106484. [PMID: 38052278 DOI: 10.1016/j.micpath.2023.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Sexual reproduction plays a crucial role in the transmission and life cycle of toxoplasmosis. The merozoites are the only developmental stage capable of differentiation into male and female gametes, thereby initiating sexual reproduction to form oocysts that are excreted into the environment. Hence, our study aimed to perform proteomic analyses of T. gondii Pru strain merozoites, a pre-sexual developmental stage in cat IECs, and tachyzoites, an asexual developmental stage, using the tandem mass tag (TMT) method in order to identify the differentially expressed proteins (DEPs) of merozoites. Proteins functions were subjected to cluster analysis, and DEPs were validated through the qPCR method. The results showed that a total of 106 proteins were identified, out of which 85 proteins had quantitative data. Among these, 15 proteins were differentially expressed within merozoites, with four exhibiting up-regulation and being closely associated with the material and energy metabolism as well as the cell division of T. gondii. Two novel DEPs, namely S8GHL5 and A0A125YP41, were identified, and their homologous family members have been demonstrated to play regulatory roles in oocyte maturation and spermatogenesis in other species. Therefore, they may potentially exhibit regulatory functions during the differentiation of micro- and macro-gametophytes at the initiation stage of sexual reproduction in T. gondii. In conclusion, our results showed that the metabolic and divisional activities in the merozoites surpass those in the tachyzoites, thereby providing structural, material, and energetic support for gametophytes development. The discovery of two novel DEPs associated with sexual reproduction represents a significant advancement in understanding Toxoplasma sexual reproduction initiation and oocyst formation.
Collapse
Affiliation(s)
- Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Lisha Dai
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, 11 Taibai Middle Road, Jining City, Shandong Province, 272033, China.
| |
Collapse
|
2
|
Avila-Bonilla R, Velazquez-Guzman J, Reyes-Zepeda E, Gutierrez-Avila J, Reyes-López C, Cisneros-Sarabia A, Saavedra E, Lopéz-Sandoval A, Ramírez-Moreno E, López-Camarillo C, Marchat L. Comparative genomics and interactomics of polyadenylation factors for the prediction of new parasite targets: Entamoeba histolytica as a working model. Biosci Rep 2023; 43:BSR20221911. [PMID: 36651565 PMCID: PMC9912109 DOI: 10.1042/bsr20221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Protein-protein interactions (PPI) play a key role in predicting the function of a target protein and drug ability to affect an entire biological system. Prediction of PPI networks greatly contributes to determine a target protein and signal pathways related to its function. Polyadenylation of mRNA 3'-end is essential for gene expression regulation and several polyadenylation factors have been shown as valuable targets for controlling protozoan parasites that affect human health. Here, by using a computational strategy based on sequence-based prediction approaches, phylogenetic analyses, and computational prediction of PPI networks, we compared interactomes of polyadenylation factors in relevant protozoan parasites and the human host, to identify key proteins and define potential targets for pathogen control. Then, we used Entamoeba histolytica as a working model to validate our computational results. RT-qPCR assays confirmed the coordinated modulation of connected proteins in the PPI network and evidenced that silencing of the bottleneck protein EhCFIm25 affects the expression of interacting proteins. In addition, molecular dynamics simulations and docking approaches allowed to characterize the relationships between EhCFIm25 and Ehnopp34, two connected bottleneck proteins. Interestingly, the experimental identification of EhCFIm25 interactome confirmed the close relationships among proteins involved in gene expression regulation and evidenced new links with moonlight proteins in E. histolytica, suggesting a connection between RNA biology and metabolism as described in other organisms. Altogether, our results strengthened the relevance of comparative genomics and interactomics of polyadenylation factors for the prediction of new targets for the control of these human pathogens.
Collapse
Affiliation(s)
| | - Jorge Antonio Velazquez-Guzman
- Facultad de Ciencias, Universidad Autónoma del Estado de México. Carretera Toluca-Ixtlahuaca km 15.5 Cerrillo Piedras Blancas 50200 Toluca, Estado de México, Mexico
| | - Eimy Itzel Reyes-Zepeda
- Facultad de Ciencias, Universidad Autónoma del Estado de México. Carretera Toluca-Ixtlahuaca km 15.5 Cerrillo Piedras Blancas 50200 Toluca, Estado de México, Mexico
| | - Jorge Luis Gutierrez-Avila
- Posgrado en Ciencias Químico-Biológicas; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Mexico City, Mexico
| | - César A Reyes-López
- Laboratorio de Bioquímica Estructural, Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City 07320, Mexico
| | - Alondra Cisneros-Sarabia
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | - Angel Lopéz-Sandoval
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Esther Ramírez-Moreno
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Laurence A. Marchat
- Laboratorio de Biomedicina Molecular II, ENMH, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
3
|
Oshizuki S, Matsumoto E, Tanaka S, Kataoka N. Mutations equivalent to Drosophila
mago nashi
mutants imply reduction of Magoh protein incorporation into exon junction complex. Genes Cells 2022; 27:505-511. [DOI: 10.1111/gtc.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Saya Oshizuki
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
| | - Satoshi Tanaka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
| | - Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences Graduate School of Agriculture and Life Sciences, The University of Tokyo Japan
- Laboratory for Malignancy Control Research, Medical Innovation Center Kyoto University Graduate School of Medicine Kyoto Japan
- Institute for Virus Research Kyoto University Kyoto Japan
| |
Collapse
|
4
|
Boussion S, Escande F, Jourdain AS, Smol T, Brunelle P, Duhamel C, Alembik Y, Attié-Bitach T, Baujat G, Bazin A, Bonnière M, Carassou P, Carles D, Devisme L, Goizet C, Goldenberg A, Grotto S, Guichet A, Jouk PS, Loeuillet L, Mechler C, Michot C, Pelluard F, Putoux A, Whalen S, Ghoumid J, Manouvrier-Hanu S, Petit F. TAR syndrome: Clinical and molecular characterization of a cohort of 26 patients and description of novel noncoding variants of RBM8A. Hum Mutat 2020; 41:1220-1225. [PMID: 32227665 DOI: 10.1002/humu.24021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/18/2020] [Accepted: 03/22/2020] [Indexed: 11/07/2022]
Abstract
Thrombocytopenia-absent radius (TAR) syndrome is characterized by radial defect and neonatal thrombocytopenia. It is caused by biallelic variants of RBM8A gene (1q21.1) with the association of a null allele and a hypomorphic noncoding variant. RBM8A encodes Y14, a core protein of the exon junction complex involved in messenger RNA maturation. To date, only two hypomorphic variants have been identified. We report on a cohort of 26 patients affected with TAR syndrome and carrying biallelic variants in RBM8A. Half patients carried a 1q21.1 deletion and one of the two known hypomorphic variants. Four novel noncoding variants of RBM8A were identified in the remaining patients. We developed experimental models enabling their functional characterization in vitro. Two variants, located respectively in the 5'-untranslated region (5'-UTR) and 3'-UTR regions, are responsible for a diminished expression whereas two intronic variants alter splicing. Our results bring new insights into the molecular knowledge of TAR syndrome and enabled us to propose genetic counseling for patients' families.
Collapse
Affiliation(s)
- Simon Boussion
- Clinical Genetics Department, Reference Center for Developmental Anomalies, CHU Lille, Lille, France
- EA7364-RADEME, Lille University, Lille, France
| | - Fabienne Escande
- EA7364-RADEME, Lille University, Lille, France
- Biochemistry and Molecular Oncology Laboratory, CHU Lille, Lille, France
| | - Anne-Sophie Jourdain
- EA7364-RADEME, Lille University, Lille, France
- Biochemistry and Molecular Oncology Laboratory, CHU Lille, Lille, France
| | - Thomas Smol
- EA7364-RADEME, Lille University, Lille, France
- Medical Genetics Department, CHU Lille, Lille, France
| | - Perrine Brunelle
- EA7364-RADEME, Lille University, Lille, France
- Biochemistry and Molecular Oncology Laboratory, CHU Lille, Lille, France
| | | | - Yves Alembik
- Medical Genetics Department, CHU Strasbourg, Strasbourg, France
| | - Tania Attié-Bitach
- Histology, Embryology and Cytogenetics Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | - Geneviève Baujat
- Clinical Genetics Department, Necker-Enfants Malades Hospital, AP-HP, INSERM UMR, IMAGINE Institute, Paris, France
| | - Anne Bazin
- Antenatal Diagnosis Department, René Dubois Hospital, Pontoise, France
| | - Maryse Bonnière
- Histology, Embryology and Cytogenetics Department, Necker-Enfants Malades Hospital, AP-HP, Paris, France
| | | | | | - Louise Devisme
- EA7364-RADEME, Lille University, Lille, France
- Anatomo-Pathology Institute, CHU Lille, Lille, France
| | - Cyril Goizet
- Medical Genetics Department, CHU Bordeaux, MRGM Laboratory, INSERM, Bordeaux University, Bordeaux, France
| | - Alice Goldenberg
- Genetics Department, Reference Center for Developmental Anomalies, CHU Rouen, Rouen, France
| | - Sarah Grotto
- Genetics Department, Robert Debré Hospital, AP-HP, Paris, France
| | | | | | | | - Charlotte Mechler
- Foetopathology Department, Robert Debré Hospital, AP-HP, Paris, France
| | - Caroline Michot
- Clinical Genetics Department, Necker-Enfants Malades Hospital, AP-HP, INSERM UMR, IMAGINE Institute, Paris, France
| | - Fanny Pelluard
- INSERM U1053-UMR BaRITOn, Foetopathology Department, Pellegrin Hospital, CHU Bordeaux, Bordeaux, France
| | - Audrey Putoux
- Genetics Department, Hospices Civils de Lyon, Lyon, France
- GENDEV Team, CRNL, INSERM U1028, CNRS UMR 5292, UCBL1, Lyon, France
| | - Sandra Whalen
- Clinical Genetics, Reference Center for Developmental Anomalies, Armand Trousseau Hospital, AP-HP, Paris, France
| | - Jamal Ghoumid
- Clinical Genetics Department, Reference Center for Developmental Anomalies, CHU Lille, Lille, France
- EA7364-RADEME, Lille University, Lille, France
| | - Sylvie Manouvrier-Hanu
- Clinical Genetics Department, Reference Center for Developmental Anomalies, CHU Lille, Lille, France
- EA7364-RADEME, Lille University, Lille, France
| | - Florence Petit
- Clinical Genetics Department, Reference Center for Developmental Anomalies, CHU Lille, Lille, France
- EA7364-RADEME, Lille University, Lille, France
| |
Collapse
|
5
|
Masaki S, Kabuto T, Suzuki K, Kataoka N. Multiple nuclear localization sequences in SRSF4 protein. Genes Cells 2020; 25:327-333. [PMID: 32050040 DOI: 10.1111/gtc.12756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
SRSF4 is one of the members of serine-/arginine (SR)-rich protein family involved in both constitutive and alternative splicing. SRSF4 is localized in the nucleus with speckled pattern, but its nuclear localization signal was not determined. Here, we have identified nuclear localization signals (NLSs) of SRSF4 by using a pyruvate kinase fusion system. As expected, arginine-/serine (RS)-rich domain of SRSF4 confers nuclear localization activity when it is fused to PK protein. We then further delineated the minimum sequences for nuclear localization in RS domain of SRSF4. Surprisingly, RS-rich region does not always have a nuclear localization activity. In addition, basic amino acid stretches that resemble to classical-type NLSs were identified. These results strongly suggest that SRSF4 protein uses two different nuclear import pathways with multiple NLSs in RS domain.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Takafumi Kabuto
- Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan.,Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Masaki S, Ikeda S, Hata A, Shiozawa Y, Kon A, Ogawa S, Suzuki K, Hakuno F, Takahashi SI, Kataoka N. Myelodysplastic Syndrome-Associated SRSF2 Mutations Cause Splicing Changes by Altering Binding Motif Sequences. Front Genet 2019; 10:338. [PMID: 31040863 PMCID: PMC6476956 DOI: 10.3389/fgene.2019.00338] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
Serine/arginine-rich splicing factor 2 (SRSF2) is a member of the SR protein family that is involved in both constitutive and alternative mRNA splicing. Mutations in SRSF2 gene are frequently reported in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). It is imperative to understand how these mutations affect SRSF2-mediated splicing and cause MDS. In this study, we characterized MDS-associated SRSF2 mutants (P95H, P95L, and P95R). We found that those mutants and wild-type SRSF2 proteins showed nuclear localization in HeLa cells. In vitro splicing reaction also revealed that mutant proteins associated with both precursor and spliced mRNAs, suggesting that the mutants directly participate in splicing. We established the human myeloid leukemia K562 cell lines that stably expressed myc-tagged wild-type or mutant SRSF2 proteins, and then performed RNA-sequence to analyze the splicing pattern of each cell line. The results revealed that both wild-type and mutants affected splicing of approximately 3,000 genes. Although splice site sequences adjacent to the affected exons showed no significant difference compared to the total exons, exonic motif analyses with both inclusion- and exclusion-enhanced exons demonstrated that wild-type and mutants have different binding sequences in exons. These results indicate that mutations of SRSF2 in MDS change binding properties of SRSF2 to exonic motifs and this causes aberrant splicing.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Shun Ikeda
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Hata
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Shiozawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayana Kon
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Fumihiko Hakuno
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Ma Q, Tatsuno T, Nakamura Y, Ishigaki Y. The stability of Magoh and Y14 depends on their heterodimer formation and nuclear localization. Biochem Biophys Res Commun 2019; 511:631-636. [PMID: 30826064 DOI: 10.1016/j.bbrc.2019.02.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 01/10/2023]
Abstract
Reduced expression of the Y14 gene is a cause of Thrombocytopenia-absent radius (TAR) syndrome. This gene contains a conserved RNA recognition motif (RRM) in the central region and nuclear localization/export sequences (NLS/NES) in the N-terminal. Y14 and Magoh proteins form tight heterodimers and are the core of exon junction complexes (EJCs), which mediate various processes of mRNA metabolism after transcription. In this report, we found that protein expression levels of exogenously expressed Magoh L136R and Y14 L118R (leucine-to-arginine substitution at amino acid residue 136 and 118 respectively, that results in the formation of the complex being lost) are lower than their wild-types. This reduction is likely caused by protein levels, as no difference in mRNA levels was detected. Meanwhile, a cycloheximide chase assay determined that the degradation rates of Magoh L136R and Y14 L118R were faster than their wild-types. Both Y14 L118R and Magoh L136R lost the ability to form heterodimers with corresponding wild-type proteins. However, Y14 L118R is able to still localize in the nucleus which causes the stability of Y14 L118R to be higher than Magoh L136R. These results reveal that the stability of Magoh and Y14 is not only dependent on the heterodimer structure, but also dependent on nuclear localization.
Collapse
Affiliation(s)
- Qingfeng Ma
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Japan; Department of Clinical Laboratory, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Takanori Tatsuno
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Japan.
| |
Collapse
|
8
|
C-terminal short arginine/serine repeat sequence-dependent regulation of Y14 (RBM8A) localization. Sci Rep 2018; 8:612. [PMID: 29330450 PMCID: PMC5766523 DOI: 10.1038/s41598-017-18765-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Y14 (RBM8A) is an RNA recognition motif-containing protein that forms heterodimers with MAGOH and serves as a core factor of the RNA surveillance machinery for the exon junction complex (EJC). The role of the Y14 C-terminal serine/arginine (RS) repeat-containing region, which has been reported to undergo modifications such as phosphorylation and methylation, has not been sufficiently investigated. Thus, we aimed to explore the functional significance of the Y14 C-terminal region. Deletion or dephosphorylation mimic mutants of the C-terminal region showed a shift in localization from the nucleoplasmic region; in addition, the C-terminal RS repeat-containing sequence itself exhibited the potential for nucleolar localization. Additionally, the regulation of Y14 localization by the C-terminal region was further found to be exquisitely controlled by MAGOH binding. Cumulatively, our findings, which demonstrated that Y14 localization is regulated not only by the previously reported N-terminal localization signal but also by the C-terminal RS repeat-containing region through phosphorylation and MAGOH binding to Y14, provide new insights for the mechanism of localization of short RS repeat-containing proteins.
Collapse
|
9
|
Kiselev AM, Stepanova IS, Adonin LS, Batalova FM, Parfenov VN, Bogolyubov DS, Podgornaya OI. The exon junction complex factor Y14 is dynamic in the nucleus of the beetle Tribolium castaneum during late oogenesis. Mol Cytogenet 2017; 10:41. [PMID: 29151891 PMCID: PMC5679382 DOI: 10.1186/s13039-017-0342-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/27/2017] [Indexed: 12/02/2022] Open
Abstract
Background The oocyte chromosomes of the red flour beetle, Tribolium castaneum, are gathered into a knot, forming a karyosphere at the diplotene stage of meiotic prophase. Chromatin rearrangement, which is a characteristic feature of oocyte maturation, is well documented. The T. castaneum karyosphere is surrounded by a complex extrachromosomal structure termed the karyosphere capsule. The capsule contains the vast majority of oocyte RNA. We have previously shown using a BrUTP assay that oocyte chromosomes in T. castaneum maintain residual transcription up to the very end of oocyte maturation. Karyosphere transcription requires evidently not only transcription factors but also mRNA processing factors, including the components of the exon junction complex with its core component, the splicing factor Y14. We employed a gene engineering approach with injection of mRNA derived from the Myc-tagged Y14 plasmid-based construct in order to monitor the newly synthesized fusion protein in the oocyte nuclei. Results Our preliminary data have been presented as a brief correspondence elsewhere. Here, we provide a full-length article including immunoelectron-microscopy localization data on Y14–Myc distribution in the nucleus of previtellogenic and vitellogenic oocytes. The injections of the fusion protein Y14–Myc mRNA into the oocytes showed a dynamic pattern of the protein distribution. At the previtellogenic stage, there are two main locations for the protein: SC35 domains (the analogues of interchromatin granule clusters or nuclear speckles) and the karyosphere capsule. At the vitellogenic stage, SC35 domains were devoid of labels, and Y14–Myc was found in the perichromatin region of the karyosphere, presumably at the places of residual transcription. We show that karyosphere formation is accompanied by the movement of a nuclear protein while the residual transcription occurs during genome inactivation. Conclusions Our data indicate that the karyosphere capsule, being a destination site for a protein involved in mRNA splicing and export, is not only a specializes part of nuclear matrix separating the karyosphere from the products of chromosome activity, as believed previously, but represents a special nuclear compartment involved in the processes of gene expression in the case the karyosphere retains residual transcription activity. Electronic supplementary material The online version of this article (10.1186/s13039-017-0342-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Artem M Kiselev
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia.,Federal Almazov North-West Medical Research Centre, St. Petersburg, 197341 Russia.,ITMO University, Institute of Translational Medicine, St. Petersburg, 197101 Russia
| | - Irina S Stepanova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Leonid S Adonin
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Florina M Batalova
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Vladimir N Parfenov
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Dmitry S Bogolyubov
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia
| | - Olga I Podgornaya
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064 Russia.,Department of Cytology and Histology, Faculty of Biology, St. Petersburg State University, St. Petersburg, 199034 Russia.,Far Eastern Federal University, School of Biomedicine, Vladivostok, 690950 Russia
| |
Collapse
|
10
|
Huang JH, Ku WC, Chen YC, Chang YL, Chu CY. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Sci Rep 2017; 7:42853. [PMID: 28216671 PMCID: PMC5316971 DOI: 10.1038/srep42853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
DDX6 is a conserved DEAD-box protein (DBP) that plays central roles in cytoplasmic RNA regulation, including processing body (P-body) assembly, mRNA decapping, and translational repression. Beyond its cytoplasmic functions, DDX6 may also have nuclear functions because its orthologues are known to localize to nuclei in several biological contexts. However, it is unclear whether DDX6 is generally present in human cell nuclei, and the molecular mechanism underlying DDX6 subcellular distribution remains elusive. In this study, we showed that DDX6 is commonly present in the nuclei of human-derived cells. Our structural and molecular analyses deviate from the current model that the shuttling of DDX6 is directly mediated by the canonical nuclear localization signal (NLS) and nuclear export signal (NES), which are recognized and transported by Importin-α/β and CRM1, respectively. Instead, we show that DDX6 can be transported by 4E-T in a piggyback manner. Furthermore, we provide evidence for a novel nuclear targeting mechanism in which DDX6 enters the newly formed nuclei by "hitch-hiking" on mitotic chromosomes with its C-terminal domain during M phase progression. Together, our results indicate that the nucleocytoplasmic localization of DDX6 is regulated by these dual mechanisms.
Collapse
Affiliation(s)
- Jo-Hsi Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Yen-Chun Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ling Chang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Kataoka N. Purification of RNA-Protein Splicing Complexes Using a Tagged Protein from In Vitro Splicing Reaction Mixture. Methods Mol Biol 2016; 1421:45-52. [PMID: 26965256 DOI: 10.1007/978-1-4939-3591-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In eukaryotes, pre-mRNA splicing is an essential step for gene expression. Splicing reactions have been well investigated by using in vitro splicing reactions with extracts prepared from cultured cells. Here, we describe protocols for the preparation of splicing-competent extracts from cells expressing a tagged spliceosomal protein. The whole-cell extracts are able to splice exogenously added pre-mRNA and the RNA-protein complex formed in the in vitro splicing reaction can be purified by immunoprecipitation using antibodies against the peptide tag on the splicing protein. The method described here to prepare splicing-active extracts from whole cells is particularly useful when studying pre-mRNA splicing in various cell types, and the expression of a tagged spliceosomal protein allows one to purify and analyze the RNA-protein complexes by simple immunoprecipitation.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
12
|
Chuang TW, Lee KM, Tarn WY. Function and pathological implications of exon junction complex factor Y14. Biomolecules 2015; 5:343-55. [PMID: 25866920 PMCID: PMC4496676 DOI: 10.3390/biom5020343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Eukaryotic mRNA biogenesis involves a series of interconnected steps, including nuclear pre-mRNA processing, mRNA export, and surveillance. The exon-junction complex (EJC) is deposited on newly spliced mRNAs and coordinates several downstream steps of mRNA biogenesis. The EJC core protein, Y14, functions with its partners in nonsense-mediated mRNA decay and translational enhancement. Y14 plays additional roles in mRNA metabolism, some of which are independent of the EJC, and it is also involved in other cellular processes. Genetic mutations or aberrant expression of Y14 results in physiological abnormality and may cause disease. Therefore, it is important to understand the various functions of Y14 and its physiological and pathological roles.
Collapse
Affiliation(s)
- Tzu-Wei Chuang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Kou-Ming Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
13
|
Masaki S, Yoshimoto R, Kaida D, Hata A, Satoh T, Ohno M, Kataoka N. Identification of the specific interactors of the human lariat RNA debranching enzyme 1 protein. Int J Mol Sci 2015; 16:3705-21. [PMID: 25671812 PMCID: PMC4346921 DOI: 10.3390/ijms16023705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, pre-mRNA splicing is an essential step for gene expression. We have been analyzing post-splicing intron turnover steps in higher eukaryotes. Here, we report protein interaction between human Debranching enzyme 1 (hDbr1) and several factors found in the Intron Large (IL) complex, which is an intermediate complex of the intron degradation pathway. The hDbr1 protein specifically interacts with xeroderma pigmentosum, complementeation group A (XPA)-binding protein 2 (Xab2). We also attempted to identify specific interactors of hDbr1. Co-immunoprecipitation experiments followed by mass spectrometry analysis identified a novel protein as one of the specific interactors of hDbr1. This protein is well conserved among many species and shows the highest similarity to yeast Drn1, so it is designated as human Dbr1 associated ribonuclease 1 (hDrn1). hDrn1 directly interacts with hDbr1 through protein–protein interaction. Furthermore, hDrn1 shuttles between the nucleus and the cytoplasm, as hDbr1 protein does. These findings suggest that hDrn1 has roles in both the nucleus and the cytoplasm, which are highly likely to involve hDbr1.
Collapse
Affiliation(s)
- So Masaki
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Rei Yoshimoto
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Asuka Hata
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Satoh
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Medical Top Track Program, Medical Research Institute, Tokyo Dental and Medical University, Tokyo 113-8510, Japan.
| |
Collapse
|
14
|
Ishigaki Y, Nakamura Y, Tatsuno T, Ma S, Tomosugi N. Phosphorylation status of human RNA-binding protein 8A in cells and its inhibitory regulation by Magoh. Exp Biol Med (Maywood) 2014; 240:438-45. [PMID: 25349214 DOI: 10.1177/1535370214556945] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 09/11/2014] [Indexed: 11/17/2022] Open
Abstract
The RNA-binding protein 8A (RBM8A)-mago-nashi homolog, proliferation-associated (Magoh) complex is a component of the exon junction complex (EJC) required for mRNA metabolism involving nonsense-mediated mRNA decay (NMD). RBM8A is a phosphorylated protein that plays some roles in NMD. However, the detailed status and mechanism of the phosphorylation of RBM8A is not completely understood. Therefore, in this study, we analyzed in detail RBM8A phosphorylation in human cells. Accordingly, analysis of the phosphorylation status of RBM8A protein in whole-cell lysates by using Phos-tag gels revealed that the majority of endogenous RBM8A was phosphorylated throughout the cell-cycle progression. Nuclear and cytoplasmic RBM8A and RBM8A in the EJC were also found to be mostly phosphorylated. We also screened the phosphorylated serine by mutational analysis using Phos-tag gels to reveal modifications of serine residues 166 and 168. A single substitution at position 168 that concomitantly abolished the phosphorylation of serine 166 suggested the priority of kinase reaction between these sites. Furthermore, analysis of the role of the binding protein Magoh in RBM8A phosphorylation revealed its inhibitory effect in vitro and in vivo. Thus, we conclude that almost all synthesized RBM8A proteins are rapidly phosphorylated in cells and that phosphorylation occurs before the complex formation with Magoh.
Collapse
Affiliation(s)
- Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Yuka Nakamura
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Takanori Tatsuno
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Shaofu Ma
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan
| | - Naohisa Tomosugi
- Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku, Ishikawa 920-0293, Japan Medical Care Proteomics Biotechnology Co., Ltd., Uchinada-machi, Kahoku 920-0293, Japan
| |
Collapse
|
15
|
Ishigaki Y, Nakamura Y, Tatsuno T, Hashimoto M, Iwabuchi K, Tomosugi N. RNA-binding protein RBM8A (Y14) and MAGOH localize to centrosome in human A549 cells. Histochem Cell Biol 2013; 141:101-9. [PMID: 23949737 DOI: 10.1007/s00418-013-1135-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
RBM8A (Y14) is carrying RNA-binding motif and forms the tight heterodimer with MAGOH. The heterodimer is known to be a member of exon junction complex on exporting mRNA and is required for mRNA metabolisms such as splicing, mRNA export and nonsense-mediated mRNA decay. Almost all RBM8A-MAGOH complexes localize in nucleoplasm and shuttle between nuclei and cytoplasm for RNA metabolism. Recently, the abnormality of G2/M transition and aberrant centrosome regulation in RBM8A- or MAGOH-deficient cells has been reported. These results prompt us to the reevaluation of the localization of RBM8A-MAGOH in human cells. Interestingly, our immunostaining experiments showed the localization of these proteins in centrosome in addition to nuclei. Furthermore, the transiently expressed eYFP-tagged RBM8A and Flag-tagged MAGOH also co-localized with centrosome signals. In addition, the proximity ligation in situ assay was performed to detect the complex formation in centrosome. Our experiments clearly showed that Myc-tagged RBM8A and Flag-tagged MAGOH formed a complex in centrosome. GFP-tagged PLK1 also co-localized with Myc-RBM8A. Our results show that RBM8A-MAGOH complex is required for M-phase progression via direct localization to centrosome rather than indirect effect.
Collapse
Affiliation(s)
- Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku, 920-0293, Japan,
| | | | | | | | | | | |
Collapse
|
16
|
Kataoka N, Dobashi I, Hagiwara M, Ohno M. hDbr1 is a nucleocytoplasmic shuttling protein with a protein phosphatase-like motif essential for debranching activity. Sci Rep 2013; 3:1090. [PMID: 23346348 PMCID: PMC3549538 DOI: 10.1038/srep01090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/27/2012] [Indexed: 11/09/2022] Open
Abstract
In higher eukaryotes most genes contain multiple introns. Introns are excised from pre-mRNAs by splicing and eventually degraded in the nucleus. It is likely that rapid intron turnover in the nucleus is important in higher eukaryotes, but this pathway is poorly understood. In order to gain insights into this pathway, we analyzed the human lariat RNA debranching enzyme1 (hDbr1) protein that catalyzes debranching of lariat-intron RNAs. Transfection experiments demonstrate that hDbr1 is localized in a nucleoplasm of HeLa cells through a bipartite type nuclear localization signal near carboxyl-terminus. The conserved GNHE motif, originally identified in protein phosphatase protein family, is critical for hDbr1 to dissolve lariat structure in vitro. Furthermore, heterokaryon experiments show that hDbr1 is a nucleocytoplasmic shuttling protein, suggesting novel role(s) of hDbr1 in the cytoplasm.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | |
Collapse
|
17
|
A specific set of exon junction complex subunits is required for the nuclear retention of unspliced RNAs in Caenorhabditis elegans. Mol Cell Biol 2012; 33:444-56. [PMID: 23149939 DOI: 10.1128/mcb.01298-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The exon junction complex (EJC) is highly conserved in many organisms and is involved in various steps of mRNA metabolism. During the course of investigating the role of EJC in the germ line sex determination of the nematode Caenorhabditis elegans, we found that depletion of one of the three core subunits (Y14, MAG-1, and eukaryotic translation initiation factor 4III [eIF4AIII]) or one auxiliary subunit (UAP56) of EJC resulted in the cytoplasmic leakage of unspliced RNAs from almost all of the C. elegans protein-coding genes examined thus far. This leakage was also observed with the depletion of several splicing factors, including SF3b, IBP160, and PRP19, all of which genetically interacted with Y14. We also found that Y14 physically interacts with both pre-mRNA and spliceosomal U snRNAs, especially U2 snRNA, and that the interaction was abolished when both IBP160 and PRP19 were depleted. Our results strongly suggest that a specific set of EJC subunits is recruited onto introns and interacts with components of the spliceosome, including U2 snRNP, to provide a critical signal for the surveillance and nuclear retention of unspliced RNAs in C. elegans.
Collapse
|