1
|
Bierling AL, Croy A, Jesgarzewsky T, Rommel M, Cuniberti G, Hummel T, Croy I. A dataset of laymen olfactory perception for 74 mono-molecular odors. Sci Data 2025; 12:347. [PMID: 40011570 PMCID: PMC11865284 DOI: 10.1038/s41597-025-04644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
The molecular structure of an odor determines whether and how it is perceived by humans. However, the principles of how odorant chemistry links to perceptual patterns remain largely unknown and are primarily studied using odor rating datasets from highly trained olfactory experts, such as perfumers. This limits our knowledge of typical odor perception and its variability over individuals. We provide a dataset featuring free descriptions, evaluative ratings, and qualitative labels for 74 chemically diverse mono-molecular odorants, rated by a large sample of young adults. A total of 1,227 participants described and rated the odors, and completed questionnaires covering their demographic background, personality traits, and the role of olfaction in their daily lives. The dataset offers a valuable foundation for research aimed at understanding the fundamentals of olfactory perception.
Collapse
Affiliation(s)
- Antonie Louise Bierling
- Department of Clinical Psychology, Institute of Psychology, Friedrich-Schiller-University Jena, Jena, 07743, Germany.
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, 01307, Germany.
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TU Dresden, Dresden, 01069, Germany.
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Tim Jesgarzewsky
- Department of Clinical Psychology, Institute of Psychology, Friedrich-Schiller-University Jena, Jena, 07743, Germany
| | - Maria Rommel
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, 01307, Germany
- Faculty of Medicine, TU Dresden, Smell and Taste Clinic, Dresden, 01307, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, TU Dresden, Dresden, 01069, Germany
| | - Thomas Hummel
- Faculty of Medicine, TU Dresden, Smell and Taste Clinic, Dresden, 01307, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Institute of Psychology, Friedrich-Schiller-University Jena, Jena, 07743, Germany
- Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, 01307, Germany
- German Centre for Mental Health (DZPG), site Halle-Jena-Magdeburg, Halle-Jena-Magdeburg, Germany
| |
Collapse
|
2
|
Ye Y, Wang Y, Zhuang Y, Tan H, Zuo Z, Yun H, Yuan K, Zhou W. Decomposition of an odorant in olfactory perception and neural representation. Nat Hum Behav 2024; 8:1150-1162. [PMID: 38499771 DOI: 10.1038/s41562-024-01849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
Molecules-the elementary units of substances-are commonly considered the units of processing in olfactory perception, giving rise to undifferentiated odour objects invariant to environmental variations. By selectively perturbing the processing of chemical substructures with adaptation ('the psychologist's microelectrode') in a series of psychophysical and neuroimaging experiments (458 participants), we show that two perceptually distinct odorants sharing part of their structural features become significantly less discernible following adaptation to a third odorant containing their non-shared structural features, in manners independent of olfactory intensity, valence, quality or general olfactory adaptation. The effect is accompanied by reorganizations of ensemble activity patterns in the posterior piriform cortex that parallel subjective odour quality changes, in addition to substructure-based neural adaptations in the anterior piriform cortex and amygdala. Central representations of odour quality and the perceptual outcome thus embed submolecular structural information and are malleable by recent olfactory encounters.
Collapse
Affiliation(s)
- Yuting Ye
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Institute of Psychology, School of Public Affairs, Xiamen University, Xiamen, China
| | - Yanqing Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- School of Psychology, Northwest Normal University, Lanzhou, China
| | - Yuan Zhuang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Huibang Tan
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Sino-Dannish College, University of Chinese Academy of Sciences, Beijing, China
| | - Hanqi Yun
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiqi Yuan
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
3
|
Jirasek M, Sharma A, Bame JR, Mehr SHM, Bell N, Marshall SM, Mathis C, MacLeod A, Cooper GJT, Swart M, Mollfulleda R, Cronin L. Investigating and Quantifying Molecular Complexity Using Assembly Theory and Spectroscopy. ACS CENTRAL SCIENCE 2024; 10:1054-1064. [PMID: 38799656 PMCID: PMC11117308 DOI: 10.1021/acscentsci.4c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Current approaches to evaluate molecular complexity use algorithmic complexity, rooted in computer science, and thus are not experimentally measurable. Directly evaluating molecular complexity could be used to study directed vs undirected processes in the creation of molecules, with potential applications in drug discovery, the origin of life, and artificial life. Assembly theory has been developed to quantify the complexity of a molecule by finding the shortest path to construct the molecule from building blocks, revealing its molecular assembly index (MA). In this study, we present an approach to rapidly infer the MA of molecules from spectroscopic measurements. We demonstrate that the MA can be experimentally measured by using three independent techniques: nuclear magnetic resonance (NMR), tandem mass spectrometry (MS/MS), and infrared spectroscopy (IR). By identifying and analyzing the number of absorbances in IR spectra, carbon resonances in NMR, or molecular fragments in tandem MS, the MA of an unknown molecule can be reliably estimated. This represents the first experimentally quantifiable approach to determining molecular assembly. This paves the way to use experimental techniques to explore the evolution of complex molecules as well as a unique marker of where an evolutionary process has been operating.
Collapse
Affiliation(s)
- Michael Jirasek
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Abhishek Sharma
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Jessica R. Bame
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - S. Hessam M. Mehr
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Nicola Bell
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Stuart M. Marshall
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Cole Mathis
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Alasdair MacLeod
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Geoffrey J. T. Cooper
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| | - Marcel Swart
- University
of Girona, Campus Montilivi (Ciencies), c/M.A. Capmany 69, 17003 Girona, Spain
- ICREA, Pg. Lluis Companys
23, 08010 Barcelona, Spain
| | - Rosa Mollfulleda
- University
of Girona, Campus Montilivi (Ciencies), c/M.A. Capmany 69, 17003 Girona, Spain
| | - Leroy Cronin
- School
of Chemistry, The University of Glasgow, University Avenue, Glasgow G12 8QQ, U.K.
| |
Collapse
|
4
|
Martinec Nováková L, Miletínová E, Kliková M, Bušková J. Nocturnal exposure to a preferred ambient scent does not affect dream emotionality or post-sleep core affect valence in young adults. Sci Rep 2024; 14:10369. [PMID: 38710748 DOI: 10.1038/s41598-024-60226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Emotions experienced within sleep mentation (dreaming) affect mental functioning in waking life. There have been attempts at enhancing dream emotions using olfactory stimulation. Odors readily acquire affective value, but to profoundly influence emotional processing, they should bear personal significance for the perceiver rather than be generally pleasant. The main objective of the present sleep laboratory study was to examine whether prolonged nocturnal exposure to self-selected, preferred ambient room odor while asleep influences emotional aspects of sleep mentation and valence of post-sleep core affect. We asked twenty healthy participants (12 males, mean age 25 ± 4 years) to pick a commercially available scented room diffuser cartridge that most readily evoked positively valenced mental associations. In weekly intervals, the participants attended three sessions. After the adaptation visit, they were administered the odor exposure and odorless control condition in a balanced order. Participants were awakened five minutes into the first rapid eye movement (REM) stage that took place after 2:30 a.m. and, if they had been dreaming, they were asked to rate their mental sleep experience for pleasantness, emotional charge, and magnitude of positive and negative emotions and also to evaluate their post-sleep core affect valence. With rs < 0.20, no practically or statistically significant differences existed between exposure and control in any outcome measures. We conclude that in young, healthy participants, the practical value of olfactory stimulation with self-selected preferred scents for enhancement of dream emotions and post-sleep core affect valence is very limited.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- Department of Chemical Education and Humanities, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6 - Dejvice, Czech Republic.
| | - Eva Miletínová
- National Institute of Mental Health, Topolová 748, 25067, Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Ruská 87, 10000, Prague 10, Czech Republic
| | - Monika Kliková
- National Institute of Mental Health, Topolová 748, 25067, Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Ruská 87, 10000, Prague 10, Czech Republic
| | - Jitka Bušková
- National Institute of Mental Health, Topolová 748, 25067, Klecany, Czech Republic
- 3rd Faculty of Medicine, Charles University, Ruská 87, 10000, Prague 10, Czech Republic
| |
Collapse
|
5
|
Chalençon L, Midroit M, Athanassi A, Thevenet M, Breton M, Forest J, Richard M, Didier A, Mandairon N. Age-related differences in perception and coding of attractive odorants in mice. Neurobiol Aging 2024; 137:8-18. [PMID: 38394723 DOI: 10.1016/j.neurobiolaging.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.
Collapse
Affiliation(s)
- Laura Chalençon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Maëllie Midroit
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anna Athanassi
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marc Thevenet
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marine Breton
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Jérémy Forest
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marion Richard
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anne Didier
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France; Institut Universitaire de France (IUF), France
| | - Nathalie Mandairon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France.
| |
Collapse
|
6
|
Bontempi C, Jacquot L, Brand G. Diet and odor hedonic ratings: comparative study between vegetarians, flexitarians, and omnivores. Nutr Neurosci 2023; 26:1232-1242. [PMID: 36384439 DOI: 10.1080/1028415x.2022.2145425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Odor hedonic perception is well known to exhibit great variability and to depend on several parameters, i.e. stimulus, context, and subject characteristics. As hedonic perception (pleasant/unpleasant character) of food odors is considered one of the most prominent dimensions in eating behavior, the question of hedonic variability in this context arises. Thus, the aim of the present study was to compare odor hedonic ratings in three populations with regard to diet (i.e. omnivore, vegetarian, and flexitarian diets). METHODS Four categories of odors were compared: meat, vegetable, other food, and non-food odors. RESULTS The results showed that vegetarian and flexitarian individuals rated meat odors as more unpleasant than omnivores, while no significant difference was found for other categories of odors. DISCUSSION The question of whether the diet influences the hedonic perception or/and inversely is discussed, regarding several aspects of food consumption such as eating disorders, food education, … and could further serve to manage eating behaviors. PRACTICAL APPLICATIONS This study evidenced that vegetarians and flexitarians specifically rated meat odors as being more unpleasant than those of omnivores. Because of the growing number of vegetarians and flexitarians in the general population, it could be suggested to take into account the odor hedonic perception (especially regarding food odors) in studies related to diets. Besides, the present results could further serve research in several aspects of food consumption such as eating disorders (anorexia, bulimia … etc.) or food education as well as the management of eating behaviors, especially in an elderly population.
Collapse
Affiliation(s)
- Charlotte Bontempi
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR481, University of Franche-Comté, 25000 Besançon, France
| | - Laurence Jacquot
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive - UR481, University of Franche-Comté, 25000 Besançon, France
| | - Gérard Brand
- CSGA Centre des Sciences du Gout et de l'Alimentation, University of Franche-Comté, 21000 Dijon, France
| |
Collapse
|
7
|
Yuk J, Akash MMH, Chakraborty A, Basu S, Chamorro LP, Jung S. Morphology of pig nasal structure and modulation of airflow and basic thermal conditioning. Integr Comp Biol 2023; 63:304-314. [PMID: 36731869 DOI: 10.1093/icb/icad005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/19/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Mammals have presumably evolved to adapt to a diverse range of ambient environmental conditions through the optimized heat and mass exchange. One of the crucial biological structures for survivability is the nose, which efficiently transports and thermally preconditions the external air before reaching the internal body. Nasal mucosa and cavity help warm and humidify the inhaled air quickly. Despite its crucial role, the morphological features of mammal noses and their effect in modulating the momentum of the inhaled air, heat transfer dynamics, and particulate trapping remain poorly understood. Tortuosity of the nasal cavity in high-olfactory mammalian species, such as pigs and opossum, facilitates the formation of complex airflow patterns inside the nasal cavity, which leads to the screening of particulates from the inhaled air. We explored basic nasal features in anatomically realistic nasal pathways, including tortuosity, radius of curvature, and gap thickness; they show strong power-law correlations with body weight. Complementary inspection of tortuosity with idealized conduits reveals that this quantity is central in particle capture efficiency. Mechanistic insights into such nuances can serve as a tipping point to transforming nature-based designs into practical applications. In-depth characterization of the fluid-particle interactions in nasal cavities is necessary to uncover nose mechanistic functionalities. It is instrumental in developing new devices and filters in a number of engineering processes.
Collapse
Affiliation(s)
- Jisoo Yuk
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - Aneek Chakraborty
- Department of Mechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Saikat Basu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA
| | - Leonardo P Chamorro
- Department of Mechanical Science and Engineering, University of illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Sunghwan Jung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
8
|
A study on the relationship between odor hedonic ratings and individual odor detection threshold. Sci Rep 2022; 12:18482. [PMID: 36323760 PMCID: PMC9628383 DOI: 10.1038/s41598-022-23068-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Odor hedonic perception (pleasant/unpleasant character) is considered as the first and one of the most prominent dimensions in olfaction and is known to depend on several parameters. Among them, the relation between the odorant concentration and the hedonic estimation has been widely studied. However, few studies have considered odor hedonic ratings (OHR) in relation to individual detection thresholds (IDT). Thus, the aim of this study was to determine olfactory detection thresholds and to describe hedonic rating variations from individual thresholds to higher concentrations. IDT were performed for two pleasant (apple and jasmine) and two unpleasant (durian and trimethylamine) odorant stimuli. The experimenter presented one by one in a randomized order, the different odorant concentrations above IDT. Participants rated odor hedonic valence of these stimuli on a visual analog scale. Results showed, except for trimethylamine, the same relationship between hedonic ratings and stimulus concentration, i.e., an increase of pleasantness (apple and jasmine)/unpleasantness (durian) ratings at low and middle concentrations followed by a plateau at high concentrations. Correlations between OHR and concentrations as well as between OHR and threshold steps were always significant. Moreover, comparisons between both conditions showed that the correlation coefficient was significantly higher for trimethylamine (and a trend for apple) when IDTs were considered, while no difference was found for jasmine and durian. Overall, results suggested that the relationship between OHR and IDT is odor specific. These findings contribute to explain the large variability of the hedonic tone (i.e., weakly vs. very pleasant, weakly vs. very unpleasant) at specific concentration in the general population and could serve future research in this field (e.g., olfactory preferences in nutrition studies, anhedonia in psychiatric disorders…).
Collapse
|
9
|
Mazzatenta A. Physiological discrimination and correlation between olfactory and gustatory dysfunction in long-term COVID-19. Physiol Rep 2022; 10:e15486. [PMID: 36412058 PMCID: PMC9812235 DOI: 10.14814/phy2.15486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023] Open
Abstract
The spread of the SARS-CoV-2 virus produces a new disease termed COVID-19, the underlying physiological mechanisms of which are still being understood. Characteristic of the infection is the compromising of taste and smell. There is a persistent need to discriminate the dysfunctions and correlation between taste and smell, which are probably epiphenomena of other concealed conditions. Anosmic and ageusic long-term COVID-19 patients were re-evaluated after 1 year using a Volabolomic approach with an e-nose recording system coupled with olfactometric and gustometric tests. Here a range of sensory arrangements was found, from normal taste and smell to complete losses. The following patterns of olfactory threshold (OT)-taste threshold-olfactory uni- and cross-modal perception were found anosmia-severe hypogeusia-anosmia; hyposmia-hypogeusia-severe hyposmia; normosmia-ageusia-hyposmia; severe hyposmia -normogeusia-normosmia. There is a strong correlation between OT and olfactory uni- and cross-modal perception, a moderate correlation between olfactory and taste threshold and no correlation between OT and taste threshold. In conclusion, this study provides evidence for the feasibility of testing the chemical senses to directly objectify function in order to discriminate taste from olfactory impairment. Furthermore, it allows to hypothesize a long-term effect of the virus due to neuroinvasion through, probably, the olfactory system with injury in the related multisensory areas of taste and smell.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Neuroscience, Imaging and Clinical Sciences Department‘G. d'Annunzio’ Chieti‐Pescara UniversityChietiItaly
| |
Collapse
|
10
|
Spence C. Odour hedonics and the ubiquitous appeal of vanilla. NATURE FOOD 2022; 3:837-846. [PMID: 37117893 DOI: 10.1038/s43016-022-00611-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/06/2022] [Indexed: 04/30/2023]
Abstract
Our food choices and consumption behaviours are often influenced by odour hedonics, especially in the case of those orthonasally experienced aromas (that is, those odours that are food-related). The origins of odour hedonics remain one of the most intriguing puzzles in olfactory science and, over the years, several fundamentally different accounts have been put forwards to try and explain the varying hedonic responses that people have to a wide range of odorants. Associative learning, innate and molecular accounts of odour pleasantness have all been suggested. Here the origins of the hedonic response to vanilla, which is one of the most liked smells cross-culturally, are explored. The history of vanilla's use in food and medicine is outlined, with a focus on its neurocognitive appeal. While vanilla is one of the most widely liked aromas, it is also rated as smelling sweet to most people. Food scientists are becoming increasingly interested in the possibility that such 'sweet smells' could be used to help maintain the sweetness of commercial food products while, at the same time, reducing the use of calorific sweeteners. Such an approach is likely to be facilitated by the low cost of artificial vanilla flavouring (when compared with the high and fluctuating price of natural vanilla pods).
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Oxford, UK.
| |
Collapse
|
11
|
Oleszkiewicz A, Schriever VA, Valder C, Agosin E, Altundag A, Avni H, Cao Van H, Cornejo C, Fishman G, Guarneros M, Gupta N, Kamel R, Knaapila A, Konstantinidis I, Landis BN, Larsson M, Lundström JN, Macchi A, Marino-Sanchez F, Mori E, Mullol J, Parma V, Propst EJ, Sandell MA, Sorokowska A, Vodicka J, Hummel T, Gellrich J. Hedonic perception of odors in children aged 5-8 years is similar across 18 countries: Preliminary data. Int J Pediatr Otorhinolaryngol 2022; 157:111129. [PMID: 35443229 DOI: 10.1016/j.ijporl.2022.111129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Olfactory preference emerges very early in life, and the sense of smell in children rapidly develops until the second decade of life. It is still unclear whether hedonic perception of odors is shared in children inhabiting different regions of the globe. METHODS Five-hundred ten healthy children (N = 510; ngirls = 256; nboys = 254) aged from 5 to 8 years from 18 countries rated the pleasantness of 17 odors. RESULTS The hedonic perception of odors in children aged between 5 and 8 years was rather consistent across 18 countries and mainly driven by the qualities of an odor and the overall ability of children to label odorants. CONCLUSION Conclusions from this study, being a secondary analysis, are limited to the presented set of odors that were initially selected for the development of U-Sniff test and present null findings for the cross-cultural variability in hedonic perception of odors across 18 countries. These two major issues should be addressed in the future to either contradict or replicate the results presented herewith. This research lays fundament for posing further research questions about the developmental aspects of hedonic perception of odors and opens a new door for investigating cross-cultural differences in chemosensory perception of children.
Collapse
Affiliation(s)
- A Oleszkiewicz
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany; Institute of Psychology, University of Wroclaw, Poland.
| | - V A Schriever
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität, Dresden, Germany; Charité - Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany.
| | - C Valder
- Systema Natura GmbH, Flintbek, Germany.
| | - E Agosin
- College of Engineering, Pontifical Catholic University of Chile, Santiago, Chile.
| | - A Altundag
- Otorhinolaryngology Department of Biruni University Medical Faculty, Acibadem Taksim Hospital Otorhinolaryngology Department, Istanbul, Turkey.
| | - H Avni
- Pediatric Feeding Disorders Clinic, Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel.
| | - H Cao Van
- Pediatric ENT Unit, Department of Otorhinolaryngologie Head and Neck Surgery, University Hospital of Geneva, Switzerland.
| | - C Cornejo
- Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - G Fishman
- Pediatric Otolaryngology, Dana Children's Hospital, Tel-Aviv Medical Center, Sackler School of Medicine, Tel-Aviv, Israel.
| | - M Guarneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| | - N Gupta
- Department of Otorhinolaryngology, University College of Medical Sciences and GTB Hospital, Delhi, India.
| | - R Kamel
- Department of Otorhinolaryngology, Head and Neck Surgery, Cairo University, Cairo, Egypt.
| | - A Knaapila
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - I Konstantinidis
- 2nd Otorhinolaryngology Department of Aristotle University, Thessaloniki, Greece.
| | - B N Landis
- Rhinology-Olfactology Unit, Department of Otorhinolaryngologie Head and Neck Surgery, University Hospital of Geneva, Switzerland.
| | - M Larsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden.
| | - J N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - A Macchi
- ENT Clinic, University of Insubriae Varese, ASST Settelaghi, Italy.
| | - F Marino-Sanchez
- Unidad de Rinología y Cirugía de Base de Cráneo, Servicio de Otorrinolaringología. Hospital Universitario Ramón y Cajal, Madrid, Spain.
| | - E Mori
- Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan.
| | - J Mullol
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clínic, IDIBAPS, Universitat de Barcelona, CIBERES, Barcelona, Catalonia, Spain.
| | - V Parma
- Temple University, Department of Psychology, Philadelphia, USA; Monell Chemical Senses Center, Philadelphia, USA.
| | - E J Propst
- Department of Otolaryngology - Head & Neck Surgery, Hospital for Sick Children, University of Toronto, Canada.
| | - M A Sandell
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland.
| | - A Sorokowska
- Institute of Psychology, University of Wroclaw, Poland.
| | - J Vodicka
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic.
| | - T Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany.
| | - J Gellrich
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität, Dresden, Germany; Klinik und Poliklinik für Kinder- und Jugendheilkunde, Medizinische Fakultät Carl Gustav Carus, Technische Universität, Dresden, Germany.
| |
Collapse
|
12
|
Arshamian A, Gerkin RC, Kruspe N, Wnuk E, Floyd S, O'Meara C, Garrido Rodriguez G, Lundström JN, Mainland JD, Majid A. The perception of odor pleasantness is shared across cultures. Curr Biol 2022; 32:2061-2066.e3. [PMID: 35381183 PMCID: PMC11672226 DOI: 10.1016/j.cub.2022.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/18/2022]
Abstract
Humans share sensory systems with a common anatomical blueprint, but individual sensory experience nevertheless varies. In olfaction, it is not known to what degree sensory perception, particularly the perception of odor pleasantness, is founded on universal principles,1-5 dictated by culture,6-13 or merely a matter of personal taste.6,8-10,12,14 To address this, we asked 225 individuals from 9 diverse nonwestern cultures-hunter-gatherer to urban dwelling-to rank the monomolecular odorants from most to least pleasant. Contrary to expectations, culture explained only 6% of the variance in pleasantness rankings, whereas individual variability or personal taste explained 54%. Importantly, there was substantial global consistency, with molecular identity explaining 41% of the variance in odor pleasantness rankings. Critically, these universal rankings were predicted by the physicochemical properties of out-of-sample molecules and out-of-sample pleasantness ratings given by a tenth group of western urban participants. Taken together, this shows human olfactory perception is strongly constrained by universal principles.
Collapse
Affiliation(s)
- Artin Arshamian
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 171 77 Stockholm, Sweden.
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA
| | - Nicole Kruspe
- Centre for Languages and Literature, Lund University, Helgonabacken 12, 223 62 Lund, Sweden
| | - Ewelina Wnuk
- Department of Anthropology, University College London, 14 Taviton Street, London WC1H 0BW, UK
| | - Simeon Floyd
- Colegio de Ciencias Sociales y Humanidades, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Carolyn O'Meara
- Instituto de Investigaciones Filológicas, National Autonomous University of Mexico, Circuito Maestro Mario de La Cueva S/N, C.U., Coyoacán, 04510 Ciudad de México, Mexico
| | | | - Johan N Lundström
- Department of Clinical Neuroscience, Karolinska Institutet, Tomtebodavägen 18A, 171 77 Stockholm, Sweden; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Stockholm University Brain Imaging Centre, Stockholm University, 10405 Stockholm, Sweden; Department of Neuroscience, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
13
|
|
14
|
Cavelius M, Brunel T, Didier A. Lessons from behavioral lateralization in olfaction. Brain Struct Funct 2021; 227:685-696. [PMID: 34596756 PMCID: PMC8843900 DOI: 10.1007/s00429-021-02390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/16/2022]
Abstract
Sensory information, sampled by sensory organs positioned on each side of the body may play a crucial role in organizing brain lateralization. This question is of particular interest with regard to the growing evidence of alteration in lateralization in several psychiatric conditions. In this context, the olfactory system, an ancient, mostly ipsilateral and well-conserved system across phylogeny may prove an interesting model system to understand the behavioral significance of brain lateralization. Here, we focused on behavioral data in vertebrates and non-vertebrates, suggesting that the two hemispheres of the brain differentially processed olfactory cues to achieve diverse sensory operations, such as detection, discrimination, identification of behavioral valuable cues or learning. These include reports across different species on best performances with one nostril or the other or odorant active sampling by one nostril or the other, depending on odorants or contexts. In some species, hints from peripheral anatomical or functional asymmetry were proposed to explain these asymmetries in behavior. Instigations of brain activation or more rarely of brain connectivity evoked by odorants revealed a complex picture with regards to asymmetric patterns which is discussed with respect to behavioral data. Along the steps of the discussed literature, we propose avenues for future research.
Collapse
Affiliation(s)
- Matthias Cavelius
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France.,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France
| | - Théo Brunel
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France.,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France
| | - Anne Didier
- Lyon Neuroscience Research Center (CRNL), Neuropop Team, Lyon, France. .,CNRS 5292, Inserm 1028, Lyon 1 University, Lyon, France.
| |
Collapse
|
15
|
Sharma A, Saha BK, Kumar R, Varadwaj PK. OlfactionBase: a repository to explore odors, odorants, olfactory receptors and odorant-receptor interactions. Nucleic Acids Res 2021; 50:D678-D686. [PMID: 34469532 PMCID: PMC8728123 DOI: 10.1093/nar/gkab763] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/04/2022] Open
Abstract
Olfaction is a multi-stage process that initiates with the odorants entering the nose and terminates with the brain recognizing the odor associated with the odorant. In a very intricate way, the process incorporates various components functioning together and in synchronization. OlfactionBase is a free, open-access web server that aims to bring together knowledge about many aspects of the olfaction mechanism in one place. OlfactionBase contains detailed information of components like odors, odorants, and odorless compounds with physicochemical and ADMET properties, olfactory receptors (ORs), odorant- and pheromone binding proteins, OR-odorant interactions in Human and Mus musculus. The dynamic, user-friendly interface of the resource facilitates exploration of different entities: finding chemical compounds having desired odor, finding odorants associated with OR, associating chemical features with odor and OR, finding sequence information of ORs and related proteins. Finally, the data in OlfactionBase on odors, odorants, olfactory receptors, human and mouse OR-odorant pairs, and other associated proteins could aid in the inference and improved understanding of odor perception, which might provide new insights into the mechanism underlying olfaction. The OlfactionBase is available at https://bioserver.iiita.ac.in/olfactionbase/.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh 211015, India
| | | | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh 226028, India
| | - Pritish Kumar Varadwaj
- Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh 211015, India
| |
Collapse
|
16
|
Odours count: human olfactory ecology appears to be helpful in the improvement of the sense of smell. Sci Rep 2021; 11:16888. [PMID: 34413403 PMCID: PMC8376892 DOI: 10.1038/s41598-021-96334-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Odours modify human behaviour. Research in this field develops rapidly, providing more and more exciting discoveries. In this context, our daily odorous environment has been surprisingly poorly explored. The aim of our study was to quantify olfactory perception and preliminarily identify factors affecting the frequency of odorous experiences. We were also interested in knowing whether human olfactory ecology relates with olfactory performance. In this study, patients with olfactory deficits (n = 62) and healthy controls (n = 97) had their olfactory threshold and odour identification abilities measured before and after a two-week intervention comprising counting of conscious perception of odours naturally occurring in the environment. In both groups, we observed enhanced olfactory performance after the intervention suggesting that (1) the conscious focus on odours may change its perception, and that (2) social and physical environment can effectively stimulate the human olfactory system, presumably supporting the improvement of olfactory sensitivity.
Collapse
|
17
|
What Is the Relationship between the Presence of Volatile Organic Compounds in Food and Drink Products and Multisensory Flavour Perception? Foods 2021; 10:foods10071570. [PMID: 34359439 PMCID: PMC8304950 DOI: 10.3390/foods10071570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/24/2022] Open
Abstract
This narrative review examines the complex relationship that exists between the presence of specific configurations of volatile organic compounds (VOCs) in food and drink products and multisensory flavour perception. Advances in gas chromatography technology and mass spectrometry data analysis mean that it is easier than ever before to identify the unique chemical profile of a particular food or beverage item. Importantly, however, there is simply no one-to-one mapping between the presence of specific VOCs and the flavours that are perceived by the consumer. While the profile of VOCs in a particular product undoubtedly does tightly constrain the space of possible flavour experiences that a taster is likely to have, the gustatory and trigeminal components (i.e., sapid elements) in foods and beverages can also play a significant role in determining the actual flavour experience. Genetic differences add further variation to the range of multisensory flavour experiences that may be elicited by a given configuration of VOCs, while an individual’s prior tasting history has been shown to determine congruency relations (between olfaction and gustation) that, in turn, modulate the degree of oral referral, and ultimately flavour pleasantness, in the case of familiar foods and beverages.
Collapse
|
18
|
Smell compounds classification using UMAP to increase knowledge of odors and molecular structures linkages. PLoS One 2021; 16:e0252486. [PMID: 34048487 PMCID: PMC8162648 DOI: 10.1371/journal.pone.0252486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022] Open
Abstract
This study aims to highlight the relationships between the structure of smell compounds and their odors. For this purpose, heterogeneous data sources were screened, and 6038 odorant compounds and their known associated odors (162 odor notes) were compiled, each individual molecule being represented with a set of 1024 structural fingerprint. Several dimensional reduction techniques (PCA, MDS, t-SNE and UMAP) with two clustering methods (k-means and agglomerative hierarchical clustering AHC) were assessed based on the calculated fingerprints. The combination of UMAP with k-means and AHC methods allowed to obtain a good representativeness of odors by clusters, as well as the best visualization of the proximity of odorants on the basis of their molecular structures. The presence or absence of molecular substructures has been calculated on odorant in order to link chemical groups to odors. The results of this analysis bring out some associations for both the odor notes and the chemical structures of the molecules such as "woody" and "spicy" notes with allylic and bicyclic structures, "balsamic" notes with unsaturated rings, both "sulfurous" and "citrus" with aldehydes, alcohols, carboxylic acids, amines and sulfur compounds, and "oily", "fatty" and "fruity" characterized by esters and with long carbon chains. Overall, the use of UMAP associated to clustering is a promising method to suggest hypotheses on the odorant structure-odor relationships.
Collapse
|
19
|
Ma Y, Tang K, Thomas-Danguin T, Xu Y. Pleasantness of Binary Odor Mixtures: Rules and Prediction. Chem Senses 2021; 45:303-311. [PMID: 32188973 DOI: 10.1093/chemse/bjaa020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pleasantness is a major dimension of odor percepts. While naturally encountered odors rely on mixtures of odorants, few studies have investigated the rules underlying the perceived pleasantness of odor mixtures. To address this issue, a set of 222 binary mixtures based on a set of 72 odorants were rated by a panel of 30 participants for odor intensity and pleasantness. In most cases, the pleasantness of the binary mixtures was driven by the pleasantness and intensity of its components. Nevertheless, a significant pleasantness partial addition was observed in 6 binary mixtures consisting of 2 components with similar pleasantness ratings. A mathematical model, involving the pleasantness of the components as well as τ-values reflecting components' odor intensity, was applied to predict mixture pleasantness. Using this model, the pleasantness of mixtures including 2 components with contrasted intensity and pleasantness could be efficiently predicted at the panel level (R2 > 0.80, Root Mean Squared Error < 0.67).
Collapse
Affiliation(s)
- Yue Ma
- School of Biotechnology, Jiangnan University, Jiangsu, People's Republic of China.,Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Ke Tang
- School of Biotechnology, Jiangnan University, Jiangsu, People's Republic of China
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, AgroSup Dijon, Université Bourgogne Franche-Comté, Dijon, France
| | - Yan Xu
- School of Biotechnology, Jiangnan University, Jiangsu, People's Republic of China
| |
Collapse
|
20
|
Soundirarajan M, Aghasian E, Krejcar O, Namazi H. Complexity-based analysis of the coupling between facial muscle and brain activities. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Olfactory Perception in Relation to the Physicochemical Odor Space. Brain Sci 2021; 11:brainsci11050563. [PMID: 33925220 PMCID: PMC8146962 DOI: 10.3390/brainsci11050563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022] Open
Abstract
A growing body of research aims at solving what is often referred to as the stimulus-percept problem in olfactory perception. Although computational efforts have made it possible to predict perceptual impressions from the physicochemical space of odors, studies with large psychophysical datasets from non-experts remain scarce. Following previous approaches, we developed a physicochemical odor space using 4094 molecular descriptors of 1389 odor molecules. For 20 of these odors, we examined associations with perceived pleasantness, intensity, odor quality and detection threshold, obtained from a dataset of 2000 naïve participants. Our results show significant differences in perceptual ratings, and we were able to replicate previous findings on the association between perceptual ratings and the first dimensions of the physicochemical odor space. However, the present analyses also revealed striking interindividual variations in perceived pleasantness and intensity. Additionally, interactions between pleasantness, intensity, and olfactory and trigeminal qualitative dimensions were found. To conclude, our results support previous findings on the relation between structure and perception on the group level in our sample of non-expert raters. In the challenging task to relate olfactory stimulus and percept, the physicochemical odor space can serve as a reliable and helpful tool to structure the high-dimensional space of olfactory stimuli. Nevertheless, human olfactory perception in the individual is not an analytic process of molecule detection alone, but is part of a holistic integration of multisensory inputs, context and experience.
Collapse
|
22
|
Sharma A, Kumar R, Ranjta S, Varadwaj PK. SMILES to Smell: Decoding the Structure-Odor Relationship of Chemical Compounds Using the Deep Neural Network Approach. J Chem Inf Model 2021; 61:676-688. [PMID: 33449694 DOI: 10.1021/acs.jcim.0c01288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Finding the relationship between the structure of an odorant molecule and its associated smell has always been an extremely challenging task. The major limitation in establishing the structure-odor relation is the vague and ambiguous nature of the descriptor-labeling, especially when the sources of odorant molecules are different. With the advent of deep networks, data-driven approaches have been substantiated to achieve more accurate linkages between the chemical structure and its smell. In this study, the deep neural network (DNN) with physiochemical properties and molecular fingerprints (PPMF) and the convolution neural network (CNN) with chemical-structure images (IMG) are developed to predict the smells of chemicals using their SMILES notations. A data set of 5185 chemical compounds with 104 smell percepts was used to develop the multilabel prediction models. The accuracies of smell prediction from DNN + PPMF and CNN + IMG (Xception based) were found to be 97.3 and 98.3%, respectively, when applied on an independent test set of chemicals. The deep learning architecture combining both DNN + PPMF and CNN + IMG prediction models is proposed, which classifies smells and may help understand the generic mechanism underlying the relationship between chemical structure and smell perception.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Applied Science, Indian Institute of Information Technology, Allahabad 211012, Uttar Pradesh, India.,Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus 226010, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus 226010, Uttar Pradesh, India
| | - Shabnam Ranjta
- Department of Chemistry, SGGS College, Chandigarh 160019, India
| | - Pritish Kumar Varadwaj
- Department of Applied Science, Indian Institute of Information Technology, Allahabad 211012, Uttar Pradesh, India
| |
Collapse
|
23
|
Noradrenergic Activity in the Olfactory Bulb Is a Key Element for the Stability of Olfactory Memory. J Neurosci 2020; 40:9260-9271. [PMID: 33097638 DOI: 10.1523/jneurosci.1769-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Memory stability is essential for animal survival when environment and behavioral state change over short or long time spans. The stability of a memory can be expressed by its duration, its perseverance when conditions change as well as its specificity to the learned stimulus. Using optogenetic and pharmacological manipulations in male mice, we show that the presence of noradrenaline in the olfactory bulb during acquisition renders olfactory memories more stable. We show that while inhibition of noradrenaline transmission during an odor-reward acquisition has no acute effects, it alters perseverance, duration, and specificity of the memory. We use a computational approach to propose a proof of concept model showing that a single, simple network effect of noradrenaline on olfactory bulb dynamics can underlie these seemingly different behavioral effects. Our results show that acute changes in network dynamics can have long-term effects that extend beyond the network that was manipulated.SIGNIFICANCE STATEMENT Olfaction guides the behavior of animals. For successful survival, animals have to remember previously learned information and at the same time be able to acquire new memories. We show here that noradrenaline in the olfactory bulb, the first cortical relay of the olfactory information, is important for creating stable and specific olfactory memories. Memory stability, as expressed in perseverance, duration and specificity of the memory, is enhanced when noradrenergic inputs to the olfactory bulb are unaltered. We show that, computationally, our diverse behavioral results can be ascribed to noradrenaline-driven changes in neural dynamics. These results shed light on how very temporary changes in neuromodulation can have a variety of long-lasting effects on neural processing and behavior.
Collapse
|
24
|
Liu DT, Welge-Lüssen A, Besser G, Mueller CA, Renner B. Assessment of odor hedonic perception: the Sniffin' sticks parosmia test (SSParoT). Sci Rep 2020; 10:18019. [PMID: 33093474 PMCID: PMC7581750 DOI: 10.1038/s41598-020-74967-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
Qualitative olfactory dysfunction is characterized as distorted odor perception and can have a profound effect on quality of life of affected individuals. Parosmia and phantosmia represent the two main subgroups of qualitative impairment and are currently diagnosed based on patient history only. We have developed a test method which measures qualitative olfactory function based on the odors of the Sniffin' Sticks Identification subtest. The newly developed test is called Sniffin' Sticks Parosmia Test (SSParoT). SSParoT uses hedonic estimates of two oppositely valenced odors (pleasant and unpleasant) to assess hedonic range (HR) and hedonic direction (HD), which represent qualitative olfactory perception. HR is defined as the perceivable hedonic distance between two oppositely valenced odors, while HD serves as an indicator for overall hedonic perception of odors. This multicenter study enrolled a total of 162 normosmic subjects in four consecutive experiments. Cluster analysis was used to group odors from the 16-item Sniffin' Sticks Identification test and 24-additional odors into clusters with distinct hedonic properties. Eleven odor pairs were found to be suitable for estimation of HR and HD. Analysis showed agreement between test-retest sessions for all odor pairs. SSparoT might emerge as a valuable tool to assess qualitative olfactory function in health and disease.
Collapse
Affiliation(s)
- David T Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Antje Welge-Lüssen
- Department of Otorhinolaryngology, University Hospital, University of Basel, Basel, Switzerland
| | - Gerold Besser
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christian A Mueller
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria.
| | - Bertold Renner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
25
|
Kermen F, Darnet L, Wiest C, Palumbo F, Bechert J, Uslu O, Yaksi E. Stimulus-specific behavioral responses of zebrafish to a large range of odors exhibit individual variability. BMC Biol 2020; 18:66. [PMID: 32539727 PMCID: PMC7296676 DOI: 10.1186/s12915-020-00801-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/22/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Odor-driven behaviors such as feeding, mating, and predator avoidance are crucial for animal survival. The neural pathways processing these behaviors have been well characterized in a number of species, and involve the activity of diverse brain regions following stimulation of the olfactory bulb by specific odors. However, while the zebrafish olfactory circuitry is well understood, a comprehensive characterization linking odor-driven behaviors to specific odors is needed to better relate olfactory computations to animal responses. RESULTS Here, we used a medium-throughput setup to measure the swimming trajectories of 10 zebrafish in response to 17 ecologically relevant odors. By selecting appropriate locomotor metrics, we constructed ethograms systematically describing odor-induced changes in the swimming trajectory. We found that adult zebrafish reacted to most odorants using different behavioral programs and that a combination of a few relevant behavioral metrics enabled us to capture most of the variance in these innate odor responses. We observed that individual components of natural food and alarm odors do not elicit the full behavioral response. Finally, we show that zebrafish blood elicits prominent defensive behaviors similar to those evoked by skin extract and activates spatially overlapping olfactory bulb domains. CONCLUSION Altogether, our results highlight a prominent intra- and inter-individual variability in zebrafish odor-driven behaviors and identify a small set of waterborne odors that elicit robust responses. Our behavioral setup and our results will be useful resources for future studies interested in characterizing innate olfactory behaviors in aquatic animals.
Collapse
Affiliation(s)
- Florence Kermen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium.
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
- KU Leuven, 3000, Leuven, Belgium.
| | - Lea Darnet
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Christoph Wiest
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Jack Bechert
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Ozge Uslu
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium
- KU Leuven, 3000, Leuven, Belgium
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7030, Trondheim, Norway.
- Neuro-Electronics Research Flanders, Imec Campus, Kapeldreef 75, 3001, Leuven, Belgium.
- KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
26
|
Manesse C, Fournel A, Bensafi M, Ferdenzi C. Visual Priming Influences Olfactomotor Response and Perceptual Experience of Smells. Chem Senses 2020; 45:211-218. [PMID: 32064508 DOI: 10.1093/chemse/bjaa008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whereas contextual influences in the visual and auditory domains have been largely documented, little is known about how chemical senses might be affected by our multisensory environment. In the present study, we aimed to better understand how a visual context can affect the perception of a rather pleasant (floral) and a rather unpleasant (damp) odor. To this end, 19 healthy participants performed a series of tasks including odor detection followed by perceptual evaluations of odor intensity, pleasantness, flowery, and damp characters of both odors presented at 2 different concentrations. A visual context (either congruent or incongruent with the odor; or a neutral control context) preceded odor stimulations. Olfactomotor responses as well as response times were recorded during the detection task. Results showed an influence of the visual context on semantic and motor responses to the target odors. First, congruency between context and odor increased the saliency of the olfactory feature of the memory trace, for the pleasant floral odor only (higher perceived flowery note). Clinical applications of this finding for olfactory remediation in dysosmic patients are proposed. Second, the unpleasant odor remained unaffected by visual primes, whatever the condition. In addition, incongruency between context and odor (regardless of odor type) had a disruptive effect on odor sampling behavior, which was interpreted as a protective behavior in response to expectancy violation. Altogether, this second series of effects may serve an adaptive function, especially the avoidance of, or simply vigilance toward, aversive and unpredictable stimuli.
Collapse
Affiliation(s)
- Cédric Manesse
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex, France
| | - Arnaud Fournel
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex, France
| | - Moustafa Bensafi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex, France
| | - Camille Ferdenzi
- Centre de Recherche en Neurosciences de Lyon, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex, France
| |
Collapse
|
27
|
Spence C. Multisensory Flavour Perception: Blending, Mixing, Fusion, and Pairing Within and Between the Senses. Foods 2020; 9:E407. [PMID: 32244690 PMCID: PMC7230593 DOI: 10.3390/foods9040407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the various outcomes that may occur when two or more elements are paired in the context of flavour perception. In the first part, I review the literature concerning what happens when flavours, ingredients, and/or culinary techniques are deliberately combined in a dish, drink, or food product. Sometimes the result is fusion but, if one is not careful, the result can equally well be confusion instead. In fact, blending, mixing, fusion, and flavour pairing all provide relevant examples of how the elements in a carefully-crafted multi-element tasting experience may be combined. While the aim is sometimes to obscure the relative contributions of the various elements to the mix (as in the case of blending), at other times, consumers/tasters are explicitly encouraged to contemplate/perceive the nature of the relationship between the contributing elements instead (e.g., as in the case of flavour pairing). There has been a noticeable surge in both popular and commercial interest in fusion foods and flavour pairing in recent years, and various of the 'rules' that have been put forward to help explain the successful combination of the elements in such food and/or beverage experiences are discussed. In the second part of the review, I examine the pairing of flavour stimuli with music/soundscapes, in the emerging field of 'sonic seasoning'. I suggest that the various perceptual pairing principles/outcomes identified when flavours are paired deliberately can also be meaningfully extended to provide a coherent framework when it comes to categorizing the ways in which what we hear can influence our flavour experiences, both in terms of the sensory-discriminative and hedonic response.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Oxford OX2 6GG, UK
| |
Collapse
|
28
|
Omam S, Babini MH, Sim S, Tee R, Nathan V, Namazi H. Complexity-based decoding of brain-skin relation in response to olfactory stimuli. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 184:105293. [PMID: 31887618 DOI: 10.1016/j.cmpb.2019.105293] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Human body is covered with skin in different parts. In fact, skin reacts to different changes around human. For instance, when the surrounding temperature changes, human skin will react differently. It is known that the activity of skin is regulated by human brain. In this research, for the first time we investigate the relation between the activities of human skin and brain by mathematical analysis of Galvanic Skin Response (GSR) and Electroencephalography (EEG) signals. METHOD For this purpose, we employ fractal theory and analyze the variations of fractal dimension of GSR and EEG signals when subjects are exposed to different olfactory stimuli in the form of pleasant odors. RESULTS Based on the obtained results, the complexity of GSR signal changes with the complexity of EEG signal in case of different stimuli, where by increasing the molecular complexity of olfactory stimuli, the complexity of EEG and GSR signals increases. The results of statistical analysis showed the significant effect of stimulation on variations of complexity of GSR signal. In addition, based on effect size analysis, fourth odor with greatest molecular complexity had the greatest effect on variations of complexity of EEG and GSR signals. CONCLUSION Therefore, it can be said that human skin reaction changes with the variations in the activity of human brain. The result of analysis in this research can be further used to make a model between the activities of human skin and brain that will enable us to predict skin reaction to different stimuli.
Collapse
Affiliation(s)
- Shafiul Omam
- School of Engineering, Monash University, Selangor, Malaysia
| | | | - Sue Sim
- School of Engineering, Monash University, Selangor, Malaysia
| | - Rui Tee
- School of Pharmacy, Monash University, Selangor, Malaysia
| | - Visvamba Nathan
- School of Engineering, Monash University, Selangor, Malaysia
| | - Hamidreza Namazi
- School of Engineering, Monash University, Selangor, Malaysia; Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
29
|
Young BD, Escalon JA, Mathew D. Odors: from chemical structures to gaseous plumes. Neurosci Biobehav Rev 2020; 111:19-29. [PMID: 31931034 DOI: 10.1016/j.neubiorev.2020.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
We are immersed within an odorous sea of chemical currents that we parse into individual odors with complex structures. Odors have been posited as determined by the structural relation between the molecules that compose the chemical compounds and their interactions with the receptor site. But, naturally occurring smells are parsed from gaseous odor plumes. To give a comprehensive account of the nature of odors the chemosciences must account for these large distributed entities as well. We offer a focused review of what is known about the perception of odor plumes for olfactory navigation and tracking, which we then connect to what is known about the role odorants play as properties of the plume in determining odor identity with respect to odor quality. We end by motivating our central claim that more research needs to be conducted on the role that odorants play within the odor plume in determining odor identity.
Collapse
Affiliation(s)
- Benjamin D Young
- Philosophy and Neuroscience, University of Nevada, 1664 N Virginia St, Reno, NV 89557, United States.
| | | | - Dennis Mathew
- Biology and Neuroscience, University of Nevada, Reno, United States.
| |
Collapse
|
30
|
Investigating the Putative Impact of Odors Purported to Have Beneficial Effects on Sleep: Neural and Perceptual Processes. CHEMOSENS PERCEPT 2019. [DOI: 10.1007/s12078-019-09269-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Spence C, Wang QJ. On the Meaning(s) of Perceived Complexity in the Chemical Senses. Chem Senses 2019; 43:451-461. [PMID: 30010729 DOI: 10.1093/chemse/bjy047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Complexity is a term that is often invoked by those writing appreciatively about the taste, aroma/bouquet, and/or flavor of food and drink. Typically, the term is used as though everyone knows what is being talked about. Rarely is any explanation given, and the discussion soon moves on to other topics. However, oftentimes it is not at all clear what, exactly, is being referred to. A number of possibilities are outlined here, including physical complexity at the level of individual molecules, at the level of combinations of molecules giving rise to a specific flavor profile (e.g., as in a glass of quality wine or a cup of specialty coffee), at the level of combinations of distinct ingredients/elements (e.g., as when composing a particularly intricate dish in a high-end restaurant, say, or when pairing food with wine), and/or the number of stimuli/steps involved in the process of creation. Of course, people might also be referring to some aspect of their perceptual experience, and one of the intriguing questions in this space concerns the nature of the relationship(s) between these different ways of conceptualizing complexity in the chemical senses. However, given that physical/chemical and perceived complexity so often diverge, we argue that it is the latter notion, or rather inferred complexity, that is the most relevant when it comes to the chemical senses. Finally, we look at the role of expertise and review the evidence suggesting that inferred complexity can emerge either from a unitary taste experience that is judged to be complex, or from a tasting experience having multiple individuable elements.
Collapse
Affiliation(s)
- Charles Spence
- Crossmodal Research Laboratory, Oxford University, Anna Watts Building, University of Oxford, Oxford, UK
| | - Qian Janice Wang
- Crossmodal Research Laboratory, Oxford University, Anna Watts Building, University of Oxford, Oxford, UK
| |
Collapse
|
32
|
Abstract
The functional basis of disgust in disease avoidance is widely accepted; however, there is disagreement over what disgust is. This is a significant problem, as basic questions about disgust require knowing if single/multiple forms/processes exist. We address this issue with a new model with one form of disgust generated by multiple processes: (a) pure disgust experienced during gastrointestinal illness; (b) somatosensory disgust elicited by specific cues that activate the pure disgust state; (c) anticipatory disgust elicited by associations between distance cues for somatosensory disgust and requiring threat evaluation; (d) simulated disgusts elicited by imagining somatosensory and anticipatory disgust and frequently involving other emotions. Different contamination processes interlink (a–d). The implications of our model for fundamental questions about disgust (e.g., emotion status; continuation into animals) are examined.
Collapse
Affiliation(s)
| | - Trevor I. Case
- Department of Psychology, Macquarie University, Australia
| | - Megan J. Oaten
- School of Applied Psychology, Griffith University, Australia
| | | | - Supreet Saluja
- Department of Psychology, Macquarie University, Australia
| |
Collapse
|
33
|
Majid A, Burenhult N, Stensmyr M, de Valk J, Hansson BS. Olfactory language and abstraction across cultures. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0139. [PMID: 29915007 PMCID: PMC6015838 DOI: 10.1098/rstb.2017.0139] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
Olfaction presents a particularly interesting arena to explore abstraction in language. Like other abstract domains, such as time, odours can be difficult to conceptualize. An odour cannot be seen or held, it can be difficult to locate in space, and for most people odours are difficult to verbalize. On the other hand, odours give rise to primary sensory experiences. Every time we inhale we are using olfaction to make sense of our environment. We present new experimental data from 30 Jahai hunter-gatherers from the Malay Peninsula and 30 matched Dutch participants from the Netherlands in an odour naming experiment. Participants smelled monomolecular odorants and named odours while reaction times, odour descriptors and facial expressions were measured. We show that while Dutch speakers relied on concrete descriptors, i.e. they referred to odour sources (e.g. smells like lemon), the Jahai used abstract vocabulary to name the same odours (e.g. musty). Despite this differential linguistic categorization, analysis of facial expressions showed that the two groups, nevertheless, had the same initial emotional reactions to odours. Critically, these cross-cultural data present a challenge for how to think about abstraction in language. This article is part of the theme issue ‘Varieties of abstract concepts: development, use and representation in the brain’.
Collapse
Affiliation(s)
- Asifa Majid
- Centre for Language Studies, Radboud University, 6525 HT Nijmegen, The Netherlands .,Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525HR Nijmegen, The Netherlands.,Language and Cognition Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands
| | - Niclas Burenhult
- Language and Cognition Department, Max Planck Institute for Psycholinguistics, 6500 AH Nijmegen, The Netherlands.,Centre for Languages and Literature, Lund University, 22100 Lund, Sweden.,Humanities Lab, Lund University, 22100 Lund, Sweden
| | | | - Josje de Valk
- Centre for Language Studies, Radboud University, 6525 HT Nijmegen, The Netherlands
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
34
|
Licon CC, Bosc G, Sabri M, Mantel M, Fournel A, Bushdid C, Golebiowski J, Robardet C, Plantevit M, Kaytoue M, Bensafi M. Chemical features mining provides new descriptive structure-odor relationships. PLoS Comput Biol 2019; 15:e1006945. [PMID: 31022180 PMCID: PMC6504111 DOI: 10.1371/journal.pcbi.1006945] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/07/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022] Open
Abstract
An important goal in researching the biology of olfaction is to link the perception of smells to the chemistry of odorants. In other words, why do some odorants smell like fruits and others like flowers? While the so-called stimulus-percept issue was resolved in the field of color vision some time ago, the relationship between the chemistry and psycho-biology of odors remains unclear up to the present day. Although a series of investigations have demonstrated that this relationship exists, the descriptive and explicative aspects of the proposed models that are currently in use require greater sophistication. One reason for this is that the algorithms of current models do not consistently consider the possibility that multiple chemical rules can describe a single quality despite the fact that this is the case in reality, whereby two very different molecules can evoke a similar odor. Moreover, the available datasets are often large and heterogeneous, thus rendering the generation of multiple rules without any use of a computational approach overly complex. We considered these two issues in the present paper. First, we built a new database containing 1689 odorants characterized by physicochemical properties and olfactory qualities. Second, we developed a computational method based on a subgroup discovery algorithm that discriminated perceptual qualities of smells on the basis of physicochemical properties. Third, we ran a series of experiments on 74 distinct olfactory qualities and showed that the generation and validation of rules linking chemistry to odor perception was possible. Taken together, our findings provide significant new insights into the relationship between stimulus and percept in olfaction. In addition, by automatically extracting new knowledge linking chemistry of odorants and psychology of smells, our results provide a new computational framework of analysis enabling scientists in the field to test original hypotheses using descriptive or predictive modeling. An important issue in olfaction sciences deals with the question of how a chemical information can be translated into percepts. This is known as the stimulus-percept problem. Here, we set out to better understand this issue by combining knowledge about the chemistry and cognition of smells with computational olfaction. We also assumed that not only one, but several physicochemical models may describe a given olfactory quality. To achieve this aim, a first challenge was to set up a database with ~1700 molecules characterized by chemical features and described by olfactory qualities (e.g. fruity, woody). A second challenge consisted in developing a computational model enabling the discrimination of olfactory qualities based on these chemical features. By meeting these 2 challenges, we provided for several olfactory qualities new chemical models describing why an odorant molecule smells fruity or woody (among others). For most qualities, multiple (rather than a single) chemical models were generated. These findings provide new elements of knowledge about the relationship between odorant chemistry and perception. They also make it possible to envisage concrete applications in the aroma and fragrance field where chemical characterization of smells is an important step in the design of new products.
Collapse
Affiliation(s)
- Carmen C. Licon
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
- Food Science and Nutrition Department, California State University, Fresno, California, United States of America
| | - Guillaume Bosc
- INSA Lyon, CNRS, LIRIS UMR5205, France
- Infologic, Bourg-lès-Valence, France
| | - Mohammed Sabri
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
- Ecole Nationale Polytechnique d’Oran—Maurice Audin, Département de Mathématiques et Informatique, Oran, Algérie
| | - Marylou Mantel
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
| | - Arnaud Fournel
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
| | - Caroline Bushdid
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
| | - Jerome Golebiowski
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | | | | | - Mehdi Kaytoue
- INSA Lyon, CNRS, LIRIS UMR5205, France
- Infologic, Bourg-lès-Valence, France
| | - Moustafa Bensafi
- Lyon Neuroscience Research Center, University Lyon, CNRS UMR5292, France
- * E-mail:
| |
Collapse
|
35
|
|
36
|
Li H, Panwar B, Omenn GS, Guan Y. Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features. Gigascience 2018; 7:4750780. [PMID: 29267859 PMCID: PMC5824779 DOI: 10.1093/gigascience/gix127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
Background The olfactory stimulus-percept problem has been studied for more than a century, yet it is still hard to precisely predict the odor given the large-scale chemoinformatic features of an odorant molecule. A major challenge is that the perceived qualities vary greatly among individuals due to different genetic and cultural backgrounds. Moreover, the combinatorial interactions between multiple odorant receptors and diverse molecules significantly complicate the olfaction prediction. Many attempts have been made to establish structure-odor relationships for intensity and pleasantness, but no models are available to predict the personalized multi-odor attributes of molecules. In this study, we describe our winning algorithm for predicting individual and population perceptual responses to various odorants in the DREAM Olfaction Prediction Challenge. Results We find that random forest model consisting of multiple decision trees is well suited to this prediction problem, given the large feature spaces and high variability of perceptual ratings among individuals. Integrating both population and individual perceptions into our model effectively reduces the influence of noise and outliers. By analyzing the importance of each chemical feature, we find that a small set of low- and nondegenerative features is sufficient for accurate prediction. Conclusions Our random forest model successfully predicts personalized odor attributes of structurally diverse molecules. This model together with the top discriminative features has the potential to extend our understanding of olfactory perception mechanisms and provide an alternative for rational odorant design.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Computational Medicine and Bioinformatics and Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Bharat Panwar
- Department of Computational Medicine and Bioinformatics and Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics and Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA.,Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics and Departments of Internal Medicine and Human Genetics and School of Public Health, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Spence C. Complexity on the Menu and in the Meal. Foods 2018; 7:foods7100158. [PMID: 30261689 PMCID: PMC6209977 DOI: 10.3390/foods7100158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Complexity is generally perceived to be a desirable attribute as far as the design/delivery of food and beverage experiences is concerned. However, that said, there are many different kinds of complexity, or at least people use the term when talking about quite different things, and not all of them are relevant to the design of food and drink experiences nor are they all necessarily perceptible within the tasting experience (either in the moment or over time). Consequently, the consumer often needs to infer the complexity of a tasting experience that is unlikely to be perceptible (in its entirety) in the moment. This paper outlines a number of different routes by which the chef, mixologist, and/or blender can both design and signal the complexity in the tasting experience.
Collapse
Affiliation(s)
- Charles Spence
- Department of Experimental Psychology, New Radcliffe House, University of Oxford, Oxford OX2 6BW, UK.
| |
Collapse
|
38
|
|
39
|
Pleasantness and trigeminal sensations as salient dimensions in organizing the semantic and physiological spaces of odors. Sci Rep 2018; 8:8444. [PMID: 29855500 PMCID: PMC5981304 DOI: 10.1038/s41598-018-26510-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 05/08/2018] [Indexed: 11/09/2022] Open
Abstract
A major issue in human olfaction research is to characterize the main dimensions that organize the space of odors. The present study examines this question and shows that, beside pleasantness, trigeminal sensations, and particularly irritation, play an important role. These results were consistent along two different spaces constructed using semantic description and physiological responses to 105 odorants, smelled and described by human participants. Taken together, these findings suggest that salient trigeminal features, in conjunction with pleasantness, are involved in detecting relevant emotional stimuli, and modify the way organisms categorize smells. These results shed light on the importance of trigeminal sensitivity in the well-established defensive function of olfaction.
Collapse
|
40
|
Seo IS, Lee HG, Koo B, Koh CS, Park HY, Im C, Shin HC. Cross detection for odor of metabolic waste between breast and colorectal cancer using canine olfaction. PLoS One 2018; 13:e0192629. [PMID: 29438432 PMCID: PMC5811037 DOI: 10.1371/journal.pone.0192629] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/26/2018] [Indexed: 02/01/2023] Open
Abstract
Although several studies have been performed to detect cancer using canine olfaction, none have investigated whether canine olfaction trained to the specific odor of one cancer is able to detect odor related to other unfamiliar cancers. To resolve this issue, we employed breast and colorectal cancer in vitro, and investigated whether trained dogs to odor related to metabolic waste from breast cancer are able to detect it from colorectal cancer, and vice versa. The culture liquid samples used in the cultivation of cancerous cells (4T1 and CT26) were employed as an experimental group. Two different breeds of dogs were trained for the different cancer odor each other. The dogs were then tested using a double-blind method and cross-test to determine whether they could correctly detect the experimental group, which contains the specific odor for metabolic waste of familiar or unfamiliar cancer. For two cancers, both dogs regardless of whether training or non-training showed that accuracy was over 90%, and sensitivity and specificity were over 0.9, respectively. Through these results, it was verified that the superior olfactory ability of dogs can discriminate odor for metabolic waste of cancer cells from it of benign cells, and that the specific odor for metabolic waste of breast cancer has not significant differences to it of colorectal cancer. That is, it testifies that metabolic waste between breast and colorectal cancer have the common specific odor in vitro. Accordingly, a trained dogs for detecting odor for metabolic waste of breast cancer can perceive it of colorectal cancer, and vice versa. In order to the future work, we will plan in vivo experiment for the two cancers and suggest research as to what kind of cancers have the common specific odor. Furthermore, the relationship between breast and colorectal cancer should be investigated using other research methods.
Collapse
Affiliation(s)
- In-Seok Seo
- College of Medicine, Hallym University, Chuncheon, Korea
- Gangwon Provincial Police Agency, Chuncheon, Korea
| | - Hwan-Gon Lee
- Department of Physical Education, Hallym University, Chuncheon, Korea
| | - Bonkon Koo
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Korea
| | - Chin Su Koh
- College of Medicine, Hallym University, Chuncheon, Korea
| | - Hae-Yong Park
- College of Medicine, Hallym University, Chuncheon, Korea
| | - Changkyun Im
- College of Medicine, Hallym University, Chuncheon, Korea
| | - Hyung-Cheul Shin
- College of Medicine, Hallym University, Chuncheon, Korea
- * E-mail:
| |
Collapse
|
41
|
Ross M, Mason GJ. The effects of preferred natural stimuli on humans' affective states, physiological stress and mental health, and the potential implications for well-being in captive animals. Neurosci Biobehav Rev 2017; 83:46-62. [PMID: 28916271 DOI: 10.1016/j.neubiorev.2017.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/15/2017] [Accepted: 09/08/2017] [Indexed: 11/24/2022]
Abstract
Exposure to certain natural stimuli improves people's moods, reduces stress, enhances stress resilience, and promotes mental and physical health. Laboratory studies and real estate prices also reveal that humans prefer environments containing a broad range of natural stimuli. Potential mediators of these outcomes include: 1) therapeutic effects of specific natural products; 2) positive affective responses to stimuli that signalled safety and resources to our evolutionary ancestors; 3) attraction to environments that satisfy innate needs to explore and understand; and 4) ease of sensory processing, due to the stimuli's "evolutionary familiarity" and/or their fractal, self-repeating properties. These processes, and the benefits humans gain from natural stimuli, seem to be largely innate. They thus have strong implications for other species (including laboratory, farm and zoo animals living in environments devoid of natural stimuli), suggesting that they too may have nature-related "sensory needs". By promoting positive affect and stress resilience, preferred natural stimuli (including views, sounds and odours) could therefore potentially provide effective and efficient ways to improve captive animal well-being.
Collapse
Affiliation(s)
- Misha Ross
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| | - Georgia J Mason
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
42
|
Hummel T, Fark T, Baum D, Warr J, Hummel CB, Schriever VA. The Rewarding Effect of Pictures with Positive Emotional Connotation upon Perception and Processing of Pleasant Odors-An FMRI Study. Front Neuroanat 2017; 11:19. [PMID: 28377697 PMCID: PMC5359254 DOI: 10.3389/fnana.2017.00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/28/2017] [Indexed: 01/05/2023] Open
Abstract
This fMRI study was designed to investigate the effect of cross-modal conditioning in 28 female volunteers. Subjects underwent initial fMRI block design scanning during which three pleasant olfactory stimuli were presented and had to be rated with respect to intensity and pleasantness. This was followed by an odor identification task spread out over 3 days: the experimental group was rewarded for successful trials (correct odor identification) with emotionally salient photos, whilst the control group only received randomly displayed, emotionally neutral, pictures. In the final scanning session, the odors were again presented, and subjects rated pleasantness and intensity. Both pleasantness ratings and fMRI data showed effects of the rewarding procedure. Activation in nucleus accumbens and the orbitofrontal cortex confirmed the hypothesis that learnt association of odors with visual stimuli of emotionally positive valence not only increases pleasantness of the olfactory stimuli but is also reflected in the activation of brain structures relevant for hedonic and reward processing. To our knowledge, this is the first paper to report successful cross-modal conditioning of olfactory stimuli with visual clues.
Collapse
Affiliation(s)
- Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden Dresden, Germany
| | - Therese Fark
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden Dresden, Germany
| | - Daniel Baum
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden Dresden, Germany
| | - Jonathan Warr
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden Dresden, Germany
| | - Cornelia B Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden Dresden, Germany
| | - Valentin A Schriever
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden Dresden, Germany
| |
Collapse
|
43
|
Keller A, Gerkin RC, Guan Y, Dhurandhar A, Turu G, Szalai B, Mainland JD, Ihara Y, Yu CW, Wolfinger R, Vens C, Schietgat L, De Grave K, Norel R, Stolovitzky G, Cecchi GA, Vosshall LB, Meyer P. Predicting human olfactory perception from chemical features of odor molecules. Science 2017; 355:820-826. [PMID: 28219971 DOI: 10.1126/science.aal2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/27/2017] [Indexed: 01/02/2023]
Abstract
It is still not possible to predict whether a given molecule will have a perceived odor or what olfactory percept it will produce. We therefore organized the crowd-sourced DREAM Olfaction Prediction Challenge. Using a large olfactory psychophysical data set, teams developed machine-learning algorithms to predict sensory attributes of molecules based on their chemoinformatic features. The resulting models accurately predicted odor intensity and pleasantness and also successfully predicted 8 among 19 rated semantic descriptors ("garlic," "fish," "sweet," "fruit," "burnt," "spices," "flower," and "sour"). Regularized linear models performed nearly as well as random forest-based ones, with a predictive accuracy that closely approaches a key theoretical limit. These models help to predict the perceptual qualities of virtually any molecule with high accuracy and also reverse-engineer the smell of a molecule.
Collapse
Affiliation(s)
- Andreas Keller
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amit Dhurandhar
- Thomas J. Watson Computational Biology Center, IBM, Yorktown Heights, NY 10598, USA
| | - Gabor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary.,Laboratory of Molecular Physiology, Hungarian Academy of Science, Semmelweis University (MTA-SE), 1085 Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary.,Laboratory of Molecular Physiology, Hungarian Academy of Science, Semmelweis University (MTA-SE), 1085 Budapest, Hungary
| | - Joel D Mainland
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusuke Ihara
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Institution for Innovation, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan
| | - Chung Wen Yu
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Celine Vens
- Department of Public Health and Primary Care, KU Leuven, Kulak, 8500 Kortrijk, Belgium
| | | | - Kurt De Grave
- Department of Computer Science, KU Leuven, 3001 Leuven, Belgium.,Flanders Make, 3920 Lommel, Belgium
| | - Raquel Norel
- Thomas J. Watson Computational Biology Center, IBM, Yorktown Heights, NY 10598, USA
| | | | - Gustavo Stolovitzky
- Thomas J. Watson Computational Biology Center, IBM, Yorktown Heights, NY 10598, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guillermo A Cecchi
- Thomas J. Watson Computational Biology Center, IBM, Yorktown Heights, NY 10598, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Pablo Meyer
- Thomas J. Watson Computational Biology Center, IBM, Yorktown Heights, NY 10598, USA. .,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
44
|
Fractal Based Analysis of the Influence of Odorants on Heart Activity. Sci Rep 2016; 6:38555. [PMID: 27929045 PMCID: PMC5144066 DOI: 10.1038/srep38555] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/09/2016] [Indexed: 12/15/2022] Open
Abstract
An important challenge in heart research is to make the relation between the features of external stimuli and heart activity. Olfactory stimulation is an important type of stimulation that affects the heart activity, which is mapped on Electrocardiogram (ECG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the ECG signal. This study investigates the relation between the structures of heart rate and the olfactory stimulus (odorant). We show that the complexity of the heart rate is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal heart rate. Also, odorant having higher entropy causes the heart rate having lower approximate entropy. The method discussed here can be applied and investigated in case of patients with heart diseases as the rehabilitation purpose.
Collapse
|
45
|
Pleasantness, familiarity, and identification of spice odors are interrelated and enhanced by consumption of herbs and food neophilia. Appetite 2016; 109:190-200. [PMID: 27884762 DOI: 10.1016/j.appet.2016.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/13/2016] [Accepted: 11/18/2016] [Indexed: 11/21/2022]
Abstract
The primary dimension of odor is pleasantness, which is associated with a multitude of factors. We investigated how the pleasantness, familiarity, and identification of spice odors were associated with each other and with the use of the respective spice, overall use of herbs, and level of food neophobia. A total of 126 adults (93 women, 33 men; age 25-61 years, mean 39 years) rated the odors from 12 spices (oregano, anise, rosemary, mint, caraway, sage, thyme, cinnamon, fennel, marjoram, garlic, and clove) for pleasantness and familiarity, and completed a multiple-choice odor identification. Data on the use of specific spices, overall use of herbs, and Food Neophobia Scale score were collected using an online questionnaire. Familiar odors were mostly rated as pleasant (except garlic), whereas unfamiliar odors were rated as neutral (r = 0.63). We observed consistent and often significant trends that suggested the odor pleasantness and familiarity were positively associated with the correct odor identification, consumption of the respective spice, overall use of herbs, and food neophilia. Our results suggest that knowledge acquisition through repetitive exposure to spice odor with active attention may gradually increase the odor pleasantness within the framework set by the chemical characteristics of the aroma compound.
Collapse
|
46
|
Méndez-Lucio O, Medina-Franco JL. The many roles of molecular complexity in drug discovery. Drug Discov Today 2016; 22:120-126. [PMID: 27575998 DOI: 10.1016/j.drudis.2016.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 01/24/2023]
Abstract
Molecular complexity is becoming a crucial concept in drug discovery. It has been associated with target selectivity, success in progressing into clinical development and compound safety, among other factors. Multiple metrics have been developed to quantify molecular complexity and explore complexity-property relationships. However, there is no general agreement regarding how to measure this molecular feature. Herein, we have surveyed the many roles of molecular complexity in drug discovery discussing in a critical manner different quantification methods. Through the analysis of various reference compound databases, common pitfalls and workarounds of the quantification of molecular complexity are discussed.
Collapse
Affiliation(s)
- Oscar Méndez-Lucio
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico.
| | - José L Medina-Franco
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico.
| |
Collapse
|
47
|
Keller A, Vosshall LB. Olfactory perception of chemically diverse molecules. BMC Neurosci 2016; 17:55. [PMID: 27502425 PMCID: PMC4977894 DOI: 10.1186/s12868-016-0287-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/08/2016] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the relationship between a stimulus and how it is perceived reveals fundamental principles about the mechanisms of sensory perception. While this stimulus-percept problem is mostly understood for color vision and tone perception, it is not currently possible to predict how a given molecule smells. While there has been some progress in predicting the pleasantness and intensity of an odorant, perceptual data for a larger number of diverse molecules are needed to improve current predictions. Towards this goal, we tested the olfactory perception of 480 structurally and perceptually diverse molecules at two concentrations using a panel of 55 healthy human subjects. Results For each stimulus, we collected data on perceived intensity, pleasantness, and familiarity. In addition, subjects were asked to apply 20 semantic odor quality descriptors to these stimuli, and were offered the option to describe the smell in their own words. Using this dataset, we replicated several previous correlations between molecular features of the stimulus and olfactory perception. The number of sulfur atoms in a molecule was correlated with the odor quality descriptors “garlic,” “fish,” and “decayed,” and large and structurally complex molecules were perceived to be more pleasant. We discovered a number of correlations in intensity perception between molecules. We show that familiarity had a strong effect on the ability of subjects to describe a smell. Many subjects used commercial products to describe familiar odorants, highlighting the role of prior experience in verbal reports of olfactory perception. Nonspecific descriptors like “chemical” were applied frequently to unfamiliar odorants, and unfamiliar odorants were generally rated as neither pleasant nor unpleasant. Conclusions We present a very large psychophysical dataset and use this to correlate molecular features of a stimulus to olfactory percept. Our work reveals robust correlations between molecular features and perceptual qualities, and highlights the dominant role of familiarity and experience in assigning verbal descriptors to odorants. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0287-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andreas Keller
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY, 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, 1230 York Avenue, Box 63, New York, NY, 10065, USA. .,Howard Hughes Medical Institute, New York, USA. .,Kavli Neural Systems Institute, The Rockefeller University, New York, USA.
| |
Collapse
|
48
|
Fournel A, Ferdenzi C, Sezille C, Rouby C, Bensafi M. Multidimensional representation of odors in the human olfactory cortex. Hum Brain Mapp 2016; 37:2161-72. [PMID: 26991044 DOI: 10.1002/hbm.23164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
What is known as an odor object is an integrated representation constructed from physical features, and perceptual attributes mainly mediated by the olfactory and trigeminal systems. The aim of the present study was to comprehend how this multidimensional representation is organized, by deciphering how similarities in the physical, olfactory and trigeminal perceptual spaces of odors are represented in the human brain. To achieve this aim, we combined psychophysics, functional MRI and multivariate representational similarity analysis. Participants were asked to smell odors diffused by an fMRI-compatible olfactometer and to rate each smell along olfactory dimensions (pleasantness, intensity, familiarity and edibility) and trigeminal dimensions (irritation, coolness, warmth and pain). An event-related design was implemented, presenting different odorants. Results revealed that (i) pairwise odorant similarities in anterior piriform cortex (PC) activity correlated with pairwise odorant similarities in chemical properties (P < 0.005), (ii) similarities in posterior PC activity correlated with similarities in olfactory perceptual properties (P <0.01), and (iii) similarities in amygdala activity correlated with similarities in trigeminal perceptual properties (P < 0.01). These findings provide new evidence that extraction of physical, olfactory and trigeminal features is based on specific fine processing of similarities between odorous stimuli in a distributed manner in the olfactory system. Hum Brain Mapp 37:2161-2172, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Fournel
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Ferdenzi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Sezille
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - C Rouby
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| | - M Bensafi
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, University Lyon, F-69000, France
| |
Collapse
|
49
|
|
50
|
Affiliation(s)
- Thomas Böttcher
- Department of Chemistry and
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|