1
|
Zhang S, Sun C. Ecological divergence of marine bacteria Alteromonas mediterranea. Mol Phylogenet Evol 2025; 208:108359. [PMID: 40262702 DOI: 10.1016/j.ympev.2025.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
Alteromonas mediterranea, originally designated as A. macleodii, is a deep-sea ecotype that plays an important ecological role in the ocean. However, a comprehensive understanding of their biogeographic distribution and evolutionary histories remains limited. In this study, our analysis indicated that A. mediterranea members could adapt contrasting marine ecosystems and flourish in nutrient-rich habitats such as feces and coral reefs. No significant correlations between the relative abundance of A. mediterranea members and the environmental variables were identified. Phylogenetic analysis and geographic patterns of A. mediterranea strains suggested that they could be clustered into two clades (clade Ⅰ and clade Ⅱ). In contrast, many distinct genomic traits exist between these clades, such as the complete genes encoding cytochrome o ubiquinol oxidase only involved in clade Ⅱ. Genes were more likely to be lost in the evolutionary history of A. mediterranea relatives. Gene loss might be a major force in all phylogenetic groups driving the distinct clades. Adaptation to different biotopes resulted in the functional differentiation of A. mediterranea members, with the loss of genes encoding carbohydrate-active enzymes. Genes acquired horizontally from unclassified bacteria, and Proteobacteria represented by Gammaproteobacteria played key roles in the functional diversification of A. mediterranea in marine habitats. Given these data, these results are useful for information supplementation of A. mediterranea strains, particularly for making significant advances in understanding marine microbial ecology within different clonal frames using genome-wide recruitments.
Collapse
Affiliation(s)
- Shuangfei Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan 570228, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| | - Chongran Sun
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of Life and Health, Hainan University, Haikou, Hainan 570228, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
2
|
Sher D, George EE, Wietz M, Gifford S, Zoccarato L, Weissberg O, Koedooder C, Valiya Kalladi WB, Barreto Filho MM, Mireles R, Malavin S, Liddor Naim M, Idan T, Shrivastava V, Itelson L, Sade D, Abu Hamoud A, Soussan-Farhat Y, Barak N, Karp P, Moore LR. Collaborative metabolic curation of an emerging model marine bacterium, Alteromonas macleodii ATCC 27126. PLoS One 2025; 20:e0321141. [PMID: 40273159 PMCID: PMC12021255 DOI: 10.1371/journal.pone.0321141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/28/2025] [Indexed: 04/26/2025] Open
Abstract
Inferring the metabolic capabilities of an organism from its genome is a challenging process, relying on computationally-derived or manually curated metabolic networks. Manual curation can correct mistakes in the draft network and add missing reactions based on the literature, but requires significant expertise and is often the bottleneck for high-quality metabolic reconstructions. Here, we present a synopsis of a community curation workshop for the model marine bacterium Alteromonas macleodii ATCC 27126 and its genome database in BioCyc, focusing on pathways for utilizing organic carbon and nitrogen sources. Due to the scarcity of biochemical information or gene knock-outs, the curation process relied primarily on published growth phenotypes and bioinformatic analyses, including comparisons with related Alteromonas strains. We report full pathways for the utilization of the algal polysaccharides alginate and pectin in contrast to inconclusive evidence for one-carbon metabolism and mixed acid fermentation, in accordance with the lack of growth on methanol and formate. Pathways for amino acid degradation are ubiquitous across Alteromonas macleodii strains, yet enzymes in the pathways for the degradation of threonine, tryptophan and tyrosine were not identified. Nucleotide degradation pathways are also partial in ATCC 27126. We postulate that demonstrated growth on nitrate as sole nitrogen source proceeds via a nitrate reductase pathway that is a hybrid of known pathways. Our evidence highlights the value of joint and interactive curation efforts, but also shows major knowledge gaps regarding Alteromonas metabolism. The manually-curated metabolic reconstruction is available as a "Tier-2" database on BioCyc.
Collapse
Affiliation(s)
- Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Emma E. George
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, United States of America
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Scott Gifford
- Department of Earth, Marine and Environmental Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Luca Zoccarato
- Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Bioinformatics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Osnat Weissberg
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | | | | | - Raul Mireles
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel,
| | - Stas Malavin
- Israel Oceanographic and Limnological Research, Haifa, Israel
- Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Beer-Sheba, Israel
| | - Michal Liddor Naim
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Idan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Vibhaw Shrivastava
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Lynne Itelson
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Dagan Sade
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Alhan Abu Hamoud
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Yara Soussan-Farhat
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Noga Barak
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Peter Karp
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| | - Lisa R. Moore
- Bioinformatics Research Group, SRI International, Menlo Park, California, United States of America.
| |
Collapse
|
3
|
Zaragoza-Solas A, Baltar F. Ayu: a machine intelligence tool for identification of extracellular proteins in the marine secretome. Nat Commun 2025; 16:2793. [PMID: 40118827 PMCID: PMC11928666 DOI: 10.1038/s41467-025-57974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/03/2025] [Indexed: 03/24/2025] Open
Abstract
Microbes are the engines driving the elemental cycles. In order to interact with their environment and the community, microbes secrete proteins into the environment (known collectively as the secretome), where they remain active for prolonged periods of time. Despite the environmental relevance of microbes, our knowledge of the marine secretome remains limited due to a lack of effective in silico methods for the study of secreted proteins. An alternative approach to characterise the secretome is to combine modern machine learning tools with the evolutionary adaptation changes of the proteome to the marine environment. In this study, we identify and describe adaptations of marine extracellular proteins, which vary between phyla, resulting in differences in ATP costs, amino acid composition and nitrogen and sulphur content. We develop 'Ayu', a machine prediction tool that does not employ homology-based predictors and achieves better and quicker performance than current state-of-the-art software. When applied to oceanic samples (Tara Oceans dataset), our method was able to recover more than double the proteins compared to the most widely used method to identify secreted proteins. The application of this tool to open ocean samples allows better characterisation of the composition of the marine secretome.
Collapse
Affiliation(s)
- Asier Zaragoza-Solas
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassi-platz 1, 1030, Vienna, Austria.
| | - Federico Baltar
- Fungal and Biogeochemical Oceanography Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassi-platz 1, 1030, Vienna, Austria.
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Yu C, Yu M, Ma R, Wei S, Jin M, Jiao N, Zheng Q, Zhang R, Feng X. A novel Alteromonas phage with tail fiber containing six potential iron-binding domains. Microbiol Spectr 2025; 13:e0093424. [PMID: 39565130 PMCID: PMC11705849 DOI: 10.1128/spectrum.00934-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024] Open
Abstract
Viruses play a vital role in regulating microbial communities, contributing to biogeochemical cycles of carbon, nitrogen, and essential metals. Alteromonas is widespread and plays an essential role in marine microbial ecology. However, there is limited knowledge about the interactions of Alteromonas and its viruses (alterophages). This study isolated a novel podovirus, vB_AmeP-R22Y (R22Y), which infects Alteromonas marina SW-47 (T). Phylogenetic analysis suggested that R22Y represented a novel viral genus within the Schitoviridae family. R22Y exhibited a broad host range and a relatively large burst size, exerting an important impact on the adaptability and dynamics of host populations. Two auxiliary metabolic genes, encoding Acyl carrier protein and AAA domain-containing protein, were predicted in R22Y, which may potentially assist in host fatty acid metabolism and VB12 biosynthesis, respectively. Remarkably, the prediction of the R22Y tail fiber structure revealed six conserved histidine residues (HxH motifs) that could potentially bind iron ions, suggesting that alterophages may function as organic iron-binding ligands in the marine environment. Our isolation and characterization of R22Y complements the Trojan Horse hypothesis, proposes the possible role of alterophages for marine iron biogeochemical cycling, and provides new insights into phage-host interactions in the iron-limited ocean.IMPORTANCEIron (Fe), as an essential micronutrient, is often a limiting factor for microbial growth in marine ecosystems. The Trojan Horse hypothesis suggests that iron in the phage tail fibers is recognized by the host's siderophore-bound iron receptor, enabling the phage to attach and initiate infection. The potential role of phages as iron-binding ligands has significant implications for oceanic trace metal biogeochemistry. In this study, we isolated a new phage R22Y with the potential to bind iron ions, using Alteromonas, a major siderophore producer, as the host. The tail fiber structure of R22Y exhibits six conserved HxH motifs, suggesting that each phage could potentially bind up to 36 iron ions. R22Y may contribute to colloidal organically complexed dissolved iron in the marine environment. This finding provides further insights into the Trojan Horse hypothesis, suggesting that alterophages may act as natural iron-binding ligands in the marine environment.
Collapse
Affiliation(s)
- Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meishun Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ruijie Ma
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Shuzhen Wei
- School of Ocean and Earth Science, Tongji University, Shanghai, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xuejin Feng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
5
|
Rodriguez-Valera F, Bellas C. How Viruses Shape Microbial Plankton Microdiversity. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:561-576. [PMID: 38950433 DOI: 10.1146/annurev-marine-040623-090847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
One major conundrum of modern microbiology is the large pangenome (gene pool) present in microbes, which is much larger than those found in complex organisms such as humans. Here, we argue that this diversity of gene pools carried by different strains is maintained largely due to the control exercised by viral predation. Viruses maintain a high strain diversity through time that we describe as constant-diversity equilibrium, preventing the hoarding of resources by specific clones. Thus, viruses facilitate the release and degradation of dissolved organic matter in the ocean, which may lead to better ecosystem functioning by linking top-down to bottom-up control. By maintaining this equilibrium, viruses act as a key element of the adaptation of marine microbes to their environment and likely behave as a single evolutionary unit.
Collapse
Affiliation(s)
- Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain;
| | | |
Collapse
|
6
|
Skliros D, Kostakou M, Kokkari C, Tsertou MI, Pavloudi C, Zafeiropoulos H, Katharios P, Flemetakis E. Unveiling Emerging Opportunistic Fish Pathogens in Aquaculture: A Comprehensive Seasonal Study of Microbial Composition in Mediterranean Fish Hatcheries. Microorganisms 2024; 12:2281. [PMID: 39597671 PMCID: PMC11596916 DOI: 10.3390/microorganisms12112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The importance of microbial communities in fish hatcheries for fish health and welfare has been recognized, with several studies mapping these communities during healthy rearing conditions and disease outbreaks. In this study, we analyzed the bacteriome of the live feeds, such as microalgae, rotifers, and Artemia, used in fish hatcheries that produce Mediterranean species. Our goal was to provide baseline information about their structure, emphasizing in environmental putative fish pathogenic bacteria. We conducted 16S rRNA amplicon Novaseq sequencing for our analysis, and we inferred 46,745 taxonomically annotated ASVs. Results showed that incoming environmental water plays a significant role in the presence of important taxa that constitute presumptive pathogens. Bio-statistical analyses revealed a relatively stable bacteriome among seasonal samplings for every hatchery but a diverse bacteriome between sampling stations and a distinct core bacteriome for each hatchery. Analysis of putative opportunistic fish pathogenic genera revealed some co-occurrence correlation events and a high average relative abundance of Vibrio, Tenacibaculum, and Photobacterium genera in live feeds, reaching a grand mean average of up to 7.3% for the hatchery of the Hellenic Center of Marine Research (HCMR), 12% for Hatchery A, and 11.5% for Hatchery B. Mapping the bacteriome in live feeds is pivotal for understanding the marine environment and distinct aquaculture practices and can guide improvements in hatchery management, enhancing fish health and sustainability in the Mediterranean region.
Collapse
Affiliation(s)
- Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.)
| | - Maria Kostakou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.)
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (C.K.); (M.I.T.); (P.K.)
| | - Maria Ioanna Tsertou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (C.K.); (M.I.T.); (P.K.)
| | - Christina Pavloudi
- European Marine Biological Resource Centre—European Research Infrastructure Consortium (EMBRC-ERIC), 75252 Paris, France;
| | - Haris Zafeiropoulos
- Laboratory of Molecular Bacteriology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium;
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71500 Heraklion, Greece; (C.K.); (M.I.T.); (P.K.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (D.S.)
| |
Collapse
|
7
|
Veseli I, DeMers MA, Cooper ZS, Schechter MS, Miller S, Weber L, Smith CB, Rodriguez LT, Schroer WF, McIlvin MR, Lopez PZ, Saito M, Dyhrman S, Eren AM, Moran MA, Braakman R. Digital Microbe: a genome-informed data integration framework for team science on emerging model organisms. Sci Data 2024; 11:967. [PMID: 39232008 PMCID: PMC11374999 DOI: 10.1038/s41597-024-03778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024] Open
Abstract
The remarkable pace of genomic data generation is rapidly transforming our understanding of life at the micron scale. Yet this data stream also creates challenges for team science. A single microbe can have multiple versions of genome architecture, functional gene annotations, and gene identifiers; additionally, the lack of mechanisms for collating and preserving advances in this knowledge raises barriers to community coalescence around shared datasets. "Digital Microbes" are frameworks for interoperable and reproducible collaborative science through open source, community-curated data packages built on a (pan)genomic foundation. Housed within an integrative software environment, Digital Microbes ensure real-time alignment of research efforts for collaborative teams and facilitate novel scientific insights as new layers of data are added. Here we describe two Digital Microbes: 1) the heterotrophic marine bacterium Ruegeria pomeroyi DSS-3 with > 100 transcriptomic datasets from lab and field studies, and 2) the pangenome of the cosmopolitan marine heterotroph Alteromonas containing 339 genomes. Examples demonstrate how an integrated framework collating public (pan)genome-informed data can generate novel and reproducible findings.
Collapse
Affiliation(s)
- Iva Veseli
- Helmholtz Institute for Functional Marine Biodiversity, 26129, Oldenburg, Germany
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Michelle A DeMers
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary S Cooper
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Matthew S Schechter
- Committee on Microbiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Samuel Miller
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Laura Weber
- Woods Hole Oceanographic Institution, Falmouth, MA, 02543, USA
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Lidimarie T Rodriguez
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0180, USA
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA
| | | | - Paloma Z Lopez
- Woods Hole Oceanographic Institution, Falmouth, MA, 02543, USA
| | - Makoto Saito
- Woods Hole Oceanographic Institution, Falmouth, MA, 02543, USA
| | - Sonya Dyhrman
- Lamont-Doherty Earth Observatory, and the Department of Earth and Environmental Sciences, Columbia University, New York, NY, 10032, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, 26129, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany.
- Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Marine 'Omics Bridging Group, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany.
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Rogier Braakman
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Li X, Cheng X, Xu J, Wu J, Chan LL, Cai Z, Zhou J. Dynamic patterns of carbohydrate metabolism genes in bacterioplankton during marine algal blooms. Microbiol Res 2024; 286:127785. [PMID: 38851011 DOI: 10.1016/j.micres.2024.127785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.
Collapse
Affiliation(s)
- Xinyang Li
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Xueyu Cheng
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Junjie Xu
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jiajun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhonghua Cai
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China
| | - Jin Zhou
- Marine Ecology and Human Factors Assessment Technical Innovation Center of Natural Resources Ministry, Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong Province 518055, PR China.
| |
Collapse
|
9
|
Bandekar M, More KD, Seleyi SC, Ramaiah N, Kekäläinen J, Akkanen J. Comparative analysis of microbiome inhabiting oxygenated and deoxygenated habitats using V3 and V6 metabarcoding of 16S rRNA gene. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106615. [PMID: 38941665 DOI: 10.1016/j.marenvres.2024.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
We examine how oxygen levels and the choice of 16S ribosomal RNA (rRNA) tags impact marine bacterial communities using Next-Generation amplicon sequencing. Analyzing V3 and V6 regions, we assess microbial composition in both Oxygen minimum zones (OMZ) and non-OMZ (NOMZ) areas in the Arabian Sea (AS) and the Central Indian Ocean basin (CIOB) respectively. Operational taxonomic units (OTUs) at 97% similarity showed slightly higher richness and diversity with V6 compared to V3. Vertical diversity patterns were consistent across both regions. NOMZ showed greater richness and diversity than OMZ. AS and CIOB exhibited significant differences in bacterial community, diversity, and relative abundance at the order and family levels. Alteromonadaceae dominated the OMZ, while Pelagibacteraceae dominated the NOMZ. Synechococcaceae were found exclusively at 250 m in OMZ. Bacteria putatively involved in nitrification, denitrification, and sulfurylation were detected at both sites. Dissolved oxygen significantly influenced microbial diversity at both sites, while seasonal environmental parameters affected diversity consistently, with no observed temporal variation.
Collapse
Affiliation(s)
- Mandar Bandekar
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Kuopio, Finland; Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Kuldeep D More
- Business Development Group, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Seyieleno C Seleyi
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences, Chennai, India
| | - Nagappa Ramaiah
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Kuopio, Finland
| | - Jarkko Akkanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Kuopio, Finland
| |
Collapse
|
10
|
Harrison SJ, Malkin SY, Joye SB. Dispersant addition, but not nutrients, stimulated blooms of multiple hydrocarbonoclastic genera in nutrient-replete coastal marine surface waters. MARINE POLLUTION BULLETIN 2024; 204:116490. [PMID: 38843703 DOI: 10.1016/j.marpolbul.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.
Collapse
Affiliation(s)
- Sarah J Harrison
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sairah Y Malkin
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Isaac A, Mohamed AR, Amin SA. Rhodobacteraceae are key players in microbiome assembly of the diatom Asterionellopsis glacialis. Appl Environ Microbiol 2024; 90:e0057024. [PMID: 38809046 PMCID: PMC11218658 DOI: 10.1128/aem.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024] Open
Abstract
The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom Asterionellopsis glacialis. We introduced a diverse environmental bacterial community to A. glacialis in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria (Coleofasciculaceae) and Rhodobacteraceae dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family Rhodobacteraceae, particularly Sulfitobacter amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, Sulfitobacter species and other Rhodobacteraceae developed positive associations with taxa that are typically in high abundance in marine ecosystems (Pelagibacter and Synechococcus), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of Rhodobacteraceae, not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly. IMPORTANCE Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.
Collapse
Affiliation(s)
- Ashley Isaac
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Amin R. Mohamed
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Shady A. Amin
- Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Goux M, Demonceaux M, Hendrickx J, Solleux C, Lormeau E, Fredslund F, Tezé D, Offmann B, André-Miral C. Sucrose phosphorylase from Alteromonas mediterranea: Structural insight into the regioselective α-glucosylation of (+)-catechin. Biochimie 2024; 221:13-19. [PMID: 38199518 DOI: 10.1016/j.biochi.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Sucrose phosphorylases, through transglycosylation reactions, are interesting enzymes that can transfer regioselectively glucose from sucrose, the donor substrate, onto acceptors like flavonoids to form glycoconjugates and hence modulate their solubility and bioactivity. Here, we report for the first time the structure of sucrose phosphorylase from the marine bacteria Alteromonas mediterranea (AmSP) and its enzymatic properties. Kinetics of sucrose hydrolysis and transglucosylation capacities on (+)-catechin were investigated. Wild-type enzyme (AmSP-WT) displayed high hydrolytic activity on sucrose and was devoid of transglucosylation activity on (+)-catechin. Two variants, AmSP-Q353F and AmSP-P140D catalysed the regiospecific transglucosylation of (+)-catechin: 89 % of a novel compound (+)-catechin-4'-O-α-d-glucopyranoside (CAT-4') for AmSP-P140D and 92 % of (+)-catechin-3'-O-α-d-glucopyranoside (CAT-3') for AmSP-Q353F. The compound CAT-4' was fully characterized by NMR and mass spectrometry. An explanation for this difference in regiospecificity was provided at atomic level by molecular docking simulations: AmSP-P140D was found to preferentially bind (+)-catechin in a mode that favours glucosylation on its hydroxyl group in position 4' while the binding mode in AmSP-Q353F favoured glucosylation on its hydroxyl group in position 3'.
Collapse
Affiliation(s)
- Marine Goux
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - Marie Demonceaux
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - Johann Hendrickx
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - Claude Solleux
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - Emilie Lormeau
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France
| | - Folmer Fredslund
- DTU Biosustain, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - David Tezé
- DTU Biosustain, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Bernard Offmann
- Nantes Université, CNRS, US2B, UMR 6286, F-44000, Nantes, France.
| | | |
Collapse
|
13
|
Weatherup EF, Videau P, Ushijima B. Genome sequence of Alteromonas macleodii strain OCN004 isolated from the extracellular mucus of an apparently healthy rice coral ( Montipora capitata). Microbiol Resour Announc 2024; 13:e0007924. [PMID: 38393331 PMCID: PMC11008196 DOI: 10.1128/mra.00079-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Alteromonas macleodii strain OCN004, a marine gammaproteobacterium in the Alteromonadaceae family, has primarily been studied as a non-pathogenic negative control bacterium during laboratory infection trials to test the virulence of bacterial coral pathogens. The draft genome sequence of A. macleodii strain OCN004 is presented here.
Collapse
Affiliation(s)
- Elizabeth F. Weatherup
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, Oregon, USA
| | - Blake Ushijima
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
14
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
15
|
Chen Q, Lønborg C, Chen F, Zhang R, Cai R, Li Y, He C, Shi Q, Jiao N, Zheng Q. Bottom-up and top-down controls on Alteromonas macleodii lead to different dissolved organic matter compositions. ISME COMMUNICATIONS 2024; 4:ycae010. [PMID: 38469454 PMCID: PMC10926778 DOI: 10.1093/ismeco/ycae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
The effects of both bottom-up (e.g. substrate) and top-down (e.g. viral lysis) controls on the molecular composition of dissolved organic matter have not been investigated. In this study, we investigated the dissolved organic matter composition of the model bacterium Alteromonas macleodii ATCC 27126 growing on different substrates (glucose, laminarin, extracts from a Synechococcus culture, oligotrophic seawater, and eutrophic seawater), and infected with a lytic phage. The ultra-high resolution mass spectrometry analysis showed that when growing on different substrates Alteromonas macleodii preferred to use reduced, saturated nitrogen-containing molecules (i.e. O4 formula species) and released or preserved oxidized, unsaturated sulfur-containing molecules (i.e. O7 formula species). However, when infected with the lytic phage, Alteromonas macleodii produced organic molecules with higher hydrogen saturation, and more nitrogen- or sulfur-containing molecules. Our results demonstrate that bottom-up (i.e. varying substrates) and top-down (i.e. viral lysis) controls leave different molecular fingerprints in the produced dissolved organic matter.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Christian Lønborg
- Section for Marine Diversity and Experimental Ecology, Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, United States
| | - Rui Zhang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Ruanhong Cai
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Yunyun Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
16
|
Liu L, Zhong KX, Chen Q, Wang Y, Zhang T, Jiao N, Zheng Q. Selective cell lysis pressure on rare and abundant prokaryotic taxa across a shelf-to-slope continuum in the Northern South China Sea. Appl Environ Microbiol 2023; 89:e0139323. [PMID: 38014961 PMCID: PMC10734510 DOI: 10.1128/aem.01393-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Virus-induced host lysis contributes up to 40% of total prokaryotic mortality and plays crucial roles in shaping microbial composition and diversity in the ocean. Nonetheless, what taxon-specific cell lysis is caused by viruses remains to be studied. The present study, therefore, examined the taxon-specific cell lysis and estimated its contribution to the variations in the rare and abundant microbial taxa. The results demonstrate that taxon-specific mortality differed in surface and bottom of the coastal environment. In addition, active rare taxa are more susceptible to heightened lytic pressure and suggested the importance of viral lysis in regulating the microbial community composition. These results improve our understanding of bottom-up (abiotic environmental variables) and top-down (viral lysis) controls contributing to microbial community assembly in the ocean.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kevin Xu Zhong
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Qi Chen
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Yu Wang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Ting Zhang
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Qiang Zheng
- State Key Laboratory for Marine Environmental Science, Institute of Marine Microbes and Ecospheres, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Chen B, Yu K, Fu L, Wei Y, Liang J, Liao Z, Qin Z, Yu X, Deng C, Han M, Ma H. The diversity, community dynamics, and interactions of the microbiome in the world's deepest blue hole: insights into extreme environmental response patterns and tolerance of marine microorganisms. Microbiol Spectr 2023; 11:e0053123. [PMID: 37861344 PMCID: PMC10883803 DOI: 10.1128/spectrum.00531-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE This study comprehensively examined the community dynamics, functional profiles, and interactions of the microbiome in the world's deepest blue hole. The findings revealed a positive correlation between the α-diversities of Symbiodiniaceae and archaea, indicating the potential reliance of Symbiodiniaceae on archaea in an extreme environment resulting from a partial niche overlap. The negative association between the α-diversity and β-diversity of the bacterial community suggested that the change rule of the bacterial community was consistent with the Anna Karenina effects. The core microbiome comprised nine microbial taxa, highlighting their remarkable tolerance and adaptability to sharp environmental gradient variations. Bacteria and archaea played significant roles in carbon, nitrogen, and sulfur cycles, while fungi contributed to carbon metabolism. This study advanced our understanding of the community dynamics, response patterns, and resilience of microorganisms populating the world's deepest blue hole, thereby facilitating further ecological and evolutional exploration of microbiomes in diverse extreme environments.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd. , Qionghai, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University , Nanning, China
| | - Honglin Ma
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University , Nanning, China
| |
Collapse
|
18
|
Sanz-Sáez I, Sánchez P, Salazar G, Sunagawa S, de Vargas C, Bowler C, Sullivan MB, Wincker P, Karsenti E, Pedrós-Alió C, Agustí S, Gojobori T, Duarte CM, Gasol JM, Sánchez O, Acinas SG. Top abundant deep ocean heterotrophic bacteria can be retrieved by cultivation. ISME COMMUNICATIONS 2023; 3:92. [PMID: 37660234 PMCID: PMC10475052 DOI: 10.1038/s43705-023-00290-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Traditional culture techniques usually retrieve a small fraction of the marine microbial diversity, which mainly belong to the so-called rare biosphere. However, this paradigm has not been fully tested at a broad scale, especially in the deep ocean. Here, we examined the fraction of heterotrophic bacterial communities in photic and deep ocean layers that could be recovered by culture-dependent techniques at a large scale. We compared 16S rRNA gene sequences from a collection of 2003 cultured heterotrophic marine bacteria with global 16S rRNA metabarcoding datasets (16S TAGs) covering surface, mesopelagic and bathypelagic ocean samples that included 16 of the 23 samples used for isolation. These global datasets represent 60 322 unique 16S amplicon sequence variants (ASVs). Our results reveal a significantly higher proportion of isolates identical to ASVs in deeper ocean layers reaching up to 28% of the 16S TAGs of the bathypelagic microbial communities, which included the isolation of 3 of the top 10 most abundant 16S ASVs in the global bathypelagic ocean, related to the genera Sulfitobacter, Halomonas and Erythrobacter. These isolates contributed differently to the prokaryotic communities across different plankton size fractions, recruiting between 38% in the free-living fraction (0.2-0.8 µm) and up to 45% in the largest particles (20-200 µm) in the bathypelagic ocean. Our findings support the hypothesis that sinking particles in the bathypelagic act as resource-rich habitats, suitable for the growth of heterotrophic bacteria with a copiotroph lifestyle that can be cultured, and that these cultivable bacteria can also thrive as free-living bacteria.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain.
| | - Pablo Sánchez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Colomban de Vargas
- Sorbonne University, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, Roscoff, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental and Geodetic Engineering; The Ohio State University, Columbus, OH, 43210, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, 91000, Evry, France
| | - Eric Karsenti
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale supérieure, CNRS, INSERM, PSL Université Paris, 75005, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016, Paris, France
- Directors' Research European Molecular Biology Laboratory, 69117, Heidelberg, Germany
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Susana Agustí
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, 08003, Barcelona, Spain.
| |
Collapse
|
19
|
Doane MP, Johnson CJ, Johri S, Kerr EN, Morris MM, Desantiago R, Turnlund AC, Goodman A, Mora M, Lima LFO, Nosal AP, Dinsdale EA. The Epidermal Microbiome Within an Aggregation of Leopard Sharks (Triakis semifasciata) Has Taxonomic Flexibility with Gene Functional Stability Across Three Time-points. MICROBIAL ECOLOGY 2023; 85:747-764. [PMID: 35129649 PMCID: PMC9957878 DOI: 10.1007/s00248-022-01969-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/17/2022] [Indexed: 05/06/2023]
Abstract
The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of the Triakis semifasciata (leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray-Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, including Pseudomonas, Erythrobacter, Alcanivorax, Marinobacter, and Sphingopxis being consistently abundant across time-points, while Limnobacter and Xyella exhibited switching patterns with high relative abundance in 2013, Sphingobium and Sphingomona in 2015, and Altermonas, Leeuwenhoekiella, Gramella, and Maribacter in 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray-Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.
Collapse
Affiliation(s)
- Michael P. Doane
- College of Science and Engineering, Flinders University, Bedford Park, South Australia Australia
| | - Colton J. Johnson
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Shaili Johri
- Hopkins Marine Station, Stanford University, Pacific Grove, CA USA
| | - Emma N. Kerr
- College of Science and Engineering, Flinders University, Bedford Park, South Australia Australia
| | | | - Ric Desantiago
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Abigail C. Turnlund
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD Australia
| | - Asha Goodman
- Department of Biology, San Diego State University, San Diego, CA USA
| | - Maria Mora
- Department of Biology, San Diego State University, San Diego, CA USA
| | | | - Andrew P. Nosal
- Department of Environmental and Ocean Sciences, University of San Diego, San Diego, CA USA
- Scripps Institution of Oceanography, University of California – San Diego, CA La Jolla, USA
| | | |
Collapse
|
20
|
Gautam P, Cusick KD. Development of a real-time quantitative PCR assay for detection and quantification of the marine bacterium Alteromonas macleodii from coastal environments. J Microbiol Methods 2023; 204:106629. [PMID: 36460091 DOI: 10.1016/j.mimet.2022.106629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Alteromonas macleodii is a ubiquitous marine bacterial species found in a variety of habitats that displays both planktonic and particle-associated lifestyles. Transcriptomic studies demonstrate that, even when present at low abundance, it can make significant contributions to biogeochemical cycles, and its specific association with key marine phytoplankton species indicates other ecological roles as well. It has also been shown to be one of the early colonizers of copper-treated marine vessels. There currently exist no rapid, reliable molecular assays for the detection and quantification of A. macleodii from its different environments. We developed a real-time PCR assay, specific to A. macleodii. This assay targets the DNA gyrase B subunit (gyrB) gene, which occurs as a single copy in the genome. The assay possesses an amplification efficiency of 94.3%, with a limit of detection of 2.5 gyrB copies per μL. Assay specificity was validated by melt curve analysis, followed by sequencing of the amplified product. The assay was specific to thirteen A. macleodii strains and did not amplify other marine bacteria, including Roseobacter denitrificans, Silicibacter sp. TM1040, Vibrio coralliilyticus, Vibrio harveyi, and Vibrio alginolyticus. It also did not amplify Alteromonas mediterranea, a close relative that can occur in the same environment as A. macleodii. This assay was used to determine the presence and abundance of A. macleodii from a range of coastal habitats. The assay was also used to monitor the A. macleodii growth in biofilm and planktonic cultures over time in the presence of elevated copper. This assay provides a rapid and reliable means to assess the presence and abundance of a ubiquitous marine bacterium that, even at low abundance, has been shown to make significant contributions to key marine processes.
Collapse
Affiliation(s)
- Pratima Gautam
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21225, USA
| | - Kathleen D Cusick
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21225, USA.
| |
Collapse
|
21
|
Fadeev E, Carpaneto Bastos C, Hennenfeind JH, Biller SJ, Sher D, Wietz M, Herndl GJ. Characterization of membrane vesicles in Alteromonas macleodii indicates potential roles in their copiotrophic lifestyle. MICROLIFE 2022; 4:uqac025. [PMID: 37223730 PMCID: PMC10117737 DOI: 10.1093/femsml/uqac025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 05/25/2023]
Abstract
Bacterial membrane vesicles (MVs) are abundant in the oceans, but their potential functional roles remain unclear. In this study we characterized MV production and protein content of six strains of Alteromonas macleodii, a cosmopolitan marine bacterium. Alteromonas macleodii strains varied in their MV production rates, with some releasing up to 30 MVs per cell per generation. Microscopy imaging revealed heterogenous MV morphologies, including some MVs aggregated within larger membrane structures. Proteomic characterization revealed that A. macleodii MVs are rich in membrane proteins related to iron and phosphate uptake, as well as proteins with potential functions in biofilm formation. Furthermore, MVs harbored ectoenzymes, such as aminopeptidases and alkaline phosphatases, which comprised up to 20% of the total extracellular enzymatic activity. Our results suggest that A. macleodii MVs may support its growth through generation of extracellular 'hotspots' that facilitate access to essential substrates. This study provides an important basis to decipher the ecological relevance of MVs in heterotrophic marine bacteria.
Collapse
Affiliation(s)
- Eduard Fadeev
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Cécile Carpaneto Bastos
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jennifer H Hennenfeind
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Steven J Biller
- Department of Biological Sciences, Wellesley College, Central Street 106, MA 02481, Wellesley, United States
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Aba Khoushy Ave. 199, 3498838 Haifa, Israel
| | - Matthias Wietz
- Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
| | - Gerhard J Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht University,1790 AB Den Burg, The Netherlands
- Vienna Metabolomics & Proteomics Center, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
22
|
Pontiller B, Martínez-García S, Joglar V, Amnebrink D, Pérez-Martínez C, González JM, Lundin D, Fernández E, Teira E, Pinhassi J. Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system. THE ISME JOURNAL 2022; 16:2360-2372. [PMID: 35804052 PMCID: PMC9478159 DOI: 10.1038/s41396-022-01273-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Coastal upwelling zones are hotspots of oceanic productivity, driven by phytoplankton photosynthesis. Bacteria, in turn, grow on and are the principal remineralizers of dissolved organic matter (DOM) produced in aquatic ecosystems. However, the molecular processes that key bacterial taxa employ to regulate the turnover of phytoplankton-derived DOM are not well understood. We therefore carried out comparative time-series metatranscriptome analyses of bacterioplankton in the Northwest Iberian upwelling system, using parallel sampling of seawater and mesocosms with in situ-like conditions. The mesocosm experiment uncovered a taxon-specific progression of transcriptional responses from bloom development (characterized by a diverse set of taxa in the orders Cellvibrionales, Rhodobacterales, and Pelagibacterales), over early decay (mainly taxa in the Alteromonadales and Flavobacteriales), to senescence phases (Flavobacteriales and Saprospirales taxa). Pronounced order-specific differences in the transcription of glycoside hydrolases, peptidases, and transporters were found, supporting that functional resource partitioning is dynamically structured by temporal changes in available DOM. In addition, comparative analysis of mesocosm and field samples revealed a high degree of metabolic plasticity in the degradation and uptake of carbohydrates and nitrogen-rich compounds, suggesting these gene systems critically contribute to modulating the stoichiometry of the labile DOM pool. Our findings suggest that cascades of transcriptional responses in gene systems for the utilization of organic matter and nutrients largely shape the fate of organic matter on the time scales typical of upwelling-driven phytoplankton blooms.
Collapse
|
23
|
Arandia-Gorostidi N, Berthelot H, Calabrese F, Stryhanyuk H, Klawonn I, Iversen M, Nahar N, Grossart HP, Ploug H, Musat N. Efficient carbon and nitrogen transfer from marine diatom aggregates to colonizing bacterial groups. Sci Rep 2022; 12:14949. [PMID: 36056039 PMCID: PMC9440002 DOI: 10.1038/s41598-022-18915-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial degradation of sinking diatom aggregates is key for the availability of organic matter in the deep-ocean. Yet, little is known about the impact of aggregate colonization by different bacterial taxa on organic carbon and nutrient cycling within aggregates. Here, we tracked the carbon (C) and nitrogen (N) transfer from the diatom Leptocylindrus danicus to different environmental bacterial groups using a combination of 13C and 15N isotope incubation (incubated for 72 h), CARD-FISH and nanoSIMS single-cell analysis. Pseudoalteromonas bacterial group was the first colonizing diatom-aggregates, succeeded by the Alteromonas group. Within aggregates, diatom-attached bacteria were considerably more enriched in 13C and 15N than non-attached bacteria. Isotopic mass balance budget indicates that both groups showed comparable levels of diatom C in their biomass, accounting for 19 ± 7% and 15 ± 11%, respectively. In contrast to C, bacteria of the Alteromonas groups showed significantly higher levels of N derived from diatoms (77 ± 28%) than Pseudoalteromonas (47 ± 17%), suggesting a competitive advantage for Alteromonas in the N-limiting environments of the deep-sea. Our results imply that bacterial succession within diatom aggregates may largely impact taxa-specific C and N uptake, which may have important consequences for the quantity and quality of organic matter exported to the deep ocean.
Collapse
Affiliation(s)
- Nestor Arandia-Gorostidi
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany.
- Department of Earth System Science, Stanford University, Green Earth Sciences Building, 367 Panama St., Room 129, Stanford, CA, 94305-4216, USA.
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Hugo Berthelot
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Brest, France
- IFREMER, DYNECO, Pelagos Laboratory, Plouzané, France
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
- Department of Organismic and Evolutionary BiologyBiological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Isabell Klawonn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691, Stockholm, Sweden
- Leibniz Institute for Baltic Sea Research (IOW), Rostock, Germany
| | - Morten Iversen
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Marum and University of Bremen, Bremen, Germany
| | - Nurun Nahar
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530, Gothenburg, Sweden
| | - Hans-Peter Grossart
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Department Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin/Stechlin, Germany
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
24
|
Mars Brisbin M, Mitarai S, Saito MA, Alexander H. Microbiomes of bloom-forming Phaeocystis algae are stable and consistently recruited, with both symbiotic and opportunistic modes. THE ISME JOURNAL 2022; 16:2255-2264. [PMID: 35764675 PMCID: PMC9381791 DOI: 10.1038/s41396-022-01263-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 05/29/2023]
Abstract
Phaeocystis is a cosmopolitan, bloom-forming phytoplankton genus that contributes significantly to global carbon and sulfur cycles. During blooms, Phaeocystis species produce large carbon-rich colonies, creating a unique interface for bacterial interactions. While bacteria are known to interact with phytoplankton-e.g., they promote growth by producing phytohormones and vitamins-such interactions have not been shown for Phaeocystis. Therefore, we investigated the composition and function of P. globosa microbiomes. Specifically, we tested whether microbiome compositions are consistent across individual colonies from four P. globosa strains, whether similar microbiomes are re-recruited after antibiotic treatment, and how microbiomes affect P. globosa growth under limiting conditions. Results illuminated a core colonial P. globosa microbiome-including bacteria from the orders Alteromonadales, Burkholderiales, and Rhizobiales-that was re-recruited after microbiome disruption. Consistent microbiome composition and recruitment is indicative that P. globosa microbiomes are stable-state systems undergoing deterministic community assembly and suggests there are specific, beneficial interactions between Phaeocystis and bacteria. Growth experiments with axenic and nonaxenic cultures demonstrated that microbiomes allowed continued growth when B-vitamins were withheld, but that microbiomes accelerated culture collapse when nitrogen was withheld. In sum, this study reveals symbiotic and opportunistic interactions between Phaeocystis colonies and microbiome bacteria that could influence large-scale phytoplankton bloom dynamics and biogeochemical cycles.
Collapse
Affiliation(s)
- Margaret Mars Brisbin
- Marine Biophysics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan.
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Harriet Alexander
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
25
|
Abstract
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage–host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage–host coevolution, and our work provides new insight into viral evolution and infection strategies.
Collapse
|
26
|
Li D, He Y, Zheng Y, Zhang S, Zhang H, Lin L, Wang D. Metaproteomics reveals unique metabolic niches of dominant bacterial groups in response to rapid regime shifts during a mixed dinoflagellate bloom. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153557. [PMID: 35114235 DOI: 10.1016/j.scitotenv.2022.153557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of bacterial composition and metabolic activity during a distinct phytoplankton bloom have been reported. However, there is limited information on the bacterial community response to drastic environmental changes caused by species succession during a mixed-species bloom. This study investigated active bacterial groups and metabolic activity during a mixed bloom formed by dinoflagellates Prorocentrum obtusidens and Karenia mikimotoi using a metaproteomic approach. Bacterial community structure and dominant bacterial groups varied rapidly with the bloom regime shifts caused by species succession. Pseudoalteromonas and Vibrio dominated the bacterial community in the P. obtusidens-dominated regime, while Alteromonas, Cytophaga-Flavobacteria-Bacteroides (CFB) group, and marine Roseobacter clade (MRC) were the major contributors in other regimes, with the most abundant taxa being Alteromonas in the K. mikimotoi-dominated regime and the CFB group in the dissipation regime. Specific metabolic niches and unique substrate specificity of different bacterial groups enabled them to dominate and thrive in different bloom regimes. High metabolic plasticity in signal response, substrate utilization, motility, and adhesion are essential for bacteria to respond to drastic bloom regime shift, and the predominance of specific bacteria under unique bloom regimes may be the result of long-term coevolution between bacteria and bloom-forming phytoplankton species.
Collapse
Affiliation(s)
- Dongxu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Yaohui He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shufeng Zhang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
27
|
Ren L, Lu Z, Xia X, Peng Y, Gong S, Song X, Jeppesen E, Han BP, Wu QL. Metagenomics reveals bacterioplankton community adaptation to long-term thermal pollution through the strategy of functional regulation in a subtropical bay. WATER RESEARCH 2022; 216:118298. [PMID: 35316678 DOI: 10.1016/j.watres.2022.118298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Thermal effluents from coastal nuclear power plants have led to undesirable pollution and subsequent ecological impacts on local marine ecosystems. However, despite the ecological importance, we know little about the impacts on functionality of bacterioplankton subjected in systems with long-term thermal pollution. We used metagenomic sequencing to study of the effect of thermal pollution on bacterioplankton community metagenomics in summer in a subtropical bay located on the northern coast of the South China Sea. Thermal pollution (>15 y), which resulted in an increase in the summer seawater temperature around 8°C and caused seawater temperature up to approximate 39°C, significantly decreased bacterioplankton metabolic potentials in photosynthesis, organic carbon synthesis, and energy production. The bacterioplankton community metagenomics underwent a significant change in its structure from Synechococcus-dominant autotrophy to Alteromonas, Vibrio, and Pseudoalteromonas-dominated heterotrophy, and significantly up-regulated genes involved in organic compound degradation and dissimilatory nitrate reduction for the matter and energy acquisition under thermal pollution. Moreover, the bacterioplankton community metagenomics showed an up-regulation with heating of genes involved in DNA repair systems, heat shock responsive chaperones and proteins, and proteins involved in other biological processes, such as biofilm formation and the biosynthesis of unsaturated fatty acids and glycan, to adapt to the thermal environment. Collectively, it indicates a functional regulation of bacterioplankton adaptation to high-temperature stress, which might advance the understanding of the molecular mechanisms of community adaptation to global extreme warming in aquatic ecosystems.
Collapse
Affiliation(s)
- Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China; Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhe Lu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyang Peng
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xingyu Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | - Erik Jeppesen
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China; Department of Bioscience, Aarhus University, Silkeborg, Denmark; Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin, Turkey
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qinglong L Wu
- Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
28
|
Sanz-Sáez I, Pereira-García C, Bravo AG, Trujillo L, Pla i Ferriol M, Capilla M, Sánchez P, Rodríguez Martín-Doimeadios RC, Acinas SG, Sánchez O. Prevalence of Heterotrophic Methylmercury Detoxifying Bacteria across Oceanic Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3452-3461. [PMID: 35245029 PMCID: PMC8928480 DOI: 10.1021/acs.est.1c05635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 05/27/2023]
Abstract
Microbial reduction of inorganic divalent mercury (Hg2+) and methylmercury (MeHg) demethylation is performed by the mer operon, specifically by merA and merB genes, respectively, but little is known about the mercury tolerance capacity of marine microorganisms and its prevalence in the ocean. Here, combining culture-dependent analyses with metagenomic and metatranscriptomic data, we show that marine bacteria that encode mer genes are widespread and active in the global ocean. We explored the distribution of these genes in 290 marine heterotrophic bacteria (Alteromonas and Marinobacter spp.) isolated from different oceanographic regions and depths, and assessed their tolerance to diverse concentrations of Hg2+ and MeHg. In particular, the Alteromonas sp. ISS312 strain presented the highest tolerance capacity and a degradation efficiency for MeHg of 98.2% in 24 h. Fragment recruitment analyses of Alteromonas sp. genomes (ISS312 strain and its associated reconstructed metagenome assembled genome MAG-0289) against microbial bathypelagic metagenomes confirm their prevalence in the deep ocean. Moreover, we retrieved 54 merA and 6 merB genes variants related to the Alteromonas sp. ISS312 strain from global metagenomes and metatranscriptomes from Tara Oceans. Our findings highlight the biological reductive MeHg degradation as a relevant pathway of the ocean Hg biogeochemical cycle.
Collapse
Affiliation(s)
- Isabel Sanz-Sáez
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Carla Pereira-García
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Andrea G. Bravo
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Laura Trujillo
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Martí Pla i Ferriol
- Departament
de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miguel Capilla
- Research
Group in Environmental Engineering (GI2AM), Department of Chemical
Engineering, University of Valencia, Av. De la Universitat S/N, 46100 Burjassot, Spain
| | - Pablo Sánchez
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Rosa Carmen Rodríguez Martín-Doimeadios
- Environmental
Sciences Institute (ICAM), Department of Analytical Chemistry and
Food Technology, University of Castilla-La
Mancha, Avda. Carlos
III s/n, 45071 Toledo, Spain
| | - Silvia G. Acinas
- Departament
de Biologia Marina i Oceanografia, Institut
de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Olga Sánchez
- Departament
de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
29
|
Manck LE, Park J, Tully BJ, Poire AM, Bundy RM, Dupont CL, Barbeau KA. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. THE ISME JOURNAL 2022; 16:358-369. [PMID: 34341506 PMCID: PMC8776838 DOI: 10.1038/s41396-021-01065-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.
Collapse
Affiliation(s)
- Lauren E Manck
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Jiwoon Park
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - Alfonso M Poire
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA, USA
| | - Randelle M Bundy
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Christopher L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Human Health, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Synthetic Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
30
|
Phylogenomics of SAR116 Clade Reveals Two Subclades with Different Evolutionary Trajectories and an Important Role in the Ocean Sulfur Cycle. mSystems 2021; 6:e0094421. [PMID: 34609172 PMCID: PMC8547437 DOI: 10.1128/msystems.00944-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SAR116 clade within the class Alphaproteobacteria represents one of the most abundant groups of heterotrophic bacteria inhabiting the surface of the ocean. The small number of cultured representatives of SAR116 (only two to date) is a major bottleneck that has prevented an in-depth study at the genomic level to understand the relationship between genome diversity and its role in the marine environment. In this study, we use all publicly available genomes to provide a genomic overview of the phylogeny, metabolism, and biogeography within the SAR116 clade. This increased genomic diversity has led to the discovery of two subclades that, despite coexisting in the same environment, display different properties in their genomic makeup. One represents a novel subclade for which no pure cultures have been isolated and is composed mainly of single-amplified genomes (SAGs). Genomes within this subclade showed convergent evolutionary trajectories with more streamlined features, such as low GC content (ca. 30%), short intergenic spacers (<22 bp), and strong purifying selection (low ratio of nonsynonymous to synonymous polymorphisms [dN/dS]). Besides, they were more abundant in metagenomic databases recruiting at the deep chlorophyll maximum. Less abundant and restricted to the upper photic layers of the global ocean, the other subclade of SAR116, enriched in metagenome-assembled genomes (MAGs), included the only two pure cultures. Genomic analysis suggested that both clades have a significant role in the sulfur cycle with differences in the way both clades can metabolize dimethylsulfoniopropionate (DMSP). IMPORTANCE The SAR116 clade of Alphaproteobacteria is a ubiquitous group of heterotrophic bacteria inhabiting the surface of the ocean, but the information about their ecology and population genomic diversity is scarce due to the difficulty of getting pure culture isolates. The combination of single-cell genomics and metagenomics has become an alternative approach to study these kinds of microbes. Our results expand the understanding of the genomic diversity, distribution, and lifestyles within this clade and provide evidence of different evolutionary trajectories in the genomic makeup of the two subclades that could serve to illustrate how evolutionary pressure can drive different adaptations to the same environment. Therefore, the SAR116 clade represents an ideal model organism for the study of the evolutionary streamlining of genomes in microbes that have relatively close relatedness to each other.
Collapse
|
31
|
Duan X, Guo C, Zhang C, Li H, Zhou Y, Gao H, Xia X, He H, McMinn A, Wang M. Effect of East Asian atmospheric particulate matter deposition on bacterial activity and community structure in the oligotrophic Northwest Pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117088. [PMID: 33857882 DOI: 10.1016/j.envpol.2021.117088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Large amounts of anthropogenic East Asian (EA) particulate matters (PM), containing inorganic nutrients and organic matter, are deposited in the oligotrophic Northwest Pacific Ocean. However, the effects of such deposition on marine microbes remain unclear. In this study, the effect of EA PM deposition on marine bacteria was assessed by five on-board microcosm experiments, conducted in oligotrophic basins of the South China Sea. The addition of EA PM to the sampling water induced a clear shift in bacterial community composition from prevailing oligotrophs (i.e., SAR 11 clade, Prochlorococcus, AEGEAN-169 marine group) to less common copiotrophs (i.e., Alteromonas, Ruegeria, Flavobacteriaceae) and thus a slight increase in bacterial diversity. The shift to more active community composition, as well as stimulation of PM nutrients, resulted in a large increase in cell-specific and bulk bacterial production. In contrast, there were only minor changes in bacterial abundance, possibly due to increased top-down mortality. The EA PM also exhibited a stronge toxic effect on pico-cyanobacteria, leading to a significant decrease in their proportion. Moreover, the responses of bacterial metabolism and community composition exhibited significant relationships with the hydrographic condition of the locations. Stronger promotion effects of the EA PM on bacterial production and community shift from oligotrophs to copiotrophs was demonstrated at the more oligotrophic sites with lower chlorophyll a concentrations. These results suggest that PM deposition from polluted areas has the potential to alter the typical oligotrophic microbiomes and change the net metabolic balance of the bacterial community. These will then influence the dynamics of carbon flow in microbial food webs and biogeochemical cycles, especially with the trend of global warming and expansion of low-chlorophyll regions.
Collapse
Affiliation(s)
- Xueping Duan
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| | - Chao Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
| | - Hongbo Li
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yao Zhou
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Huiwang Gao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao, 266100, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
32
|
Bai M, Xie N, He Y, Li J, Collier JL, Hunt DE, Johnson ZI, Jiao N, Wang G. Vertical community patterns of Labyrinthulomycetes protists reveal their potential importance in the oceanic biological pump. Environ Microbiol 2021; 24:1703-1713. [PMID: 34390610 DOI: 10.1111/1462-2920.15709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/04/2023]
Abstract
The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean. Unlike the sharp vertical decrease of prokaryotic biomass, the LP biomass only slightly decreased with depth and eventually exceeded prokaryotic biomass in the bathypelagic layer. Sequencing identified high diversity of the LP communities with a dominance of Aplanochytrium at all depths. Notably, ASVs that were observed in the surface layer comprised ~20% of ASVs and ~60% of sequences in each of the deeper (including bathypelagic) layers, suggesting potential vertical export of the LP populations to the deep ocean. Further analyses of the vertical patterns of the 50 most abundant ASVs revealed niche partitioning of LP phylotypes in the pelagic ocean, including those that could decompose organic detritus and/or facilitate the formation of fast-sinking particles. Overall, this study presents several lines of evidence that the LP can be an important component of the biological pump through their multiple ecotypes in the pelagic ocean.
Collapse
Affiliation(s)
- Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiaqian Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, 11794-5000, USA
| | - Dana E Hunt
- Marine Laboratory, Duke University, Beaufort, NC, 28516, USA.,Biology Department, Duke University, Durham, NC, 27708, USA
| | - Zackary I Johnson
- Marine Laboratory, Duke University, Beaufort, NC, 28516, USA.,Biology Department, Duke University, Durham, NC, 27708, USA
| | - Nianzhi Jiao
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
33
|
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, Chen YL, Wei S, Jin T, Jiao N, Zhang R. A Novel Broad Host Range Phage Infecting Alteromonas. Viruses 2021; 13:v13060987. [PMID: 34073246 PMCID: PMC8228385 DOI: 10.3390/v13060987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages substantially contribute to bacterial mortality in the ocean and play critical roles in global biogeochemical processes. Alteromonas is a ubiquitous bacterial genus in global tropical and temperate waters, which can cross-protect marine cyanobacteria and thus has important ecological benefits. However, little is known about the biological and ecological features of Alteromonas phages (alterophages). Here, we describe a novel alterophage vB_AmeP-R8W (R8W), which belongs to the Autographiviridae family and infects the deep-clade Alteromonas mediterranea. R8W has an equidistant and icosahedral head (65 ± 1 nm in diameter) and a short tail (12 ± 2 nm in length). The genome size of R8W is 48,825 bp, with a G + C content of 40.55%. R8W possesses three putative auxiliary metabolic genes encoding proteins involved in nucleotide metabolism and DNA binding: thymidylate synthase, nucleoside triphosphate pyrophosphohydrolase, and PhoB. R8W has a rapid lytic cycle with a burst size of 88 plaque-forming units/cell. Notably, R8W has a wide host range, such that it can infect 35 Alteromonas strains; it exhibits a strong specificity for strains isolated from deep waters. R8W has two specific receptor binding proteins and a compatible holin-endolysin system, which contribute to its wide host range. The isolation of R8W will contribute to the understanding of alterophage evolution, as well as the phage-host interactions and ecological importance of alterophages.
Collapse
Affiliation(s)
- Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Tao Jin
- Guangzhou Magigene Biotechnology Co., Ltd., Guangzhou 510000, China;
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Correspondence: (N.J.); (R.Z.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: (N.J.); (R.Z.)
| |
Collapse
|
34
|
Kearney SM, Thomas E, Coe A, Chisholm SW. Microbial diversity of co-occurring heterotrophs in cultures of marine picocyanobacteria. ENVIRONMENTAL MICROBIOME 2021; 16:1. [PMID: 33902739 PMCID: PMC8067657 DOI: 10.1186/s40793-020-00370-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The cyanobacteria Prochlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. For examining the selective pressures shaping autotroph/heterotroph interactions, we have made use of unialgal enrichment cultures of Prochlorococcus and Synechococcus maintained for hundreds to thousands of generations in the lab. We examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. RESULTS Heterotroph community composition differed between clades and ecotypes of the autotrophic 'hosts' but there was significant overlap in heterotroph community composition across these cultures. Collectively, the cultures were comprised of many shared taxa, even at the genus level. Yet, observed differences in community composition were associated with time since isolation, location, depth, and methods of isolation. The majority of heterotrophs in the cultures are rare in the global ocean, but enrichment conditions favor the opportunistic outgrowth of these rare bacteria. However, we found a few examples, such as bacteria in the family Rhodobacteraceae, of heterotrophs that were ubiquitous and abundant in cultures and in the global oceans. We found their abundance in the wild is also positively correlated with that of picocyanobacteria. CONCLUSIONS Particular conditions surrounding isolation have a persistent effect on long-term culture composition, likely from bottlenecking and selection that happen during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.
Collapse
Affiliation(s)
- Sean M. Kearney
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02139 USA
| | - Elaina Thomas
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02139 USA
| | - Allison Coe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02139 USA
| | - Sallie W. Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St, Cambridge, MA 02139 USA
| |
Collapse
|
35
|
Dutta A, Smith B, Goldman T, Walker L, Streets M, Eden B, Dirmeier R, Bowman JS. Understanding Microbial Community Dynamics in Up-Flow Bioreactors to Improve Mitigation Strategies for Oil Souring. Front Microbiol 2020; 11:585943. [PMID: 33343524 PMCID: PMC7744764 DOI: 10.3389/fmicb.2020.585943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
Oil souring occurs when H2S is generated in oil reservoirs. This not only leads to operational risks and health hazards but also increases the cost of refining crude oil. Sulfate-reducing microorganisms are considered to be the main source of the H2S that leads to oil souring. Substrate competition between nitrate-reducing and sulfate-reducing microorganisms makes biosouring mitigation via the addition of nitrate salts a viable strategy. This study explores the shift in microbial community across different phases of biosouring and mitigation. Anaerobic sand-filled columns wetted with seawater and/or oil were used to initiate the processes of sulfidogenesis, followed by mitigation with nitrate, rebound sulfidogenesis, and rebound control phases (via nitrate and low salinity treatment). Shifts in microbial community structure and function were observed across different phases of seawater and oil setups. Marine bacterial taxa (Marinobacter, Marinobacterium, Thalassolituus, Alteromonas, and Cycloclasticus) were found to be the initial responders to the application of nitrate during mitigation of sulfidogenesis in both seawater- and oil- wetted columns. Autotrophic groups (Sulfurimonas and Desulfatibacillum) were found to be higher in seawater-wetted columns compared to oil-wetted columns, suggesting the potential for autotrophic volatile fatty acid (VFA) production in oil-field aquifers when seawater is introduced. Results indicate that fermentative (such as Bacteroidetes) and oil-degrading bacteria (such as Desulfobacula toluolica) play an important role in generating electron donors in the system, which may sustain biosouring and nitrate reduction. Persistence of certain microorganisms (Desulfobacula) across different phases was observed, which may be due to a shift in metabolic lifestyle of the microorganisms across phases, or zonation based on nutrient availability in the columns. Overall results suggest mitigation strategies for biosouring can be improved by monitoring VFA concentrations and microbial community dynamics in the oil reservoirs during secondary recovery of oil.
Collapse
Affiliation(s)
- Avishek Dutta
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
| | - Ben Smith
- BP Upstream Technology, London, United Kingdom
| | | | - Leanne Walker
- Rawwater Engineering Company Ltd., Culcheth, United Kingdom
| | | | - Bob Eden
- Rawwater Engineering Company Ltd., Culcheth, United Kingdom
| | | | - Jeff S. Bowman
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Sebastián M, Forn I, Auladell A, Gómez-Letona M, Sala MM, Gasol JM, Marrasé C. Differential recruitment of opportunistic taxa leads to contrasting abilities in carbon processing by bathypelagic and surface microbial communities. Environ Microbiol 2020; 23:190-206. [PMID: 33089653 DOI: 10.1111/1462-2920.15292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023]
Abstract
Different factors affect the way dissolved organic matter (DOM) is processed in the ocean water column, including environmental conditions and the functional capabilities of the communities. Recent studies have shown that bathypelagic prokaryotes are metabolically flexible, but whether this versatility translates into a higher ability to process DOM has been barely explored. Here we performed a multifactorial transplant experiment to compare the growth, activity and changes in DOM quality in surface and bathypelagic waters inoculated with either surface or bathypelagic prokaryotic communities. The effect of nutrient additions to surface waters was also explored. Despite no differences in the cell abundance of surface and deep ocean prokaryotes were observed in any of the treatments, in surface waters with nutrients the heterotrophic production of surface prokaryotes rapidly decreased. Conversely, bathypelagic communities displayed a sustained production throughout the experiment. Incubations with surface prokaryotes always led to a significant accumulation of recalcitrant compounds, which did not occur with bathypelagic prokaryotes, suggesting they have a higher ability to process DOM. These contrasting abilities could be explained by the recruitment of a comparatively larger number of opportunistic taxa within the bathypelagic assemblages, which likely resulted in a broader community capability of substrate utilization.
Collapse
Affiliation(s)
- Marta Sebastián
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain.,Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, 35214, Spain
| | - Irene Forn
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Adrià Auladell
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Markel Gómez-Letona
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, ULPGC, Gran Canaria, 35214, Spain
| | - M Montserrat Sala
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Josep M Gasol
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| | - Cèlia Marrasé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, 08003, Spain
| |
Collapse
|
37
|
Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, Arnoux M, Drou N, Santos MP, Gunsalus KC, Voolstra CR, Amin SA. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci U S A 2020; 117:27445-27455. [PMID: 33067398 PMCID: PMC7959551 DOI: 10.1073/pnas.2012088117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.
Collapse
Affiliation(s)
- Ahmed A Shibl
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen 28334, Germany
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz 78467, Germany
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cong Fei
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Gregory Behringer
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Marc Arnoux
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Nizar Drou
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Miraflor P Santos
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz 78467, Germany
- Red Sea Research Center, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shady A Amin
- Marine Microbial Ecology Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates;
| |
Collapse
|
38
|
Liu S, Baetge N, Comstock J, Opalk K, Parsons R, Halewood E, English CJ, Giovannoni S, Bolaños LM, Nelson CE, Vergin K, Carlson CA. Stable Isotope Probing Identifies Bacterioplankton Lineages Capable of Utilizing Dissolved Organic Matter Across a Range of Bioavailability. Front Microbiol 2020; 11:580397. [PMID: 33117322 PMCID: PMC7575717 DOI: 10.3389/fmicb.2020.580397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterioplankton consume about half of the dissolved organic matter (DOM) produced by phytoplankton. DOM released from phytoplankton consists of a myriad of compounds that span a range of biological reactivity from labile to recalcitrant. Linking specific bacterioplankton lineages to the incorporation of DOM compounds into biomass is important to understand microbial niche partitioning. We conducted a series of DNA-stable isotope probing (SIP) experiments using 13C-labeled substrates of varying lability including amino acids, cyanobacteria lysate, and DOM from diatom and cyanobacteria isolates concentrated on solid phase extraction PPL columns (SPE-DOM). Amendments of substrates into Sargasso Sea bacterioplankton communities were conducted to explore microbial response and DNA-SIP was used to determine which lineages of Bacteria and Archaea were responsible for uptake and incorporation. Greater increases in bacterioplankton abundance and DOC removal were observed in incubations amended with cyanobacteria-derived lysate and amino acids compared to the SPE-DOM, suggesting that the latter retained proportionally more recalcitrant DOM compounds. DOM across a range of bioavailability was utilized by diverse prokaryotic taxa with copiotrophs becoming the most abundant 13C-incorporating taxa in the amino acid treatment and oligotrophs becoming the most abundant 13C-incorporating taxa in SPE-DOM treatments. The lineages that responded to SPE-DOM amendments were also prevalent in the mesopelagic of the Sargasso Sea, suggesting that PPL extraction of phytoplankton-derived DOM isolates compounds of ecological relevance to oligotrophic heterotrophic bacterioplankton. Our study indicates that DOM quality is an important factor controlling the diversity of the microbial community response, providing insights into the roles of different bacterioplankton in resource exploitation and efficiency of marine carbon cycling.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Nicholas Baetge
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline Comstock
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Keri Opalk
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Rachel Parsons
- Bermuda Institute of Ocean Sciences, Saint George, Bermuda
| | - Elisa Halewood
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Chance J English
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Stephen Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Luis M Bolaños
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Hawai'i Sea Grant, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Kevin Vergin
- Microbial DNA Analytics, Phoenix, OR, United States
| | - Craig A Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
39
|
Fei C, Ochsenkühn MA, Shibl AA, Isaac A, Wang C, Amin SA. Quorum sensing regulates 'swim-or-stick' lifestyle in the phycosphere. Environ Microbiol 2020; 22:4761-4778. [PMID: 32896070 PMCID: PMC7693213 DOI: 10.1111/1462-2920.15228] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022]
Abstract
Interactions between phytoplankton and bacteria play major roles in global biogeochemical cycles and oceanic nutrient fluxes. These interactions occur in the microenvironment surrounding phytoplankton cells, known as the phycosphere. Bacteria in the phycosphere use either chemotaxis or attachment to benefit from algal excretions. Both processes are regulated by quorum sensing (QS), a cell–cell signalling mechanism that uses small infochemicals to coordinate bacterial gene expression. However, the role of QS in regulating bacterial attachment in the phycosphere is not clear. Here, we isolated a Sulfitobacter pseudonitzschiae F5 and a Phaeobacter sp. F10 belonging to the marine Roseobacter group and an Alteromonas macleodii F12 belonging to Alteromonadaceae, from the microbial community of the ubiquitous diatom Asterionellopsis glacialis. We show that only the Roseobacter group isolates (diatom symbionts) can attach to diatom transparent exopolymeric particles. Despite all three bacteria possessing genes involved in motility, chemotaxis, and attachment, only S. pseudonitzschiae F5 and Phaeobacter sp. F10 possessed complete QS systems and could synthesize QS signals. Using UHPLC–MS/MS, we identified three QS molecules produced by both bacteria of which only 3‐oxo‐C16:1‐HSL strongly inhibited bacterial motility and stimulated attachment in the phycosphere. These findings suggest that QS signals enable colonization of the phycosphere by algal symbionts.
Collapse
Affiliation(s)
- Cong Fei
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Michael A Ochsenkühn
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed A Shibl
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ashley Isaac
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.,International Max Planck Research School of Marine Microbiology, University of Bremen, Bremen, Germany
| | - Changhai Wang
- College of Resources and Environmental Science, Nanjing Agriculture University, Nanjing, China
| | - Shady A Amin
- Marine Microbial Ecology Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
40
|
Zhang X, Liu Y, Wang M, Wang M, Jiang T, Sun J, Gao C, Jiang Y, Guo C, Shao H, Liang Y, McMinn A. Characterization and Genome Analysis of a Novel Marine Alteromonas Phage P24. Curr Microbiol 2020; 77:2813-2820. [PMID: 32588135 DOI: 10.1007/s00284-020-02077-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Although Alteromonas is ubiquitous in the marine environment, very little is known about Alteromonas phages, with only ten, thus far, being isolated and reported on. In this study, a novel double-stranded DNA phage, Alteromonas phage P24, which infects Alteromonas macleodii, was isolated from the coastal waters off Qingdao. Alteromonas phage P24 has a siphoviral morphology, with an icosahedral head, 61 ± 1 nm in diameter, and a tail length of 105 ± 1 nm. Alteromonas phage P24 contains lipids. It has an optimal temperature and pH for growth of 20℃ and 5-7, respectively. A one-step growth curve shows a latent period of 55 min, a rise period of 65 min, and an average burst size of approximately 147 virions per cell. Alteromonas phage P24 has the genome of 46,945 bp with 43.80% GC content and 74 open reading frames (ORFs) without tRNA. The results of the phylogenetic tree, based on the mcp and terL genes, show that Alteromonas phage P24 is closely related to Aeromonas phage phiARM81ld. Meanwhile, phylogenetic analysis based on the whole genome of P24 indicates that it forms a unique viral sub-cluster within Siphoviridae. This study contributes to the understanding of the genomic characteristics and the virus-host interactions of Alteromonas phages.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Jianhua Sun
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
41
|
Takebe H, Tominaga K, Fujiwara K, Yamamoto K, Yoshida T. Differential Responses of a Coastal Prokaryotic Community to Phytoplanktonic Organic Matter Derived from Cellular Components and Exudates. Microbes Environ 2020; 35. [PMID: 32554942 PMCID: PMC7511794 DOI: 10.1264/jsme2.me20033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The phytoplanktonic production and prokaryotic consumption of organic matter significantly contribute to marine carbon cycling. Organic matter released from phytoplankton via three processes (exudation of living cells, cell disruption through grazing, and viral lysis) shows distinct chemical properties. We herein investigated the effects of phytoplanktonic whole-cell fractions (WF) (representing cell disruption by grazing) and extracellular fractions (EF) (representing exudates) prepared from Heterosigma akashiwo, a bloom-forming Raphidophyceae, on prokaryotic communities using culture-based experiments. We analyzed prokaryotic community changes for two weeks. The shift in cell abundance by both treatments showed similar dynamics, reaching the first peak (~4.1×106 cells mL–1) on day 3 and second peak (~1.1×106 cells mL–1) on day 13. We classified the sequences obtained into operational taxonomic units (OTUs). A Bray-Curtis dissimilarity analysis revealed that the OTU-level community structure changed distinctively with the two treatments. Ten and 13 OTUs were specifically abundant in the WF and EF treatments, respectively. These OTUs were assigned as heterotrophic bacteria mainly belonging to the Alteromonadales (Gammaproteobacteria) and Bacteroidetes clades and showed successive dynamics following the addition of organic matter. We also analyzed the dynamics of these OTUs in the ocean using publicly available metagenomic data from a natural coastal bloom in Monterey Bay, USA. At least two WF treatment OTUs showed co-occurrence with H. akashiwo, indicating that the blooms of H. akashiwo also affect these OTUs in the ocean. The present results strongly suggest that the thriving and dead cells of uninfected phytoplankton differentially influence the marine prokaryotic community.
Collapse
Affiliation(s)
| | | | | | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | | |
Collapse
|
42
|
Mazzotta MG, McIlvin MR, Saito MA. Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, Pseudoalteromonas (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics 2020; 12:654-667. [PMID: 32301469 PMCID: PMC8161647 DOI: 10.1039/d0mt00034e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in major regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe : C in the whole cell metallome was estimated (assuming C : P stoichiometry ∼51 : 1) to be between ∼83 μmol : mol Fe : C, ∼11 fold higher than prior marine bacteria surveys. Under these replete conditions, other major cytosolic Fe-associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloprotein contributors. A putative Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph Pseudoalteromonas has expansive Fe storage capacity and utilization strategies, implying that within detritus and sinking particles environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.
Collapse
Affiliation(s)
- Michael G Mazzotta
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.
| | | | | |
Collapse
|
43
|
Transcriptomic Study of Substrate-Specific Transport Mechanisms for Iron and Carbon in the Marine Copiotroph Alteromonas macleodii. mSystems 2020; 5:5/2/e00070-20. [PMID: 32345736 PMCID: PMC7190382 DOI: 10.1128/msystems.00070-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As the major facilitators of the turnover of organic matter in the marine environment, the ability of heterotrophic bacteria to acquire specific compounds within the diverse range of dissolved organic matter will affect the regeneration of essential nutrients such as iron and carbon. TonB-dependent transporters are a prevalent cellular tool in Gram-negative bacteria that allow a relatively high-molecular-weight fraction of organic matter to be directly accessed. However, these transporters are not well characterized in marine bacteria, limiting our understanding of the flow of specific substrates through the marine microbial loop. Here, we characterize the TonB-dependent transporters responsible for iron and carbon acquisition in a representative marine copiotroph and examine their distribution across the genus Alteromonas. We provide evidence that substrate-specific bioavailability is niche specific, particularly for iron complexes, indicating that transport capacity may serve as a significant control on microbial community dynamics and the resultant cycling of organic matter. Iron is an essential micronutrient for all microbial growth in the marine environment, and in heterotrophic bacteria, iron is tightly linked to carbon metabolism due to its central role as a cofactor in enzymes of the respiratory chain. Here, we present the iron- and carbon-regulated transcriptomes of a representative marine copiotroph, Alteromonas macleodii ATCC 27126, and characterize its cellular transport mechanisms. ATCC 27126 has distinct metabolic responses to iron and carbon limitation and, accordingly, uses distinct sets of TonB-dependent transporters for the acquisition of iron and carbon. These distinct sets of TonB-dependent transporters were of a similar number, indicating that the diversity of carbon and iron substrates available to ATCC 27126 is of a similar scale. For the first time in a marine bacterium, we have also identified six characteristic inner membrane permeases for the transport of siderophores via an ATPase-independent mechanism. An examination of the distribution of specific TonB-dependent transporters in 31 genomes across the genus Alteromonas points to niche specialization in transport capacity, particularly for iron. We conclude that the substrate-specific bioavailability of both iron and carbon in the marine environment will likely be a key control on the processing of organic matter through the microbial loop. IMPORTANCE As the major facilitators of the turnover of organic matter in the marine environment, the ability of heterotrophic bacteria to acquire specific compounds within the diverse range of dissolved organic matter will affect the regeneration of essential nutrients such as iron and carbon. TonB-dependent transporters are a prevalent cellular tool in Gram-negative bacteria that allow a relatively high-molecular-weight fraction of organic matter to be directly accessed. However, these transporters are not well characterized in marine bacteria, limiting our understanding of the flow of specific substrates through the marine microbial loop. Here, we characterize the TonB-dependent transporters responsible for iron and carbon acquisition in a representative marine copiotroph and examine their distribution across the genus Alteromonas. We provide evidence that substrate-specific bioavailability is niche specific, particularly for iron complexes, indicating that transport capacity may serve as a significant control on microbial community dynamics and the resultant cycling of organic matter.
Collapse
|
44
|
He P, Xie L, Zhang X, Li J, Lin X, Pu X, Yuan C, Tian Z, Li J. Microbial Diversity and Metabolic Potential in the Stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep 2020; 10:5949. [PMID: 32249806 PMCID: PMC7136235 DOI: 10.1038/s41598-020-62411-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/11/2020] [Indexed: 01/08/2023] Open
Abstract
The Sansha Yongle Blue Hole is the world’s deepest (301 m) underwater cave and has a sharp redox gradient, with oligotrophic, anoxic, and sulfidic bottom seawater. In order to discover the microbial communities and their special biogeochemical pathways in the blue hole, we analyzed the 16S ribosomal RNA amplicons and metagenomes of microbials from seawater depths with prominent physical, chemical, and biological features. Redundancy analysis showed that dissolved oxygen was the most important factor affecting the microbial assemblages of the blue hole and surrounding open sea waters, and significantly explained 44.7% of the total variation, followed by silicate, temperature, sulfide, ammonium, methane, nitrous oxide, nitrate, dissolved organic carbon, salinity, particulate organic carbon, and chlorophyll a. We identified a bloom of Alteromonas (34.9%) at the primary nitrite maximum occurring in close proximity to the chlorophyll a peak in the blue hole. Genomic potential for nitrate reduction of Alteromonas might contribute to this maximum under oxygen decrease. Genes that would allow for aerobic ammonium oxidation, complete denitrification, and sulfur-oxidization were enriched at nitrate/nitrite-sulfide transition zone (90 and 100 m) of the blue hole, but not anammox pathways. Moreover, γ-Proteobacterial clade SUP05, ε-Proteobacterial genera Sulfurimonas and Arcobacter, and Chlorobi harbored genes for sulfur-driven denitrification process that mediated nitrogen loss and sulfide removal. In the anoxic bottom seawater (100-300 m), high levels of sulfate reducers and dissimilatory sulfite reductase gene (dsrA) potentially created a sulfidic zone of ~200 m thickness. Our findings suggest that in the oligotrophic Sansha Yongle Blue Hole, O2 deficiency promotes nitrogen- and sulfur-cycling processes mediated by metabolically versatile microbials.
Collapse
Affiliation(s)
- Peiqing He
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China. .,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China.
| | - Linping Xie
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Xuelei Zhang
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiang Li
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China
| | - Xuezheng Lin
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Key Laboratory of Natural Products of Qingdao, Qingdao, 266061, China
| | - Xinming Pu
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Chao Yuan
- Key Laboratory of Science and Technology for Marine Ecology and Environment, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Ziwen Tian
- Research Center for Islands and Coastal Zone, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| | - Jie Li
- Marine Engineering Environment and Geomatic Center, First Institute of Oceanography, Ministry of Natural Resources, 6 Xianxialing Road, Qingdao, 266061, China
| |
Collapse
|
45
|
Hartman LM, van Oppen MJH, Blackall LL. Microbiota characterization of Exaiptasia diaphana from the Great Barrier Reef. Anim Microbiome 2020; 2:10. [PMID: 33499977 PMCID: PMC7807684 DOI: 10.1186/s42523-020-00029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023] Open
Abstract
Background Coral reefs have sustained damage of increasing scale and frequency due to climate change, thereby intensifying the need to elucidate corals’ biological characteristics, including their thermal tolerance and microbial symbioses. The sea anemone, Exaiptasia diaphana, has proven an ideal coral model for many studies due to its close phylogenetic relationship and shared traits, such as symbiosis with algae of the family Symbiodiniaceae. However, established E. diaphana clonal lines are not available in Australia thus limiting the ability of Australian scientists to conduct research with this model. To help address this, the bacterial and Symbiodiniaceae associates of four Great Barrier Reef (GBR)-sourced E. diaphana genotypes established in laboratory aquaria and designated AIMS1–4, and from proxies of wild GBR E. diaphana were identified by metabarcoding of the bacterial 16S rRNA gene and eukaryotic rRNA gene ITS2 region. The relationship between AIMS1–4 and their bacterial associates was investigated, as was bacterial community phenotypic potential. Existing data from two existing anemone clonal lines, CC7 and H2, were included for comparison. Results Overall, 2238 bacterial amplicon sequence variants (ASVs) were observed in the AIMS1–4 bacterial communities, which were dominated by Proteobacteria and Bacteroidetes, together comprising > 90% relative abundance. Although many low abundance bacterial taxa varied between the anemone genotypes, the AIMS1–4 communities did not differ significantly. A significant tank effect was identified, indicating an environmental effect on the microbial communities. Bacterial community richness was lower in all lab-maintained E. diaphana compared to the wild proxies, suggesting a reduction in bacterial diversity and community phenotypic potential due to culturing. Seventeen ASVs were common to every GBR lab-cultured anemone, however five were associated with the Artemia feedstock, making their specific association to E. diaphana uncertain. The dominant Symbiodiniaceae symbiont in all GBR anemones was Breviolum minutum. Conclusion Despite differences in the presence and abundance of low abundance taxa, the bacterial communities of GBR-sourced lab-cultured E. diaphana are generally uniform and comparable to communities reported for other lab-cultured E. diaphana. The data presented here add to the global E. diaphana knowledge base and make an important contribution to the establishment of a GBR-sourced coral model organism.
Collapse
Affiliation(s)
- Leon Michael Hartman
- Swinburne University of Technology, Melbourne, Australia. .,The University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
46
|
Multiple Megaplasmids Confer Extremely High Levels of Metal Tolerance in Alteromonas Strains. Appl Environ Microbiol 2020; 86:AEM.01831-19. [PMID: 31757820 DOI: 10.1128/aem.01831-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Alteromonas is a widely distributed genus of marine Gammaproteobacteria, with representatives shown to be key players in diverse processes, including biogeochemical cycling and biofouling of marine substrata. While Alteromonas spp. are early colonizers of copper-based antifouling paints on marine vessels, their mechanism of tolerance is poorly understood. PacBio whole-genome sequencing of Alteromonas macleodii strains CUKW and KCC02, isolated from Cu/Ni alloy test coupons submerged in oligotrophic coastal waters, indicated the presence of multiple megaplasmids (ca. 200 kb) in both. A pulsed-field gel electrophoresis method was developed and used to confirm the presence of multiple megaplasmids in these two strains; it was then used to screen additional Alteromonas strains for which little to no sequencing data exist. Plasmids were not detected in any of the other strains. Bioinformatic analysis of the CUKW and KCC02 plasmids identified numerous genes associated with metal resistance. Copper resistance orthologs from both the Escherichia coli Cue and Cus and Pseudomonas syringae Cop systems were present, at times as multiple copies. Metal growth assays in the presence of copper, cobalt, manganese, and zinc performed with 10 Alteromonas strains demonstrated the ability of CUKW and KCC02 to grow at metal concentrations inhibitory to all the other strains tested. This study reports multiple megaplasmids in Alteromonas strains. Bioinformatic analysis of the CUKW and KCC02 plasmids indicate that they harbor elements of the Tra system conjugation apparatus, although their type of mobility remains to be experimentally verified.IMPORTANCE Copper is commonly used as an antifouling agent on ship hulls. Alteromonas spp. are early colonizers of copper-based antifouling paint, but their mechanism of tolerance is poorly understood. Sequencing of A. macleodii strains isolated from copper test materials for marine ships indicated the presence of multiple megaplasmids. Plasmids serve as key vectors in horizontal gene transfer and confer traits such as metal resistance, detoxification, ecological interaction, and antibiotic resistance. Bioinformatic analysis identified many metal resistance genes and genes associated with mobility. Understanding the molecular mechanisms and capacity for gene transfer within marine biofilms provides a platform for the development of novel antifouling solutions targeting genes involved in copper tolerance and biofilm formation.
Collapse
|
47
|
Koch H, Germscheid N, Freese HM, Noriega-Ortega B, Lücking D, Berger M, Qiu G, Marzinelli EM, Campbell AH, Steinberg PD, Overmann J, Dittmar T, Simon M, Wietz M. Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii. Sci Rep 2020; 10:809. [PMID: 31964928 PMCID: PMC6972757 DOI: 10.1038/s41598-020-57526-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nora Germscheid
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dominik Lücking
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Galaxy Qiu
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Western Sydney University, Hawkesbury, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
- University of Sydney, Camperdown, Australia
| | - Alexandra H Campbell
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- University of Sunshine Coast, Sunshine Coast, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|
48
|
Haro-Moreno JM, Rodriguez-Valera F, López-Pérez M. Prokaryotic Population Dynamics and Viral Predation in a Marine Succession Experiment Using Metagenomics. Front Microbiol 2019; 10:2926. [PMID: 31921085 PMCID: PMC6931264 DOI: 10.3389/fmicb.2019.02926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
We performed an incubation experiment of seawater confined in plastic bottles with samples collected at three depths (15, 60, and 90 m) after retrieval from a single offshore location in the Mediterranean Sea, from a late summer stratified water column. Two samples representative of each depth were collected and stored in opaque bottles after two periods of 7 h. We took advantage of the "bottle effect" to investigate changes in the natural microbial communities (abundant and rare). We recovered 94 metagenome-assembled genomes (MAGs) and 1089 metagenomic viral contigs and examined their abundance using metagenomic recruitment. We detected a significant fast growth of copiotrophic bacteria such as Alteromonas or Erythrobacter throughout the entire water column with different dynamics that we assign to "clonal," "polyclonal," or "multispecies" depending on the recruitment pattern. Results also showed a marked ecotype succession in the phototropic picocyanobacteria that were able to grow at all the depths in the absence of light, highlighting the importance of their mixotrophic potential. In addition, "wall-chain-reaction" hypothesis based on the study of phage-host dynamics showed the higher impact of viral predation on archaea in deeper waters, evidencing their prominent role during incubations. Our results provide a step forward in understanding the mechanisms underlying dynamic patterns and ecology of the marine microbiome and the importance of processing the samples immediately after collection to avoid changes in the community structure.
Collapse
Affiliation(s)
- Jose M Haro-Moreno
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain.,Laboratory for Theoretical and Computer Research on Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Mario López-Pérez
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
49
|
Beleneva IA, Efimova KV, Eliseikina MG, Svetashev VI, Orlova TY. The tellurite-reducing bacterium Alteromonas macleodii from a culture of the toxic dinoflagellate Prorocentrum foraminosum. Heliyon 2019; 5:e02435. [PMID: 31687549 PMCID: PMC6819836 DOI: 10.1016/j.heliyon.2019.e02435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
The Alteromonas macleodii strain 2328 was isolated from a clonal culture of the toxic dinoflagellate Prorocentrum foraminosum. The strain exhibits a resistance to high K2TeO3 concentrations (2500 μg/mL). A study of the growth dynamics of the strain exposed to K2TeO3 has shown a longer lag phase and a reduced stationary phase compared to those during cultivation with no toxicant. The fatty acids profile is dominated by 16:1 (n-7), 16:0, 17:1, 15:0, 18:1 (n-7), and 17:0. The 2328 strain belongs to the Gammaproteobacteria and is related to the genus Alteromonas with 99-100% sequence similarity to some intra-genome allele variants (paralogues) of 16S rRNA from A. macleodii. A phylogenetic reconstruction (ML and NJ), based on HyHK amino acid sequences, has revealed that the analyzed 2328 strain forms a common cluster with A. macleodii strains. In the presented work, the ability of A. macleodii to reduce potassium tellurite to elemental tellurium has been recorded for the first time. Bacteria reduce potassium tellurite to Te (0), nanoparticles of which become distributed diffusely and in the form of electron-dense globules in cytoplasm. Large polymorphous metalloid crystals are formed in the extracellular space. Such feature of the A. macleodii strain 2328 makes it quite attractive for biotechnological application as an organism concentrating the rare metalloid.
Collapse
Affiliation(s)
- Irina A Beleneva
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Kseniya V Efimova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Marina G Eliseikina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia.,Far Eastern Federal University, ul. Sukhanova 8, Vladivostok, 690950, Russia
| | - Vasilii I Svetashev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| | - Tatiana Yu Orlova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russia
| |
Collapse
|
50
|
Pereira-Flores E, Glöckner FO, Fernandez-Guerra A. Fast and accurate average genome size and 16S rRNA gene average copy number computation in metagenomic data. BMC Bioinformatics 2019; 20:453. [PMID: 31488068 PMCID: PMC6727555 DOI: 10.1186/s12859-019-3031-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/16/2019] [Indexed: 01/17/2023] Open
Abstract
Background Metagenomics caused a quantum leap in microbial ecology. However, the inherent size and complexity of metagenomic data limit its interpretation. The quantification of metagenomic traits in metagenomic analysis workflows has the potential to improve the exploitation of metagenomic data. Metagenomic traits are organisms’ characteristics linked to their performance. They are measured at the genomic level taking a random sample of individuals in a community. As such, these traits provide valuable information to uncover microorganisms’ ecological patterns. The Average Genome Size (AGS) and the 16S rRNA gene Average Copy Number (ACN) are two highly informative metagenomic traits that reflect microorganisms’ ecological strategies as well as the environmental conditions they inhabit. Results Here, we present the ags.sh and acn.sh tools, which analytically derive the AGS and ACN metagenomic traits. These tools represent an advance on previous approaches to compute the AGS and ACN traits. Benchmarking shows that ags.sh is up to 11 times faster than state-of-the-art tools dedicated to the estimation AGS. Both ags.sh and acn.sh show comparable or higher accuracy than existing tools used to estimate these traits. To exemplify the applicability of both tools, we analyzed the 139 prokaryotic metagenomes of TARA Oceans and revealed the ecological strategies associated with different water layers. Conclusion We took advantage of recent advances in gene annotation to develop the ags.sh and acn.sh tools to combine easy tool usage with fast and accurate performance. Our tools compute the AGS and ACN metagenomic traits on unassembled metagenomes and allow researchers to improve their metagenomic data analysis to gain deeper insights into microorganisms’ ecology. The ags.sh and acn.sh tools are publicly available using Docker container technology at https://github.com/pereiramemo/AGS-and-ACN-tools. Electronic supplementary material The online version of this article (10.1186/s12859-019-3031-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emiliano Pereira-Flores
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany. .,Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany.
| | - Frank Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany.,Alfred Wegener Institute - Helmholtz Center for Polar- and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Antonio Fernandez-Guerra
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany. .,Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759, Bremen, Germany. .,Oxford e-Research Centre, University of Oxford, Oxford, OX1 3QG, UK.
| |
Collapse
|