1
|
Yousefi A, Zheng Z, Zargarbashi S, Assadipapari M, Hickman GJ, Parmenter CD, Bueno-Alejo CJ, Sanderson G, Craske D, Xu L, Perry CC, Rahmani M, Ying C. Structural Flexibility and Disassembly Kinetics of Single Ferritin Molecules Using Optical Nanotweezers. ACS NANO 2024; 18:15617-15626. [PMID: 38850556 PMCID: PMC11191739 DOI: 10.1021/acsnano.4c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level. Here, by employing optical nanotweezers using double-nanohole (DNH) structures, we examined the effect of ascorbic acid (reducing reagent) and pH on individual ferritin's conformational dynamics. The dynamics of ferritin increased as the concentration of ascorbic acid approached saturation. At pH 2.0, ferritin exhibited significant structural fluctuations and eventually underwent a stepwise disassembly into fragments. This work demonstrated the disassembly pathway and kinetics of a single ferritin molecule in solution. We identified four critical fragments during its disassembly pathway, which are 22-mer, 12-mer, tetramer, and dimer subunits. Moreover, we present single-molecule evidence of the cooperative disassembly of ferritin. Interrogating ferritin's structural change in response to different chemicals holds importance for understanding their roles in iron metabolism, hence facilitating further development of medical treatments for its associated diseases.
Collapse
Affiliation(s)
- Arman Yousefi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Ze Zheng
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Saaman Zargarbashi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Mahya Assadipapari
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Graham J. Hickman
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | | | - Carlos J. Bueno-Alejo
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Gabriel Sanderson
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Dominic Craske
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United Kingdom
| | - Lei Xu
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Carole C. Perry
- Interdisciplinary
Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Mohsen Rahmani
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118NS, United
Kingdom
| |
Collapse
|
2
|
Praveen Kamath P, Sil S, Truong VG, Nic Chormaic S. Particle trapping with optical nanofibers: a review [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:6172-6189. [PMID: 38420322 PMCID: PMC10898553 DOI: 10.1364/boe.503146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 03/02/2024]
Abstract
Optical trapping has proven to be an efficient method to control particles, including biological cells, single biological macromolecules, colloidal microparticles, and nanoparticles. Multiple types of particles have been successfully trapped, leading to various applications of optical tweezers ranging from biomedical through physics to material sciences. However, precise manipulation of particles with complex composition or of sizes down to nanometer-scales can be difficult with conventional optical tweezers, and an alternative manipulation tool is desirable. Optical nanofibers, that is, fibers with a waist diameter smaller than the propagating wavelength of light, are ideal candidates for optical manipulation due to their large evanescent field that extends beyond the fiber surface. They have the added advantages of being easily connected to a fibered experimental setup, being simple to fabricate, and providing strong electric field confinement and intense magnitude of evanescent fields at the nanofiber's surface. Many different particles have been trapped, rotated, transported, and assembled with such a system. This article reviews particle trapping using optical nanofibers and highlights some challenges and future potentials of this developing topic.
Collapse
Affiliation(s)
- Pramitha Praveen Kamath
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Souvik Sil
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Viet Giang Truong
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Síle Nic Chormaic
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
Suresh K, Monisha K, Bankapur A, Rao SK, Mutalik S, George SD. Cellular temperature probing using optically trapped single upconversion luminescence. Anal Chim Acta 2023; 1273:341530. [PMID: 37423663 DOI: 10.1016/j.aca.2023.341530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND The thermally coupled energy states that contribute to the upconversion luminescence of rare earth element-doped nanoparticles have been the subject of intense research due to their potential nanoscale temperature probing. However, the inherent low quantum efficiency of these particles often limits their practical applications, and currently, surface passivation and incorporation of plasmonic particles are being explored to improve the inherent quantum efficiency of the particle. However, the role of these surface passivating layers and the attached plasmonic particles in the temperature sensitivity of upconverting nanoparticles while probing the intercellular temperature has not been investigated thus far, particularly at the single nanoparticle level. RESULTS The analysis of the study on the thermal sensitivity of oleate-free UCNP, UCNP@SiO2, and UCNP@SiO2@Au particles is carried out at a single particle level in a physiologically relevant temperature range (299 K-319 K) by optically trapping the particle. The thermal relative sensitivity of the as-prepared upconversion nanoparticle (UCNP) is found to be greater than that of UCNP@SiO2 and UCNP@SiO2@Au particles in an aqueous medium. An optically trapped single luminescence particle inside the cell is used to monitor the temperature inside the cell by measuring the luminescence from the thermally coupled states. The absolute sensitivity of optically trapped particles inside the biological cell increases with temperature, with a greater impact on the bare UCNP, which exhibits higher values for thermal sensitivity than UCNP@SiO2 and UCNP@SiO2@Au. The thermal sensitivity of the trapped particle inside the biological cell at 317 K indicates the thermal sensitivity of UCNP > UCNP@SiO2@Au > UCNP@SiO2 particles. SIGNIFICANCE AND NOVELTY Compared to bulk sample-based temperature probing, the present study demonstrates temperature measurement at the single particle level by optically trapping the particle and further explores the role of the passivating silica shell and the incorporation of plasmonic particles on thermal sensitivity. Furthermore, thermal sensitivity measurements inside a biological cell at the single particle level are investigated and illustrated that thermal sensitivity at a single particle is sensitive to the measuring environment.
Collapse
Affiliation(s)
- K Suresh
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K Monisha
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Subha Krishna Rao
- Centre for Nanoscience and Nanotechnology, International Research Centre, Satyabama Institute of Science and Technology, Chennai, 600119, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India; Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
4
|
Yousefi A, Ying C, Parmenter CD, Assadipapari M, Sanderson G, Zheng Z, Xu L, Zargarbashi S, Hickman GJ, Cousins RB, Mellor CJ, Mayer M, Rahmani M. Optical Monitoring of In Situ Iron Loading into Single, Native Ferritin Proteins. NANO LETTERS 2023; 23:3251-3258. [PMID: 37053043 PMCID: PMC10141409 DOI: 10.1021/acs.nanolett.3c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ferritin is a protein that stores and releases iron to prevent diseases associated with iron dysregulation in plants, animals, and bacteria. The conversion between iron-loaded holo-ferritin and empty apo-ferritin is an important process for iron regulation. To date, studies of ferritin have used either ensemble measurements to quantify the characteristics of a large number of proteins or single-molecule approaches to interrogate labeled or modified proteins. Here we demonstrate the first real-time study of the dynamics of iron ion loading and biomineralization within a single, unlabeled ferritin protein. Using optical nanotweezers, we trapped single apo- and holo-ferritins indefinitely, distinguished one from the other, and monitored their structural dynamics in real time. The study presented here deepens the understanding of the iron uptake mechanism of ferritin proteins, which may lead to new therapeutics for iron-related diseases.
Collapse
Affiliation(s)
- Arman Yousefi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
- Email
for C.Y.:
| | | | - Mahya Assadipapari
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Gabriel Sanderson
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Ze Zheng
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Lei Xu
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Saaman Zargarbashi
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
| | - Graham J. Hickman
- School
of Science and Technology, Nottingham Trent
University, Nottingham NG11 8NS, United
Kingdom
| | - Richard B. Cousins
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Christopher J. Mellor
- School
of Physics and Astronomy, University of
Nottingham, Nottingham NG7 2RD, United
Kingdom
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Mohsen Rahmani
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science and Technology, Nottingham Trent
University, Nottingham NG118 NS, United
Kingdom
- Email for M.R.:
| |
Collapse
|
5
|
Khosravi B, Gordon R. Reflection mode optical trapping using polarization symmetry breaking from tilted double nanoholes. OPTICS EXPRESS 2023; 31:2621-2627. [PMID: 36785271 DOI: 10.1364/oe.480802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
We demonstrate reflection geometry optical trapping using double nanoholes in a metal film. Symmetry breaking of the double nanohole allows for selecting the scattered trapping laser light of orthogonal polarization to the incident beam. This orthogonal polarization light shows a few percent increase when the nanoparticle (e.g., a 20 nm polystyrene particle, or protein bovine serum albumin) is trapped. The reflection geometry simplifies the optical setup and frees up one side of the trap, which has great potential for adding microfluidics to the other side or working with opaque or highly scattering samples.
Collapse
|
6
|
Peng X, Kotnala A, Rajeeva BB, Wang M, Yao K, Bhatt N, Penley D, Zheng Y. Plasmonic Nanotweezers and Nanosensors for Point-of-Care Applications. ADVANCED OPTICAL MATERIALS 2021; 9:2100050. [PMID: 34434691 PMCID: PMC8382230 DOI: 10.1002/adom.202100050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 05/12/2023]
Abstract
The capabilities of manipulating and analyzing biological cells, bacteria, viruses, DNAs, and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. We discuss progress in developments and applications of plasmonic nanotweezers and nanosensors where the plasmon-enhanced light-matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point-of-care (POC) applications is envisioned. We provide our perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices.
Collapse
Affiliation(s)
- Xiaolei Peng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bharath Bangalore Rajeeva
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kan Yao
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Neel Bhatt
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel Penley
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
7
|
Zaman MA, Padhy P, Hesselink L. Fokker-Planck analysis of optical near-field traps. Sci Rep 2019; 9:9557. [PMID: 31266994 PMCID: PMC6606609 DOI: 10.1038/s41598-019-45609-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/06/2019] [Indexed: 11/09/2022] Open
Abstract
The motion of a nanoparticle in the vicinity of a near-field optical trap is modeled using the Fokker-Planck equation. A plasmonic C-shaped engraving on a gold film is considered as the optical trap. The time evolution of the position probability density of the nanoparticle is calculated to analyze the trapping dynamics. A spatially varying diffusion tensor is used in the formulation to take into account the hydrodynamic interactions. The steady-state position distribution obtained from the Fokker-Planck equation is compared with experimental results and found to be in good agreement. Computational cost of the proposed method is compared with the conventionally used Langevin equation based approach. The proposed method is found to be computationally efficient (requiring 35 times less computation time) and scalable to more complex lab-on-a-chip systems.
Collapse
Affiliation(s)
| | - Punnag Padhy
- Stanford University, Electrical Engineering, Stanford, CA, 94305, USA
| | | |
Collapse
|
8
|
Hacohen N, Ip CJX, Gordon R. Analysis of Egg White Protein Composition with Double Nanohole Optical Tweezers. ACS OMEGA 2018; 3:5266-5272. [PMID: 31458737 PMCID: PMC6641915 DOI: 10.1021/acsomega.8b00651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/03/2018] [Indexed: 05/21/2023]
Abstract
We use a double nanohole optical tweezer to analyze the protein composition of egg white through analysis of many individual protein trapping events. The proteins are grouped by mass based on two metrics: standard deviation of the trapping laser intensity fluctuations from the protein diffusion and the time constant of these fluctuations coming from the autocorrelation. Quantitative analysis is demonstrated for artificial samples, and then, the approach is applied to real egg white. The composition found from real egg white corresponds well to past reports using gel electrophoresis. This approach differs from past works by allowing for individual protein analysis in heterogeneous solutions without the need for denaturing, labeling, or tethering.
Collapse
Affiliation(s)
- Noa Hacohen
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Candice J X Ip
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Reuven Gordon
- Faculty of Engineering, Department of Electrical and Computer Engineering, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
9
|
Ehtaiba JM, Gordon R. Template-stripped nanoaperture tweezer integrated with optical fiber. OPTICS EXPRESS 2018; 26:9607-9613. [PMID: 29715909 DOI: 10.1364/oe.26.009607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate an optical trapping technique that integrates the light guiding of an optical fiber with the field localization of a nanoaperture in a gold film. A key innovation of our technique is to use template-stripping for easy planar fabrication without the need for nanofabrication on the tip itself. As a proof of principle, we demonstrate the trapping of 20 nm and 30 nm polystyrene nanoparticles in solution, as observed by a jump in the transmitted laser intensity through the aperture. We use the finite difference time domain technique to simulate this intensity jump with the addition of a nanoparticle in the aperture, showing reasonable agreement with the experimental data. This simple nano-aperture optical fiber tip eliminates the need for a microscope setup while allowing for trapping nanoparticles, so it is anticipated to have applications in biology (e.g. viruses), biophysics (e.g. protein interactions), physics (e.g. quantum emitters), and chemistry (e.g. colloidal particles).
Collapse
|
10
|
Trichet AAP, Dolan PR, James D, Hughes GM, Vallance C, Smith JM. Nanoparticle Trapping and Characterization Using Open Microcavities. NANO LETTERS 2016; 16:6172-6177. [PMID: 27652604 DOI: 10.1021/acs.nanolett.6b02433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Characterization and trapping of nanoparticles in solution is of great importance for lab-on-a-chip applications in biomedical, environmental, and materials sciences. Devices are now starting to emerge allowing such manipulations and investigations in real-time. Better insights into the interaction between the nanoparticle and the optical trap is therefore necessary in order to move forward in this field. In this work, we present a new kind of nanotweezers based on open microcavities. We show that by monitoring the cavity mode wavelength shift as the particle diffuses through the cavity, it is possible to establish both the nanoparticle polarizability and its coefficient of friction. Additionally, our experiment provides a deep insight in the interaction between the nanoparticle and the cavity mode. The technique has built-in calibration of the trap strength and spring constant, making it attractive for practical applications. This work illustrates the potential of such optical microcavities for future developments in nanoparticle sensors and lab-on-a-chip devices.
Collapse
Affiliation(s)
- A A P Trichet
- Department of Materials, University of Oxford , Oxford OX1 3PH, United Kingdom
| | - P R Dolan
- Department of Materials, University of Oxford , Oxford OX1 3PH, United Kingdom
| | - D James
- Department of Chemistry, University of Oxford , Oxford OX1 3RQ, United Kingdom
| | - G M Hughes
- Department of Materials, University of Oxford , Oxford OX1 3PH, United Kingdom
| | - C Vallance
- Department of Chemistry, University of Oxford , Oxford OX1 3RQ, United Kingdom
| | - J M Smith
- Department of Materials, University of Oxford , Oxford OX1 3PH, United Kingdom
| |
Collapse
|
11
|
Daly M, Truong VG, Chormaic SN. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers. OPTICS EXPRESS 2016; 24:14470-14482. [PMID: 27410600 DOI: 10.1364/oe.24.014470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
While conventional optical trapping techniques can trap objects with submicron dimensions, the underlying limits imposed by the diffraction of light generally restrict their use to larger or higher refractive index particles. As the index and diameter decrease, the trapping difficulty rapidly increases; hence, the power requirements for stable trapping become so large as to quickly denature the trapped objects in such diffraction-limited systems. Here, we present an evanescent field-based device capable of confining low index nanoscale particles using modest optical powers as low as 1.2 mW, with additional applications in the field of cold atom trapping. Our experiment uses a nanostructured optical micro-nanofiber to trap 200 nm, low index contrast, fluorescent particles within the structured region, thereby overcoming diffraction limitations. We analyze the trapping potential of this device both experimentally and theoretically, and show how strong optical traps are achieved with low input powers.
Collapse
|
12
|
Kim JD, Choi JH, Lee YG. A measurement of the maximal forces in plasmonic tweezers. NANOTECHNOLOGY 2015; 26:425203. [PMID: 26422476 DOI: 10.1088/0957-4484/26/42/425203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plasmonic tweezers that are designed to trap nanoscale objects create many new possibilities for single-molecule targeted studies. Numerous novel designs of plasmonic nanostructures are proposed in order to attain stronger forces and weaker laser intensity. Most experiments have consisted only of immobilization observations--that is, particles stick when the laser is turned on and fall away when the laser is turned off. Studies of the exertable forces were only theoretical. A few studies have experimentally measured trap stiffness. However, as far as we know, no studies have addressed maximal forces. In this paper, we present a new experimental design in which the motion of the trapped particle can be monitored in either parallel or orthogonal directions to the plasmonic structure's symmetric axis. We measured maximal trapping force through such monitoring. Although stiffness would be useful for force-calibration or immobilization purposes, for which most plasmonic tweezers are used, we believe that the maximal endurable force is significant and thus, this paper presents this aspect.
Collapse
Affiliation(s)
- Jung-Dae Kim
- School of Mechatronics, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro (Oryong-dong), Buk-gu, Gwangju, 500-712, Korea
| | | | | |
Collapse
|
13
|
Wang M, Zhao C, Miao X, Zhao Y, Rufo J, Liu YJ, Huang TJ, Zheng Y. Plasmofluidics: Merging Light and Fluids at the Micro-/Nanoscale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:4423-44. [PMID: 26140612 PMCID: PMC4856436 DOI: 10.1002/smll.201500970] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/07/2015] [Indexed: 05/14/2023]
Abstract
Plasmofluidics is the synergistic integration of plasmonics and micro/nanofluidics in devices and applications in order to enhance performance. There has been significant progress in the emerging field of plasmofluidics in recent years. By utilizing the capability of plasmonics to manipulate light at the nanoscale, combined with the unique optical properties of fluids and precise manipulation via micro/nanofluidics, plasmofluidic technologies enable innovations in lab-on-a-chip systems, reconfigurable photonic devices, optical sensing, imaging, and spectroscopy. In this review article, the most recent advances in plasmofluidics are examined and categorized into plasmon-enhanced functionalities in microfluidics and microfluidics-enhanced plasmonic devices. The former focuses on plasmonic manipulations of fluids, bubbles, particles, biological cells, and molecules at the micro/nanoscale. The latter includes technological advances that apply microfluidic principles to enable reconfigurable plasmonic devices and performance-enhanced plasmonic sensors. The article is concluded with perspectives on the upcoming challenges, opportunities, and possible future directions of the emerging field of plasmofluidics.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712, USA
| | - Chenglong Zhao
- Department of Physics Electro-Optics, Graduate Program University of Dayton, Dayton, Ohio 45469, USA
| | - Xiaoyu Miao
- Google, Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
| | - Yanhui Zhao
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yan Jun Liu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR) 3 Research Link, Singapore 117602, Singapore
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Materials Research Institute, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Materials Science and Engineering Program Texas Materials Institute The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
14
|
Al Balushi AA, Kotnala A, Wheaton S, Gelfand RM, Rajashekara Y, Gordon R. Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. Analyst 2015; 140:4760-78. [DOI: 10.1039/c4an02213k] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent advances in nanoaperture optical tweezers have enabled studies of single nanoparticles like proteins in label-free, free-solution environments.
Collapse
Affiliation(s)
- Ahmed A. Al Balushi
- Department of Electrical and Computer Engineering
- University of Victoria
- Victoria
- Canada V8P5C2
| | - Abhay Kotnala
- Department of Electrical and Computer Engineering
- University of Victoria
- Victoria
- Canada V8P5C2
| | - Skyler Wheaton
- Department of Electrical and Computer Engineering
- University of Victoria
- Victoria
- Canada V8P5C2
| | - Ryan M. Gelfand
- Department of Electrical and Computer Engineering
- University of Victoria
- Victoria
- Canada V8P5C2
| | - Yashaswini Rajashekara
- Department of Electrical and Computer Engineering
- University of Victoria
- Victoria
- Canada V8P5C2
| | - Reuven Gordon
- Department of Electrical and Computer Engineering
- University of Victoria
- Victoria
- Canada V8P5C2
| |
Collapse
|
15
|
Zehtabi-Oskuie A, Zinck AA, Gelfand RM, Gordon R. Template stripped double nanohole in a gold film for nano-optical tweezers. NANOTECHNOLOGY 2014; 25:495301. [PMID: 25407447 DOI: 10.1088/0957-4484/25/49/495301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Double nanohole (DNH) laser tweezers can optically trap and manipulate objects such as proteins, nanospheres, and other nanoparticles; however, precise fabrication of those DNHs has been expensive with low throughput. In this work, template stripping was used to pattern DNHs with gaps as small as 7 nm, in optically thick Au films. These DNHs were used to trap streptavidin as proof of operation. The structures were processed multiple times from the same template to demonstrate reusability. Template stripping is a promising method for high-throughput, reproducible, and cost efficient fabrication of DNH apertures for optical trapping.
Collapse
Affiliation(s)
- Ana Zehtabi-Oskuie
- Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
| | | | | | | |
Collapse
|
16
|
Kotnala A, Gordon R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. NANO LETTERS 2014; 14:853-6. [PMID: 24404888 DOI: 10.1021/nl404233z] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We measure the dynamics of 20 nm polystyrene particles in a double nanohole trap to determine the trap stiffness for various laser powers. Both the autocorrelation analysis of Brownian fluctuations and the trapping transient analysis provide a consistent value of ∼ 0.2 fN/nm stiffness for 2 mW of laser power, which is similar to theoretical calculations for aperture trapping. As expected, the stiffness increases linearly with laser power. This is comparable to the stiffness obtained for conventional optical traps for trapping, but for ten times smaller dielectric particles and less power. This approach will allow us to quantitatively evaluate future aperture-based optical traps, with the goal of studying the folding dynamics of smaller proteins (∼ 10 kDa) and small-molecule interactions.
Collapse
Affiliation(s)
- Abhay Kotnala
- Department of Electrical Engineering, University of Victoria , Victoria, British Columbia V8W 3P6, Canada
| | | |
Collapse
|
17
|
Kotnala A, DePaoli D, Gordon R. Sensing nanoparticles using a double nanohole optical trap. LAB ON A CHIP 2013; 13:4142-6. [PMID: 23969596 DOI: 10.1039/c3lc50772f] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We use a double nanohole (DNH) optical trap to quantify the size and concentration of nanoparticles in solution. The time to trap shows a linear dependence with nanosphere size and a -2/3 power dependence with nanosphere concentration, which is in agreement with simple microfluidic considerations. The DNH approach has size-specificity on the order of a few nanometers, which was used to selectively quantify particles of a single size within a heterogeneous solution. By looking at individual trapping events, it is in principle possible to extend this approach to the ultimate limit of a single particle concentration, while also being able to operate at high concentrations in the same configuration. In addition, the DNH trap allows us to hold onto individual particles and thereby study constituents of a heterogeneous mixture. By repeating the trapping measurements on spherical particles of different refractive index, we found that the transmission step that indicates trapping scales empirically with the Clausius-Mossotti factor. This approach may be applied to several sensing applications, such as in the study of virus populations, where concentrations vary over many orders of magnitude.
Collapse
Affiliation(s)
- Abhay Kotnala
- University of Victoria, Electrical and Computer Engineering, Victoria, Canada.
| | | | | |
Collapse
|
18
|
Zehtabi-Oskuie A, Jiang H, Cyr BR, Rennehan DW, Al-Balushi AA, Gordon R. Double nanohole optical trapping: dynamics and protein-antibody co-trapping. LAB ON A CHIP 2013; 13:2563-8. [PMID: 23429640 DOI: 10.1039/c3lc00003f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A double nanohole in a metal film can optically trap nanoparticles such as polystyrene/silica spheres, encapsulated quantum dots and up-converting nanoparticles. Here we study the dynamics of trapped particles, showing a skewed distribution and low roll-off frequency that are indicative of Kramers-hopping at the nanoscale. Numerical simulations of trapped particles show a double-well potential normally found in Kramers-hopping systems, as well as providing quantitative agreement with the overall trapping potential. In addition, we demonstrate co-trapping of bovine serum albumin (BSA) with anti-BSA by sequential delivery in a microfluidic channel. This co-trapping opens up exciting possibilities for the study of protein interactions at the single particle level.
Collapse
Affiliation(s)
- Ana Zehtabi-Oskuie
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 3P6
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The ability to manipulate nanoparticles is significant in nanoscale science and technology. As sizes of the objects scale down to the sub-10 nm regime, it imposes a great challenge for the conventional optical tweezers. There has been much effort to explore alternative manipulation methods including using nanostructures, electron beams, scanning probes, etc. In this paper, an overview of the latest advances in trapping and manipulation of nanoparticles with a focus on the emergent electron tweezers is provided.
Collapse
Affiliation(s)
- Haimei Zheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94708, USA.
| |
Collapse
|
20
|
Al Balushi AA, Zehtabi-Oskuie A, Gordon R. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. BIOMEDICAL OPTICS EXPRESS 2013; 4:1504-11. [PMID: 24049672 PMCID: PMC3771822 DOI: 10.1364/boe.4.001504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 05/06/2023]
Abstract
We experimentally demonstrate protein binding at the single particle level. A double nanohole (DNH) optical trap was used to hold onto a 20 nm biotin-coated polystyrene (PS) particle which subsequently is bound to streptavidin. Biotin-streptavidin binding has been detected by an increase in the optical transmission through the DNH. Similar optical transmission behavior was not observed when streptavidin binding sites where blocked by mixing streptavidin with excess biotin. Furthermore, interaction of non-functionalized PS particles with streptavidin did not induce a change in the optical transmission through the DNH. These results are promising as the DNH trap can make an excellent single molecule resolution sensor which would enable studying biomolecular interactions and dynamics at a single particle/molecule level.
Collapse
|