1
|
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J 2025; 292:28-46. [PMID: 38440918 PMCID: PMC11705224 DOI: 10.1111/febs.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
2
|
Jheng JR, Bai Y, Noda K, Huot JR, Cook T, Fisher A, Chen YY, Goncharov DA, Goncharova EA, Simon MA, Zhang Y, Forman DE, Rojas M, Machado RF, Auwerx J, Gladwin MT, Lai YC. Skeletal Muscle SIRT3 Deficiency Contributes to Pulmonary Vascular Remodeling in Pulmonary Hypertension Due to Heart Failure With Preserved Ejection Fraction. Circulation 2024; 150:867-883. [PMID: 38804138 PMCID: PMC11384544 DOI: 10.1161/circulationaha.124.068624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a major complication linked to adverse outcomes in heart failure with preserved ejection fraction (HFpEF), yet no specific therapies exist for PH associated with HFpEF (PH-HFpEF). We have recently reported on the role of skeletal muscle SIRT3 (sirtuin-3) in modulation of PH-HFpEF, suggesting a novel endocrine signaling pathway for skeletal muscle modulation of pulmonary vascular remodeling. METHODS Using skeletal muscle-specific Sirt3 knockout mice (Sirt3skm-/-) and mass spectrometry-based comparative secretome analysis, we attempted to define the processes by which skeletal muscle SIRT3 defects affect pulmonary vascular health in PH-HFpEF. RESULTS Sirt3skm-/- mice exhibited reduced pulmonary vascular density accompanied by pulmonary vascular proliferative remodeling and elevated pulmonary pressures. Comparative analysis of secretome by mass spectrometry revealed elevated secretion levels of LOXL2 (lysyl oxidase homolog 2) in SIRT3-deficient skeletal muscle cells. Elevated circulation and protein expression levels of LOXL2 were also observed in plasma and skeletal muscle of Sirt3skm-/- mice, a rat model of PH-HFpEF, and humans with PH-HFpEF. In addition, expression levels of CNPY2 (canopy fibroblast growth factor signaling regulator 2), a known proliferative and angiogenic factor, were increased in pulmonary artery endothelial cells and pulmonary artery smooth muscle cells of Sirt3skm-/- mice and animal models of PH-HFpEF. CNPY2 levels were also higher in pulmonary artery smooth muscle cells of subjects with obesity compared with nonobese subjects. Moreover, treatment with recombinant LOXL2 protein promoted pulmonary artery endothelial cell migration/proliferation and pulmonary artery smooth muscle cell proliferation through regulation of CNPY2-p53 signaling. Last, skeletal muscle-specific Loxl2 deletion decreased pulmonary artery endothelial cell and pulmonary artery smooth muscle cell expression of CNPY2 and improved pulmonary pressures in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS This study demonstrates a systemic pathogenic impact of skeletal muscle SIRT3 deficiency in remote pulmonary vascular remodeling and PH-HFpEF. This study suggests a new endocrine signaling axis that links skeletal muscle health and SIRT3 deficiency to remote CNPY2 regulation in the pulmonary vasculature through myokine LOXL2. Our data also identify skeletal muscle SIRT3, myokine LOXL2, and CNPY2 as potential targets for the treatment of PH-HFpEF.
Collapse
MESH Headings
- Animals
- Sirtuin 3/metabolism
- Sirtuin 3/deficiency
- Sirtuin 3/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/etiology
- Vascular Remodeling
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Mice, Knockout
- Mice
- Humans
- Stroke Volume
- Male
- Rats
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Disease Models, Animal
- Female
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang (Y.B.)
| | - Kentaro Noda
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, PA (K.N.)
| | - Joshua R Huot
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Todd Cook
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Amanda Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yi-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan (Y.-Y.C.)
| | - Dmitry A Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis (D.A.G., E.A.G.)
| | - Elena A Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis (D.A.G., E.A.G.)
| | - Marc A Simon
- Division of Cardiology, University of California, San Francisco (M.A.S.)
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine (Y.Z.), University of Pittsburgh, PA
| | - Daniel E Forman
- Department of Medicine, Divisions of Geriatrics and Cardiology (D.E.F.), University of Pittsburgh, PA
- Geriatric Research, Education, and Clinical Center, VA Pittsburgh Healthcare System, PA (D.E.F.)
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University, Columbus (M.R.)
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, Switzerland (J.A.)
| | - Mark T Gladwin
- Department of Medicine, University of Maryland, Baltimore (M.T.G.)
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
3
|
Trinh D, Al Halabi L, Brar H, Kametani M, Nash JE. The role of SIRT3 in homeostasis and cellular health. Front Cell Neurosci 2024; 18:1434459. [PMID: 39157755 PMCID: PMC11327144 DOI: 10.3389/fncel.2024.1434459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/25/2024] [Indexed: 08/20/2024] Open
Abstract
Mitochondria are responsible for maintaining cellular energy levels, and play a major role in regulating homeostasis, which ensures physiological function from the molecular to whole animal. Sirtuin 3 (SIRT3) is the major protein deacetylase of mitochondria. SIRT3 serves as a nutrient sensor; under conditions of mild metabolic stress, SIRT3 activity is increased. Within the mitochondria, SIRT3 regulates every complex of the electron transport chain, the tricarboxylic acid (TCA) and urea cycles, as well as the mitochondria membrane potential, and other free radical scavengers. This article reviews the role of SIRT3 in regulating homeostasis, and thus physiological function. We discuss the role of SIRT3 in regulating reactive oxygen species (ROS), ATP, immunological function and mitochondria dynamics.
Collapse
Affiliation(s)
- Dennison Trinh
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Lina Al Halabi
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Harsimar Brar
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Marie Kametani
- Department of Biological Sciences, University of Toronto, Toronto, ON, Canada
| | - Joanne E. Nash
- Department of Biological Sciences, University of Toronto Scarborough Graduate Department of Cells Systems Biology, University of Toronto Cross-Appointment with Department of Psychology, University of Toronto Scarborough Scientist – KITE, Toronto, ON, Canada
| |
Collapse
|
4
|
Jheng JR, DesJardin JT, Chen YY, Huot JR, Bai Y, Cook T, Hibbard LM, Rupp JM, Fisher A, Zhang Y, Duarte JD, Desai AA, Machado RF, Simon MA, Lai YC. Plasma Proteomics Identifies B2M as a Regulator of Pulmonary Hypertension in Heart Failure With Preserved Ejection Fraction. Arterioscler Thromb Vasc Biol 2024; 44:1570-1583. [PMID: 38813697 PMCID: PMC11208054 DOI: 10.1161/atvbaha.123.320270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS Plasma proteomics identified high protein abundance levels of B2M (β2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Humans
- Male
- Mice
- Middle Aged
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/blood
- beta 2-Microglobulin/metabolism
- Biomarkers/blood
- Case-Control Studies
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Heart Failure/physiopathology
- Heart Failure/metabolism
- Heart Failure/blood
- Heart Failure/genetics
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/blood
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/metabolism
- Proteomics/methods
- Pulmonary Artery/physiopathology
- Pulmonary Artery/metabolism
- Sirtuin 3/genetics
- Sirtuin 3/metabolism
- Stroke Volume
- Vascular Remodeling
- Ventricular Function, Left
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | | | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, Nankang, Taipei, Taiwan (Y.-Y.C.)
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan (Y.-Y.C.)
| | - Joshua R. Huot
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yang Bai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang (Y.B.)
| | - Todd Cook
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Lainey M. Hibbard
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Jennifer M. Rupp
- Department of Medical and Molecular Genetics (L.M.H., J.M.R.), Indiana University School of Medicine, Indianapolis
| | - Amanda Fisher
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, PA (Y.Z.)
| | - Julio D. Duarte
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville (J.D.D.)
| | - Ankit A. Desai
- Krannert Cardiovascular Research Center (A.A.D.), Indiana University School of Medicine, Indianapolis
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| | - Marc A. Simon
- Division of Cardiology, University of California, San Francisco (J.T.D.J., M.A.S.)
| | - Yen-Chun Lai
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine (J.-R.J., Y.B., T.C., A.F., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
- Department of Anatomy, Cell Biology and Physiology (J.R.H., R.F.M., Y.-C.L.), Indiana University School of Medicine, Indianapolis
| |
Collapse
|
5
|
Mishra S, Welch N, Karthikeyan M, Bellar A, Musich R, Singh SS, Zhang D, Sekar J, Attaway A, Chelluboyina AK, Lorkowski SW, Roychowdhury S, Li L, Willard B, Smith JD, Hoppel C, Vachharajani V, Kumar A, Dasarathy S. Dysregulated cellular redox status during hyperammonemia causes mitochondrial dysfunction and senescence by inhibiting sirtuin-mediated deacetylation. Aging Cell 2023; 22:e13852. [PMID: 37101412 PMCID: PMC10352558 DOI: 10.1111/acel.13852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Perturbed metabolism of ammonia, an endogenous cytotoxin, causes mitochondrial dysfunction, reduced NAD+ /NADH (redox) ratio, and postmitotic senescence. Sirtuins are NAD+ -dependent deacetylases that delay senescence. In multiomics analyses, NAD metabolism and sirtuin pathways are enriched during hyperammonemia. Consistently, NAD+ -dependent Sirtuin3 (Sirt3) expression and deacetylase activity were decreased, and protein acetylation was increased in human and murine skeletal muscle/myotubes. Global acetylomics and subcellular fractions from myotubes showed hyperammonemia-induced hyperacetylation of cellular signaling and mitochondrial proteins. We dissected the mechanisms and consequences of hyperammonemia-induced NAD metabolism by complementary genetic and chemical approaches. Hyperammonemia inhibited electron transport chain components, specifically complex I that oxidizes NADH to NAD+ , that resulted in lower redox ratio. Ammonia also caused mitochondrial oxidative dysfunction, lower mitochondrial NAD+ -sensor Sirt3, protein hyperacetylation, and postmitotic senescence. Mitochondrial-targeted Lactobacillus brevis NADH oxidase (MitoLbNOX), but not NAD+ precursor nicotinamide riboside, reversed ammonia-induced oxidative dysfunction, electron transport chain supercomplex disassembly, lower ATP and NAD+ content, protein hyperacetylation, Sirt3 dysfunction and postmitotic senescence in myotubes. Even though Sirt3 overexpression reversed ammonia-induced hyperacetylation, lower redox status or mitochondrial oxidative dysfunction were not reversed. These data show that acetylation is a consequence of, but is not the mechanism of, lower redox status or oxidative dysfunction during hyperammonemia. Targeting NADH oxidation is a potential approach to reverse and potentially prevent ammonia-induced postmitotic senescence in skeletal muscle. Since dysregulated ammonia metabolism occurs with aging, and NAD+ biosynthesis is reduced in sarcopenia, our studies provide a biochemical basis for cellular senescence and have relevance in multiple tissues.
Collapse
Affiliation(s)
- Saurabh Mishra
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Nicole Welch
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Departments of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| | - Manikandan Karthikeyan
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Annette Bellar
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Ryan Musich
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Shashi Shekhar Singh
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Dongmei Zhang
- Proteomics and Metabolomics coreLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Jinendiran Sekar
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Amy H. Attaway
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Departments of Pulmonary MedicineCleveland ClinicClevelandOhioUSA
| | - Aruna Kumar Chelluboyina
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Shuhui Wang Lorkowski
- Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Sanjoy Roychowdhury
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Ling Li
- Proteomics and Metabolomics coreLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Belinda Willard
- Proteomics and Metabolomics coreLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Jonathan D. Smith
- Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Charles L. Hoppel
- Department of PharmacologyCase Western Reserve University School of MedicineClevelandOhioUSA
| | - Vidula Vachharajani
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Critical Care Medicine, Respiratory Institute, Cleveland ClinicClevelandOhioUSA
| | - Avinash Kumar
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
| | - Srinivasan Dasarathy
- Department of Inflammation and ImmunityLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Departments of Gastroenterology and HepatologyCleveland ClinicClevelandOhioUSA
| |
Collapse
|
6
|
Aghayev M, Arias-Alvarado A, Ilchenko S, Lepp J, Scott I, Chen YR, Zhang GF, Tsai TH, Kasumov T. A high-fat diet increases hepatic mitochondrial turnover through restricted acetylation in a NAFLD mouse model. Am J Physiol Endocrinol Metab 2023; 325:E83-E98. [PMID: 37224468 PMCID: PMC10312330 DOI: 10.1152/ajpendo.00310.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
Lysine acetylation of proteins has emerged as a key posttranslational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. Although protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo. We applied 2H2O-metabolic labeling coupled with immunoaffinity and high-resolution mass spectrometry method to measure the stability of acetylated proteins in mouse liver based on their turnover rates. As a proof-of-concept, we assessed the consequence of high-fat diet (HFD)-induced altered acetylation in protein turnover in LDL receptor-deficient (LDLR-/-) mice susceptible to diet-induced nonalcoholic fatty liver disease (NAFLD). HFD feeding for 12 wk led to steatosis, the early stage of NAFLD. A significant reduction in acetylation of hepatic proteins was observed in NAFLD mice, based on immunoblot analysis and label-free quantification with mass spectrometry. Compared with control mice on a normal diet, NAFLD mice had overall increased turnover rates of hepatic proteins, including mitochondrial metabolic enzymes (0.159 ± 0.079 vs. 0.132 ± 0.068 day-1), suggesting their reduced stability. Also, acetylated proteins had slower turnover rates (increased stability) than native proteins in both groups (0.096 ± 0.056 vs. 0.170 ± 0.059 day-1 in control, and 0.111 ± 0.050 vs. 0.208 ± 0.074 day-1 in NAFLD). Furthermore, association analysis revealed a relationship between the HFD-induced decrease in acetylation and increased turnover rates for hepatic proteins in NAFLD mice. These changes were associated with increased expressions of the hepatic mitochondrial transcriptional factor (TFAM) and complex II subunit without any changes to other OxPhos proteins, suggesting that enhanced mitochondrial biogenesis prevented restricted acetylation-mediated depletion of mitochondrial proteins. We conclude that decreased acetylation of mitochondrial proteins may contribute to adaptive improved hepatic mitochondrial function in the early stages of NAFLD.NEW & NOTEWORTHY This is the first method to quantify acetylome dynamics in vivo. This method revealed acetylation-mediated altered hepatic mitochondrial protein turnover in response to a high-fat diet in a mouse model of NAFLD.
Collapse
Affiliation(s)
- Mirjavid Aghayev
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Andrea Arias-Alvarado
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Sergei Ilchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Josephine Lepp
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States
| | - Yeong-Renn Chen
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Duke Molecular Physiology Institute, Duke University, Durham North Carolina, United States
- Department of Medicine, Duke University, Durham North Carolina, United States
| | - Tsung-Heng Tsai
- Department of Mathematical Sciences, Kent State University, Kent, Ohio, United States
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio, United States
| |
Collapse
|
7
|
Weng SW, Wu JC, Shen FC, Chang YH, Su YJ, Lian WS, Tai MH, Su CH, Chuang JH, Lin TK, Liou CW, Chu TH, Kao YH, Wang FS, Wang PW. Chaperonin counteracts diet-induced non-alcoholic fatty liver disease by aiding sirtuin 3 in the control of fatty acid oxidation. Diabetologia 2023; 66:913-930. [PMID: 36692509 DOI: 10.1007/s00125-023-05869-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/17/2022] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.
Collapse
Affiliation(s)
- Shao-Wen Weng
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jian-Ching Wu
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Feng-Chih Shen
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yen-Hsiang Chang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Jih Su
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
| | - Jiin-Haur Chuang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Pediatric Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsu-Kung Lin
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Wei Liou
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Pei-Wen Wang
- Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Du P, Liu T, Luo P, Li H, Tang W, Zong S, Xiao H. SIRT3/GLUT4 signaling activation by metformin protect against cisplatin-induced ototoxicity in vitro. Arch Toxicol 2023; 97:1147-1162. [PMID: 36800006 DOI: 10.1007/s00204-023-03457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Cisplatin is highly effective for killing tumor cells. However, as one of its side effects, ototoxicity limits the clinical application of cisplatin. The mechanisms of cisplatin-induced ototoxicity have not been fully clarified yet. SIRT3 is a deacetylated protein mainly located in mitochondria, which regulates a variety of physiological processes in cells. The role of SIRT3 in cisplatin-induced hair cell injury has not been founded. In this study, primary cultured cochlear explants exposed to 5 μM cisplatin, as well as OC-1 cells exposed to 10 μM cisplatin, were used to establish models of cisplatin-induced ototoxicity in vitro. We found that when combined with cisplatin, metformin (75 μM) significantly up-regulated the expression of SIRT3 and alleviated cisplatin-induced apoptosis of hair cells. We regulated the expression of SIRT3 to explore the role of SIRT3 in cisplatin-induced auditory hair cell injury. Overexpression of SIRT3 promoted the survival of auditory hair cells and alleviated the apoptosis of auditory hair cells. In contrast, knockdown of SIRT3 impaired the protective effect of metformin and exacerbated cisplatin injury. In addition, we found that the protective effect of SIRT3 may be achieved by regulating GLUT4 translocation and rescuing impaired glucose uptake caused by cisplatin. Our study confirmed that upregulation of SIRT3 may antagonize cisplatin-induced ototoxicity, and provided a new perspective for the study of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Peiyu Du
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianyi Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Luo
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Wuhan, China
| | - Hejie Li
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Tang
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shimin Zong
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Hongjun Xiao
- Department of Otolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Pearson-Smith JN, Fulton R, Huynh CQ, Figueroa AG, Huynh GB, Liang LP, Gano LB, Michel CR, Reisdorph N, Reisdorph R, Fritz KS, Verdin E, Patel M. Neuronal SIRT3 Deletion Predisposes to Female-Specific Alterations in Cellular Metabolism, Memory, and Network Excitability. J Neurosci 2023; 43:1845-1857. [PMID: 36759193 PMCID: PMC10010453 DOI: 10.1523/jneurosci.1259-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondrial dysfunction is an early event in the pathogenesis of neurologic disorders and aging. Sirtuin 3 (SIRT3) regulates mitochondrial function in response to the cellular environment through the reversible deacetylation of proteins involved in metabolism and reactive oxygen species detoxification. As the primary mitochondrial deacetylase, germline, or peripheral tissue-specific deletion of SIRT3 produces mitochondrial hyperacetylation and the accelerated development of age-related diseases. Given the unique metabolic demands of neurons, the role of SIRT3 in the brain is only beginning to emerge. Using mass spectrometry-based acetylomics, high-resolution respirometry, video-EEG, and cognition testing, we report targeted deletion of SIRT3 from select neurons in the cortex and hippocampus produces altered neuronal excitability and metabolic dysfunction in female mice. Targeted deletion of SIRT3 from neuronal helix-loop-helix 1 (NEX)-expressing neurons resulted in mitochondrial hyperacetylation, female-specific superoxide dismutase-2 (SOD2) modification, increased steady-state superoxide levels, metabolic reprogramming, altered neuronal excitability, and working spatial memory deficits. Inducible neuronal deletion of SIRT3 likewise produced female-specific deficits in spatial working memory. Together, the data demonstrate that deletion of SIRT3 from forebrain neurons selectively predisposes female mice to deficits in mitochondrial and cognitive function.SIGNIFICANCE STATEMENT Mitochondrial SIRT3 is an enzyme shown to regulate energy metabolism and antioxidant function, by direct deacetylation of proteins. In this study, we show that neuronal SIRT3 deficiency renders female mice selectively vulnerable to impairment in redox and metabolic function, spatial memory, and neuronal excitability. The observed sex-specific effects on cognition and neuronal excitability in female SIRT3-deficient mice suggest that mitochondrial dysfunction may be one factor underlying comorbid neuronal diseases, such as Alzheimer's disease and epilepsy. Furthermore, the data suggest that SIRT3 dysfunction may predispose females to age-related metabolic and cognitive impairment.
Collapse
Affiliation(s)
- Jennifer N Pearson-Smith
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ruth Fulton
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Christopher Q Huynh
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Anna G Figueroa
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Gia B Huynh
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Li-Ping Liang
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lindsey B Gano
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Cole R Michel
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nichole Reisdorph
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Richard Reisdorph
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristofer S Fritz
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Eric Verdin
- Buck Institute for Aging, Novato, California 94945
| | - Manisha Patel
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
10
|
Selen ES, Rodriguez S, Cavagnini KS, Kim HB, Na CH, Wolfgang MJ. Requirement of hepatic pyruvate carboxylase during fasting, high fat, and ketogenic diet. J Biol Chem 2022; 298:102648. [PMID: 36441025 PMCID: PMC9694104 DOI: 10.1016/j.jbc.2022.102648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pyruvate has two major fates upon entry into mitochondria, the oxidative decarboxylation to acetyl-CoA via the pyruvate decarboxylase complex or the biotin-dependent carboxylation to oxaloacetate via pyruvate carboxylase (Pcx). Here, we have generated mice with a liver-specific KO of pyruvate carboxylase (PcxL-/-) to understand the role of Pcx in hepatic mitochondrial metabolism under disparate physiological states. PcxL-/- mice exhibited a deficit in hepatic gluconeogenesis and enhanced ketogenesis as expected but were able to maintain systemic euglycemia following a 24 h fast. Feeding a high-fat diet to PcxL-/- mice resulted in animals that were resistant to glucose intolerance without affecting body weight. However, we found that PcxL-/- mice fed a ketogenic diet for 1 week became severely hypoglycemic, demonstrating a requirement for hepatic Pcx for long-term glycemia under carbohydrate-limited diets. Additionally, we determined that loss of Pcx was associated with an induction in the abundance of lysine-acetylated proteins in PcxL-/- mice regardless of physiologic state. Furthermore, liver acetyl-proteomics revealed a biased induction in mitochondrial lysine-acetylated proteins. These data show that Pcx is important for maintaining the proper balance of pyruvate metabolism between oxidative and anaplerotic pathways.
Collapse
Affiliation(s)
- Ebru S. Selen
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susana Rodriguez
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyle S. Cavagnini
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han-Byeol Kim
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chan Hyun Na
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J. Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA,For correspondence: Michael J. Wolfgang
| |
Collapse
|
11
|
Sidorova-Darmos E, Fallah MS, Logan R, Lin CY, Eubanks JH. Mitochondrial brain proteome acetylation levels and behavioural responsiveness to amphetamine are altered in mice lacking Sirt3. Front Physiol 2022; 13:948387. [PMID: 36148309 PMCID: PMC9489219 DOI: 10.3389/fphys.2022.948387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Post-translational modification of mitochondrial proteins represents one mechanism by which the functional activity of mitochondria can be regulated. In the brain, these modifications can influence the functional properties of different neural circuitries. Given that the sirtuin family member Sirt3 represents the primary protein deacetylase enzyme in mitochondria, we tested whether brain mitochondrial proteome acetylation would increase in male or female mice lacking Sirt3. Our results confirm that whole brain mitochondrial proteome acetylation levels are indeed elevated in both sexes of Sirt3-KO mice relative to controls. Consistently, we found the mitochondria of mouse embryonic fibroblast (MEF) cells derived from Sirt3-KO mice were smaller in size, and fewer in number than in wild-type MEFs, and that mitochondrial free calcium levels were elevated within the mitochondria of these cells. As protein acetylation can influence mitochondrial function, and changes in mitochondrial function have been linked to alterations in neural circuit function regulating motor activity and anxiety-like behavior, we tested whether Sirt3-deficient mice would display sensitized responsiveness to the stimulant amphetamine. Both male and female Sirt3-KO mice displayed hyper-locomotion and attenuated anxiety-like behavior in response to a dose of amphetamine that was insufficient to promote any behavioural responses in wild-type mice. Collectively, these results confirm that Sirt3 regulates mitochondrial proteome acetylation levels in brain tissue, and that the absence of Sirt3 increases the sensitivity of neural systems to amphetamine-induced behavioural responses.
Collapse
Affiliation(s)
- Elena Sidorova-Darmos
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Merrick S. Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Richard Logan
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
| | - Cheng Yu Lin
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
| | - James H. Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- *Correspondence: James H. Eubanks,
| |
Collapse
|
12
|
Muoio DM, Williams AS, Grimsrud PA. Mitochondrial lysine acylation and cardiometabolic stress: Truth or consequence? CURRENT OPINION IN PHYSIOLOGY 2022; 27:100551. [PMID: 39606008 PMCID: PMC11601992 DOI: 10.1016/j.cophys.2022.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Disruptions in oxidative metabolism are often accompanied by tissue accumulation of catabolic carbon intermediates, including acyl CoA molecules that can react with the epsilon amino group of lysine residues on cellular proteins. In general, acyl-lysine post-translational modifications (PTMs) on mitochondrial proteins correlate negatively with energy homeostasis and are offset by the mitochondrial sirtuins, a prominent family of NAD+-dependent deacylases linked favorably to longevity and metabolic resilience. Whereas studies over the past decade elicited widespread conjecture as to the far-reaching regulatory roles of these PTMs, more recent work has stirred controversy in this field of study. This review draws attention to discrepancies in the science, challenges current dogma, and encourages new perspectives on the physiological relevance of mitochondrial lysine acylation.
Collapse
Affiliation(s)
- Deborah M. Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute
- Departments of Medicine, Duke Molecular Physiology Institute
- Pharmacology and Cancer Biology. Duke Molecular Physiology Institute
| | - Ashley S. Williams
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute
| | - Paul A. Grimsrud
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute
- Departments of Medicine, Duke Molecular Physiology Institute
| |
Collapse
|
13
|
Liver-specific overexpression of SIRT3 enhances oxidative metabolism, but does not impact metabolic defects induced by high fat feeding in mice. Biochem Biophys Res Commun 2022; 607:131-137. [DOI: 10.1016/j.bbrc.2022.03.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
|
14
|
Aggarwal S, Trehanpati N, Nagarajan P, Ramakrishna G. The Clock-NAD + -Sirtuin connection in nonalcoholic fatty liver disease. J Cell Physiol 2022; 237:3164-3180. [PMID: 35616339 DOI: 10.1002/jcp.30772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1-SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock-controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock-NAD+-Sirtuin connection represents a novel "feedback loop" circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder.
Collapse
Affiliation(s)
- Savera Aggarwal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Perumal Nagarajan
- Department of Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
15
|
López-Bellón S, Rodríguez-López S, González-Reyes JA, Burón MI, de Cabo R, Villalba JM. CYB5R3 overexpression preserves skeletal muscle mitochondria and autophagic signaling in aged transgenic mice. GeroScience 2022; 44:2223-2241. [PMID: 35527283 PMCID: PMC9616997 DOI: 10.1007/s11357-022-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/15/2022] [Indexed: 01/18/2023] Open
Abstract
Cytochrome b5 reductase 3 (CYB5R3) overexpression activates respiratory metabolism and exerts prolongevity effects in transgenic mice, mimicking some of the salutary effects of calorie restriction. The aim of our study was to understand how CYB5R3 overexpression targets key pathways that modulate the rate of aging in skeletal muscle, a postmitotic tissue with a greater contribution to resting energy expenditure. Mitochondrial function, autophagy and mitophagy markers were evaluated in mouse hind limb skeletal muscles from young-adult (7 months old) and old (24 months old) males of wild-type and CYB5R3-overexpressing genotypes. Ultrastructure of subsarcolemmal and intermyofibrillar mitochondria was studied by electron microscopy in red gastrocnemius. CYB5R3, which was efficiently overexpressed and targeted to skeletal muscle mitochondria regardless of age, increased the abundance of complexes I, II, and IV in old mice and prevented the age-related decrease of complexes I, III, IV, and V and the mitofusin MFN-2. ATP was significantly decreased by aging, which was prevented by CYB5R3 overexpression. Coenzyme Q and the mitochondrial biogenesis markers TFAM and NRF-1 were also significantly diminished by aging, but CYB5R3 overexpression did not protect against these declines. Both aging and CYB5R3 overexpression upregulated SIRT3 and the mitochondrial fission markers FIS1 and DRP-1, although with different outcomes on mitochondrial ultrastructure: old wild-type mice exhibited mitochondrial fragmentation whereas CYB5R3 overexpression increased mitochondrial size in old transgenic mice concomitant with an improvement of autophagic recycling. Interventions aimed at stimulating CYB5R3 could represent a valuable strategy to counteract the deleterious effects of aging in skeletal muscle.
Collapse
Affiliation(s)
- Sara López-Bellón
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Cordoba, Spain
| | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Cordoba, Spain
| | - José A González-Reyes
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Cordoba, Spain
| | - M Isabel Burón
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Cordoba, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - José M Villalba
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14014, Cordoba, Spain.
| |
Collapse
|
16
|
Gao P, You M, Li L, Zhang Q, Fang X, Wei X, Zhou Q, Zhang H, Wang M, Lu Z, Wang L, Sun F, Liu D, Zheng H, Yan Z, Yang G, Zhu Z. Salt-Induced Hepatic Inflammatory Memory Contributes to Cardiovascular Damage Through Epigenetic Modulation of SIRT3. Circulation 2022; 145:375-391. [PMID: 35100024 DOI: 10.1161/circulationaha.121.055600] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND High salt intake is the leading dietary risk factor for cardiovascular diseases. Although clinical evidence suggests that high salt intake is associated with nonalcoholic fatty liver disease, which is an independent risk factor for cardiovascular diseases, it remains elusive whether salt-induced hepatic damage leads to the development of cardiovascular diseases. METHODS Mice were fed with normal or high-salt diet for 8 weeks to determine the effect of salt loading on liver histological changes and blood pressure, and salt withdrawal and metformin treatment were also conducted on some high-salt diet-fed mice. Adeno-associated virus 8, global knockout, or tissue-specific knockout mice were used to manipulate the expression of some target genes in vivo, including SIRT3 (sirtuin 3), NRF2 (NF-E2-related factor 2), and AMPK (AMP-activated protein kinase). RESULTS Mice fed with a high-salt diet displayed obvious hepatic steatosis and inflammation, accompanied with hypertension and cardiac dysfunction. All these pathological changes persisted after salt withdrawal, displaying a memory phenomenon. Gene expression analysis and phenotypes of SIRT3 knockout mice revealed that reduced expression of SIRT3 was a chief culprit responsible for the persistent inflammation in the liver, and recovering SIRT3 expression in the liver effectively inhibits the sustained hepatic inflammation and cardiovascular damage. Mechanistical studies reveal that high salt increases acetylated histone 3 lysine 27 (H3K27ac) on SIRT3 promoter in hepatocytes, thus inhibiting the binding of NRF2, and results in the sustained inhibition of SIRT3 expression. Treatment with metformin activated AMPK, which inhibited salt-induced hepatic inflammatory memory and cardiovascular damage by lowering the H3K27ac level on SIRT3 promoter, and increased NRF2 binding ability to activate SIRT3 expression. CONCLUSIONS This study demonstrates that SIRT3 inhibition caused by histone modification is the key factor for the persistent hepatic steatosis and inflammation that contributes to cardiovascular damage under high salt loading. Avoidance of excessive salt intake and active intervention of epigenetic modification may help to stave off the persistent inflammatory status that underlies high-salt-induced cardiovascular damage in clinical practice.
Collapse
Affiliation(s)
- Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Mei You
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.)
| | - Xia Fang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital (H.Z.), Army Medical University, Chongqing China
| | - Xiao Wei
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Qing Zhou
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Hexuan Zhang
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital (H.Z.), Army Medical University, Chongqing China
| | - Miao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.)
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Hongting Zheng
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, China (Q. Zhang, X.F., M.W., G.Y.)
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Chongqing Institute of Hypertension (P.G., M.Y., L.L., X.W., Q. Zhou, H.Z., Z.L., L.W., F.S., D.L., Z.Y., Z.Z.), Army Medical University, Chongqing China
| |
Collapse
|
17
|
Duan Q, Ding J, Li F, Liu X, Zhao Y, Yu H, Liu Y, Zhang L. Sirtuin 5 is Dispensable for CD8 + T Cell Effector and Memory Differentiation. Front Cell Dev Biol 2021; 9:761193. [PMID: 34966740 PMCID: PMC8710726 DOI: 10.3389/fcell.2021.761193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/05/2022] Open
Abstract
CD8+ T cell effector and memory differentiation is tightly controlled at multiple levels including transcriptional, metabolic, and epigenetic regulation. Sirtuin 5 (SIRT5) is a protein deacetylase mainly located at mitochondria, but it remains unclear whether SIRT5 plays key roles in regulating CD8+ T cell effector or memory formation. Herein, with adoptive transfer of Sirt5+/+ or Sirt5−/− OT-1 cells and acute Listeria monocytogenes infection model, we demonstrate that SIRT5 deficiency does not affect CD8+ T cell effector function and that SIRT5 is not required for CD8+ T cell memory formation. Moreover, the recall response of SIRT5 deficient memory CD8+ T cells is comparable with Sirt5+/+ memory CD8+ T cells. Together, these observations suggest that SIRT5 is dispensable for the effector function and memory differentiation of CD8+ T cells.
Collapse
Affiliation(s)
- Qianqian Duan
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Jiying Ding
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangfang Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Institute of Biomedical Electromagnetic Engineering, Shenyang University of Technology, Shenyang, China
| | - Xiaowei Liu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Yunan Zhao
- Institute of Biomedical Electromagnetic Engineering, Shenyang University of Technology, Shenyang, China
| | - Hongxiu Yu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
18
|
Perturbed Brain Glucose Metabolism Caused by Absent SIRT3 Activity. Cells 2021; 10:cells10092348. [PMID: 34571997 PMCID: PMC8469836 DOI: 10.3390/cells10092348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acetylation is a post-translational modification that regulates the activity of enzymes fundamentally involved in cellular and mitochondrial bioenergetic metabolism. NAD+ dependent deacetylase sirtuin 3 (SIRT3) is localized to mitochondria where it plays a key role in regulating acetylation of TCA cycle enzymes and the mitochondrial respiratory complexes. Although the SIRT3 target proteins in mitochondria have been identified, the effect of SIRT3 activity on mitochondrial glucose metabolism in the brain remains elusive. The impact of abolished SIRT3 activity on glucose metabolism was determined in SIRT3 knockout (KO) and wild type (WT) mice injected with [1,6-13C]glucose using ex vivo 13C-NMR spectroscopy. The 1H-NMR spectra and amino acid analysis showed no differences in the concentration of lactate, glutamate, alanine, succinate, or aspartate between SIRT3 KO and WT mice. However, glutamine, total creatine (Cr), and GABA were lower in SIRT3 KO brain. Incorporation of label from [1,6-13C]glucose metabolism into lactate or alanine was not affected in SIRT3 KO brain. However, the incorporation of the label into all isotopomers of glutamate, glutamine, GABA and aspartate was lower in SIRT3 KO brain, reflecting decreased activity of mitochondrial and TCA cycle metabolism in both neurons and astrocytes. This is most likely due to hyperacetylation of mitochondrial enzymes due to suppressed SIRT3 activity in the brain of SIRT3 KO mice. Thus, the absence of Sirt3 results in impaired mitochondrial oxidative energy metabolism and neurotransmitter synthesis in the brain. Since the SIRT3 activity is NAD+ dependent, these results might parallel changes in glucose metabolism under pathologic reduction in mitochondrial NAD+ pools.
Collapse
|
19
|
Shen H, Holliday M, Sheikh-Hamad D, Li Q, Tong Q, Hamad CD, Pan JS. Sirtuin-3 mediates sex differences in kidney ischemia-reperfusion injury. Transl Res 2021; 235:15-31. [PMID: 33789208 DOI: 10.1016/j.trsl.2021.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/26/2023]
Abstract
Studies suggest that biological sex influences susceptibility to kidney diseases with males demonstrating greater risk for developing ischemic acute kidney injury (AKI). Sex-related differences in mitochondrial function and homeostasis exist, likely contributing to sexual dimorphism in kidney injury, but the mechanisms are not well characterized. Our observations reveal lower baseline expression of Sirtuin-3 (Sirt3, a major mitochondrial acetyltransferase) in the kidneys of male mice versus females. We tested the hypothesis that differential expression of kidney Sirt3 may mediate sexual dimorphism in AKI using a bilateral kidney ischemia-reperfusion injury (IRI) model and three transgenic mouse models: (1) mice with global transgenic overexpression of Sirt3; (2) mice with inducible, kidney tubule-specific Sirt3 knockdown (iKD); and (3) mice with global Sirt3 knockout. Low mitochondrial Sirt3 (mtSirt3) in males versus females is associated with development of kidney tubular epithelium vacuoles, increased mitochondrial ROS and susceptibility to IRI. Transgenic overexpression of Sirt3 in males protects against kidney IRI and development of tubular epithelium vacuoles. In both sexes, mice with partial kidney tubular epithelium-specific Sirt3 knockdown display intermediate - while global Sirt3 knockout mice display the highest susceptibility to IRI. Female Sirt3 iKD mice demonstrate decreased survival and kidney function after IRI indistinguishable from control males, abolishing the protective effects observed in females. Mechanistically, observed differences in kidney mtSirt3 are sex hormone-dependent; estradiol increases - while testosterone decreases mtSirt3 protein. Our results demonstrate that Sirt3 is an important contributor to the observed sex-related differences in IRI susceptibility, and a potential therapeutic target in the clinical management of AKI.
Collapse
Affiliation(s)
- Huiyun Shen
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Michael Holliday
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas; Renal Section and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - David Sheikh-Hamad
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas; Renal Section and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - Qingtian Li
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Qiang Tong
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Christopher David Hamad
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas
| | - Jenny S Pan
- Department of Medicine/Division of Nephrology/Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, Texas; Renal Section and Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas.
| |
Collapse
|
20
|
Suliman H, Ma Q, Zhang Z, Ren J, Morris BT, Crowley SD, Ulloa L, Privratsky JR. Annexin A1 Tripeptide Mimetic Increases Sirtuin-3 and Augments Mitochondrial Function to Limit Ischemic Kidney Injury. Front Physiol 2021; 12:683098. [PMID: 34276404 PMCID: PMC8281307 DOI: 10.3389/fphys.2021.683098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Acute kidney injury (AKI) is one of the most common organ failures following surgery. We have developed a tripeptide mimetic (ANXA1sp) of the parent annexin A1 molecule that shows promise as an organ protectant limiting cellular stress; however, its potential as a kidney protective agent remains unexplored, and its mechanism of action is poorly understood. Our hypothesis was that ANXA1sp would limit kidney injury following surgical ischemic kidney injury. Methods: In a blinded fashion, wildtype mice were assigned to receive vehicle control or ANXA1sp one hour prior to and one hour after kidney vascular clamping. Our primary outcomes were markers of kidney injury and function as measured by serum creatinine and histologic injury scoring of kidney tissue sections. Immunofluorescence microscopy, real-time PCR, and Western blot were used to assess cell death, oxidative stress, and mitochondrial biomarkers. An in vitro model of oxygen-glucose deprivation in immortalized kidney tubule cells was used. Results: ANXA1sp given prior to and after ischemic kidney injury abrogated ischemic kidney injury. ANXA1sp limited cell death both in vivo and in vitro and abrogated oxidative stress following ischemia. ANXA1sp significantly increased the expression of markers associated with protective mitophagy and limited the expression of markers associated with detrimental mitochondrial fission. ANXA1sp upregulated the expression of the mitochondrial protectant sirtuin-3 (SIRT3) in the mitochondria of kidney tubular cells. Silencing of SIRT3 reversed ANXA1sp-mediated protection against hypoxic cell death. Conclusions: ANXA1sp limits kidney injury, upregulates SIRT3, and preserves mitochondrial integrity following ischemic kidney injury. ANXA1sp holds considerable promise as a perioperative kidney protectant prior to ischemia inducing surgery and kidney transplantation.
Collapse
Affiliation(s)
- Hagir Suliman
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC, United States
| | - Qing Ma
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC, United States
| | - Zhiquan Zhang
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC, United States
| | - Jiafa Ren
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Benjamin T. Morris
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Durham VA Medical Center, Durham, NC, United States
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology. Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
21
|
Qiu L, Yi S, Yu T, Hao Y. Sirt3 Protects Against Thoracic Aortic Dissection Formation by Reducing Reactive Oxygen Species, Vascular Inflammation, and Apoptosis of Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:675647. [PMID: 34095262 PMCID: PMC8176563 DOI: 10.3389/fcvm.2021.675647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Sirtuin3 (Sirt3) is a histone deacetylase involved in the regulation of many cellular processes. Sirt3 deficiency is known to increase oxidative stress. Reactive oxygen species (ROS) promote degradation of the extracellular matrix and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by Sirt3 overexpression could have therapeutic potential for limiting thoracic aortic dissection (TAD) development. We hypothesized that Sirt3 deficiency could increase the risk for TAD by decreasing ROS elimination and that Sirt3 overexpression (Sirt3OE) could provide an alternative option for TAD treatment. Mice with TAD had significantly lower Sirt3 expression than normal subjects. Sirt3 KO mice exhibit significantly increased TAD incidence rate and increased aortic diameters. Moreover, Sirt3 overexpression reduced Ang II-induced ROS production, NF-kB activation, and apoptosis in human aortic smooth muscle cells (HASMCs). Sirt3 overexpression attenuated aneurysm formation and decreased aortic expansion. In conclusion, our data showed that Sirt3 deficiency increases susceptibility to TAD formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation.
Collapse
Affiliation(s)
- Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shaolei Yi
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Dall M, Hassing AS, Treebak JT. NAD + and NAFLD - caution, causality and careful optimism. J Physiol 2021; 600:1135-1154. [PMID: 33932956 DOI: 10.1113/jp280908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide, and new treatments are sorely needed. Nicotinamide adenine dinucleotide (NAD+ ) has been proposed as a potential target to prevent and reverse NAFLD. NAD+ is an important redox factor for energy metabolism and is used as a substrate by a range of enzymes, including sirtuins (SIRT), which regulates histone acetylation, transcription factor activity and mitochondrial function. NAD+ is also a precursor for reduced nicotinamide adenine dinucleotide phosphate (NADPH), which is an important component of the antioxidant defense system. NAD+ precursors such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) are available as over-the-counter dietary supplements, and oral supplementation with these precursors increases hepatic NAD+ levels and prevents hepatic lipid accumulation in pre-clinical models of NAFLD. NAD+ precursors have also been found to improve hepatic mitochondrial function and decrease oxidative stress in pre-clinical NAFLD models. NAD+ repletion also prevents NAFLD progression to non-alcoholic steatohepatitis (NASH), as NAD+ precursor supplementation is associated with decreased hepatic stellate cell activation, and decreased fibrosis. However, initial clinical trials have only shown modest effects when NAD+ precursors were administrated to people with obesity. We review the available pre-clinical investigations of NAD+ supplementation for targeting NAFLD, and discuss how data from the first clinical trials can be reconciled with observations from preclinical research.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Mukherjee S, Mo J, Paolella LM, Perry CE, Toth J, Hugo MM, Chu Q, Tong Q, Chellappa K, Baur JA. SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside. JCI Insight 2021; 6:147193. [PMID: 33690226 PMCID: PMC8119200 DOI: 10.1172/jci.insight.147193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration is critical to survival after traumatic injuries, exposure to hepatotoxins, or surgical interventions, yet the underlying signaling and metabolic pathways remain unclear. In this study, we show that hepatocyte-specific loss of the mitochondrial deacetylase SIRT3 drastically impairs regeneration and worsens mitochondrial function after partial hepatectomy. Sirtuins, including SIRT3, require NAD as a cosubstrate. We previously showed that the NAD precursor nicotinamide riboside (NR) promotes liver regeneration, but whether this involves sirtuins has not been tested. Here, we show that despite their NAD dependence and critical roles in regeneration, neither SIRT3 nor its nuclear counterpart SIRT1 is required for NR to enhance liver regeneration. NR improves mitochondrial respiration in regenerating WT or mutant livers and rapidly increases oxygen consumption and glucose output in cultured hepatocytes. Our data support a direct enhancement of mitochondrial redox metabolism as the mechanism mediating improved liver regeneration after NAD supplementation and exclude signaling via SIRT1 and SIRT3. Therefore, we provide the first evidence to our knowledge for an essential role for a mitochondrial sirtuin during liver regeneration and insight into the beneficial effects of NR.
Collapse
Affiliation(s)
- Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James Mo
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lauren M. Paolella
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caroline E. Perry
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jade Toth
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mindy M. Hugo
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qingwei Chu
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiang Tong
- Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Fu S, Yu M, Tan Y, Liu D. Role of histone deacetylase on nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:353-361. [PMID: 33213187 DOI: 10.1080/17474124.2021.1854089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a group of diseases related to metabolic abnormalities, which severely impairs the life and health of patients, and brings great pressure to the society and medical resources. Currently, there is no specific treatment. Histone deacetylases (HDACs) have recently been reported to be involved in the pathogenesis of NAFLD and are considered as new targets for the treatment of NAFLD.Area covered: In this review, we summarized the role of HDACs in the pathogenesis of NAFLD and proposed possible therapeutic targets in order to provide new strategies for the treatment of NAFLD.Expert commentary: HDACs and related signal pathways are widely involved in the pathogenesis of NAFLD and have the potential to become therapeutic targets. However, based on current research alone, HDACs cannot be practical applied to the treatment of NAFLD. Therefore, more research on the pathogenesis of NAFLD and the mechanism of HDACs is what we need most now.
Collapse
Affiliation(s)
- Shifeng Fu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Meihong Yu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Yuyong Tan
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Dengliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| |
Collapse
|
25
|
Quiñones M, Hernández-Bautista R, Beiroa D, Heras V, Torres-Leal FL, Lam BYH, Senra A, Fernø J, Gómez-Valadés AG, Schwaninger M, Prevot V, Yeo G, Claret M, López M, Diéguez C, Al-Massadi O, Nogueiras R. Sirt3 in POMC neurons controls energy balance in a sex- and diet-dependent manner. Redox Biol 2021; 41:101945. [PMID: 33744652 PMCID: PMC8005845 DOI: 10.1016/j.redox.2021.101945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuin homologs of the yeast Sir2 gene that has emerged as an important player in the regulation of energy metabolism in peripheral tissues. However, its role in the hypothalamus has not been explored. Herein, we show that the genetic inhibition of SIRT3 in the hypothalamic arcuate nucleus (ARC) induced a negative energy balance and improvement of several metabolic parameters. These effects are specific for POMC neurons, because ablation of SIRT3 in POMC, but not in AgRP neurons, decreased body weight and adiposity, increased energy expenditure and brown adipose tissue (BAT) activity, and induced browning in white adipose tissue (WAT). Notably, the depletion of SIRT3 in POMC neurons caused these effects in male mice fed a chow diet but failed to affect energy balance in males fed a high fat diet and females under both type of diets. Overall, we provide the first evidence pointing for a key role of SIRT3 in POMC neurons in the regulation of energy balance.
Collapse
Affiliation(s)
- Mar Quiñones
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| | - René Hernández-Bautista
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Violeta Heras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Francisco L Torres-Leal
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; Metabolic Diseases, Exercise and Nutrition (DOMEN) Research Group, Federal University of Piauí, Teresina, Brazil
| | - Brian Y H Lam
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Alicia García Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, European Genomic Institute for Diabetes (EGID), F-59000, Lille, France
| | - Giles Yeo
- MRC Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036, Barcelona, Spain; School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Omar Al-Massadi
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana S/n, 15706, Santiago de Compostela, Spain.
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain.
| |
Collapse
|
26
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
27
|
Sirtuin 3 Downregulation in Mycobacterium tuberculosis-Infected Macrophages Reprograms Mitochondrial Metabolism and Promotes Cell Death. mBio 2021; 12:mBio.03140-20. [PMID: 33531400 PMCID: PMC7858060 DOI: 10.1128/mbio.03140-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis, the disease caused by the bacterium M. tuberculosis, remains one of the top 10 causes of death worldwide. Macrophages, the first cells to encounter M. tuberculosis and critical for defense against infection, are hijacked by M. tuberculosis as a protected growth niche. M. tuberculosis-infected macrophages undergo metabolic reprogramming where key mitochondrial pathways are modulated, but the mechanisms driving this metabolic shift is unknown. Mycobacterium tuberculosis induces metabolic reprogramming in macrophages like the Warburg effect. This enhances antimicrobial performance at the expense of increased inflammation, which may promote a pathogen-permissive host environment. Since the NAD+-dependent protein deacetylase Sirtuin 3 (SIRT3) is an important regulator of mitochondrial metabolism and cellular redox homeostasis, we hypothesized that SIRT3 modulation mediates M. tuberculosis-induced metabolic reprogramming. Infection of immortalized and primary murine macrophages resulted in reduced levels of SIRT3 mRNA and protein and perturbation of SIRT3-regulated enzymes in the tricarboxylic acid cycle, electron transport chain, and glycolytic pathway. These changes were associated with increased reactive oxygen species and reduced antioxidant scavenging, thereby triggering mitochondrial stress and macrophage cell death. Relevance to tuberculosis disease in vivo was indicated by greater bacterial burden and immune pathology in M. tuberculosis-infected Sirt3−/− mice. CD11b+ lung leukocytes isolated from infected Sirt3−/− mice showed decreased levels of enzymes involved in central mitochondrial metabolic pathways, along with increased reactive oxygen species. Bacterial burden was also greater in lungs of LysMcreSirt3L2/L2 mice, demonstrating the importance of macrophage-specific SIRT3 after infection. These results support the model of SIRT3 as a major upstream regulatory factor, leading to metabolic reprogramming in macrophages by M. tuberculosis.
Collapse
|
28
|
Ming X, Chung ACK, Mao D, Cao H, Fan B, Wong WKK, Ho CC, Lee HM, Schoonjans K, Auwerx J, Rutter GA, Chan JCN, Tian XY, Kong APS. Pancreatic Sirtuin 3 Deficiency Promotes Hepatic Steatosis by Enhancing 5-Hydroxytryptamine Synthesis in Mice With Diet-Induced Obesity. Diabetes 2021; 70:119-131. [PMID: 33087457 DOI: 10.2337/db20-0339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022]
Abstract
Sirtuin 3 (SIRT3) is a protein deacetylase regulating β-cell function through inhibiting oxidative stress in obese and diabetic mice, but the detailed mechanism and potential effect of β-cell-specific SIRT3 on metabolic homeostasis, and its potential effect on other metabolic organs, are unknown. We found that glucose tolerance and glucose-stimulated insulin secretion were impaired in high-fat diet (HFD)-fed β-cell-selective Sirt3 knockout (Sirt3 f/f;Cre/+) mice. In addition, Sirt3 f/f;Cre/+ mice had more severe hepatic steatosis than Sirt3 f/f mice upon HFD feeding. RNA sequencing of islets suggested that Sirt3 deficiency overactivated 5-hydroxytryptamine (5-HT) synthesis as evidenced by upregulation of tryptophan hydroxylase 1 (TPH1). 5-HT concentration was increased in both islets and serum of Sirt3 f/f;Cre/+ mice. 5-HT also facilitated the effect of palmitate to increase lipid deposition. Treatment with TPH1 inhibitor ameliorated hepatic steatosis and reduced weight gain in HFD-fed Sirt3 f/f;Cre/+ mice. These data suggested that under HFD feeding, SIRT3 deficiency in β-cells not only regulates insulin secretion but also modulates hepatic lipid metabolism via the release of 5-HT.
Collapse
Affiliation(s)
- Xing Ming
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Arthur C K Chung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dandan Mao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyi Cao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Willy K K Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chin Chung Ho
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kristina Schoonjans
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Imperial College of London, London, U.K
- Lee Kong Chian School of Medicine, Nan Yang Technological University, Singapore
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Yu Tian
- School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
29
|
Ma O, Le T, Talbott G, HoangThao Nguyen T, Ha D, Ho L. Sirt3 regulates adipogenesis and adipokine secretion via its enzymatic activity. Pharmacol Res Perspect 2020; 8:e00670. [PMID: 33191653 PMCID: PMC7667394 DOI: 10.1002/prp2.670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
The purpose of this research was to identify if Sirt3 plays a role in marrow adipogenesis and adipokines secretion, especially adiponectin using bone marrow-derived stroma (ST2) cell model. Sirt3 overexpression leads to a significant increase in adipogenesis compared to controls. The induction of adipogenesis by Sirt3 is associated with increased gene expression of adipocyte markers as well as adiponectin/adipokines. In sharp contrast, the inhibition of Sirt3 exhibited significantly decreased adipogenesis, adipocyte markers, and adiponectin/adipokines compared to the controls. Interestingly, perilipin 1 (Plin 1) expression was decreased in Sirt3 induction but increased in Sirt3 inhibition. One hundred and fifteen mitochondrial acetylated peptides from 67 mitochondrial proteins had lower levels of acetylation in adipocytes induced by Sirt3 overexpression (Sirt3OE) compared to the control. Of the 67 proteins less enriched in acetylation, 22 acetylated proteins were decreased by more than twofold. These proteins are considered potential Sirt3 substrates in adipogenesis. In conclusion, Sirt3 has a novel, important role in modulating adipogenesis and adiponectin/adipokine expression. The connection axis among Sirt3-adipogenesis-adipokines was linked to its substrates by mass spectrometry analysis. These findings contribute to the efforts of revealing Sirt3 functions and Sirt3 usage as a potential target for treatment of metabolic homeostasis and diseases including type 2 diabetes.
Collapse
Affiliation(s)
- Oanh Ma
- California Northstate University College of PharmacyElk GroveCAUSA
| | - Truc Le
- California Northstate University College of PharmacyElk GroveCAUSA
| | - George Talbott
- California Northstate University College of PharmacyElk GroveCAUSA
| | | | - Dorothy Ha
- California Northstate University College of PharmacyElk GroveCAUSA
| | - Linh Ho
- California Northstate University College of PharmacyElk GroveCAUSA
| |
Collapse
|
30
|
Davidson MT, Grimsrud PA, Lai L, Draper JA, Fisher-Wellman KH, Narowski TM, Abraham DM, Koves TR, Kelly DP, Muoio DM. Extreme Acetylation of the Cardiac Mitochondrial Proteome Does Not Promote Heart Failure. Circ Res 2020; 127:1094-1108. [PMID: 32660330 PMCID: PMC9161399 DOI: 10.1161/circresaha.120.317293] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Circumstantial evidence links the development of heart failure to posttranslational modifications of mitochondrial proteins, including lysine acetylation (Kac). Nonetheless, direct evidence that Kac compromises mitochondrial performance remains sparse. OBJECTIVE This study sought to explore the premise that mitochondrial Kac contributes to heart failure by disrupting oxidative metabolism. METHODS AND RESULTS A DKO (dual knockout) mouse line with deficiencies in CrAT (carnitine acetyltransferase) and Sirt3 (sirtuin 3)-enzymes that oppose Kac by buffering the acetyl group pool and catalyzing lysine deacetylation, respectively-was developed to model extreme mitochondrial Kac in cardiac muscle, as confirmed by quantitative acetyl-proteomics. The resulting impact on mitochondrial bioenergetics was evaluated using a respiratory diagnostics platform that permits comprehensive assessment of mitochondrial function and energy transduction. Susceptibility of DKO mice to heart failure was investigated using transaortic constriction as a model of cardiac pressure overload. The mitochondrial acetyl-lysine landscape of DKO hearts was elevated well beyond that observed in response to pressure overload or Sirt3 deficiency alone. Relative changes in the abundance of specific acetylated lysine peptides measured in DKO versus Sirt3 KO hearts were strongly correlated. A proteomics comparison across multiple settings of hyperacetylation revealed ≈86% overlap between the populations of Kac peptides affected by the DKO manipulation as compared with experimental heart failure. Despite the severity of cardiac Kac in DKO mice relative to other conditions, deep phenotyping of mitochondrial function revealed a surprisingly normal bioenergetics profile. Thus, of the >120 mitochondrial energy fluxes evaluated, including substrate-specific dehydrogenase activities, respiratory responses, redox charge, mitochondrial membrane potential, and electron leak, we found minimal evidence of oxidative insufficiencies. Similarly, DKO hearts were not more vulnerable to dysfunction caused by transaortic constriction-induced pressure overload. CONCLUSIONS The findings challenge the premise that hyperacetylation per se threatens metabolic resilience in the myocardium by causing broad-ranging disruption to mitochondrial oxidative machinery.
Collapse
Affiliation(s)
- Michael T. Davidson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology
| | - Paul A. Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Ling Lai
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, 19104, USA
| | - James A. Draper
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Kelsey H. Fisher-Wellman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Tara M. Narowski
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dennis M. Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core
| | - Timothy R. Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Daniel P. Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, PA, 19104, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology
- Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
31
|
Zhou ZD, Tan EK. Oxidized nicotinamide adenine dinucleotide-dependent mitochondrial deacetylase sirtuin-3 as a potential therapeutic target of Parkinson's disease. Ageing Res Rev 2020; 62:101107. [PMID: 32535274 DOI: 10.1016/j.arr.2020.101107] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial impairment is associated with progressive dopamine (DA) neuron degeneration in Parkinson's disease (PD). Recent findings highlight that Sirtuin-3 (SIRT3), a mitochondrial protein, is an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase and a key modulator in maintaining integrity and functions of mitochondria. SIRT3 plays vital roles in regulation of mitochondrial functions, including mitochondrial ATP generation and energy metabolism, anti-oxidant defense, and cell death and proliferation. SIRT3 can deacetylate the transcriptional factors and crosstalk with different signaling pathways to cooperatively modulate mitochondrial functions and regulate defensive mitochondrial quality control (QC) systems. Down-regulated NAD+ level and decreased SIRT3 activity are related to aging process and has been pathologically linked to PD pathogenesis. Further, SIRT3 can bind and deacetylate PTEN-induced kinase 1 (PINK1) and PD protein 2 E3 ubiquitin protein ligase (Parkin) to facilitate mitophagy. Leucine Rich Repeat Kinase 2 (LRRK2)-G2019S mutation in PD is linked to SIRT3 impairment. Furthermore, SIRT3 is inversely associated with α-synuclein aggregation and DA neuron degeneration in PD. SIRT3 chemical activators and NAD+ precursors can up-regulate SIRT3 activity to protect against DA neuron degeneration in PD models. Taken together, SIRT3 is a promising PD therapeutic target and studies of SIRT3 functional modulators with neuroprotective capability will be of clinical interest.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| | - Eng King Tan
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
32
|
Tian H, Liu S, Ren J, Lee JKW, Wang R, Chen P. Role of Histone Deacetylases in Skeletal Muscle Physiology and Systemic Energy Homeostasis: Implications for Metabolic Diseases and Therapy. Front Physiol 2020; 11:949. [PMID: 32848876 PMCID: PMC7431662 DOI: 10.3389/fphys.2020.00949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is the largest metabolic organ in the human body and is able to rapidly adapt to drastic changes during exercise. Histone acetyltransferases (HATs) and histone deacetylases (HDACs), which target histone and non-histone proteins, are two major enzyme families that control the biological process of histone acetylation and deacetylation. Balance between these two enzymes serves as an essential element for gene expression and metabolic and physiological function. Genetic KO/TG murine models reveal that HDACs possess pivotal roles in maintaining skeletal muscles' metabolic homeostasis, regulating skeletal muscles motor adaptation and exercise capacity. HDACs may be involved in mitochondrial remodeling, insulin sensitivity regulation, turn on/off of metabolic fuel switching and orchestrating physiological homeostasis of skeletal muscles from the process of myogenesis. Moreover, many myogenic factors and metabolic factors are modulated by HDACs. HDACs are considered as therapeutic targets in clinical research for treatment of cancer, inflammation, and neurological and metabolic-related diseases. This review will focus on physiological function of HDACs in skeletal muscles and provide new ideas for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Haili Tian
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Sujuan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Jason Kai Wei Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Global Asia Institute, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
33
|
Wang HN, Li JL, Xu T, Yao HQ, Chen GH, Hu J. Effects of Sirt3‑autophagy and resveratrol activation on myocardial hypertrophy and energy metabolism. Mol Med Rep 2020; 22:1342-1350. [PMID: 32468001 PMCID: PMC7339626 DOI: 10.3892/mmr.2020.11195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/10/2018] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to examine the role of sirtuin 3 (Sirt3)‑autophagy in regulating myocardial energy metabolism and inhibiting myocardial hypertrophy in angiotensin (Ang) II‑induced myocardial cell hypertrophy. The primary cultured myocardial cells of neonatal Sprague Dawley rats were used to construct a myocardial hypertrophy model induced with Ang II. Following the activation of Sirt3 by resveratrol (Res), Sirt3 was silenced using small interfering (si)RNA‑Sirt3, and the morphology of the myocardial cells was observed under an optical microscope. Reverse transcription‑polymerase chain reaction was used to detect the mRNA expression of the following myocardial hypertrophy markers; atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), Sirt3, medium‑chain acyl‑CoA dehydrogenase (MCAD) and pyruvate kinase (PK). Western blot analysis was used to detect the protein expression of Sirt3, light chain 3 (LC3) and Beclin1. Ang II may inhibit the protein expression of Sirt3, LC3 and Beclin1. Res, an agonist of Sirt3, may promote the protein expression of Sirt3, LC3 and Beclin1. Res inhibited the mRNA expression of ANP and BNP, and reversed the Ang II‑induced myocardial cell hypertrophy. The addition of siRNA‑Sirt3 decreased the protein expression of Sirt3, LC3 and Beclin1, increased the mRNA expression of ANP and BNP, and weakened the inhibitory effect of Res on myocardial cell hypertrophy. Res promoted the mRNA expression of MCAD, inhibited the mRNA expression of PK, and reversed the influence of Ang II on myocardial energy metabolism. siRNA‑Sirt3 intervention significantly decreased the effect of Res in eliminating abnormal myocardial energy metabolism. In conclusion, Sirt3 may inhibit Ang II‑induced myocardial hypertrophy and reverse the Ang II‑caused abnormal myocardial energy metabolism through activation of autophagy.
Collapse
Affiliation(s)
- Hai-Ning Wang
- The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Hai-Ning Wang, The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, 57 Changping Road, Shantou, Guangdong 515041, P. R. China, E-mail:
| | - Ji-Lin Li
- The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
| | - Tan Xu
- The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
| | - Huai-Qi Yao
- The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
| | - Gui-Hua Chen
- The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
| | - Jing Hu
- The First Affiliated Hospital of Shantou University Medical College Cardiac Care Unit, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
34
|
Sirtuin 3, Endothelial Metabolic Reprogramming, and Heart Failure With Preserved Ejection Fraction. J Cardiovasc Pharmacol 2020; 74:315-323. [PMID: 31425381 DOI: 10.1097/fjc.0000000000000719] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The incidences of heart failure with preserved ejection fraction (HFpEF) are increased in aged populations as well as diabetes and hypertension. Coronary microvascular dysfunction has contributed to the development of HFpEF. Endothelial cells (ECs) depend on glycolysis rather than oxidative phosphorylation for generating adenosine triphosphate to maintain vascular homeostasis. Glycolytic metabolism has a critical role in the process of angiogenesis, because ECs rely on the energy produced predominantly from glycolysis for migration and proliferation. Sirtuin 3 (SIRT3) is found predominantly in mitochondria and its expression declines progressively with aging, diabetes, obesity, and hypertension. Emerging evidence indicates that endothelial SIRT3 regulates a metabolic switch between glycolysis and mitochondrial respiration. SIRT3 deficiency in EC resulted in a significant decrease in glycolysis, whereas, it exhibited higher mitochondrial respiration and more prominent production of reactive oxygen species. SIRT3 deficiency also displayed striking increases in acetylation of p53, EC apoptosis, and senescence. Impairment of SIRT3-mediated EC metabolism may lead to a disruption of EC/pericyte/cardiomyocyte communications and coronary microvascular rarefaction, which promotes cardiomyocyte hypoxia, Titin-based cardiomyocyte stiffness, and myocardial fibrosis, thus leading to a diastolic dysfunction and HFpEF. This review summarizes current knowledge of SIRT3 in EC metabolic reprograming, EC/pericyte interactions, coronary microvascular dysfunction, and HFpEF.
Collapse
|
35
|
Disruption of Acetyl-Lysine Turnover in Muscle Mitochondria Promotes Insulin Resistance and Redox Stress without Overt Respiratory Dysfunction. Cell Metab 2020; 31:131-147.e11. [PMID: 31813822 PMCID: PMC6952241 DOI: 10.1016/j.cmet.2019.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/30/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022]
Abstract
This study sought to examine the functional significance of mitochondrial protein acetylation using a double knockout (DKO) mouse model harboring muscle-specific deficits in acetyl-CoA buffering and lysine deacetylation, due to genetic ablation of carnitine acetyltransferase and Sirtuin 3, respectively. DKO mice are highly susceptible to extreme hyperacetylation of the mitochondrial proteome and develop a more severe form of diet-induced insulin resistance than either single KO mouse line. However, the functional phenotype of hyperacetylated DKO mitochondria is largely normal. Of the >120 measures of respiratory function assayed, the most consistently observed traits of a markedly heightened acetyl-lysine landscape are enhanced oxygen flux in the context of fatty acid fuel and elevated rates of electron leak. In sum, the findings challenge the notion that lysine acetylation causes broad-ranging damage to mitochondrial quality and performance and raise the possibility that acetyl-lysine turnover, rather than acetyl-lysine stoichiometry, modulates redox balance and carbon flux.
Collapse
|
36
|
Gomes P, Viana SD, Nunes S, Rolo AP, Palmeira CM, Reis F. The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. Ageing Res Rev 2020; 57:100983. [PMID: 31740222 DOI: 10.1016/j.arr.2019.100983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Aging, the most important risk factor for many of the chronic diseases affecting Western society, is associated with a decline in mitochondrial function and dynamics. Sirtuin 3 (SIRT3) is a mitochondrial deacetylase that has emerged as a key regulator of fundamental processes which are frequently dysregulated in aging and related disorders. This review highlights recent advances and controversies regarding the yin and yang functions of SIRT3 in metabolic, cardiovascular and neurodegenerative diseases, as well as the use of SIRT3 modulators as a therapeutic strategy against those disorders. Although most studies point to a protective role upon SIRT3 activation, there are conflicting findings that need a better elucidation. The discovery of novel SIRT3 modulators with higher selectivity together with the assessment of the relative importance of different SIRT3 enzymatic activities and the relevance of crosstalk between distinct sirtuin isoforms will be pivotal to validate SIRT3 as a useful drug target for the prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Biomedicine, Faculty of Medicine, University of Porto, Portugal; CINTESIS - Center for Health Technology and Services Research, University of Porto, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Anabela P Rolo
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | - Carlos M Palmeira
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| |
Collapse
|
37
|
A novel metadherinΔ7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFĸB-SIRT3 axis. Oncogene 2019; 39:2088-2102. [PMID: 31806873 DOI: 10.1038/s41388-019-1126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Metadherin (MTDH) expression inversely correlates with prognosis of several cancers including mammary carcinomas. In this work, we identified a novel splice variant of MTDH with exon7 skipping (MTDHΔ7) and its levels were found significantly high in triple negative breast cancer (TNBC) cells and in patients diagnosed with TNBC. Selective overexpression of MTDHΔ7 in MDA-MB-231 and BT-549 cells enhanced proliferation, invasion, and epithelial-to-mesenchymal (EMT) transition markers in comparison to its wildtype counterpart. In contrast, knockdown of MTDHΔ7 induced antiproliferative/antiinvasive effects. Mechanistically, MTDH-NFĸB-p65 complex activated SIRT3 transcription by binding to its promoter that in turn enhanced MnSOD levels and promoted EMT in TNBC cells. Intriguingly, mitochondrial OCR through Complex-I and -IV, and glycolytic rate (ECAR) were significantly high in MDA-MB-231 cells stably expressing MTDHΔ7. While depletion of SIRT3 inhibited MTDH-Wt/Δ7-induced OCR and ECAR, knockdown of MnSOD inhibited only ECAR. In addition, MTDH-Wt/Δ7-mediated pro-proliferative/-invasive effects were greatly obviated with either siSIRT3 or siMnSOD in these cells. The functional relevance of MTDHΔ7 was further proved under in vivo conditions in an orthotopic mouse model of breast cancer. Mice bearing labeled MDA-MB-231 cells stably expressing MTDHΔ7 showed significantly more tumor growth and metastatic ability to various organs in comparison to MTDH-Wt bearing mice. Taken together, MTDHΔ7 promotes TNBC aggressiveness through enhanced mitochondrial biogenesis/function, which perhaps serves as a biomarker.
Collapse
|
38
|
Heinonen T, Ciarlo E, Rigoni E, Regina J, Le Roy D, Roger T. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Front Immunol 2019; 10:2713. [PMID: 31849939 PMCID: PMC6901967 DOI: 10.3389/fimmu.2019.02713] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Sirtuin 2 (SIRT2) and SIRT3 are cytoplasmic and mitochondrial NAD-dependent deacetylases. SIRT2 and SIRT3 target proteins involved in metabolic, proliferation and inflammation pathways and have been implicated in the pathogenesis of neurodegenerative, metabolic and oncologic disorders. Both pro- and anti-inflammatory effects have been attributed to SIRT2 and SIRT3, and single deficiency in SIRT2 or SIRT3 had minor or no impact on antimicrobial innate immune responses. Here, we generated a SIRT2/3 double deficient mouse line to study the interactions between SIRT2 and SIRT3. SIRT2/3−/− mice developed normally and showed subtle alterations of immune cell populations in the bone marrow, thymus, spleen, blood and peritoneal cavity that contained notably more anti-inflammatory B-1a cells and less NK cells. In vitro, SIRT2/3−/− macrophages favored fatty acid oxidation (FAO) over glycolysis and produced increased levels of both proinflammatory and anti-inflammatory cytokines. In line with metabolic adaptation and increased numbers of peritoneal B-1a cells, SIRT2/3−/− mice were robustly protected from endotoxemia. Yet, SIRT2/3 double deficiency did not modify endotoxin tolerance. Overall, these data suggest that sirtuins can act in concert or compensate each other for certain immune functions, a parameter to be considered for drug development. Moreover, inhibitors targeting multiple sirtuins developed for clinical purposes may be useful to treat inflammatory diseases.
Collapse
Affiliation(s)
- Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersilia Rigoni
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Regina
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Dichotomous Sirtuins: Implications for Drug Discovery in Neurodegenerative and Cardiometabolic Diseases. Trends Pharmacol Sci 2019; 40:1021-1039. [PMID: 31704173 DOI: 10.1016/j.tips.2019.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Sirtuins (SIRT1-7), a class of NAD+-dependent deacylases, are central regulators of metabolic homeostasis and stress responses. While numerous salutary effects associated with sirtuin activation, especially SIRT1, are well documented, other reports show health benefits resulting from sirtuin inhibition. Furthermore, conflicting findings have been obtained regarding the pathophysiological role of specific sirtuin isoforms, suggesting that sirtuins act as 'double-edged swords'. Here, we provide an integrated overview of the different findings on the role of mammalian sirtuins in neurodegenerative and cardiometabolic disorders and attempt to dissect the reasons behind these different effects. Finally, we discuss how addressing these obstacles may provide a better understanding of the complex sirtuin biology and improve the likelihood of identifying effective and selective drug targets for a variety of human disorders.
Collapse
|
40
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
41
|
Heinonen T, Ciarlo E, Le Roy D, Roger T. Impact of the Dual Deletion of the Mitochondrial Sirtuins SIRT3 and SIRT5 on Anti-microbial Host Defenses. Front Immunol 2019; 10:2341. [PMID: 31632409 PMCID: PMC6781768 DOI: 10.3389/fimmu.2019.02341] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
The sirtuins SIRT3 and SIRT5 are the main mitochondrial lysine deacetylase and desuccinylase, respectively. SIRT3 and SIRT5 regulate metabolism and redox homeostasis and have been involved in age-associated metabolic, neurologic and oncologic diseases. We have previously shown that single deficiency in either SIRT3 or SIRT5 had no impact on host defenses in a large panel of preclinical models of sepsis. However, SIRT3 and SIRT5 may compensate each other considering that they share subcellular location and targets. Here, we generated a SIRT3/5 double knockout mouse line. SIRT3/5 deficient mice multiplied and developed without abnormalities. Hematopoiesis and immune cell development were largely unaffected in SIRT3/5 deficient mice. Whole blood, macrophages and neutrophils from SIRT3/5 deficient mice displayed enhanced inflammatory and bactericidal responses. In agreement, SIRT3/5 deficient mice showed somewhat improved resistance to Listeria monocytogenes infection. Overall, the double deficiency in SIRT3 and SIRT5 has rather subtle impacts on immune cell development and anti-microbial host defenses unseen in single deficient mice, indicating a certain degree of overlap between SIRT3 and SIRT5. These data support the assumption that therapies directed against mitochondrial sirtuins, at least SIRT3 and SIRT5, should not impair antibacterial host defenses.
Collapse
Affiliation(s)
- Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
42
|
Abstract
The cause of insulin resistance in obesity and type 2 diabetes mellitus (T2DM) is not limited to impaired insulin signalling but also involves the complex interplay of multiple metabolic pathways. The analysis of large data sets generated by metabolomics and lipidomics has shed new light on the roles of metabolites such as lipids, amino acids and bile acids in modulating insulin sensitivity. Metabolites can regulate insulin sensitivity directly by modulating components of the insulin signalling pathway, such as insulin receptor substrates (IRSs) and AKT, and indirectly by altering the flux of substrates through multiple metabolic pathways, including lipogenesis, lipid oxidation, protein synthesis and degradation and hepatic gluconeogenesis. Moreover, the post-translational modification of proteins by metabolites and lipids, including acetylation and palmitoylation, can alter protein function. Furthermore, the role of the microbiota in regulating substrate metabolism and insulin sensitivity is unfolding. In this Review, we discuss the emerging roles of metabolites in the pathogenesis of insulin resistance and T2DM. A comprehensive understanding of the metabolic adaptations involved in insulin resistance may enable the identification of novel targets for improving insulin sensitivity and preventing, and treating, T2DM.
Collapse
|
43
|
Ma Y, Chai H, Ding Q, Qian Q, Yan Z, Ding B, Dou X, Li S. Hepatic SIRT3 Upregulation in Response to Chronic Alcohol Consumption Contributes to Alcoholic Liver Disease in Mice. Front Physiol 2019; 10:1042. [PMID: 31474877 PMCID: PMC6707764 DOI: 10.3389/fphys.2019.01042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Background Alcoholic liver disease (ALD) is a type of chronic liver disease caused by chronic ethanol overconsumption. The pathogenesis of ALD is complex and there is no effective clinical treatment thus far. SIRT3 is an NAD+-dependent deacetylase primarily located inside mitochondria, and reports on the effect of chronic alcohol exposure on liver SIRT3 expression are scarce. This study aims to investigate the effect of chronic alcohol consumption on hepatic SIRT3 expression and its role in alcoholic-induced liver injury. Methods Using the Lieber-DeCarli mouse model of ALD, we analyzed the regulation of SIRT3 and the effect of liver-specific knocking-down of SIRT3 on alcohol-induced liver injury. HepG2 and AML12 hepatocytes were employed to detect the biological function of SIRT3 on alcohol-induced hepatic cytotoxicity and its potential mechanism. Results Chronic alcohol exposure led to hepatic SIRT3 upregulation and liver-specific SIRT3 knockdown alleviated alcoholic feeding-induced liver injury and lipid accumulation, which is associated with improved autophagy induction. In addition, autophagy induction contributed to the cytoprotective effect of SIRT3 knockdown on ethanol-induced hepatocyte cell death. Conclusion In summary, our data suggest that hepatic SIRT3 upregulation in response to chronic alcohol exposure and liver-specific SIRT3 knockdown, induced autophagy activation further alleviating alcoholic-induced liver injury, which represents a novel mechanism in this process.
Collapse
Affiliation(s)
- Yue Ma
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Laboratory Animal Center, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Hui Chai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinchao Ding
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qianyu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaoyuan Yan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Ding
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- Molecular Medicine Institute, Zhejiang Chinese Medical University, Hangzhou, China.,College of Basic Medicine and Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
44
|
Javadipour M, Rezaei M, Keshtzar E, Khodayar MJ. Metformin in contrast to berberine reversed arsenic‐induced oxidative stress in mitochondria from rat pancreas probably via Sirt3‐dependent pathway. J Biochem Mol Toxicol 2019; 33:e22368. [DOI: 10.1002/jbt.22368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/20/2019] [Accepted: 07/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Mansoureh Javadipour
- Toxicology Research CenterAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Toxicology, Faculty of PharmacyAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohsen Rezaei
- Toxicology Research CenterAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Toxicology, Faculty of PharmacyAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Toxicology, Faculty of Medical SciencesTarbiat Modares University Tehran Iran
| | - Elham Keshtzar
- Toxicology Research CenterAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Toxicology, Faculty of PharmacyAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | - Mohammad Javad Khodayar
- Toxicology Research CenterAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
- Department of Toxicology, Faculty of PharmacyAhvaz Jundishapur University of Medical Sciences Ahvaz Iran
| |
Collapse
|
45
|
Fisher-Wellman KH, Draper JA, Davidson MT, Williams AS, Narowski TM, Slentz DH, Ilkayeva OR, Stevens RD, Wagner GR, Najjar R, Hirschey MD, Thompson JW, Olson DP, Kelly DP, Koves TR, Grimsrud PA, Muoio DM. Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics. Cell Rep 2019; 26:1557-1572.e8. [PMID: 30726738 PMCID: PMC6478502 DOI: 10.1016/j.celrep.2019.01.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/25/2022] Open
Abstract
Acyl CoA metabolites derived from the catabolism of carbon fuels can react with lysine residues of mitochondrial proteins, giving rise to a large family of post-translational modifications (PTMs). Mass spectrometry-based detection of thousands of acyl-PTMs scattered throughout the proteome has established a strong link between mitochondrial hyperacylation and cardiometabolic diseases; however, the functional consequences of these modifications remain uncertain. Here, we use a comprehensive respiratory diagnostics platform to evaluate three disparate models of mitochondrial hyperacylation in the mouse heart caused by genetic deletion of malonyl CoA decarboxylase (MCD), SIRT5 demalonylase and desuccinylase, or SIRT3 deacetylase. In each case, elevated acylation is accompanied by marginal respiratory phenotypes. Of the >60 mitochondrial energy fluxes evaluated, the only outcome consistently observed across models is a ∼15% decrease in ATP synthase activity. In sum, the findings suggest that the vast majority of mitochondrial acyl PTMs occur as stochastic events that minimally affect mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - James A Draper
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Michael T Davidson
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Ashley S Williams
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Tara M Narowski
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Robert D Stevens
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Gregory R Wagner
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Rami Najjar
- Cell Signaling Technologies, Danvers, MA 01923, USA
| | - Mathew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
| | - J Will Thompson
- Duke Proteomics and Metabolomics Shared Resource, Duke University Medical Center, Durham, NC 27710, USA
| | - David P Olson
- Department of Pediatrics, Division of Pediatric Endocrinology, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel P Kelly
- Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Timothy R Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA.
| | - Deborah M Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
46
|
Tyagi A, Nguyen CU, Chong T, Michel CR, Fritz KS, Reisdorph N, Knaub L, Reusch JEB, Pugazhenthi S. SIRT3 deficiency-induced mitochondrial dysfunction and inflammasome formation in the brain. Sci Rep 2018; 8:17547. [PMID: 30510203 PMCID: PMC6277395 DOI: 10.1038/s41598-018-35890-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022] Open
Abstract
SIRT3, the primary mitochondrial deacetylase, plays a significant role in enhancing the function of mitochondrial proteins. Downregulation of SIRT3 is a key component of metabolic syndrome, a precondition for obesity, diabetes and cardiovascular diseases. In this study, we examined the effects of brain mitochondrial protein hyperacetylation in western diet-fed Sirt3-/- mice, a model for metabolic syndrome. Brain mitochondrial proteins were hyperacetylated, following western diet feeding and Sirt3 deletion. To identity these hyperacetylated proteins, we performed a comprehensive acetylome analysis by label-free tandem mass spectrometry. Gene ontology pathway analysis revealed Sirt3 deletion-mediated downregulation of enzymes in several metabolic pathways, including fatty acid oxidation and tricarboxylic acid cycle. Mitochondrial respiration was impaired at multiple states, along with lower levels of mitochondrial fission proteins Mfn1 and Mfn2. Cleavage of procaspase-1 suggested inflammasome formation. Assembly of inflammasomes with caspase-1 and NLRP3 was detected as shown by proximity ligation assay. Markers of neuroinflammation including microgliosis and elevated brain IL-1β expression were also observed. Importantly, these findings were further exacerbated in Sirt3-/- mice when fed a calorie-rich western diet. The observations of this study suggest that SIRT3 deficiency-induced brain mitochondrial dysfunction and neuroinflammation in metabolic syndrome may play a role in late-life cognitive decline.
Collapse
Affiliation(s)
- Alpna Tyagi
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Christy U Nguyen
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Thomas Chong
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Leslie Knaub
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Jane E B Reusch
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Subbiah Pugazhenthi
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA. .,School of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
47
|
Kanwal A. Functional and therapeutic potential of mitochondrial SIRT3 deacetylase in disease conditions. Expert Rev Clin Pharmacol 2018; 11:1151-1155. [DOI: 10.1080/17512433.2018.1546119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Abhinav Kanwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
48
|
Dogan SA, Cerutti R, Benincá C, Brea-Calvo G, Jacobs HT, Zeviani M, Szibor M, Viscomi C. Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy. Cell Metab 2018; 28:764-775.e5. [PMID: 30122554 PMCID: PMC6224544 DOI: 10.1016/j.cmet.2018.07.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/18/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Raffaele Cerutti
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Cristiane Benincá
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Howard Trevor Jacobs
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Helsinki 00790, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK
| | - Marten Szibor
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5, Helsinki 00790, Finland; Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpön katu 34, Tampere 33520, Finland.
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
49
|
Abstract
The concept of replenishing or elevating NAD+ availability to combat metabolic disease and ageing is an area of intense research. This has led to a need to define the endogenous regulatory pathways and mechanisms cells and tissues utilise to maximise NAD+ availability such that strategies to intervene in the clinical setting are able to be fully realised. This review discusses the importance of different salvage pathways involved in metabolising the vitamin B3 class of NAD+ precursor molecules, with a particular focus on the recently identified nicotinamide riboside kinase pathway at both a tissue-specific and systemic level.
Collapse
|
50
|
Porter LC, Franczyk MP, Pietka T, Yamaguchi S, Lin JB, Sasaki Y, Verdin E, Apte RS, Yoshino J. NAD +-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 2018; 315:E520-E530. [PMID: 29634313 PMCID: PMC6230701 DOI: 10.1152/ajpendo.00057.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction in adipose tissue is involved in the pathophysiology of obesity-induced systemic metabolic complications, such as type 2 diabetes, insulin resistance, and dyslipidemia. However, the mechanisms responsible for obesity-induced adipose tissue mitochondrial dysfunction are not clear. The aim of present study was to test the hypothesis that nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin-3 (SIRT3) in adipocytes plays a critical role in adipose tissue mitochondrial biology and obesity. We first measured adipose tissue SIRT3 expression in obese and lean mice. Next, adipocyte-specific mitochondrial Sirt3 knockout (AMiSKO) mice were generated and metabolically characterized. We evaluated glucose and lipid metabolism in adult mice fed either a regular-chow diet or high-fat diet (HFD) and in aged mice. We also determined the effects of Sirt3 deletion on adipose tissue metabolism and mitochondrial biology. Supporting our hypothesis, obese mice had decreased SIRT3 gene and protein expression in adipose tissue. However, despite successful knockout of SIRT3, AMiSKO mice had normal glucose and lipid metabolism and did not change metabolic responses to HFD-feeding and aging. In addition, loss of SIRT3 had no major impact on putative SIRT3 targets, key metabolic pathways, and mitochondrial function in white and brown adipose tissue. Collectively, these findings suggest that adipocyte SIRT3 is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Contrary to our hypothesis, loss of SIRT3 function in adipocytes is unlikely to contribute to the pathophysiology of obesity-induced metabolic complications.
Collapse
Affiliation(s)
- Lane C Porter
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Michael P Franczyk
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Terri Pietka
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Shintaro Yamaguchi
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| | - Jonathan B Lin
- Department of Ophthalmology, Washington University School of Medicine , St. Louis, Missouri
| | - Yo Sasaki
- Department of Genetics, Washington University School of Medicine , St. Louis, Missouri
| | - Eric Verdin
- Gladstone Institutes, University of California San Francisco , San Francisco, California
- Buck Institute for Research on Aging , Novato, California
| | - Rajendra S Apte
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
- Department of Ophthalmology, Washington University School of Medicine , St. Louis, Missouri
- Department of Developmental Biology, Washington University School of Medicine , St. Louis, Missouri
| | - Jun Yoshino
- Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|