1
|
Dong Z, Song B, Ma H, Gao X, Zhang W, Yuan J. A strategy to enhance the water solubility of luminescent β-diketonate-Europium(III) complexes for time-gated luminescence bioassays. Talanta 2024; 274:126000. [PMID: 38608630 DOI: 10.1016/j.talanta.2024.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Luminescent β-diketonate-europium(III) complexes have been found a wide range of applications in time-gated luminescence (TGL) bioassays, but their poor water solubility is a main problem that limits their effective uses. In this work we propose a simple and general strategy to enhance the water solubility of luminescent β-diketonate-europium(III) complexes that permits facile synthesis and purification. By introducing the fluorinated carboxylic acid group into the structures of β-diketone ligands, two highly water-soluble and luminescent Eu3+ complexes, PBBHD-Eu3+ and CPBBHD-Eu3+, were designed and synthesized. An excellent solubility exceeding 20 mg/mL for PBBHD-Eu3+ was found in a pure aqueous buffer, while it also displayed strong and long-lived luminescence (quantum yield φ = 26%, lifetime τ = 0.49 ms). After the carboxyl groups of PBBHD-Eu3+ were activated, the PBBHD-Eu3+-labeled streptavidin-bovine serum albumin (SA-BSA) conjugate was prepared, and successfully used for the immunoassay of human α-fetoprotein (AFP) and the imaging of an environmental pathogen Giardia lamblia under TGL mode, which demonstrated the practicability of PBBHD-Eu3+ for highly sensitive TGL bioassays. The carboxyl groups of PBBHD can also be easily derivatized with other reactive chemical groups, which enables PBBHD-Eu3+ to meet diverse requirements of biolabeling technique, to provide new opportunities for developing functional europium(III) complex biolabels serving for TGL bioassays.
Collapse
Affiliation(s)
- Zhiyuan Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Bo Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Ma
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xiaona Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenzhu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jingli Yuan
- College of Life Science, Dalian Minzu University, 18 Liaohe West Road, Jinzhou New District, Dalian, 116600, China.
| |
Collapse
|
2
|
Detection of rare prostate cancer cells in human urine offers prospect of non-invasive diagnosis. Sci Rep 2022; 12:18452. [PMID: 36323734 PMCID: PMC9630382 DOI: 10.1038/s41598-022-21656-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Two molecular cytology approaches, (i) time-gated immunoluminescence assay (TGiA) and (ii) Raman-active immunolabeling assay (RiA), have been developed to detect prostate cancer (PCa) cells in urine from five prostate cancer patients. For TGiA, PCa cells stained by a biocompatible europium chelate antibody-conjugated probe were quantitated by automated time-gated microscopy (OSAM). For RiA, PCa cells labeled by antibody-conjugated Raman probe were detected by Raman spectrometer. TGiA and RiA were first optimized by the detection of PCa cultured cells (DU145) spiked into control urine, with TGiA-OSAM showing single-cell PCa detection sensitivity, while RiA had a limit of detection of 4-10 cells/mL. Blinded analysis of each patient urine sample, using MIL-38 antibody specific for PCa cells, was performed using both assays in parallel with control urine. Both assays detected very low abundance PCa cells in patient urine (3-20 PCa cells per mL by TGiA, 4-13 cells/mL by RiA). The normalized mean of the detected PCa cells per 1 ml of urine was plotted against the clinical data including prostate specific antigen (PSA) level and Clinical Risk Assessment for each patient. Both cell detection assays showed correlation with PSA in the high risk patients but aligned with the Clinical Assessment rather than with PSA levels of the low/intermediate risk patients. Despite the limited available urine samples of PCa patients, the data presented in this proof-of-principle work is promising for the development of highly sensitive diagnostic urine tests for PCa.
Collapse
|
3
|
Xu J, Zhou J, Chen Y, Yang P, Lin J. Lanthanide-activated nanoconstructs for optical multiplexing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213328] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Wang Y, Sayyadi N, Zheng X, Woods TA, Leif RC, Shi B, Graves SW, Piper JA, Lu Y. Time-resolved microfluidic flow cytometer for decoding luminescence lifetimes in the microsecond region. LAB ON A CHIP 2020; 20:655-664. [PMID: 31934716 DOI: 10.1039/c9lc00895k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Time-resolved luminescence detection using long-lived probes with lifetimes in the microsecond region have shown great potential in ultrasensitive and multiplexed bioanalysis. In flow cytometry, however, the long lifetime poses a significant challenge to measure wherein the detection window is often too short to determine the decay characteristics. Here we report a time-resolved microfluidic flow cytometer (tr-mFCM) incorporating an acoustic-focusing chip, which allows slowing down of the flow while providing the same detection conditions for every target, achieving accurate lifetime measurement free of autofluorescence interference. Through configuration of the flow velocity and detection aperture with respect to the time-gating sequence, a multi-cycle luminescence decay profile is captured for every event under maximum excitation and detection efficiency. A custom fitting algorithm is then developed to resolve europium-stained polymer microspheres as well as leukemia cells against abundant fluorescent particles, achieving counting efficiency approaching 100% and lifetime CVs (coefficient of variation) around 2-6%. We further demonstrate lifetime-multiplexed detection of prostate and bladder cancer cells stained with different europium probes. Our acoustic-focusing tr-mFCM offers a practical technique for rapid screening of biofluidic samples containing multiple cell types, especially in resource-limited environments such as regional and/or underdeveloped areas as well as for point-of-care applications.
Collapse
Affiliation(s)
- Yan Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nima Sayyadi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Molecular Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xianlin Zheng
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Travis A Woods
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Robert C Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Bingyang Shi
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Steven W Graves
- Centre for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - James A Piper
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia. and Department of Physics and Astronomy, Macquarie University, Sydney, New South Wales 2109, Australia and School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
5
|
Xue SF, Han XY, Chen ZH, Yan Q, Lin ZY, Zhang M, Shi G. The Chemistry of Europium(III) Encountering DNA: Sprouting Unique Sequence-Dependent Performances for Multifunctional Time-Resolved Luminescent Assays. Anal Chem 2018; 90:10614-10620. [PMID: 30099873 DOI: 10.1021/acs.analchem.8b03010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Screening functional DNA that can fruitfully interact with metal ions is a long-standing hot topic in the fields of biotechnology, medicine, and DNA-based sensors. In this paper, we focus on the chemistry of europium(III) (Eu) coupled with single-stranded DNA (ssDNA), and we innovatively unveil that cytosine- and thymine-rich ssDNA oligomers (e.g., C16 and T16) can be effective antenna ligands to sensitize the luminescence of Eu. Luminescence lifetime spectroscopy, circular dichroic (CD) spectroscopy, and isothermal titration calorimetry (ITC) have been used to systematically characterize the interaction involved between Eu and ssDNA. In light of the resultant sequence-dependent performances, the long luminescence lifetime Eu/ssDNA-based label-free and versatile probes are further devised as a pattern distinction system for time-resolved luminescent (TRL) sensing applications. The interactions of metal ions and ssDNA can distinctively shift the antenna effect of ssDNA toward Eu as accessible pattern signals. As a result, as few as two Eu/ssDNA label-free TRL probes can discriminate 17 metal ions via principal component analysis (PCA). In addition, thiols can readily capture metal ions to switch the luminescence of Eu/ssDNA probes initially altered by metal ions. Hence, four Eu/ssDNA-metal ion ensembles are demonstrated to be a powerful label-free TRL sensor array for pattern differentiation of eight thiols and even chiral recognition of cysteine enantiomers with different concentrations. Moreover, the sensitive TRL detection of thiols in biofluids can be successfully realized by using our method, promising its potential practical usage. This is the first report of a ssDNA-sensitized Eu-based TRL platform for label-free yet multifunctional background-free sensing and would open a door for sprouting of more novel lanthanide ion/DNA-relevant strategies toward widespread applications.
Collapse
Affiliation(s)
- Shi-Fan Xue
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xin-Yue Han
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zi-Han Chen
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Qing Yan
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zi-Yang Lin
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
6
|
Xue SF, Chen ZH, Han XY, Lin ZY, Wang QX, Zhang M, Shi G. DNA Encountering Terbium(III): A Smart "Chemical Nose/Tongue" for Large-Scale Time-Gated Luminescent and Lifetime-Based Sensing. Anal Chem 2018; 90:3443-3451. [PMID: 29433302 DOI: 10.1021/acs.analchem.7b05167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent years have witnessed the rapid development of pattern-based sensors due to their potential to detect and differentiate a wealth of analytes with only few probes. However, no one has found or used the combination of DNA and terbium(III) (Tb) as a pattern recognition system for large-scale mix-and-measure assays. Here we report for the first time that DNA-sensitized Tb (DNA/Tb), as a label-free and versatile "chemical nose/tongue", can be employed for wide-scale time-gated luminescent (TGL) monitoring of metal ions covering nearly the entire periodic table in a cost-effective fashion. A series of guanine/thymine (G/T)-rich DNA ligands was screened to sensitize the luminescence of Tb (referring to the antenna effect) as smart pattern responders to metal ions in solution, and metal ion-DNA interactions can differentially alter the antenna effect of DNA toward Tb as pattern signals. Our results show that as few as 3 DNA/Tb label-free sensors could successfully discriminate 49 analytes, including alkali-metal ions, alkaline-earth-metal ions, transition/post-transition metal ions, and lanthanide ions. A blind test with 49 metals further confirmed the discriminating power of DNA/Tb sensors. Moreover, the lifetime-based pattern recognition application using DNA/Tb sensors was also demonstrated. This DNA/Tb pattern recognition strategy could be extended to construct a series of "chemical noses/tongues" for monitoring various biochemical species by using different responsive DNA ligands, thus promising a versatile and powerful tool for a sensing application and investigation of DNA-involving molecular interactions.
Collapse
Affiliation(s)
- Shi-Fan Xue
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zi-Han Chen
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Xin-Yue Han
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Zi-Yang Lin
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Qi-Xian Wang
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Min Zhang
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| | - Guoyue Shi
- Lab of Biochemical Sensing Technology, School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China
| |
Collapse
|
7
|
Houston JP, Yang Z, Sambrano J, Li W, Nichani K, Vacca G. Overview of Fluorescence Lifetime Measurements in Flow Cytometry. Methods Mol Biol 2018; 1678:421-446. [PMID: 29071689 DOI: 10.1007/978-1-4939-7346-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The focus of this chapter is time-resolved flow cytometry, which is broadly defined as the ability to measure the timing of fluorescence decay from excited fluorophores that pass through cytometers or high-throughput cell counting and cell sorting instruments. We focus on this subject for two main reasons: first, to discuss the nuances of hardware and software modifications needed for these measurements because currently, there are no widespread time-resolved cytometers nor a one-size-fits-all approach; and second, to summarize the application space for fluorescence lifetime-based cell counting/sorting owing to the recent increase in the number of investigators interested in this approach. Overall, this chapter is structured into three sections: (1) theory of fluorescence decay kinetics, (2) modern time-resolved flow cytometry systems, and (3) cell counting and sorting applications. These commentaries are followed by conclusions and discussion about new directions and opportunities for fluorescence lifetime measurements in flow cytometry.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA.
| | - Zhihua Yang
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Jesse Sambrano
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Wenyan Li
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Kapil Nichani
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Giacomo Vacca
- Kinetic River Corp., 897, Independence Avenue, Suite 4A, Mountain View, CA, 94043-2357, USA
| |
Collapse
|
8
|
|
9
|
Shikha S, Salafi T, Cheng J, Zhang Y. Versatile design and synthesis of nano-barcodes. Chem Soc Rev 2017; 46:7054-7093. [DOI: 10.1039/c7cs00271h] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
This review provides a critical discussion on the versatile designing and usage of nano-barcodes for various existing and emerging applications.
Collapse
Affiliation(s)
- Swati Shikha
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore (NUS)
- 117583 Singapore
| | - Thoriq Salafi
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore (NUS)
- 117583 Singapore
- NUS Graduate School for Integrative Sciences and Engineering
| | - Jinting Cheng
- Institute of Materials Research and Engineering (IMRE)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
| | - Yong Zhang
- Department of Biomedical Engineering
- Faculty of Engineering
- National University of Singapore (NUS)
- 117583 Singapore
- NUS Graduate School for Integrative Sciences and Engineering
| |
Collapse
|
10
|
Xue SF, Lu LF, Wang QX, Zhang S, Zhang M, Shi G. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble. Talanta 2016; 158:208-213. [PMID: 27343597 DOI: 10.1016/j.talanta.2016.05.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/15/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application.
Collapse
Affiliation(s)
- Shi-Fan Xue
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ling-Fei Lu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qi-Xian Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shengqiang Zhang
- Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
11
|
Zheng X, Lu Y, Zhao J, Zhang Y, Ren W, Liu D, Lu J, Piper JA, Leif RC, Liu X, Jin D. High-Precision Pinpointing of Luminescent Targets in Encoder-Assisted Scanning Microscopy Allowing High-Speed Quantitative Analysis. Anal Chem 2015; 88:1312-9. [DOI: 10.1021/acs.analchem.5b03767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xianlin Zheng
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yiqing Lu
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jiangbo Zhao
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yuhai Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Wei Ren
- Institute
for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Deming Liu
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jie Lu
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - James A. Piper
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Robert C. Leif
- Newport Instruments, 3345 Hopi
Place, San Diego, California 92117-3516, United States
| | - Xiaogang Liu
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Institute
of Materials
Research and Engineering, A*STAR (Agency for Science, Technology and
Research), 3 Research Link, Singapore 117602, Singapore
| | - Dayong Jin
- Advanced
Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics
(CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Institute
for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
12
|
Han Y, Li H, Hu Y, Li P, Wang H, Nie Z, Yao S. Time-Resolved Luminescence Biosensor for Continuous Activity Detection of Protein Acetylation-Related Enzymes Based on DNA-Sensitized Terbium(III) Probes. Anal Chem 2015; 87:9179-85. [DOI: 10.1021/acs.analchem.5b01338] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yitao Han
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Hao Li
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Yufang Hu
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Pei Li
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Huixia Wang
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing
and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China
| |
Collapse
|
13
|
Leng Y, Sun K, Chen X, Li W. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection. Chem Soc Rev 2015; 44:5552-95. [PMID: 26021602 PMCID: PMC5223091 DOI: 10.1039/c4cs00382a] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and "point of care" platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields.
Collapse
Affiliation(s)
- Yuankui Leng
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | |
Collapse
|
14
|
Zhang M, Qu ZB, Han CM, Lu LF, Li YY, Zhou T, Shi G. Time-resolved probes and oxidase-based biosensors using terbium(III)-guanosine monophosphate-mercury(II) coordination polymer nanoparticles. Chem Commun (Camb) 2015; 50:12855-8. [PMID: 25208485 DOI: 10.1039/c4cc05889e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel lanthanide coordination polymer nanoparticle (LCPN)-based ternary complex was synthesized via the self-assembly of a terbium ion (Tb(3+)) with a nucleotide (GMP) and a mercury ion (Hg(2+)) in aqueous solution. The as-prepared LCPN-based ternary complex (Tb-GMP-Hg) can be applied to the development of time-resolved luminescence assays and oxidase-based biosensors.
Collapse
Affiliation(s)
- Min Zhang
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Lindén S, Singh MK, Wegner KD, Regairaz M, Dautry F, Treussart F, Hildebrandt N. Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein–protein interactions on cell membranes. Dalton Trans 2015; 44:4994-5003. [DOI: 10.1039/c4dt02884h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Time-gated Tb-to-dye FRET imaging for the investigation of E- and N-cadherin expression on different model cell lines.
Collapse
Affiliation(s)
- Stina Lindén
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- Orsay
- France
| | - Manish Kumar Singh
- Laboratoire Aimé Cotton
- UMR 9188 CNRS
- Université Paris-Sud and ENS Cachan
- 91405 Orsay
- France
| | - K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- Orsay
- France
| | - Marie Regairaz
- Laboratoire de Biologie et de Pharmacologie Appliquée
- UMR 8113 CNRS and ENS Cachan
- 94235 Cachan
- France
| | - François Dautry
- Laboratoire de Biologie et de Pharmacologie Appliquée
- UMR 8113 CNRS and ENS Cachan
- 94235 Cachan
- France
| | - François Treussart
- Laboratoire Aimé Cotton
- UMR 9188 CNRS
- Université Paris-Sud and ENS Cachan
- 91405 Orsay
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- Orsay
- France
| |
Collapse
|
16
|
Zhang L, Zheng X, Deng W, Lu Y, Lechevallier S, Ye Z, Goldys EM, Dawes JM, Piper JA, Yuan J, Verelst M, Jin D. Practical implementation, characterization and applications of a multi-colour time-gated luminescence microscope. Sci Rep 2014; 4:6597. [PMID: 25307702 PMCID: PMC4194433 DOI: 10.1038/srep06597] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/17/2014] [Indexed: 12/23/2022] Open
Abstract
Time-gated luminescence microscopy using long-lifetime molecular probes can effectively eliminate autofluorescence to enable high contrast imaging. Here we investigate a new strategy of time-gated imaging for simultaneous visualisation of multiple species of microorganisms stained with long-lived complexes under low-background conditions. This is realized by imaging two pathogenic organisms (Giardia lamblia stained with a red europium probe and Cryptosporidium parvum with a green terbium probe) at UV wavelengths (320-400 nm) through synchronization of a flash lamp with high repetition rate (1 kHz) to a robust time-gating detection unit. This approach provides four times enhancement in signal-to-background ratio over non-time-gated imaging, while the average signal intensity also increases six-fold compared with that under UV LED excitation. The high sensitivity is further confirmed by imaging the single europium-doped Y₂O₂S nanocrystals (150 nm). We report technical details regarding the time-gating detection unit and demonstrate its compatibility with commercial epi-fluorescence microscopes, providing a valuable and convenient addition to standard laboratory equipment.
Collapse
Affiliation(s)
- Lixin Zhang
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Xianlin Zheng
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Deng
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Yiqing Lu
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Severine Lechevallier
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CERMES - CNRS), Paul Sabatier University, France
| | - Zhiqiang Ye
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ewa M. Goldys
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Judith M. Dawes
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - James A. Piper
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Marc Verelst
- Centre d'Élaboration de Matériaux et d'Etudes Structurales (CERMES - CNRS), Paul Sabatier University, France
| | - Dayong Jin
- Advanced Cytometry Labs, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
17
|
Lu Y, Lu J, Zhao J, Cusido J, Raymo FM, Yuan J, Yang S, Leif RC, Huo Y, Piper JA, Paul Robinson J, Goldys EM, Jin D. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat Commun 2014; 5:3741. [PMID: 24796249 PMCID: PMC4024748 DOI: 10.1038/ncomms4741] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/27/2014] [Indexed: 12/23/2022] Open
Abstract
Significant multiplexing capacity of optical time-domain coding has been recently demonstrated by tuning luminescence lifetimes of the upconversion nanoparticles called 'τ-Dots'. It provides a large dynamic range of lifetimes from microseconds to milliseconds, which allows creating large libraries of nanotags/microcarriers. However, a robust approach is required to rapidly and accurately measure the luminescence lifetimes from the relatively slow-decaying signals. Here we show a fast algorithm suitable for the microsecond region with precision closely approaching the theoretical limit and compatible with the rapid scanning cytometry technique. We exploit this approach to further extend optical time-domain multiplexing to the downconversion luminescence, using luminescence microspheres wherein lifetimes are tuned through luminescence resonance energy transfer. We demonstrate real-time discrimination of these microspheres in the rapid scanning cytometry, and apply them to the multiplexed probing of pathogen DNA strands. Our results indicate that tunable luminescence lifetimes have considerable potential in high-throughput analytical sciences.
Collapse
Affiliation(s)
- Yiqing Lu
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jie Lu
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jiangbo Zhao
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Janet Cusido
- Laboratory for Molecular Photonics, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146-0431, USA
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Sean Yang
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Robert C. Leif
- Newport Instruments, 3345 Hopi Place, San Diego, California 92117-3516, USA
| | - Yujing Huo
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - James A. Piper
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - J Paul Robinson
- Purdue University Cytometry Laboratories, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ewa M. Goldys
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| | - Dayong Jin
- Advanced Cytometry Laboratories, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
- Purdue University Cytometry Laboratories, Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
18
|
Jin D, Lu Y, Leif RC, Yang S, Rajendran M, Miller LW. How to build a time-gated luminescence microscope. ACTA ACUST UNITED AC 2014; 67:2.22.1-2.22.36. [PMID: 24510771 DOI: 10.1002/0471142956.cy0222s67] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sensitivity of filter-based fluorescence microscopy techniques is limited by autofluorescence background. Time-gated detection is a practical way to suppress autofluorescence, enabling higher contrast and improved sensitivity. In the past few years, three groups of authors have demonstrated independent approaches to build robust versions of time-gated luminescence microscopes. Three detailed, step-by-step protocols are provided here for modifying standard fluorescent microscopes to permit imaging time-gated luminescence.
Collapse
Affiliation(s)
- Dayong Jin
- Advanced Cytometry Laboratories, MQ BioFocus Research Centre & Photonics Research Centre, Macquarie University, New South Wales, Australia
| | - Yiqing Lu
- Advanced Cytometry Laboratories, MQ BioFocus Research Centre & Photonics Research Centre, Macquarie University, New South Wales, Australia
| | | | - Sean Yang
- Newport Instruments, San Diego, California
| | - Megha Rajendran
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lawrence W Miller
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Grichine A, Haefele A, Pascal S, Duperray A, Michel R, Andraud C, Maury O. Millisecond lifetime imaging with a europium complex using a commercial confocal microscope under one or two-photon excitation. Chem Sci 2014. [DOI: 10.1039/c4sc00473f] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate that a commercial confocal microscope can perform time-gated and long lifetime imaging in the μs to ms range under classical one photon or nonlinear two photon excitation.
Collapse
Affiliation(s)
| | | | - Simon Pascal
- University Lyon 1
- ENS Lyon
- CNRS UMR 5182
- 69364 Lyon, France
| | | | | | | | - Olivier Maury
- University Lyon 1
- ENS Lyon
- CNRS UMR 5182
- 69364 Lyon, France
| |
Collapse
|
20
|
Zhang M, Le HN, Jiang XQ, Yin BC, Ye BC. Time-Resolved Probes Based on Guanine/Thymine-Rich DNA-Sensitized Luminescence of Terbium(III). Anal Chem 2013; 85:11665-74. [DOI: 10.1021/ac4034054] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Min Zhang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Huynh-Nhu Le
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Xiao-Qin Jiang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bin-Cheng Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
21
|
Zhao J, Jin D, Schartner EP, Lu Y, Liu Y, Zvyagin AV, Zhang L, Dawes JM, Xi P, Piper JA, Goldys EM, Monro TM. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. NATURE NANOTECHNOLOGY 2013; 8:729-34. [PMID: 23995455 DOI: 10.1038/nnano.2013.171] [Citation(s) in RCA: 328] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 05/22/2023]
Abstract
Upconversion nanocrystals convert infrared radiation to visible luminescence, and are promising for applications in biodetection, bioimaging, solar cells and three-dimensional display technologies. Although the design of suitable nanocrystals has improved the performance of upconversion nanocrystals, their emission brightness is limited by the low doping concentration of activator ions needed to avoid the luminescence quenching that occurs at high concentrations. Here, we demonstrate that high excitation irradiance can alleviate concentration quenching in upconversion luminescence when combined with higher activator concentration, which can be increased from 0.5 mol% to 8 mol% Tm(3+) in NaYF₄. This leads to significantly enhanced luminescence signals, by up to a factor of 70. By using such bright nanocrystals, we demonstrate remote tracking of a single nanocrystal with a microstructured optical-fibre dip sensor. This represents a sensitivity improvement of three orders of magnitude over benchmark nanocrystals such as quantum dots.
Collapse
Affiliation(s)
- Jiangbo Zhao
- Advanced Cytometry Laboratories, MQ Photonics Research Centre and MQ BioFocus Research Centre, Macquarie University, Sydney, New South Wales 2109, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lu J, Martin J, Lu Y, Zhao J, Yuan J, Ostrowski M, Paulsen I, Piper JA, Jin D. Resolving low-expression cell surface antigens by time-gated orthogonal scanning automated microscopy. Anal Chem 2012; 84:9674-8. [PMID: 23098251 DOI: 10.1021/ac302550u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report a highly sensitive method for rapid identification and quantification of rare-event cells carrying low-abundance surface biomarkers. The method applies lanthanide bioprobes and time-gated detection to effectively eliminate both nontarget organisms and background noise and utilizes the europium containing nanoparticles to further amplify the signal strength by a factor of ∼20. Of interest is that these nanoparticles did not correspondingly enhance the intensity of nonspecific binding. Thus, the dramatically improved signal-to-background ratio enables the low-expression surface antigens on single cells to be quantified. Furthermore, we applied an orthogonal scanning automated microscopy (OSAM) technique to rapidly process a large population of target-only cells on microscopy slides, leading to quantitative statistical data with high certainty. Thus, the techniques together resolved nearly all false-negative events from the interfering crowd including many false-positive events.
Collapse
|