1
|
Ohtsuka Y, Hisamatsu S. Construction of a realistic voxel phantom of the Japanese red fox (Vulpes vulpes japonica) based on MRI imaging and estimation of its background external radiation dose rate from environmental radionuclides. RADIATION PROTECTION DOSIMETRY 2024; 200:1580-1584. [PMID: 39540477 DOI: 10.1093/rpd/ncae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 11/16/2024]
Abstract
In this study, we selected the Japanese red fox (Vulpes vulpes japonica) as a representative mid-size mammal from the forests near the spent nuclear fuel reprocessing plant at Rokkasho. A fox voxel phantom was constructed based on magnetic resonance imaging of a female red fox caught in Rokkasho. This phantom consisted of 264 × 321 × 383 voxels (each voxel size: 0.78 × 0.78 × 2 mm) with internal organs. The external radiation dose rate to the voxel phantom by beta and gamma rays from environmental radionuclides was estimated using a Monte Carlo code (EGS4 and UCPIXEL). We estimated the dose rates to the phantom on the ground and in an average fox burrow in the Rokkasho forest, which were 11 and 27 nGy h-1, respectively. Assuming that the animal on the ground was irradiated by cosmic rays of 27 nGy h-1, the total external dose rate was evaluated to be 38 nGy h-1. Based on the assumption that the fox lives on the ground for 12 h and in the burrow for 12 h, the dose rate was estimated to be 33 nGy h-1.
Collapse
Affiliation(s)
- Yoshihito Ohtsuka
- Department of Radioecology, Institute for Environmental Sciences (IES), 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212, Japan
| | - Shun'ichi Hisamatsu
- Institute for Environmental Sciences (IES), 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212, Japan
| |
Collapse
|
2
|
Hinton TG, Anderson D, Bæk E, Baranwal VC, Beasley JC, Bontrager HL, Broggio D, Brown J, Byrne ME, Gerke HC, Ishiniwa H, Lance SL, Lind OC, Love CN, Nagata H, Nanba K, Okuda K, Salbu B, Shamovich D, Skuterud L, Trompier F, Webster SC, Zabrotski V. Fundamentals of wildlife dosimetry and lessons learned from a decade of measuring external dose rates in the field. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 278:107472. [PMID: 38905881 DOI: 10.1016/j.jenvrad.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024]
Abstract
Methods for determining the radiation dose received by exposed biota require major improvements to reduce uncertainties and increase precision. We share our experiences in attempting to quantify external dose rates to free-ranging wildlife using GPS-coupled dosimetry methods. The manuscript is a primer on fundamental concepts in wildlife dosimetry in which the complexities of quantifying dose rates are highlighted, and lessons learned are presented based on research with wild boar and snakes at Fukushima, wolves at Chornobyl, and reindeer in Norway. GPS-coupled dosimeters produced empirical data to which numerical simulations of external dose using computer software were compared. Our data did not support a standing paradigm in risk analyses: Using averaged soil contaminant levels to model external dose rates conservatively overestimate the dose to individuals within a population. Following this paradigm will likely lead to misguided recommendations for risk management. The GPS-dosimetry data also demonstrated the critical importance of how modeled external dose rates are impacted by the scale at which contaminants are mapped. When contaminant mapping scales are coarse even detailed knowledge about each animal's home range was inadequate to accurately predict external dose rates. Importantly, modeled external dose rates based on a single measurement at a trap site did not correlate to actual dose rates measured on free ranging animals. These findings provide empirical data to support published concerns about inadequate dosimetry in much of the published Chernobyl and Fukushima dose-effects research. Our data indicate that a huge portion of that literature should be challenged, and that improper dosimetry remains a significant source of controversy in radiation dose-effect research.
Collapse
Affiliation(s)
- Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan; CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan.
| | - Edda Bæk
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | | | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Helen L Bontrager
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - David Broggio
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Justin Brown
- Norwegian Radiation and Nuclear Safety Authority, Østerås, Norway.
| | - Michael E Byrne
- School of Natural Resources, University of Missouri, Columbia, MO, USA.
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Stacey L Lance
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Ole C Lind
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | - Cara N Love
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Hiroko Nagata
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan.
| | - Kei Okuda
- Faculty of Human Environmental Sciences, Hiroshima Shudo University, Hiroshima, Japan.
| | - Brit Salbu
- CERAD CoE, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway.
| | | | | | - François Trompier
- Institute for Radiation Protection and Nuclear Safety, Fontenay-aux-Roses, France.
| | - Sarah C Webster
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA.
| | - Viachaslau Zabrotski
- Republican Center for Hydrometeorology, Control of Radioactive Contamination and Environmental Monitoring (Belhydromet), Minsk, Belarus.
| |
Collapse
|
3
|
Cheng Z, Xu M, Cao Q, Chi W, Cao S, Zhou Z, Wang Y. Antioxidant Systematic Alteration Was Responsible for Injuries Inflicted on the Marine Blue Mussel Mytilus edulis Following Strontium Exposure. Antioxidants (Basel) 2024; 13:464. [PMID: 38671912 PMCID: PMC11047646 DOI: 10.3390/antiox13040464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The ionic properties of strontium (Sr), a significant artificial radionuclide in the marine environment, were estimated using a stable nuclide-substituting experimental system under controlled laboratory conditions. The bio-accumulation of Sr and its impacts, as well as any possible hidden mechanisms, were evaluated based on the physiological alterations of the sentinel blue mussel Mytilus edulis. The mussels were exposed to a series of stress-inducing concentrations, with the highest solubility being 0.2 g/L. No acute lethality was observed during the experiment, but sublethal damage was evident. Sr accumulated in a tissue-specific way, and hemolymph was the target, with the highest accumulating concentration being 64.46 µg/g wet weight (ww). At the molecular level, increases in the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and changes in ROS components (H2O2, O2-, and -OH) and antioxidant system activity indicated that the redox equilibrium state in hemocytes was disturbed. Furthermore, the rise in the hemocyte micronucleus (MN) rate (4‱ in the high-concentration group) implied DNA damage. At the cellular level, the structures of hemocytes were damaged, especially with respect to lysosomes, which play a crucial role in phagocytosis. Lysosomal membrane stability (LMS) was also affected, and both acid phosphatase (ACP) and alkaline phosphatase (AKP) activities were reduced, resulting in a significant decline in phagocytosis. The hemolymph population structure at the organ level was disturbed, with large changes in hemocyte number and mortality rate, along with changes in component ratios. These toxic effects were evaluated by employing the adverse outcome pathway (AOP) framework. The results suggested that the disruption of intracellular redox homeostasis is a possible explanation for Sr-induced toxicity in M. edulis.
Collapse
Affiliation(s)
- Zihua Cheng
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China
| | - Mengxue Xu
- Marine Science Research Institute of Shandong Province, Qingdao 266100, China; (M.X.); (W.C.)
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266100, China
| | - Qiyue Cao
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
| | - Wendan Chi
- Marine Science Research Institute of Shandong Province, Qingdao 266100, China; (M.X.); (W.C.)
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao 266100, China
| | - Sai Cao
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
| | - Zhongyuan Zhou
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China
| | - You Wang
- College of Marien Life Sciences, Ocean University of China, Qingdao 266000, China; (Z.C.); (Q.C.); (S.C.); (Z.Z.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266200, China
| |
Collapse
|
4
|
Gatti M, Belli M, De Rubeis M, Tokita S, Ikema H, Yamashiro H, Fujishima Y, Anderson D, Goh VST, Shinoda H, Nakata A, Fukumoto M, Miura T, Nottola SA, Macchiarelli G, Palmerini MG. Ultrastructural Analysis of Large Japanese Field Mouse ( Apodemus speciosus) Testes Exposed to Low-Dose-Rate (LDR) Radiation after the Fukushima Nuclear Power Plant Accident. BIOLOGY 2024; 13:239. [PMID: 38666851 PMCID: PMC11048324 DOI: 10.3390/biology13040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, great attention has been paid to the impact of chronic low-dose-rate (LDR) radiation exposure on biological systems. The reproductive system is sensitive to radiation, with implications connected to infertility. We investigated the testis ultrastructure of the wild large Japanese field mouse (Apodemus speciosus) from three areas contaminated after the FDNPP accident, with different levels of LDR radiation (0.29 µSv/h, 5.11 µSv/h, and 11.80 µSv/h). Results showed good preservation of the seminiferous tubules, comparable to the unexposed animals (controls), except for some ultrastructural modifications. Increases in the numerical density of lipid droplet clusters in spermatogenic cells were found at high levels of LDR radiation, indicating an antioxidant activity rising due to radiation recovery. In all groups, wide intercellular spaces were found between spermatogenic cells, and cytoplasmic vacuolization increased at intermediate and high levels and vacuolated mitochondria at the high-level. However, these findings were also related to the physiological dynamics of spermatogenesis. In conclusion, the testes of A. speciosus exposed to LDR radiation associated with the FDNPP accident showed a normal spermatogenesis, with some ultrastructural changes. These outcomes may add information on the reproductive potential of mammals chronically exposed to LDR radiation.
Collapse
Affiliation(s)
- Marta Gatti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Manuel Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Syun Tokita
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Hikari Ikema
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Akifumi Nakata
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido 006-8585, Japan
| | - Manabu Fukumoto
- RIKEN Center for Advanced Intelligence Project, Pathology Informatics Team, Tokyo 103-0027, Japan;
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
5
|
Sakauchi K, Otaki JM. Soil Microbes and Plant-Associated Microbes in Response to Radioactive Pollution May Indirectly Affect Plants and Insect Herbivores: Evidence for Indirect Field Effects from Chernobyl and Fukushima. Microorganisms 2024; 12:364. [PMID: 38399767 PMCID: PMC10892324 DOI: 10.3390/microorganisms12020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The biological impacts of the nuclear accidents in Chernobyl (1986) and Fukushima (2011) on wildlife have been studied in many organisms over decades, mainly from dosimetric perspectives based on laboratory experiments using indicator species. However, ecological perspectives are required to understand indirect field-specific effects among species, which are difficult to evaluate under dosimetric laboratory conditions. From the viewpoint that microbes play a fundamental role in ecosystem function as decomposers and symbionts for plants, we reviewed studies on microbes inhabiting soil and plants in Chernobyl and Fukushima in an attempt to find supporting evidence for indirect field-specific effects on plants and insect herbivores. Compositional changes in soil microbes associated with decreases in abundance and species diversity were reported, especially in heavily contaminated areas of both Chernobyl and Fukushima, which may accompany explosions of radioresistant species. In Chernobyl, the population size of soil microbes remained low for at least 20 years after the accident, and the abundance of plant-associated microbes, which are related to the growth and defense systems of plants, possibly decreased. These reported changes in microbes likely affect soil conditions and alter plant physiology. These microbe-mediated effects may then indirectly affect insect herbivores through food-mass-mediated, pollen-mediated, and metabolite-mediated interactions. Metabolite-mediated interactions may be a major pathway for ecological impacts at low pollution levels and could explain the decreases in insect herbivores in Fukushima. The present review highlights the importance of the indirect field effects of long-term low-dose radiation exposure under complex field circumstances.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan;
| |
Collapse
|
6
|
Piszter G, Bálint Z, Kertész K, Szatmári L, Sramkó G, Biró LP. Breeding Polyommatus icarus Serves as a Large-Scale and Environmentally Friendly Source of Precisely Tuned Photonic Nanoarchitectures. INSECTS 2023; 14:716. [PMID: 37623426 PMCID: PMC10455773 DOI: 10.3390/insects14080716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
The colour of the butterfly wing serves as an important sexual and species-specific signal. Some species produce structural colouration by developing wing scales with photonic nanoarchitectures. These nanostructures are highly conservative, allowing only a ±10 nm peak wavelength deviation in the reflectance spectra of the blue structural colour in natural Common Blue (Polyommatus icarus) populations. They are promising templates of future artificial photonic materials and can be used in potential applications, too. In this work, we present methodology and infrastructure for breeding laboratory populations of Common Blue as a cost-effective and environmentally friendly source of nanostructures. Our technology enables the production of approximately 7500 wing samples, equivalent to 0.5-1 m2 of photonic nanoarchitecture surface within a year in a single custom-made insectarium. To ascertain the reliability of this method, we compared reflectance properties between different populations from distant geographic locations. We also provide genetic background of these populations using microsatellite genotyping. The laboratory population showed genetic erosion, but even after four generations of inbreeding, only minimal shifts in the structural colouration were observed, indicating that wild Common Blue populations may be a reliable source of raw material for photonic surfaces.
Collapse
Affiliation(s)
- Gábor Piszter
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Zsolt Bálint
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
- Hungarian Natural History Museum, Baross utca 13, H-1121 Budapest, Hungary
| | - Krisztián Kertész
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| | - Lajos Szatmári
- Hungarian Natural History Museum, Baross utca 13, H-1121 Budapest, Hungary
- ELKH-DE Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Gábor Sramkó
- ELKH-DE Conservation Biology Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
- Department of Botany, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - László Péter Biró
- Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós út 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
7
|
Fuciarelli TM, Patel S, Rollo CD. Differential impacts of ionizing radiation on a sexually dimorphic trait in male and female Acheta domesticus. Int J Radiat Biol 2023; 99:1749-1759. [PMID: 37262368 DOI: 10.1080/09553002.2023.2219731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE In many Orthopteran species, including crickets, forewings exhibit substantial sexual dimorphism driven by sexual selection. In the cricket, Acheta domesticus, females are the 'choosy' sex and males exhibit multiple sexual signals to attract and successfully mate. Male forewings have highly specialized structures critical for acoustic signaling and mating. In contrast, female forewings currently serve no known purpose in this flightless species. Forewings also differ morphologically with male forewings containing complex acoustic producing and resonating regions and females lacking any defined structures. Due to their importance to mating as well as their structural complexity, impacts of environmental stress that target cricket forewing development may therefore have more severe consequences in males than females. Here, we investigate the sensitivity of a sexually dimorphic trait, forewing morphology, to an early life environmental stressor. MATERIALS AND METHODS We applied ionizing radiation (0--27.8 Gy) as a stressor as dose can be precisely applied as well as its relevance in both environmental contamination and use in the Sterile Insect Technique. RESULTS A canonical variate analysis indicated that wing shape was significantly altered in males at all doses; .58 Gy, 2.3 Gy, 4.6 Gy, 16.2 Gy, and 23.2 Gy. In females, shape was significantly altered at 27.8 Gy and 23.2 Gy groups and to a lesser extent at .58 Gy and 16.2 Gy. Linear regression analysis of centroid size indicated a dose dependent decline in wing size in both sexes, with males exhibiting more decline. Fluctuating asymmetry, a measure of environmental sensitivity, revealed that males were more sensitive to shape changes due to stress than females. This difference in sensitivity is likely due to the complexity of male forewings. CONCLUSION These results expand understanding of sex dimorphism in stress responses and sensitivity to ionizing radiation.
Collapse
Affiliation(s)
| | - Selvi Patel
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - C David Rollo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Copplestone D, Coates CJ, Lim J. Low dose γ-radiation induced effects on wax moth (Galleria mellonella) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162742. [PMID: 36906041 DOI: 10.1016/j.scitotenv.2023.162742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Larvae of the greater wax moth Galleria mellonella are common pests of beehives and commercial apiaries, and in more applied settings, these insects act as alternative in vivo bioassays to rodents for studying microbial virulence, antibiotic development, and toxicology. In the current study, our aim was to assess the putative adverse effects of background gamma radiation levels on G. mellonella. To achieve this, we exposed larvae to low (0.014 mGy/h), medium (0.056 mGy/h), and high (1.33 mGy/h) doses of caesium-137 and measured larval pupation events, weight, faecal discharge, susceptibility to bacterial and fungal challenges, immune cell counts, activity, and viability (i.e., haemocyte encapsulation) and melanisation levels. The effects of low and medium levels of radiation were distinguishable from the highest dose rates used - the latter insects weighed the least and pupated earlier. In general, radiation exposure modulated cellular and humoral immunity over time, with larvae showing heightened encapsulation/melanisation levels at the higher dose rates but were more susceptible to bacterial (Photorhabdus luminescens) infection. There were few signs of radiation impacts after 7 days exposure, whereas marked changes were recorded between 14 and 28 days. Our data suggest that G. mellonella demonstrates plasticity at the whole organism and cellular levels when irradiated and offers insight into how such animals may cope in radiologically contaminated environments (e.g. Chornobyl Exclusion Zone).
Collapse
Affiliation(s)
- David Copplestone
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, Wales, UK; Zoology, Ryan Institute, School of Natural Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| |
Collapse
|
9
|
Sakauchi K, Otaki JM. Imaging Plate Autoradiography for Ingested Anthropogenic Cesium-137 in Butterfly Bodies: Implications for the Biological Impacts of the Fukushima Nuclear Accident. Life (Basel) 2023; 13:life13051211. [PMID: 37240856 DOI: 10.3390/life13051211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The Fukushima nuclear accident in March 2011 caused biological impacts on the pale grass blue butterfly Zizeeria maha. At least some of the impacts are likely mediated by the host plant, resulting in "field effects". However, to obtain the whole picture of the impacts, direct exposure effects should also be evaluated. Here, we examined the distribution of experimentally ingested anthropogenic cesium-137 (137Cs) in adult butterfly bodies using imaging plate autoradiography. We showed that 137Cs ingested by larvae was incorporated into adult bodies and was biased to females, although the majority of ingested 137Cs was excreted in the pupal cuticle and excretory material during eclosion. 137Cs accumulation in adult bodies was the highest in the abdomen, followed by the thorax and other organs. These results suggest that 137Cs accumulation in reproductive organs may cause adverse transgenerational or maternal effects mediated by reactive oxygen species (ROS) on germ cells. 137Cs accumulation was detected in field individuals collected in September 2011 and September 2016 but not in May 2011, which is consistent with the abnormality dynamics known from previous studies. Taken together, these results contribute to an integrative understanding of the multifaceted biological effects of the Fukushima nuclear accident in the field.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
10
|
Otaki JM, Sakauchi K, Taira W. The second decade of the blue butterfly in Fukushima: Untangling the ecological field effects after the Fukushima nuclear accident. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1539-1550. [PMID: 35475314 DOI: 10.1002/ieam.4624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Many field observations of the biological effects of the Fukushima nuclear accident have been reported in the first decade after the accident. A series of observational and experimental studies have demonstrated causal adverse effects on the pale grass blue butterfly even at the low-level radiation exposure in the "field," contrary to the dosimetric view that insects are generally tolerant of radiation exposure. However, it has been demonstrated that the pale grass blue butterfly is tolerant of high oral doses of anthropogenic radioactive cesium (137 Cs) under "laboratory" conditions. This field-laboratory paradox can be explained by ecological field effects; for example, radiation stress in the field causes physiological and biochemical changes in the host plant, which then trophically affects butterfly larvae. The second decade of butterfly-based Fukushima research will be devoted to demonstrating how such adverse field effects occur. Changes in the host plant's nutritional contents likely affect butterfly physiology. The host plant may also upregulate secondary metabolites that affect herbivorous insects. The plant may be affected by changes in endophytic soil microbes in radioactively contaminated areas. If demonstrated, these results will reveal that the delicate ecological balances among the butterfly, its host plant, and soil microbes have been affected by radioactive pollution in Fukushima, which has important implications for environmental policies and human health. Integr Environ Assess Manag 2022;18:1539-1550. © SETAC.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
- Research Planning Office, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
11
|
Anderson D, Kaneko S, Harshman A, Okuda K, Takagi T, Chinn S, Beasley JC, Nanba K, Ishiniwa H, Hinton TG. Radiocesium accumulation and germline mutations in chronically exposed wild boar from Fukushima, with radiation doses to human consumers of contaminated meat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119359. [PMID: 35487469 DOI: 10.1016/j.envpol.2022.119359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Genetic effects and radioactive contamination of large mammals, including wild boar (Sus scrofa), have been studied in Japan because of dispersal of radionuclides from the Fukushima Dai-ichi Nuclear Power Plant in 2011. Such studies have generally demonstrated a declining trend in measured radiocesium body burdens in wildlife. Estimating radiation exposure to wildlife is important to understand possible long-term impacts. Here, radiation exposure was evaluated in 307 wild boar inhabiting radioactively contaminated areas (50-8000 kBq m-2) in Fukushima Prefecture from 2016 to 2019, and genetic markers were examined to assess possible germline mutations caused by chronic radiation exposures to several generations of wild boar. Internal Cs activity concentrations in boar remained high in areas near the power plant with the highest concentration of 54 kBq kg-1 measured in 2019. Total dose rates to wild boar ranged from 0.02 to 36 μGy h-1, which was primarily attributed to external radiation exposure, and dose rates to the maximally exposed animals were above the generic no-effects benchmark of 10 μGy h-1. Using the estimated age of each animal, lifetime radiation doses ranged from <0.1 mGy to 700 mGy. Despite chronic exposures, the genetic analyses showed no significant accumulation of mutation events. Because wild boar is an occasional human dietary item in Japan, effective dose to humans from ingesting contaminated wild boar meat was calculated. Hypothetical consumption of contaminated wild boar meat from radioactively contaminated areas in Fukushima, at the per capita pork consumption rate (12.9 kg y-1), would result in an average effective annual dose of 0.9 mSv y-1, which is below the annual ingestion limit of 1 mSv y-1. Additionally, a consumption rate of about 1.4 kg y-1 of the most contaminated meat in this study would not exceed annual ingestion limits.
Collapse
Affiliation(s)
- Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Aomori, Japan; Center for Research in Isotopes and Environmental Dynamics, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Shingo Kaneko
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima City, Fukushima, Japan
| | - Amber Harshman
- Environmental Protection Services Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima, Japan
| | - Toshihito Takagi
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima City, Fukushima, Japan
| | - Sarah Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan
| | - Thomas G Hinton
- Institute of Environmental Radioactivity, Fukushima University, Fukushima City, Fukushima, Japan; Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
12
|
Ingestional Toxicity of Radiation-Dependent Metabolites of the Host Plant for the Pale Grass Blue Butterfly: A Mechanism of Field Effects of Radioactive Pollution in Fukushima. Life (Basel) 2022; 12:life12050615. [PMID: 35629283 PMCID: PMC9146399 DOI: 10.3390/life12050615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022] Open
Abstract
Biological effects of the Fukushima nuclear accident have been reported in various organisms, including the pale grass blue butterfly Zizeeria maha and its host plant Oxalis corniculata. This plant upregulates various secondary metabolites in response to low-dose radiation exposure, which may contribute to the high mortality and abnormality rates of the butterfly in Fukushima. However, this field effect hypothesis has not been experimentally tested. Here, using an artificial diet for larvae, we examined the ingestional toxicity of three radiation-dependent plant metabolites annotated in a previous metabolomic study: lauric acid (a saturated fatty acid), alfuzosin (an adrenergic receptor antagonist), and ikarugamycin (an antibiotic likely from endophytic bacteria). Ingestion of lauric acid or alfuzosin caused a significant decrease in the pupation, eclosion (survival), and normality rates, indicating toxicity of these compounds. Lauric acid made the egg-larval days significantly longer, indicating larval growth retardation. In contrast, ikarugamycin caused a significant increase in the pupation and eclosion rates, probably due to the protection of the diet from fungi and bacteria. These results suggest that at least some of the radiation-dependent plant metabolites, such as lauric acid, contribute to the deleterious effects of radioactive pollution on the butterfly in Fukushima, providing experimental evidence for the field effect hypothesis.
Collapse
|
13
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life (Basel) 2022; 12:life12010115. [PMID: 35054508 PMCID: PMC8780803 DOI: 10.3390/life12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Research Planning Office, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
14
|
Fuller N, Smith JT, Takase T, Ford AT, Wada T. Radiocaesium accumulation and fluctuating asymmetry in the Japanese mitten crab, Eriocheir japonica, along a gradient of radionuclide contamination at Fukushima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118479. [PMID: 34752791 DOI: 10.1016/j.envpol.2021.118479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The 2011 Tohoku earthquake-tsunami and the subsequent nuclear accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS) led to large-scale radionuclide contamination of the marine and freshwater environment. Monitoring studies of marine food products in the Fukushima region have generally demonstrated a declining trend in radiocaesium concentrations. However, the accumulation and elimination of radiocaesium and potential biological effects remain poorly understood for freshwater biota inhabiting highly contaminated areas at Fukushima. Consequently, the present study aimed to assess radiocaesium accumulation and developmental effects on the commercially important catadromous Japanese mitten crab, Eriocheir japonica. E. japonica were collected from four sites along a gradient of radionuclide contamination 4-44 km in distance from the FDNPS in 2017. To determine potential developmental effects, fluctuating asymmetry (FA) was used as a measure of developmental stability. Combined 134Cs and 137Cs values for whole E. japonica from highly contaminated sites 4 and 16 km in distance from the FDNPS were 3040 ± 521 and 2250 ± 908 Bq kg-1 wet weight respectively, 30 and 22 times greater than the Japanese standard limit of 100 Bq kg-1. Estimated total dose rates based on radiocaesium concentrations in whole crabs and sediment ranged from 0.016 to 37.7 μGy h-1. No significant relationship between radiocaesium accumulation and FA was recorded, suggesting that chronic radiation exposure at Fukushima is not inducing developmental effects in E. japonica as measured using fluctuating asymmetry. Furthermore, estimated dose rates were below proposed regulatory limits where significant deleterious effects are expected. The present study will aid in the understanding of the long-term consequences of radiation exposure for non-human biota and the management of radioactively contaminated environments.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| | - Jim T Smith
- School of Environmental, Geographical and Geological Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture, 960-1296, Japan
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture, 960-1296, Japan
| |
Collapse
|
15
|
Sayed AEDH, Nagata K, Nakazawa T, Mitani H, Kobayashi J, Oda S. Low Dose-Rate Irradiation of Gamma-Rays-Induced Cytotoxic and Genotoxic Alterations in Peripheral Erythrocytes of p53-Deficient Medaka (Oryzias latipes). FRONTIERS IN MARINE SCIENCE 2021; 8. [DOI: 10.3389/fmars.2021.773481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Morphological alterations and nuclear abnormalities in fish erythrocytes have been used in many studies as bioindicators of environmental mutagens including ionizing radiation. In this study, adult Japanese medaka (Oryzias latipes) were irradiated with gamma rays at a low dose rate (9.92 μGy/min) for 7 days, giving a total dose of 100 mGy; and morphological alterations, nuclear abnormalities, and apoptotic cell death induced in peripheral erythrocytes were investigated 8 h and 7 days after the end of the irradiation. A variety of abnormalities, such as tear-drop cell, crenated cell, acanthocyte, sickled cell, micronucleated cell, eccentric nucleus, notched nucleus, and schistocyte, were induced in the peripheral erythrocytes of the wild-type fish, and a less number of abnormalities and apoptotic cell death were induced in the p53-deficient fish. These results indicate that low dose-rate chronic irradiation of gamma rays can induce cytotoxic and genotoxic effects in the peripheral erythrocytes of medaka, and p53-deficient medaka are tolerant to the gamma-ray irradiation than the wild type on the surface.
Collapse
|
16
|
Thurstan RH, Hockings KJ, Hedlund JSU, Bersacola E, Collins C, Early R, Ermiasi Y, Fleischer‐Dogley F, Gilkes G, Harrison ME, Imron MA, Kaiser‐Bunbury CN, Refly Katoppo D, Marriott C, Muzungaile M, Nuno A, Regalla de Barros A, van Veen F, Wijesundara I, Dogley D, Bunbury N. Envisioning a resilient future for biodiversity conservation in the wake of the COVID-19 pandemic. PEOPLE AND NATURE 2021; 3:990-1013. [PMID: 34909607 PMCID: PMC8661774 DOI: 10.1002/pan3.10262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 08/07/2021] [Indexed: 11/07/2022] Open
Abstract
As the COVID-19 pandemic continues to affect societies across the world, the ongoing economic and social disruptions are likely to present fundamental challenges for current and future biodiversity conservation.We review the literature for outcomes of past major societal, political, economic and zoonotic perturbations on biodiversity conservation, and demonstrate the complex implications of perturbation events upon conservation efforts. Building on the review findings, we use six in-depth case studies and the emerging literature to identify positive and negative outcomes of the COVID-19 pandemic, known and anticipated, for biodiversity conservation efforts around the world.A number of similarities exist between the current pandemic and past perturbations, with experiences highlighting that the pandemic-induced declines in conservation revenue and capacity, livelihood and trade disruptions are likely to have long-lasting and negative implications for biodiversity and conservation efforts.Yet, the COVID-19 pandemic also brought about a global pause in human movement that is unique in recent history, and may yet foster long-lasting behavioural and societal changes, presenting opportunities to strengthen and advance conservation efforts in the wake of the pandemic. Enhanced collaborations and partnerships at the local level, cross-sectoral engagement, local investment and leadership will all enhance the resilience of conservation efforts in the face of future perturbations. Other actions aimed at enhancing resilience will require fundamental institutional change and extensive government and public engagement and support if they are to be realised.The pandemic has highlighted the inherent vulnerabilities in the social and economic models upon which many conservation efforts are based. In so doing, it presents an opportunity to reconsider the status quo for conservation, and promotes behaviours and actions that are resilient to future perturbation. A free Plain Language Summary can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
- Ruth H. Thurstan
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Kimberley J. Hockings
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Johanna S. U. Hedlund
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Department of BiologyLund UniversityLundSweden
| | - Elena Bersacola
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Claire Collins
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Institute of ZoologyZoological Society of LondonLondonUK
| | - Regan Early
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Yunsiska Ermiasi
- Yayasan Borneo Nature IndonesiaCentral KalimantanPalangka RayaIndonesia
| | | | | | - Mark E. Harrison
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Borneo Nature Foundation InternationalTremough Innovation CentrePenrynUK
- School of Geography, Geology and the EnvironmentUniversity of LeicesterLeicesterUK
| | | | | | | | | | - Marie‐May Muzungaile
- Biodiversity Conservation and Management DivisionMinistry of Environment, Energy and Climate ChangeVictoriaRepublic of Seychelles
| | - Ana Nuno
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Interdisciplinary Centre of Social Sciences (CICS.NOVA)School of Social Sciences and Humanities (NOVA FCSH)NOVA University LisbonLisboaPortugal
| | - Aissa Regalla de Barros
- Instituto da Biodiversidade e das Áreas ProtegidasDr. Alfredo Simão da Silva (IBAP)BissauGuiné‐Bissau
| | - Frank van Veen
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | | | | | - Nancy Bunbury
- Centre for Ecology and ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Seychelles Islands FoundationVictoriaRepublic of Seychelles
| |
Collapse
|
17
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Response of the Creeping Wood Sorrel Oxalis corniculata to Low-Dose Radiation Exposure from Fukushima's Contaminated Soil. Life (Basel) 2021; 11:990. [PMID: 34575139 PMCID: PMC8472241 DOI: 10.3390/life11090990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
The biological consequences of the Fukushima nuclear accident have been intensively studied using the pale grass blue butterfly Zizeeria maha and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed metabolomic analyses of Oxalis leaves from Okinawa to examine the plant metabolites that were upregulated or downregulated in response to low-dose radiation exposure from Fukushima's contaminated soil. The cumulative dose of radiation to the plants was 5.7 mGy (34 μGy/h for 7 days). The GC-MS analysis revealed a systematic tendency of downregulation among the metabolites, some of which were annotated as caproic acid, nonanoic acid, azelaic acid, and oleic acid. Others were annotated as fructose, glucose, and citric acid, involved in the carbohydrate metabolic pathways. Notably, the peak annotated as lauric acid was upregulated. In contrast, the LC-MS analysis detected many upregulated metabolites, some of which were annotated as either antioxidants or stress-related chemicals involved in defense pathways. Among them, only three metabolite peaks had a single annotation, one of which was alfuzosin, an antagonist of the α1-adrenergic receptor. We conclude that this Oxalis plant responded metabolically to low-dose radiation exposure from Fukushima's contaminated soil, which may mediate the ecological "field effects" of the developmental deterioration of butterflies in Fukushima.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Center for Research Advancement and Collaboration, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| |
Collapse
|
18
|
Lavrinienko A, Hämäläinen A, Hindström R, Tukalenko E, Boratyński Z, Kivisaari K, Mousseau TA, Watts PC, Mappes T. Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination. Mol Ecol 2021; 30:3485-3499. [PMID: 33955637 DOI: 10.1111/mec.15945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species-specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus and A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesized that radiation exposure has a general impact on rodent gut microbiota. Because we sampled (n = 288) two species pairs of Apodemus mice that occur in sympatry in habitats affected by the Chernobyl and Fukushima nuclear accidents, these comparisons provide an opportunity for a general assessment of the effects of exposure to environmental contamination (radionuclides) on gut microbiota across host phylogeny and geographical areas. In general agreement with our hypothesis, analyses of bacterial 16S rRNA gene sequences revealed that radiation exposure alters the gut microbiota composition and structure in three of the four species of Apodemus mice. The notable lack of an association between the gut microbiota and soil radionuclide contamination in one mouse species from Fukushima (A. argenteus) probably reflects host "radiation escape" through its unique tree-dwelling lifestyle. The finding that host ecology can modulate effects of radiation exposure offers an interesting counterpoint for future analyses into effects of radiation or any other toxic exposure on host and its associated microbiota. Our data show that exposure to radionuclide contamination is linked to comparable gut microbiota responses across multiple species of rodents.
Collapse
Affiliation(s)
- Anton Lavrinienko
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anni Hämäläinen
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | | | - Eugene Tukalenko
- Ecology and Genetics, University of Oulu, Oulu, Finland.,National Research Center for Radiation Medicine of the National Academy of Medical Science, Kyiv, Ukraine
| | - Zbyszek Boratyński
- CIBIO-InBIO Associate Laboratory, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Kati Kivisaari
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,SURA/LASSO/NASA, ISS Utilization and Life Sciences Division, Kennedy Space Center, Cape Canaveral, FL, USA
| | - Phillip C Watts
- Ecology and Genetics, University of Oulu, Oulu, Finland.,Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Tapio Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
19
|
Nutrient Imbalance of the Host Plant for Larvae of the Pale Grass Blue Butterfly May Mediate the Field Effect of Low-Dose Radiation Exposure in Fukushima: Dose-Dependent Changes in the Sodium Content. INSECTS 2021; 12:insects12020149. [PMID: 33572324 PMCID: PMC7916146 DOI: 10.3390/insects12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
The pale grass blue butterfly Zizeeria maha is sensitive to low-dose radioactive pollution from the Fukushima nuclear accident in the field but is also highly tolerant to radioactive cesium (137Cs) in an artificial diet in laboratory experiments. To resolve this field-laboratory paradox, we hypothesize that the butterfly shows vulnerability in the field through biochemical changes in the larval host plant, the creeping wood sorrel Oxalis corniculata, in response to radiation stress. To test this field-effect hypothesis, we examined nutrient contents in the host plant leaves from Tohoku (mostly polluted areas including Fukushima), Niigata, and Kyushu, Japan. Leaves from Tohoku showed significantly lower sodium and lipid contents than those from Niigata. In the Tohoku samples, the sodium content (but not the lipid content) was significantly negatively correlated with the radioactivity concentration of cesium (137Cs) in leaves and with the ground radiation dose. The sodium content was also correlated with other nutrient factors. These results suggest that the sodium imbalance of the plant may be caused by radiation stress and that this nutrient imbalance may be one of the reasons that this monophagous butterfly showed high mortality and morphological abnormalities in the field shortly after the accident in Fukushima.
Collapse
|
20
|
Hunting ER, Matthews J, de Arróyabe Hernáez PF, England SJ, Kourtidis K, Koh K, Nicoll K, Harrison RG, Manser K, Price C, Dragovic S, Cifra M, Odzimek A, Robert D. Challenges in coupling atmospheric electricity with biological systems. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:45-58. [PMID: 32666310 PMCID: PMC7782408 DOI: 10.1007/s00484-020-01960-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 05/24/2023]
Abstract
The atmosphere is host to a complex electric environment, ranging from a global electric circuit generating fluctuating atmospheric electric fields to local lightning strikes and ions. While research on interactions of organisms with their electrical environment is deeply rooted in the aquatic environment, it has hitherto been confined to interactions with local electrical phenomena and organismal perception of electric fields. However, there is emerging evidence of coupling between large- and small-scale atmospheric electrical phenomena and various biological processes in terrestrial environments that even appear to be tied to continental waters. Here, we synthesize our current understanding of this connectivity, discussing how atmospheric electricity can affect various levels of biological organization across multiple ecosystems. We identify opportunities for research, highlighting its complexity and interdisciplinary nature and draw attention to both conceptual and technical challenges lying ahead of our future understanding of the relationship between atmospheric electricity and the organization and functioning of biological systems.
Collapse
Affiliation(s)
- Ellard R Hunting
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | | | | | - Sam J England
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Konstantinos Kourtidis
- Department of Environmental Engineering, Demokritus University of Thrace, Xanthi, Greece
- ISLP Xanthi Branch, ENTA Unit, ATHENA Research and Innovation Center, Xanthi, Greece
| | - Kuang Koh
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Keri Nicoll
- Department of Electronic and Electrical Engineering, University of Bath, Bath, UK
- Department of Meteorology, University of Reading, Reading, UK
| | | | | | - Colin Price
- Department of Geophysics. Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Snezana Dragovic
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Michal Cifra
- Institute of Photonics and Electronics, Czech Academy of Sciences, Prague, Czechia
| | - Anna Odzimek
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Robert
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Iwasa M, Nakaya F, Kabeya H, Sato K, Ishikawa SI, Takahashi T. Radiocesium concentrations in invertebrates and their environmental media at two distances from the Fukushima Dai-ichi Nuclear Power Plant during 3-6 years after the 2011 accident. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115657. [PMID: 33254726 DOI: 10.1016/j.envpol.2020.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/24/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Activity concentrations of the radioactive cesium (134Cs and 137Cs) were investigated in invertebrates at two sites of moderately high and higher air radiation dose rates, 14 km and 11 km distances, respectively, from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) from 2013 to 2016. At a14-km point, the 134+137Cs concentrations of soils in coniferous and broadleaf forests increased from 2013 to 2014, and thereafter declined until 2016. The 134+137Cs concentrations of the phytophagous beetle Anomala cuprea (Hope) rapidly decreased by 76.1% from 2013 to 2014, reflecting reduction in those of broadleaves. The 134+137Cs concentration levels of the carnivorous beetle Dolichus halensis (Schaller) showed a relatively low levels. The 137Cs concentrations of the necrophagous beetle Eusilpha japonica (Motshulsky) and coprophagous beetle Onthophagus lenzii (Harold) remained constant without reduction from 2013 to 2016. Average 134+137Cs concentrations throughout four years were the highest in the geophagous crustacean (Armadillidium vulgare Latreille), followed by necrophagous beetle and coprophagus beetle. The 134+137Cs concentrations in earthworms with gut contents were significantly correlated with those in soils at each habitat from 2014 to 2015 at a14-km point, and the concentration levels at an 11-km point in 2015 were remarkably high (898 kBq kg-1). Transfer factors (TFs) in earthworms ranged from 1.02 to 2.66 at a 14-km point and 0.66 to 5.0 at an11-km point. The transfer and chronological changes of radiocesium in invertebrates were discussed in relation to food habits through trophic levels in woodlands and pasturelands.
Collapse
Affiliation(s)
- Mitsuhiro Iwasa
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Fumiya Nakaya
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Hideyuki Kabeya
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Kosuke Sato
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Shin-Ichiro Ishikawa
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| | - Teppei Takahashi
- Laboratory of Entomology, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
22
|
Gombeau K, Bonzom JM, Cavalié I, Camilleri V, Orjollet D, Dubourg N, Beaugelin-Seiller K, Bourdineaud JP, Lengagne T, Armant O, Ravanat JL, Adam-Guillermin C. Dose-dependent genomic DNA hypermethylation and mitochondrial DNA damage in Japanese tree frogs sampled in the Fukushima Daiichi area. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 225:106429. [PMID: 33059178 DOI: 10.1016/j.jenvrad.2020.106429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The long-term consequences of the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP) that occurred on March 2011, have been scarcely studied on wildlife. We sampled Japanese tree frogs (Dryophytes japonicus), in a 50 -km area around the FDNPP to test for an increase of DNA damages and variation of DNA methylation level. The ambient dose rate ranged between 0.4 and 2.8 μGy h-1 and the total estimated dose rate absorbed by frogs ranged between 0.3 and 7.7 μGy h-1. Frogs from contaminated sites exhibited a dose-dependent increase of global genomic DNA methylation level (5-mdC and 5-hmdC) and of mitochondrial DNA damages. Such DNA damages may indicate a genomic instability, which may induce physiological adaptations governed by DNA methylation changes. This study stresses the need for biological data combining targeted molecular methods and classic ecotoxicology, in order to better understand the impacts on wildlife of long term exposure to low ionizing radiation levels.
Collapse
Affiliation(s)
- Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France; University of Bordeaux, CNRS, UMR5095 CNRS, Institute for Cellular Biochemistry and Genetics, 1 Rue Camille Saint Saëns, CS 61390, 33077, Bordeaux Cedex, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Daniel Orjollet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Jean-Paul Bourdineaud
- University of Bordeaux, CNRS, UMR MFP 5234, European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607, Pessac, France
| | - Thierry Lengagne
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, INAC-SCIB, 38000, Grenoble, France; CEA, INAC-SCIB Laboratoire des Lésions des Acides Nucléiques, 38000, Grenoble, France
| | | |
Collapse
|
23
|
Kong F. Understanding and strengthening the role of catastrophe lottery in catastrophe risk transfer system. JOURNAL OF CONTINGENCIES AND CRISIS MANAGEMENT 2020. [DOI: 10.1111/1468-5973.12338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Feng Kong
- College of Humanities and Development Studies China Agricultural University Beijing China
- Center for Crisis Management Research , Tsinghua University Tsinghua University Beijing China
| |
Collapse
|
24
|
Fuciarelli TM, Rollo CD. Trans-Generational Impacts of Paternal Irradiation in a Cricket: Damage, Life-History Features and Hormesis in F1 Offspring. Dose Response 2020; 18:1559325820983214. [PMID: 33424519 PMCID: PMC7758660 DOI: 10.1177/1559325820983214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/20/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Animals exposed to significant stress express multi-modal responses to buffer negative impacts. Trans-generational impacts have been mainly studied in maternal lines, with paternal lines having received less attention. Here, we assessed paternal generational effects using irradiated male crickets (Acheta domesticus), and their F1 offspring (irradiated males mated to unirradiated females). Paternal transmission of radiation impacts emerged in multiple life history traits when compared to controls. Irradiated males and their F1 offspring expressed hormetic responses in survivorship and median longevity at mid-range doses. For F0 males, 7 Gy & 10 Gy doses extended F0 longevity by 39% and 34.2% respectively. F1 offspring of 7 Gy and 10 Gy sires had median lifespans 71.3% and 110.9% longer, respectively. Survivorship for both F0 7 Gy (p < 0.0001) and 10 Gy (p = 0.0055) males and F1 7 Gy and 10 Gy (p < 0.0001) offspring significantly surpassed that of controls. Irradiated F0 males and F1 offspring had significantly reduced growth rates. For F0 males, significant reductions were evident in 4Gy-12 Gy males and F1 offspring in 4 Gy (p < 0.0001), 7 Gy (p < 0.0001), and 10 Gy (p = 0.017). Our results indicate paternal effects; that irradiation directly impacted males but also mediated diverse alterations in the life history features (particularly longevity and survivorship) of F1 offspring.
Collapse
Affiliation(s)
| | - C. David Rollo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
25
|
Tanaka S, Kinouchi T, Fujii T, Imanaka T, Takahashi T, Fukutani S, Maki D, Nohtomi A, Takahashi S. Observation of morphological abnormalities in silkworm pupae after feeding 137CsCl-supplemented diet to evaluate the effects of low dose-rate exposure. Sci Rep 2020; 10:16055. [PMID: 32994421 PMCID: PMC7524783 DOI: 10.1038/s41598-020-72882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, morphological abnormalities in lepidopteran insects, such as shrinkage and/or aberration of wings, have been reported. Butterflies experimentally exposed to radiocesium also show such abnormalities. However, because of a lack of data on absorbed dose and dose-effect relationship, it is unclear whether these abnormalities are caused directly by radiation. We conducted a low dose-rate exposure experiment in silkworms reared from egg to fully developed larvae on a 137CsCl-supplemented artificial diet and estimated the absorbed dose to evaluate morphological abnormalities in pupal wings. We used 137CsCl at 1.3 × 103 Bq/g fresh weight to simulate 137Cs contamination around the FDNPP. Absorbed doses were estimated using a glass rod dosimeter and Monte Carlo particle transport simulation code PHITS. Average external absorbed doses were approximately 0.24 (on diet) and 0.016 mGy/day (near diet); the average internal absorbed dose was approximately 0.82 mGy/day. Pupal wing structure is sensitive to radiation exposure. However, no significant differences were observed in the wing-to-whole body ratio of pupae between the 137CsCl-exposure and control groups. These results suggest that silkworms are insensitive to low dose-rate exposure due to chronic ingestion of high 137Cs at a high concentration.
Collapse
Affiliation(s)
- Sota Tanaka
- Research Group for Environmental Science, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan.
| | - Tadatoshi Kinouchi
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Motooka, Fukuoka, 819-0395, Japan
| | - Tetsuji Imanaka
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Tomoyuki Takahashi
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Satoshi Fukutani
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Daisuke Maki
- Technical Staff Office, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Akihiro Nohtomi
- Quantum Radiation Sciences, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Sentaro Takahashi
- Professor Emeritus, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
26
|
Yoshioka A, Matsushima N, Jingu S, Kumada N, Yokota R, Totsu K, Fukasawa K. Acoustic monitoring data of anuran species inside and outside the evacuation zone of the Fukushima Daiichi power plant accident. Ecol Res 2020. [DOI: 10.1111/1440-1703.12121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Akira Yoshioka
- Fukushima Branch National Institute for Environmental Studies Miharu Japan
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| | | | - Shoma Jingu
- Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba Japan
| | - Nao Kumada
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| | | | - Kumiko Totsu
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| | - Keita Fukasawa
- Fukushima Branch National Institute for Environmental Studies Miharu Japan
- Center for Environmental Biology and Ecosystem Studies National Institute for Environmental Studies Tsukuba Japan
| |
Collapse
|
27
|
Sato I, Sasaki J, Satoh H, Natsuhori M, Murata T, Okada K. Assessments of DNA Damage and Radiation Exposure Dose in Cattle Living in the Contaminated Area Caused by the Fukushima Nuclear Accident. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:496-501. [PMID: 32844262 DOI: 10.1007/s00128-020-02968-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Since the Fukushima nuclear accident in 2011, various abnormalities have been reported in animals living in the contaminated area. In the present study, we examined DNA damage in cattle living in the "difficult-to-return zone" by 8-hydroxy-2'-deoxyguanosine, comet, and micronucleus assays using their peripheral blood. The radiation exposure dose rate at the sampling time was approximately 0.25 or 0.38 mGy/day and the cumulative dose was estimated at approximately 1000 mGy. Significant increase in DNA damage was not detected by any of the three methods. As DNA damage is a stochastic effect of radiation, it might be occurring in animals living in the contaminated area. However, the present results suggest that radiation-induced DNA damage in the cattle did not increase to the level detectable by the assays we used due to the low dose rate in this area.
Collapse
Affiliation(s)
- Itaru Sato
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.
| | - Jun Sasaki
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Hiroshi Satoh
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Masahiro Natsuhori
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Takahisa Murata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keiji Okada
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
28
|
Ariyoshi K, Miura T, Kasai K, Goh VST, Fujishima Y, Nakata A, Takahashi A, Shimizu Y, Shinoda H, Yamashiro H, Seymour C, Mothersill C, Yoshida MA. Environmental radiation on large Japanese field mice in Fukushima reduced colony forming potential in hematopoietic progenitor cells without inducing genomic instability. Int J Radiat Biol 2020; 98:1147-1158. [PMID: 32791031 DOI: 10.1080/09553002.2020.1807643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To study the environmental radiation effects of wild animals after the Fukushima Dai-ichi nuclear power plant accident, we assessed effects on hematopoietic progenitor cells (HPCs) in large Japanese field mice (Apodemus speciosus). MATERIALS AND METHODS A. speciosus were collected from three contaminated sites and control area. The air dose-rates at the control and contaminated areas were 0.96 ± 0.05 μGy/d (Hirosaki), 14.4 ± 2.4 μGy/d (Tanashio), 208.8 ± 31.2 μGy/d (Ide), 470.4 ± 93.6 μGy/d (Omaru), respectively. We investigated possible DNA damage and pro-inflammatory markers in the bone marrow (BM) cells. The colony-forming potential of BM cells was estimated by the number of HPC colony-forming cells. Radiation-induced genomic instability (RIGI) in HPCs was also analyzed by quantifying delayed DNA damage in CFU-GM clones. RESULTS Although no significant differences in DNA damage and inflammation markers in BM cells from control and contaminated areas, the number of HPC colonies exhibited an inverse correlation with air dose-rate. With regard to RIGI, no significant differences in DNA damage of CFU-GM clones between the mice from the control and the three contaminated areas. CONCLUSIONS Our study suggests that low dose-rate radiation of more than 200 Gy/d reduced HPCs, possibly eliminating genomically unstable HPCs.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | - Tomisato Miura
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Valerie Swee Ting Goh
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Japan
| | - Akifumi Nakata
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | | | | | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Nishiku, Japan
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
29
|
Cannon G, Kiang JG. A review of the impact on the ecosystem after ionizing irradiation: wildlife population. Int J Radiat Biol 2020; 98:1054-1062. [PMID: 32663058 PMCID: PMC10139769 DOI: 10.1080/09553002.2020.1793021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE On 26 April 1986, reactor 4 at the Chernobyl power plant underwent a catastrophic failure leading to core explosions and open-air fires. On 11 March 2011, a combination of earthquake and tsunami led to a similar disaster at the Fukushima Daiichi power plant. In both cases, radioactive isotopes were released and contaminated the air, soil and water in a substantial area around the power plants. Humans were evacuated from the immediate regions but the wildlife stayed and continued to be affected by the ongoing high radiation exposure initially and later decayed amounts of fallout dusts with time. In this review, we will examine the significant effects of the increased radiation on vegetation, insects, fish, birds and mammals. CONCLUSIONS The initial intense radiation in these areas has gradually begun to decrease but still remains high. Adaptation to radiation is evident and the ecosystems have dynamically changed from the periods immediately after the accidents to the present day. Understanding the molecular mechanisms that allow the adaptation and recovery of wildlife to chronic radiation challenges would aid in future attempts at ecosystem remediation in the wake of such incidents.
Collapse
Affiliation(s)
- Georgetta Cannon
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Juliann G Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
30
|
Fujishima Y, Nakata A, Ujiie R, Kasai K, Ariyoshi K, Goh VST, Suzuki K, Tazoe H, Yamada M, Yoshida MA, Miura T. Assessment of chromosome aberrations in large Japanese field mice ( Apodemus speciosus) in Namie Town, Fukushima. Int J Radiat Biol 2020; 98:1159-1167. [PMID: 32602392 DOI: 10.1080/09553002.2020.1787548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan on March 11 2011, the surroundings became contaminated with radionuclides. To understand the possible biological effects after chronic low dose-rate radiation in contaminated areas of Fukushima, we assessed the effects in large Japanese field mice (Apodemus speciosus) by means of chromosome aberration analysis. MATERIALS AND METHODS We collected A. speciosus in five sites around Namie Town, Fukushima (contaminated areas) and in two sites in Hirosaki City, Aomori (control areas, 350 km north of FDNPP) from autumn 2011 to 2013. The number of mice captured and ambient dose-rates were as follows: high (n = 11, 10.1-30.0 µGy h-1), moderate (n = 10, 5.7-15.6 µGy h-1), low (n = 12, 0.23-1.14 µGy h-1) and control (n = 20, 0.04-0.07 µGy h-1). After spleen extraction from rodents, spleen cell culture was performed to obtain metaphase spreads. Chromosome aberrations were assessed on Giemsa-stained metaphase spreads. RESULTS Although the mice in the contaminated areas were chronically exposed, there was no radiation-specific chromosome aberrations observed, such as dicentric chromosomes and rings. Some structural aberrations such as gaps and breaks were observed, and these frequencies decreased annually in mice from Namie Town. CONCLUSION These findings suggest that chromosome aberration analysis is useful to evaluate and monitor radiation effects in wild animals.
Collapse
Affiliation(s)
- Yohei Fujishima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Japan
| | - Akifumi Nakata
- Department of Pharmacy, Faculty of Pharmaceutical Science, Hokkaido University of Science, Sapporo, Japan
| | - Risa Ujiie
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima, Japan
| | - Valerie Swee Ting Goh
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | | | - Hirofumi Tazoe
- Department of International Cooperation and Collaborative Research, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Masatoshi Yamada
- Central Laboratory, Marine Ecology Research Institute, Chiba, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
31
|
Erenler HE, Gillman MP, Ollerton J. Impact of extreme events on pollinator assemblages. CURRENT OPINION IN INSECT SCIENCE 2020; 38:34-39. [PMID: 32088649 DOI: 10.1016/j.cois.2020.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/24/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Insect pollinators face a number of well-documented threats that challenge their survival at an individual and community level. The effect of extreme events on pollinator assemblages has received little attention to date, partly due to a lack of consensus on what constitutes extreme, but also because robust pre-event data is often lacking. Here, the term SHOCK (Sudden, High-magnitude Opportunity for a Catastrophic 'Kick') is used to encompass attributes of extreme events that carry the potential to add additional challenges to insect communities already facing environmental stressors. Selected events from two SHOCK categories are explored (those with natural origins and those that are human-mediated). The value of studying single events is considered in the context of a third category; human-enhanced SHOCKs.
Collapse
Affiliation(s)
- Hilary E Erenler
- Faculty of Arts, Science and Technology, University of Northampton, Waterside Campus, Northampton, NN1 5PH, UK.
| | - Michael P Gillman
- School of Life Sciences, The University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK
| | - Jeff Ollerton
- Faculty of Arts, Science and Technology, University of Northampton, Waterside Campus, Northampton, NN1 5PH, UK
| |
Collapse
|
32
|
Omi T, Nakiri S, Nakanishi S, Ishii N, Uno T, Konno F, Inagaki T, Sakamoto A, Shito M, Udagawa C, Tada N, Ochiai K, Kato T, Kawamoto Y, Tsuchida S, Hayama SI. Concentrations of 137Cs radiocaesium in the organs and tissues of low-dose-exposed wild Japanese monkeys. BMC Res Notes 2020; 13:121. [PMID: 32122403 PMCID: PMC7053083 DOI: 10.1186/s13104-020-04972-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 01/12/2023] Open
Abstract
Objectives Following the massive earthquake that struck eastern Japan on March 11, 2011, a large amount of radioactive material was released into the environment from the damaged reactor of the Fukushima Daiichi Nuclear Power Plant (FDNPP). After the FDNPP accident, radiocaesium was first detected in muscle samples from wild Japanese monkeys exposed to radioactive materials, and haematologic effects, changes in head size, and delayed body weight gain were also reported, but little is known about the distribution of 137Cs in the organs and tissues of wild Japanese monkeys. Results We detected the 137Cs in various organ and tissue samples of 10 wild Japanese monkeys inhabiting the forested areas of Fukushima City that were captured between July and August 2012. Among muscle, brain, heart, kidney, liver, lung, and spleen, muscle exhibited the highest and the brain the lowest 137Cs concentration. The concentration (mean ± SD) of 137Cs in muscle, brain, heart, kidney, liver, lung, and spleen was 77 ± 66, 26 ± 22, 41 ± 35, 49 ± 41, 41 ± 38, 53 ± 41, and 53 ± 51 Bq/kg, respectively. These results can help us understand the biological effects of long-term internal radiation exposure in non-human primates.
Collapse
Affiliation(s)
- Toshinori Omi
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan.
| | - Sachie Nakiri
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Setsuko Nakanishi
- Conservation and Animal Welfare, 1-9-4 Kunitachi City, Tokyo, 186-0004, Japan
| | - Naomi Ishii
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Taiki Uno
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Fumiharu Konno
- Fukushima-Mirai Agricultural Cooperative, 19-2 Kubota, Kamata, Fukushima, Fukushima, 960-0102, Japan
| | - Takeshi Inagaki
- Jichi Medical University, School of Medicine, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Atsushi Sakamoto
- Jichi Medical University, School of Medicine, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan
| | - Masayuki Shito
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Chihiro Udagawa
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Naomi Tada
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Kazuhiko Ochiai
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Takuya Kato
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Yoshi Kawamoto
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Shuichi Tsuchida
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| | - Shin-Ichi Hayama
- Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino City, Tokyo, 180-8602, Japan
| |
Collapse
|
33
|
Hiyama A, Otaki JM. Dispersibility of the Pale Grass Blue Butterfly Zizeeria m aha (Lepidoptera: Lycaenidae) Revealed by One-Individual Tracking in the Field: Quantitative Comparisons between Subspecies and between Sexes. INSECTS 2020; 11:insects11020122. [PMID: 32074952 PMCID: PMC7073966 DOI: 10.3390/insects11020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022]
Abstract
The pale grass blue butterfly Zizeeria maha (Lepidoptera: Lycaenidae) has been used as an environmental indicator species for radioactive pollution after the Fukushima nuclear accident. Here, based on the one-individual tracking method in the field, we examined dispersal-associated and other behavioral traits of this butterfly, focusing on two subspecies, Z. maha argia in mainland Japan and Z. maha okinawana in Okinawa. The accumulated distances in the adult lifespan were 18.9 km and 38.2 km in mainland and Okinawa males, respectively, and 15.0 km and 7.8 km in mainland and Okinawa females, respectively. However, the mean distance from the starting point was only 24.2 m and 21.1 m in the mainland and Okinawa males, respectively, and 13.7 m and 7.4 m in the mainland and Okinawa females, respectively. Some quantitative differences in resting and feeding were found between subspecies and between sexes. The ARIMA (autoregressive integrated moving average) model indicated that the dispersal distance was 52.3 m (99% confidence interval value of 706.6 m) from the starting point in mainland males. These results support the idea that despite some behavioral differences, both subspecies of this butterfly are suitable as an environmental indicator because of the small dispersal ranges.
Collapse
Affiliation(s)
- Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
- Laboratory of Conservation Ecology, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
- Japan Butterfly Conservation Society, Tokyo 140-0014, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
34
|
Beresford NA, Horemans N, Copplestone D, Raines KE, Orizaola G, Wood MD, Laanen P, Whitehead HC, Burrows JE, Tinsley MC, Smith JT, Bonzom JM, Gagnaire B, Adam-Guillermin C, Gashchak S, Jha AN, de Menezes A, Willey N, Spurgeon D. Towards solving a scientific controversy - The effects of ionising radiation on the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106033. [PMID: 31451195 DOI: 10.1016/j.jenvrad.2019.106033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Affiliation(s)
- N A Beresford
- Centre for Ecology & Hydrology, CEH Lancaster, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP, United Kingdom; School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom.
| | - N Horemans
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium
| | - D Copplestone
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - K E Raines
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - G Orizaola
- Universidad de Oviedo - Campus de Mieres, Edificio de Investigación 5a Planta, C/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
| | - M D Wood
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - P Laanen
- Belgian Nuclear Research Centre (SCK●CEN), Boeretang 200, 2400, Mol, Belgium; University of Hasselt, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - H C Whitehead
- School of Science, Engineering & Environment, University of Salford, Manchester, M5 4WT, United Kingdom
| | - J E Burrows
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - M C Tinsley
- Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - J T Smith
- School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth, PO1 3QL, United Kingdom
| | - J-M Bonzom
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | - B Gagnaire
- IRSN, Centre de Cadarache, 13115, St Paul Lez Durance, France
| | | | - S Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste & Radioecology, International Radioecology Laboratory, 77th Gvardiiska Dyviiya Str.11, P.O. Box 151, 07100, Slavutych, Kiev Region, Ukraine
| | - A N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - A de Menezes
- Ryan Institute, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - N Willey
- Centre for Research in Bioscience, Dept. of Applied Sciences, University of the West of England, Frenchay, BS16 1QY, Bristol, United Kingdom
| | - D Spurgeon
- Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| |
Collapse
|
35
|
Real A, Garnier-Laplace J. The importance of deriving adequate wildlife benchmark values to optimize radiological protection in various environmental exposure situations. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:105902. [PMID: 30732942 DOI: 10.1016/j.jenvrad.2019.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 01/09/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The actions to be taken to demonstrate that the environment is adequately protected against the detrimental effects of ionising radiation, and if needed to protect it, must be commensurate with the overall level of risk to non-human biota. To judge the level of risk, the estimated dose rates absorbed by animals and plants need to be compared with dose criteria, a benchmark or reference value. A variety of aspects will influence the final value of the derived benchmark, including: the aim of the application of the benchmark, the protection goals of the assessment, the data on radiation-induced biological effects considered, and the methodology used. Benchmark values have been proposed by several international organizations (UNSCEAR, ICRP, IAEA), countries (USA, Canada) and research projects (ERICA, PROTECT), for different application purposes and protection goals and using a variety of methodologies. This paper describes the aspects that need to be considered in the derivation of numerical benchmarks, the approaches used by different organizations and the benchmark values they have proposed for the radiation protection of the environment. The benchmark values proposed are compared with the dose-rates at which radiation-induced biological effects have been described in animals and plants.
Collapse
Affiliation(s)
- Almudena Real
- Spanish Research Centre in Energy, Environment and Technology (CIEMAT), Avenida Complutense 40, Madrid, 28040, Spain.
| | - Jacqueline Garnier-Laplace
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé et Environnement, Cadarache-Batiment 159, BP 3, 13115, Saint-Paul-lez-Durance, France.
| |
Collapse
|
36
|
Newbold LK, Robinson A, Rasnaca I, Lahive E, Soon GH, Lapied E, Oughton D, Gashchak S, Beresford NA, Spurgeon DJ. Genetic, epigenetic and microbiome characterisation of an earthworm species (Octolasion lacteum) along a radiation exposure gradient at Chernobyl. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113238. [PMID: 31655460 DOI: 10.1016/j.envpol.2019.113238] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the "hologenome" of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.
Collapse
Affiliation(s)
- Lindsay K Newbold
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Alex Robinson
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - I Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Elma Lahive
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Gweon H Soon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK; School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH, UK
| | - Emmanuel Lapied
- Centre for Environmental Radioactivity, Norwegian University of Life Science, 1430 As, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity, Norwegian University of Life Science, 1430 As, Norway
| | - Sergey Gashchak
- Chornobyl Center for Nuclear Safety, Radioactive Waste and Radioecology, Slavutych, Kiev Region, Ukraine
| | - Nicholas A Beresford
- NERC Centre for Ecology & Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA14AP, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK.
| |
Collapse
|
37
|
Overwintering States of the Pale Grass Blue Butterfly Zizeeria maha (Lepidoptera: Lycaenidae) at the Time of the Fukushima Nuclear Accident in March 2011. INSECTS 2019; 10:insects10110389. [PMID: 31690046 PMCID: PMC6920751 DOI: 10.3390/insects10110389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
The Fukushima nuclear accident in March 2011 caused the massive release of anthropogenic radioactive materials from the Fukushima Dai-ichi Nuclear Power Plant to its surrounding environment. Its biological effects have been studied using the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), but the overwintering states of this butterfly remain elusive. Here, we conducted a series of field surveys in March 2018, March 2019, and April 2019 in Fukushima and its vicinity to clarify the overwintering states of this butterfly at the time of the Fukushima nuclear accident. We discovered overwintering individuals in situ associated with the host plant Oxalis corniculata under natural straw mulch as first-instar to fourth-instar larvae in March 2018 and 2019. No other developmental stages were found. The body length and width were reasonably correlated with the accumulated temperature. On the basis of a linear regression equation between body size and accumulated temperature, together with other data, we deduced that the pale grass blue butterfly occurred as fourth-instar larvae in Fukushima and its vicinity at the time of the accident. This study paves the way for subsequent dosimetric analyses that determine the radiation doses absorbed by the butterfly after the accident.
Collapse
|
38
|
Lampe N, Marin P, Coulon M, Micheau P, Maigne L, Sarramia D, Piquemal F, Incerti S, Biron DG, Ghio C, Sime-Ngando T, Hindre T, Breton V. Reducing the ionizing radiation background does not significantly affect the evolution of Escherichia coli populations over 500 generations. Sci Rep 2019; 9:14891. [PMID: 31624294 PMCID: PMC6797783 DOI: 10.1038/s41598-019-51519-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022] Open
Abstract
Over millennia, life has been exposed to ionizing radiation from cosmic rays and natural radioisotopes. Biological experiments in underground laboratories have recently demonstrated that the contemporary terrestrial radiation background impacts the physiology of living organisms, yet the evolutionary consequences of this biological stress have not been investigated. Explaining the mechanisms that give rise to the results of underground biological experiments remains difficult, and it has been speculated that hereditary mechanisms may be involved. Here, we have used evolution experiments in standard and very low-radiation backgrounds to demonstrate that environmental ionizing radiation does not significantly impact the evolutionary trajectories of E. coli bacterial populations in a 500 generations evolution experiment.
Collapse
Affiliation(s)
- Nathanael Lampe
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Pierre Marin
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Marianne Coulon
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Pierre Micheau
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Lydia Maigne
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - David Sarramia
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| | - Fabrice Piquemal
- Laboratoire Souterrain de Modane, 1125 Route de Bardonèche, F-73500, Modane, France
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33170, Gradignan, France
| | - Sébastien Incerti
- Université de Bordeaux, CNRS/IN2P3, CENBG, F-33170, Gradignan, France
| | - David G Biron
- CNRS UMR 6023, Université Clermont-Auvergne, Laboratoire "Microorganismes: Génome et Environnement" (LMGE), F-63000, Clermont-Ferrand, France
| | - Camille Ghio
- CNRS UMR 6023, Université Clermont-Auvergne, Laboratoire "Microorganismes: Génome et Environnement" (LMGE), F-63000, Clermont-Ferrand, France
| | - Télesphore Sime-Ngando
- CNRS UMR 6023, Université Clermont-Auvergne, Laboratoire "Microorganismes: Génome et Environnement" (LMGE), F-63000, Clermont-Ferrand, France
| | - Thomas Hindre
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000, Grenoble, France.
| | - Vincent Breton
- Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000, Clermont-Ferrand, France
| |
Collapse
|
39
|
Gurung RD, Taira W, Sakauchi K, Iwata M, Hiyama A, Otaki JM. Tolerance of High Oral Doses of Nonradioactive and Radioactive Caesium Chloride in the Pale Grass Blue Butterfly Zizeeria maha. INSECTS 2019; 10:E290. [PMID: 31505757 PMCID: PMC6780287 DOI: 10.3390/insects10090290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
The biological effects of the Fukushima nuclear accident have been examined in the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae). In previous internal exposure experiments, larvae were given field-collected contaminated host plant leaves that contained up to 43.5 kBq/kg (leaf) of radioactive caesium. Larvae ingested up to 480 kBq/kg (larva), resulting in high mortality and abnormality rates. However, these results need to be compared with the toxicological data of caesium. Here, we examined the toxicity of both nonradioactive and radioactive caesium chloride on the pale grass blue butterfly. Larvae were fed a caesium-containing artificial diet, ingesting up to 149 MBq/kg (larva) of radioactive caesium (137Cs) or a much higher amount of nonradioactive caesium. We examined the pupation rate, eclosion rate, survival rate up to the adult stage, and the forewing size. In contrast to previous internal exposure experiments using field-collected contaminated leaves, we could not detect any effect. We conclude that the butterfly is tolerant to ionising radiation from 137Cs in the range tested but is vulnerable to radioactive contamination in the field. These results suggest that the biological effects in the field may be mediated through ecological systems and cannot be estimated solely based on radiation doses.
Collapse
Affiliation(s)
- Raj D Gurung
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Instrumental Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Japan Butterfly Conservation Society, Tokyo 140-0014, Japan.
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
40
|
Xie L, Solhaug KA, Song Y, Brede DA, Lind OC, Salbu B, Tollefsen KE. Modes of action and adverse effects of gamma radiation in an aquatic macrophyte Lemna minor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 680:23-34. [PMID: 31085442 DOI: 10.1016/j.scitotenv.2019.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
High dose rates of ionizing radiation have been reported to cause adverse effects such as reduction in reproduction and growth, and damage to protein and lipids in primary producers. However, the relevant effects of ionizing radiation are still poorly understood in aquatic plants. This study was intended to characterize the biological effects and modes of action (MoAs) of ionizing radiation using gamma radiation as the prototypical stressor and duckweed Lemna minor as a model organism. Lemna minor was exposed to 1, 14, 24, 46, 70 mGy/h gamma radiation dose rates from a cobalt-60 source for 7 days following the testing principles of the OECD test guideline 221. A suite of bioassays was applied to assess the biological effects of gamma radiation at multiple levels of biological organization, including detection of reactive oxygen species (ROS), oxidative stress responses (total glutathione, tGSH; lipid peroxidation, LPO), DNA damage, mitochondrial dysfunctions (mitochondrial membrane potential, MMP), photosynthetic parameters (chlorophyll a, chl a; chlorophyll b, chl b; carotenoids; Photosystem II (PSII) performance; CO2 uptake), intercellular signaling (Ca2+ release) and growth. Gamma radiation increased DNA damage, tGSH level and Ca2+ content together with reduction in chlorophyll content, maximal PSII efficiency and CO2 uptake at dose rates between 1 and 14 mGy/h, whereas increases in cellular ROS and LPO, inhibition of MMP and growth were observed at higher dose rates (≥24 mGy/h). A network of toxicity pathways was proposed to portray the causal relationships between gamma radiation-induced physiological responses and adverse outcomes to support the development of Adverse Outcome Pathways (AOPs) for ionizing radiation-mediated effects in primary producers.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| | - Knut Asbjørn Solhaug
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Dag Anders Brede
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), P.O. Box 5003, N-1432 Ås, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
41
|
Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:469-483. [PMID: 31103007 DOI: 10.1016/j.envpol.2019.04.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/14/2019] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome. Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Agoralaan, 3590, Diepenbeek, Belgium.
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul Lez Durance, France
| | - Eline Saenen
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, 1430, Aas, Norway
| | - Ilze Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, Cadarache, Saint Paul Lez Durance, France
| |
Collapse
|
42
|
Hirata K, Otaki JM. Real-Time In Vivo Imaging of the Developing Pupal Wing Tissues in the Pale Grass Blue Butterfly Zizeeria maha: Establishing the Lycaenid System for Multiscale Bioimaging. J Imaging 2019; 5:jimaging5040042. [PMID: 34460480 PMCID: PMC8320941 DOI: 10.3390/jimaging5040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
To systematically analyze biological changes with spatiotemporal dynamics, it is important to establish a system that is amenable for real-time in vivo imaging at various size levels. Herein, we focused on the developing pupal wing tissues in the pale grass blue butterfly, Zizeeria maha, as a system of choice for a systematic multiscale approach in vivo in real time. We showed that the entire pupal wing could be monitored throughout development using a high-resolution bright-field time-lapse imaging system under the forewing-lift configuration; we recorded detailed dynamics of the dorsal and ventral epithelia that behaved independently for peripheral adjustment. We also monitored changes in the dorsal hindwing at the compartmental level and directly observed evaginating scale buds. We also employed a confocal laser microscopy system with multiple fluorescent dyes for three-dimensional observations at the tissue and cellular levels. We discovered extensive cellular clusters that may be functionally important as a unit of cellular communication and differentiation. We also identified epithelial discal and marginal dents that may function during development. Together, this lycaenid forewing system established a foundation to study the differentiation process of epithelial cells and can be used to study biophysically challenging mechanisms such as the determination of color patterns and scale nanoarchitecture at the multiscale levels.
Collapse
|
43
|
Developmental and hemocytological effects of ingesting Fukushima's radiocesium on the cabbage white butterfly Pieris rapae. Sci Rep 2019; 9:2625. [PMID: 30796244 PMCID: PMC6385249 DOI: 10.1038/s41598-018-37325-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
High morphological abnormality and mortality rates have been reported in the pale grass blue butterfly, Zizeeria maha, since the Fukushima nuclear accident. However, it remains uncertain if these effects are restricted to this butterfly. Here, we evaluated the effects of ingesting cabbage leaves grown with contaminated soils from Fukushima on the development and hemocytes of the cabbage white butterfly, Pieris rapae. Contaminated cabbage leaves containing various low levels of anthropogenic 134Cs and 137Cs radioactivity (less than natural 40K radioactivity) were fed to larvae from Okinawa, the least contaminated locality in Japan. Negative developmental and morphological effects were detected in the experimental groups. The cesium (but not potassium) radioactivity concentration was negatively correlated with the granulocyte percentage in hemolymph, and the granulocyte percentage was positively correlated with the pupal eclosion rate, the adult achievement rate, and the total normality rate. These results demonstrated that ingesting low-level radiocesium contaminants in Fukushima (but not natural radiopotassium) imposed biologically negative effects on the cabbage white butterfly, as in the pale grass blue butterfly, at both cellular and organismal levels.
Collapse
|
44
|
Vo NTK, Seymour CB, Mothersill CE. Radiobiological characteristics of descendant progeny of fish and amphibian cells that survive the initial ionizing radiation dose. ENVIRONMENTAL RESEARCH 2019; 169:494-500. [PMID: 30530089 DOI: 10.1016/j.envres.2018.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
PURPOSE To evaluate the development of delayed lethal mutations, the production of medium borne lethal bystander signals, and the acquirement of radiosensitive or radioresistant traits in distant descendant progeny of fish and amphibian cells surviving ionizing radiation MATERIALS AND METHODS: American eel brain endothelial cells (eelB) and African clawed frog epithelial cells (A6) were initially irradiated with gamma rays at 0.5 Gy or 2 Gy. Ionizing radiation (IR)-surviving cells were grown for 27 population doublings (PDs) for eelB and 43 PDs for A6. Reproductive cell death as quantified by clonogenic survival assays was used to determine the development of delayed lethal mutations, the production of medium borne lethal bystander signals, and the acquirement of radiosensitive or radioresistant traits in the progeny survivors. RESULTS Only medium borne bystander signals produced by 2-Gy-irradiated eelB progeny survivors at 12 PDs could reduce the clonogenic survival of the bystander reporter cells. IR-induced delayed lethal mutations occurred in irradiated eelB cells at 15-18 PDs; however, subsequently propagated progeny cells retained normal replicative abilities. No IR-induced delayed lethal mutations developed in progeny of irradiated A6 cells at up to 43 PDs. eelB progeny survivors did not develop new radiosensitive or radioresistant traits while A6 progeny survivors acquired a new radiosensitive characteristic. CONCLUSION This study enriches the current literature on the radiobiological characteristics of distant surviving progeny of irradiated fish and amphibian cells and highlights cell-type/species-dependent differential responses to IR. This study is the first to examine the potential transgenerational effects of progenitor irradiation in amphibian cells.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
45
|
Hancock S, Vo NTK, Omar-Nazir L, Batlle JVI, Otaki JM, Hiyama A, Byun SH, Seymour CB, Mothersill C. Transgenerational effects of historic radiation dose in pale grass blue butterflies around Fukushima following the Fukushima Dai-ichi Nuclear Power Plant meltdown accident. ENVIRONMENTAL RESEARCH 2019; 168:230-240. [PMID: 30321736 DOI: 10.1016/j.envres.2018.09.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Low dose radiation effects have been investigated in Chernobyl for many years but there is uncertainty about initial doses received by many animal species. However, the Fukushima Dai-ichi Nuclear Power Plant accident opens an opportunity to study the effects of the initial low historic dose on directly exposed species and their progeny during a time where the contaminating radionuclides are decaying. In this paper, it is proposed that historic acute exposure and its resulting non-targeted effects (NTEs) may be partially involved in the high mortality/abnormality rates seen across generations of pale grass blue butterflies (Zizeeria maha) around Fukushima. Data from Hiyama et al. (2012) on the morphological abnormality frequencies in Z. maha collected around Fukushima and their progeny were used in this paper. Two dose reconstruction methods based on the Gaussian plume model were used to determine the external absorbed dose to the first exposed generation from both ground shine and plume shine. One method involved the use of the dose rate recorded at the time of collection and only took Cs-137 into account. The other involved using release rates and atmospheric conditions to determine the doses and considered Cs-137 and Cs-134. The reconstructed doses were plotted against the mortality rates and abnormality frequencies across generations. The mortality rates of the progeny from irradiated progenitors increased linearly with the increasing historic radiation doses reconstructed using both Cs-137 and Cs-134 sources. Additionally, a higher level of morphological abnormalities was observed in progeny than in the progenitors. The mean abnormality frequencies also increased throughout generations. As these results are a sign of NTEs being involved, it can be suggested that increasing mutation levels across generations may result, in part, from NTEs induced by the initial low dose received by the first exposed generation. However, continual accumulation of mutations over generations in their natural contaminated habitats remains a likely contributor into the observed outcome.
Collapse
Affiliation(s)
- Samuel Hancock
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Laila Omar-Nazir
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | | | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0123, Japan
| | - Atsuki Hiyama
- Laboratory of Conservation Ecology, Department of Integrated Science and Engineering for Sustainable Society, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Soo Hyun Byun
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
46
|
Haematological analysis of Japanese macaques (Macaca fuscata) in the area affected by the Fukushima Daiichi Nuclear Power Plant accident. Sci Rep 2018; 8:16748. [PMID: 30425289 PMCID: PMC6233195 DOI: 10.1038/s41598-018-35104-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022] Open
Abstract
Several populations of wild Japanese macaques (Macaca fuscata) inhabit the area around Fukushima Daiichi Nuclear Power Plant (FNPP). To measure and control the size of these populations, macaques are captured annually. Between May 2013 and December 2014, we performed a haematological analysis of Japanese macaques captured within a 40-km radius of FNPP, the location of a nuclear disaster two years post-accident. The dose-rate of radiocaesium was estimated using the ERICA Tool. The median internal dose-rate was 7.6 μGy/day (ranging from 1.8 to 219 μGy/day) and the external dose-rate was 13.9 μGy/day (ranging from 6.7 to 35.1 μGy/day). We performed multiple regression analyses to estimate the dose-rate effects on haematological values in peripheral blood and bone marrow. The white blood cell and platelet counts showed an inverse correlation with the internal dose-rate in mature macaques. Furthermore, the myeloid cell, megakaryocyte, and haematopoietic cell counts were inversely correlated and the occupancy of adipose tissue was positively correlated with internal dose-rate in femoral bone marrow of mature macaques. These relationships suggest that persistent whole body exposure to low-dose-rate radiation affects haematopoiesis in Japanese macaques.
Collapse
|
47
|
Sato I, Sasaki J, Satoh H, Deguchi Y, Chida H, Natsuhori M, Otani K, Okada K. Decreased blood cell counts were not observed in cattle living in the "difficult-to-return zone" of the Fukushima nuclear accident. Anim Sci J 2018; 90:128-134. [PMID: 30358029 PMCID: PMC6587931 DOI: 10.1111/asj.13122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
White blood cells, especially lymphocytes, are susceptible to radiation exposure. In the present study, red blood cell, total white blood cell, and lymphocyte counts were repeatedly measured in cattle living on three farms located in the "difficult-to-return zone" of the Fukushima nuclear accident, and compared with two control groups from unaffected areas. Blood cell counts differed significantly between the two control groups, although almost all the values fell within the normal range. The blood cell counts of the cattle in the "difficult-to-return zone" varied across sampling times even on the same farms, being sometimes higher or lower than either of the two control groups. However, neither a statistically significant decrease in blood cell counts nor an increase in the rate of cattle with extremely low blood cell counts was observed overall. The estimated cumulative exposure dose for the cattle on the most contaminated farm was within a range of 500-1000 mSv, exceeding the threshold for the lymphopenia. Because of the low dose rate on these farms, potential radiation damages would have been repaired and have not accumulated enough to cause deterministic effects.
Collapse
Affiliation(s)
- Itaru Sato
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Jun Sasaki
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hiroshi Satoh
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | - Hiroyuki Chida
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | - Kumiko Otani
- Society for Animal Refugee and Environment post Nuclear Disaster, Tokyo, Japan
| | - Keiji Okada
- Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
48
|
Park J, Ahn HM, Kwon T, Seo S, Park S, Jin YW, Seong KM. Epithelial cell shape change of Drosophila as a biomonitoring model for the dose assessment of environmental radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:292-299. [PMID: 29627413 DOI: 10.1016/j.ecoenv.2018.03.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Inevitable exposure to ionizing radiation from natural and human-made sources has been increasing over time. After nuclear disasters, such as the Fukushima accident, the public concerns on health risk of radiation exposure because of radioactive contamination of the environment have increased. However, it is very difficult to assess the biological effects of exposure caused by environmental radiation. A reliable and rapid bioassay to monitor the physiological effects of radiation exposure is therefore needed. Here, we quantitatively analyzed the changes in cell shape in Drosophila epidermis after irradiation as a model for biomonitoring of radiation. Interestingly, the number of irregularly shaped epithelial cells was increased by irradiation in a dose-dependent manner. A dose-response curve constructed with the obtained data suggests that the measurement of the number of irregular shaped cell in the epidermis is useful for the assessment of radiation dose. In addition, a comparison of the variation in the different samples and the data scored by different observers showed that our evaluation for cellular morphology was highly reliable and accurate and would, therefore, have immense practical application. Overall, our study suggests that detection of morphological changes in the epithelial cells is one of the efficient ways to quantify the levels of exposure to radioactive radiation from the environment.
Collapse
Affiliation(s)
- Jina Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyo Min Ahn
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - TaeWoo Kwon
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Departments of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
49
|
Morelli F, Benedetti Y, Mousseau TA, Møller AP. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:183-190. [PMID: 29778954 DOI: 10.1016/j.jenvman.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 05/24/2023]
Abstract
Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity.
Collapse
Affiliation(s)
- Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic.
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
50
|
Giraudeau M, Bonzom JM, Ducatez S, Beaugelin-Seiller K, Deviche P, Lengagne T, Cavalie I, Camilleri V, Adam-Guillermin C, McGraw KJ. Carotenoid distribution in wild Japanese tree frogs (Hyla japonica) exposed to ionizing radiation in Fukushima. Sci Rep 2018; 8:7438. [PMID: 29743616 PMCID: PMC5943346 DOI: 10.1038/s41598-018-25495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
The nuclear accident in the Fukushima prefecture released a large amount of artificial radionuclides that might have short- and long-term biological effects on wildlife. Ionizing radiation can be a harmful source of reactive oxygen species, and previous studies have already shown reduced fitness effects in exposed animals in Chernobyl. Due to their potential health benefits, carotenoid pigments might be used by animals to limit detrimental effects of ionizing radiation exposure. Here, we examined concentrations of carotenoids in blood (i.e. a snapshot of levels in circulation), liver (endogenous carotenoid reserves), and the vocal sac skin (sexual signal) in relation to the total radiation dose rates absorbed by individual (TDR from 0.2 to 34 µGy/h) Japanese tree frogs (Hyla japonica). We found high within-site variability of TDRs, but no significant effects of the TDR on tissue carotenoid levels, suggesting that carotenoid distribution in amphibians might be less sensitive to ionizing radiation exposure than in other organisms or that the potential deleterious effects of radiation exposure might be less significant or more difficult to detect in Fukushima than in Chernobyl due to, among other things, differences in the abundance and mixture of each radionuclide.
Collapse
Affiliation(s)
- Mathieu Giraudeau
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA.
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK.
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France.
| | - Simon Ducatez
- School of Biological Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Karine Beaugelin-Seiller
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Pierre Deviche
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Thierry Lengagne
- Université de Lyon 1, CNRS, UMR 5023, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Bât. Darwin C, F-69622, Villeurbanne Cedex, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, 13115, Saint Paul Lez Durance, France
| | - Kevin J McGraw
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| |
Collapse
|