1
|
Zhang W, Yang R, Wei L, Wei J, Meng X, Ma H, Pang Y, Li Y, Xia H, Wu S. An ultra-thin MXene film with high conversion efficiency for broadband ultrasonic photoacoustic transducer. ULTRASONICS 2025; 152:107633. [PMID: 40117700 DOI: 10.1016/j.ultras.2025.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
High-pressure, broadband, and miniatured ultrasound emitters are urgently needed in biomedical imaging and treatment as well as non-destructive detection. In this work, we report a laser generated ultrasonic photoacoustic transducer (LGUPT) based on an ultra-thin layer of MXene (Ti3C2Tx) nanosheets. Under the excitation of 532nm nanosecond laser pulses, the amplitude of the generated sound pressure can reach 8.7MPa, with a bandwidth of 17.4MHz at the irradiation intensity of 17.72mJ/cm2. The photoacoustic conversion efficiency of the 1.2μm-thick MXene film/PDMS transducer was found to be 1.21×10-2, which is among the highest values reported to date. The MXene thin film can also be drop-casted on the curved surface of a focusing lens. The amplitude of the sound pressure signal can reach 25.3 MPa and the bandwidth 19.7MHz at a pulse laser energy of 28.12mJ/cm2. The width of the focal spot at -3 dB of maximum amplitude was found in the range of 0.14mm for the optical lens based LGUPT under the condition of a laser spot diameter of 15mm by theoretical simulation. The water processable focusing LGUPT demonstrated excellent ultrasonic cavitation effect on the tissue mimicking agar plate. Our experimental and theoretical work highlights the potential of ultra-thin MXene film based LGUPTs for high precision photoacoustic therapy, integrated imaging and sensing instruments.
Collapse
Affiliation(s)
- Wenqi Zhang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China; Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruolan Yang
- Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Lai Wei
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China; Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinxu Wei
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China; Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangying Meng
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China; Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Hanyue Ma
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China; Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Yujia Pang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China; Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan Li
- Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Xia
- Department of Engineering Electromagnetic Field and Its Application, Institute of Electrical Engineering Chinese Academy of Sciences, Beijing, 100190, China; Department of Electronic and Electrical Engineering, University of Chinese Academy of Sciences, Beijing, 100015, China; Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Shandong, 250014, China; Shandong Key Laboratory of Advanced Electromagnetic Conversion Technology, Shandong, 250014, China.
| | - Songmei Wu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
2
|
Kang S. Spectral analysis of photoacoustic ultrasound generation in metal-polymer layered structures using a semi-analytical approach. ULTRASONICS 2025; 150:107603. [PMID: 40036931 DOI: 10.1016/j.ultras.2025.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 02/18/2025] [Indexed: 03/06/2025]
Abstract
This study presents a spectral analysis of photoacoustic ultrasound generation in layered structures comprising metal thin films and polymer layers, applying a semi-analytical approach where general solutions are derived analytically and their arbitrary constants are determined numerically. The investigation focused on elucidating the fundamental mechanisms involved in generating ultrasonic waves through incident laser light, encompassing comprehensive examinations of photoacoustic phenomena such as light absorption, heat generation and diffusion, thermal expansion, and the generation and propagation of elastic/acoustic waves. Subsequently, the study aimed to identify the operating principles underlying the enhancement of ultrasonic wave production through addition of either a metal thin film or a polymer layer. Special emphasis was placed on characterizing optical and acoustic resonances that occur during the photoacoustic conversion process. Finally, the study provided a detailed analysis of the impacts of key parameters, including the wavelength and pulse frequency of the laser light, as well as the materials and dimensions of the metal thin films and polymer layers, on the performance of the photoacoustic ultrasound generator. Insights gained from this spectral analysis significantly enhanced academic understanding of photoacoustic conversion mechanisms in layered photoacoustic generators. Moreover, these insights are expected to offer valuable guidance for optimizing and improving ultrasound generation techniques across various disciplines, including biomedical imaging, non-destructive testing, and materials science.
Collapse
Affiliation(s)
- Sangmo Kang
- Department of Mechanical Engineering, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
3
|
Seva S, Rorem B, Chinnathambi K, Estrada D, Guo LJ, Subbaraman H. Nozzle-Free Printing of CNT Electronics Using Laser-Generated Focused Ultrasound. SMALL METHODS 2024; 8:e2301596. [PMID: 38470204 DOI: 10.1002/smtd.202301596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Printed electronics have made remarkable progress in recent years and inkjet printing (IJP) has emerged as one of the leading methods for fabricating printed electronic devices. However, challenges such as nozzle clogging, and strict ink formulation constraints have limited their widespread use. To address this issue, a novel nozzle-free printing technology is explored, which is enabled by laser-generated focused ultrasound, as a potential alternative printing modality called Shock-wave Jet Printing (SJP). Specifically, the performance of SJP-printed and IJP-printed bottom-gated carbon nanotube (CNT) thin film transistors (TFTs) is compared. While IJP required ten print passes to achieve fully functional devices with channel dimensions ranging from tens to hundreds of micrometers, SJP achieved comparable performance with just a single pass. For optimized devices, SJP demonstrated six times higher maximum mobility than IJP-printed devices. Furthermore, the advantages of nozzle-free printing are evident, as SJP successfully printed stored and unsonicated inks, delivering moderate electrical performance, whereas IJP suffered from nozzle clogging due to CNT agglomeration. Moreover, SJP can print significantly longer CNTs, spanning the entire range of tube lengths of commercially available CNT ink. The findings from this study contribute to the advancement of nanomaterial printing, ink formulation, and the development of cost-effective printable electronics.
Collapse
Affiliation(s)
- Sarah Seva
- Electrical and Computer Engineering, Boise State University, 1910 W University Drive, Boise, ID, 83725, USA
| | - Benjamin Rorem
- Applied Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karthik Chinnathambi
- Micron School of Materials Science and Engineering, Boise State University, 1910 W University Drive, Boise, ID, 83725, USA
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, 1910 W University Drive, Boise, ID, 83725, USA
- Center for Advanced Energy Studies, Idaho National Laboratory, Idaho Falls, ID, 83415, USA
| | - L Jay Guo
- Applied Physics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Harish Subbaraman
- School of Electrical Engineering and Computer Science, Oregon State University, 110 SW Park Terrace Pl, Corvallis, OR, 97331, USA
| |
Collapse
|
4
|
Zhang T, Yuan J, Li J, Li W, Qin Y, Ge X, Ou-Yang J, Yang X, Zhu B. Design and prediction of laser-induced damage threshold of CNT-PDMS optoacoustic transducer. ULTRASONICS 2024; 142:107377. [PMID: 38901151 DOI: 10.1016/j.ultras.2024.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
The optoacoustic transducer has emerged as a new candidate for medical ultrasound applications and attracts considerable attention. Optoacoustic diagnosis and treatment sometimes require high-intensity acoustic pressure, which is often accompanied by the problem of laser-induced damage. Addressing the laser-induced damage phenomenon from a theoretical perspective holds paramount importance. In this study, the theoretical model of laser-induced damage of the carbon nanotubes-polydimethylsiloxane (CNT-PDMS) composite optoacoustic transducer is established. It is found that this laser-induced damage belongs to thermal ablation damage. Furthermore, the correctness of this theory can be confirmed by experimental results. Most importantly, when the laser energy density is less than threshold value of laser energy density, the optoacoustic transducer can work stable for long time. These encouraging results demonstrate that this work can provide significant guidance for the exploration and utilization of optoacoustic transducers.
Collapse
Affiliation(s)
- Tao Zhang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junru Yuan
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiapu Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenbo Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yijie Qin
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Ge
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ou-Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofei Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|
5
|
Chen HC, Ma Y, Cheng J, Chen YC. Advances in Single-Cell Techniques for Linking Phenotypes to Genotypes. CANCER HETEROGENEITY AND PLASTICITY 2024; 1:0004. [PMID: 39156821 PMCID: PMC11328949 DOI: 10.47248/chp2401010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Single-cell analysis has become an essential tool in modern biological research, providing unprecedented insights into cellular behavior and heterogeneity. By examining individual cells, this approach surpasses conventional population-based methods, revealing critical variations in cellular states, responses to environmental cues, and molecular signatures. In the context of cancer, with its diverse cell populations, single-cell analysis is critical for investigating tumor evolution, metastasis, and therapy resistance. Understanding the phenotype-genotype relationship at the single-cell level is crucial for deciphering the molecular mechanisms driving tumor development and progression. This review highlights innovative strategies for selective cell isolation based on desired phenotypes, including robotic aspiration, laser detachment, microraft arrays, optical traps, and droplet-based microfluidic systems. These advanced tools facilitate high-throughput single-cell phenotypic analysis and sorting, enabling the identification and characterization of specific cell subsets, thereby advancing therapeutic innovations in cancer and other diseases.
Collapse
Affiliation(s)
- Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Xue X, Wu H, Cai Q, Chen M, Moon S, Huang Z, Kim T, Peng C, Feng W, Sharma N, Jiang X. Flexible Ultrasonic Transducers for Wearable Biomedical Applications: A Review on Advanced Materials, Structural Designs, and Future Prospects. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:786-810. [PMID: 37971905 PMCID: PMC11292608 DOI: 10.1109/tuffc.2023.3333318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Due to the rapid developments in materials science and fabrication techniques, wearable devices have recently received increased attention for biomedical applications, particularly in medical ultrasound (US) imaging, sensing, and therapy. US is ubiquitous in biomedical applications because of its noninvasive nature, nonionic radiating, high precision, and real-time capabilities. While conventional US transducers are rigid and bulky, flexible transducers can be conformed to curved body areas for continuous sensing without restricting tissue movement or transducer shifting. This article comprehensively reviews the application of flexible US transducers in the field of biomedical imaging, sensing, and therapy. First, we review the background of flexible US transducers. Following that, we discuss advanced materials and fabrication techniques for flexible US transducers and their enabling technology status. Finally, we highlight and summarize some promising preliminary data with recent applications of flexible US transducers in biomedical imaging, sensing, and therapy. We also provide technical barriers, challenges, and future perspectives for further research and development.
Collapse
|
7
|
Nozdriukhin D, Kalva SK, Özsoy C, Reiss M, Li W, Razansky D, Deán‐Ben XL. Multi-Scale Volumetric Dynamic Optoacoustic and Laser Ultrasound (OPLUS) Imaging Enabled by Semi-Transparent Optical Guidance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306087. [PMID: 38115760 PMCID: PMC10953719 DOI: 10.1002/advs.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Major biological discoveries are made by interrogating living organisms with light. However, the limited penetration of un-scattered photons within biological tissues limits the depth range covered by optical methods. Deep-tissue imaging is achieved by combining light and ultrasound. Optoacoustic imaging exploits the optical generation of ultrasound to render high-resolution images at depths unattainable with optical microscopy. Recently, laser ultrasound has been suggested as a means of generating broadband acoustic waves for high-resolution pulse-echo ultrasound imaging. Herein, an approach is proposed to simultaneously interrogate biological tissues with light and ultrasound based on layer-by-layer coating of silica optical fibers with a controlled degree of transparency. The time separation between optoacoustic and ultrasound signals collected with a custom-made spherical array transducer is exploited for simultaneous 3D optoacoustic and laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to enable large-scale anatomical characterization of tissues along with functional multi-spectral imaging of chromophores and assessment of cardiac dynamics at ultrafast rates only limited by the pulse repetition frequency of the laser. The suggested approach provides a flexible and scalable means for developing a new generation of systems synergistically combining the powerful capabilities of optoacoustics and ultrasound imaging in biology and medicine.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Cagla Özsoy
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Weiye Li
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| |
Collapse
|
8
|
Na H, Park J, Jeong KH. Plasmon-enhanced optoacoustic transducer with Ecoflex thin film for broadband ultrasound generation using overdriven pulsed laser diode. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:125005. [PMID: 38144698 PMCID: PMC10739335 DOI: 10.1117/1.jbo.28.12.125005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Significance Ultrasonic transducers facilitate noninvasive biomedical imaging and therapeutic applications. Optoacoustic generation using nanoplasmonic structures provides a technical solution for highly efficient broadband ultrasonic transducer. However, bulky and high-cost nanosecond lasers as conventional excitation sources hinder a compact configuration of transducer. Aim Here, we report a plasmon-enhanced optoacoustic transducer (PEAT) for broadband ultrasound generation, featuring an overdriven pulsed laser diode (LD) and an Ecoflex thin film. The PEAT module consists of an LD, a collimating lens, a focusing lens, and an Ecoflex-coated 3D nanoplasmonic substrate (NPS). Approach The LD is overdriven above its nominal current and precisely modulated to achieve nanosecond pulsed beam with high optical peak power. The focused laser beam is injected on the NPS with high-density electromagnetic hotspots, which allows for the efficient plasmonic photothermal effect. The thermal expansion of Ecoflex finally generates broadband ultrasound. Results The overdriven pulsed LD achieves a maximum optical peak power of 40 W, exceeding the average optical power of 3 W. The 22 μ m thick Ecoflex-coated NPS exhibits an eightfold optoacoustic enhancement with a fractional - 6 dB bandwidth higher than 160% and a peak frequency of 2.5 MHz. In addition, the optoacoustic amplitude is precisely controlled by the optical peak power or the laser pulse width. The PEAT-integrated microfluidic chip clearly demonstrates acoustic atomization by generating aerosol droplets at the air-liquid interface. Conclusions Plasmon-enhanced optoacoustic generation using PEAT can provide an approach for compact and on-demand biomedical applications, such as ultrasound imaging and lab-on-a-chip technologies.
Collapse
Affiliation(s)
- Hamin Na
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology (KIHST), Daejeon, Republic of Korea
| | - Jaehyeok Park
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology (KIHST), Daejeon, Republic of Korea
| | - Ki-Hun Jeong
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology (KIHST), Daejeon, Republic of Korea
| |
Collapse
|
9
|
Howe GA, Tang MX, Rowlands CJ. Tailored photoacoustic apertures with superimposed optical holograms. BIOMEDICAL OPTICS EXPRESS 2023; 14:6361-6380. [PMID: 38420325 PMCID: PMC10898579 DOI: 10.1364/boe.507453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 03/02/2024]
Abstract
A new method of generating potentially arbitrary photoacoustic wavefronts with optical holograms is presented. This method uses nanosecond laser pulses at 1064 nm that are split into four time-delayed components by means of a configurable multipass optical delay apparatus, which serves to map the pulses onto phase-delayed regions of a given acoustic wavefront. A single spatial light modulator generates separate holograms for each component, which are imaged onto a photoacoustic transducer comprised of a thermoelastic polymer. As a proof of concept of the broader arbitrary wavefront construction technique, the spatially- and temporally-modulated holograms in this study produce a phased array effect that enables beam steering of the resulting acoustic pulse. For a first experimental demonstration of the method, as verified by simulation, the acoustic beam is steered in four directions by around 5 degrees.
Collapse
Affiliation(s)
- Glenn A Howe
- Department of Bioengineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2BX, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2BX, UK
| | - Christopher J Rowlands
- Department of Bioengineering, Imperial College London, Royal School of Mines, Prince Consort Road, London, SW7 2BX, UK
| |
Collapse
|
10
|
Kim J, Kasoji S, Durham PG, Dayton PA. Nanoparticle-Epoxy Composite Molding for Undeformed Acoustic Holograms With Tailored Acoustic Properties. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1554-1562. [PMID: 37561617 DOI: 10.1109/tuffc.2023.3303894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Acoustic hologram (AH) lenses are typically produced by high-resolution 3-D printing methods, such as stereolithography (SLA) printing. However, SLA printing of thin, plate-shaped lens structures has major limitations, including vulnerability to deformation during photocuring and limited control of acoustic impedance. To overcome these limitations, we demonstrated a nanoparticle-epoxy composite (NPEC) molding technique, and we tested its feasibility for AH lens fabrication. The characterized acoustic impedance of the 22.5% NPEC was 4.64 MRayl, which is 55% higher than the clear photopolymer (2.99 MRayl) used by SLA. Simulations demonstrated that the improved pressure transmission by the higher acoustic impedance of the NPEC resulted in 21% higher pressure amplitude in the region of interest (ROI, -6-dB pressure amplitude pixels) than the photopolymer. This improvement was experimentally demonstrated after prototyping NPEC lenses through a molding process. The NPEC lens showed no significant deformation and 72% lower thickness profile errors than the photopolymer, which otherwise experienced deformed edges due to thermal bending. Beam mapping results using the NPEC lens validated the predicted improvement, demonstrating 24% increased pressure amplitude on average and 10% improved structural similarity (SSIM) with the simulated pressure pattern compared to the photopolymer lens. This method can be used for AH lens applications with improved pressure output and accurate pressure field formation.
Collapse
|
11
|
Yuan J, Li J, Li W, Zhang T, Qin Y, Ge X, Ou-Yang J, Yang X, Zhu B. WITHDRAWN: Design and prediction of laser-induced damage threshold of CNT-PDMS optoacoustic transducer. ULTRASONICS 2023:107107. [PMID: 37739919 DOI: 10.1016/j.ultras.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 09/24/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Junru Yuan
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiapu Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenbo Li
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Zhang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijie Qin
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xu Ge
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Ou-Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofei Yang
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
12
|
Yang Z, Bao H, Dai L, Zhang H, Lu J. Experimental investigation of nanosecond laser-induced shock waves in water using multiple excitation beams. OPTICS EXPRESS 2023; 31:21845-21862. [PMID: 37381272 DOI: 10.1364/oe.492613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Revealing the expansion and interaction dynamics of multiple shock waves induced by a nanosecond laser is important for controlling laser surgery. However, the dynamic evolution of shock waves is a complex and ultrafast process, making it difficult to determine the specific laws. In this study, we conducted an experimental investigation into the formation, propagation, and interaction of underwater shock waves that are induced by nanosecond laser pulses. The effective energy carried by the shock wave is quantified by the Sedov-Taylor model fitting with experimental results. Numerical simulations with an analytic model using the distance between adjacent breakdown locations as input and effective energy as fit parameters provide insights into experimentally not accessible shock wave emission and parameters. A semi-empirical model is used to describe the pressure and temperature behind the shock wave taking into account the effective energy. The results of our analysis demonstrate that shock waves exhibit asymmetry in both their transverse and longitudinal velocity and pressure distributions. In addition, we compared the effect of the distance between adjacent excitation positions on the shock wave emission process. Furthermore, utilizing multi-point excitation offers a flexible approach to delve deeper into the physical mechanisms that cause optical tissue damage in nanosecond laser surgery, leading to a better comprehension of the subject.
Collapse
|
13
|
Aytac Kipergil E, Martin E, Mathews SJ, Papakonstantinou I, Alles EJ, Desjardins AE. Fiber-optic hydrophone for detection of high-intensity ultrasound waves. OPTICS LETTERS 2023; 48:2615-2618. [PMID: 37186722 PMCID: PMC10575604 DOI: 10.1364/ol.488862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
Fiber-optic hydrophones (FOHs) are widely used to detect high-intensity focused ultrasound (HIFU) fields. The most common type consists of an uncoated single-mode fiber with a perpendicularly cleaved end face. The main disadvantage of these hydrophones is their low signal-to-noise ratio (SNR). To increase the SNR, signal averaging is performed, but the associated increased acquisition times hinder ultrasound field scans. In this study, with a view to increasing SNR while withstanding HIFU pressures, the bare FOH paradigm is extended to include a partially reflective coating on the fiber end face. Here, a numerical model based on the general transfer-matrix method was implemented. Based on the simulation results, a single-layer, 172 nm TiO2-coated FOH was fabricated. The frequency range of the hydrophone was verified from 1 to 30 MHz. The SNR of the acoustic measurement with the coated sensor was 21 dB higher than that of the uncoated one. The coated sensor successfully withstood a peak positive pressure of 35 MPa for 6000 pulses.
Collapse
Affiliation(s)
- Esra Aytac Kipergil
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, University College London, 43–45 Foley Street, London W1W 7TY, UK
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, University College London, 43–45 Foley Street, London W1W 7TY, UK
| | - Sunish J. Mathews
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, University College London, 43–45 Foley Street, London W1W 7TY, UK
| | - Ioannis Papakonstantinou
- Photonic Innovations Lab, Department of Electronic and Electrical Engineering, University College London, Roberts Building, London WC1E 7JE, UK
| | - Erwin J. Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, University College London, 43–45 Foley Street, London W1W 7TY, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Charles Bell House, University College London, 43–45 Foley Street, London W1W 7TY, UK
| |
Collapse
|
14
|
Barbosa RCS, Mendes PM. A Comprehensive Review on Photoacoustic-Based Devices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:9541. [PMID: 36502258 PMCID: PMC9736954 DOI: 10.3390/s22239541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The photoacoustic effect is an emerging technology that has sparked significant interest in the research field since an acoustic wave can be produced simply by the incidence of light on a material or tissue. This phenomenon has been extensively investigated, not only to perform photoacoustic imaging but also to develop highly miniaturized ultrasound probes that can provide biologically meaningful information. Therefore, this review aims to outline the materials and their fabrication process that can be employed as photoacoustic targets, both biological and non-biological, and report the main components' features to achieve a certain performance. When designing a device, it is of utmost importance to model it at an early stage for a deeper understanding and to ease the optimization process. As such, throughout this article, the different methods already implemented to model the photoacoustic effect are introduced, as well as the advantages and drawbacks inherent in each approach. However, some remaining challenges are still faced when developing such a system regarding its fabrication, modeling, and characterization, which are also discussed.
Collapse
|
15
|
Vella D, Mrzel A, Drnovšek A, Shvalya V, Jezeršek M. Ultrasonic photoacoustic emitter of graphene-nanocomposites film on a flexible substrate. PHOTOACOUSTICS 2022; 28:100413. [PMID: 36276232 PMCID: PMC9579491 DOI: 10.1016/j.pacs.2022.100413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Photoacoustic devices generating high-amplitude and high-frequency ultrasounds are attractive candidates for medical therapies and on-chip bio-applications. Here, we report the photoacoustic response of graphene nanoflakes - Polydimethylsiloxane composite. A protocol was developed to obtain well-dispersed graphene into the polymer, without the need for surface functionalization, at different weight percentages successively spin-coated onto a Polydimethylsiloxane substrate. We found that the photoacoustic amplitude scales up with optical absorption reaching 11 MPa at ∼ 228 mJ/cm2 laser fluence. We observed a deviation of the pressure amplitude from the linearity increasing the laser fluence, which indicates a decrease of the Grüneisen parameter. Spatial confinement of high amplitude (> 40 MPa, laser fluence > 55 mJ/cm2) and high frequency (Bw-6db ∼ 21.5 MHz) ultrasound was achieved by embedding the freestanding film in an optical lens. The acoustic gain promotes the formation of cavitation microbubbles for moderate fluence in water and in tissue-mimicking material. Our results pave the way for novel photoacoustic medical devices and integrated components.
Collapse
Affiliation(s)
- Daniele Vella
- Faculty of Mechanical Engineering, Laboratory for Laser Techniques, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Aleš Mrzel
- Jožef Stefan Institute, Department of Complex Matter, Jamova 39, 1000 Ljubljana, Slovenia
| | - Aljaž Drnovšek
- Jožef Stefan Institute, Department of Thin Films and Surfaces, Jamova 39, 1000 Ljubljana, Slovenia
| | - Vasyl Shvalya
- Jožef Stefan Institute, Department of Gaseous Electronic, Jamova 39, 1000 Ljubljana, Slovenia
| | - Matija Jezeršek
- Faculty of Mechanical Engineering, Laboratory for Laser Techniques, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Diego M, Gandolfi M, Casto A, Bellussi FM, Vialla F, Crut A, Roddaro S, Fasano M, Vallée F, Del Fatti N, Maioli P, Banfi F. Ultrafast nano generation of acoustic waves in water via a single carbon nanotube. PHOTOACOUSTICS 2022; 28:100407. [PMID: 36263352 PMCID: PMC9574765 DOI: 10.1016/j.pacs.2022.100407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Generation of ultra high frequency acoustic waves in water is key to nano resolution sensing, acoustic imaging and theranostics. In this context water immersed carbon nanotubes (CNTs) may act as an ideal optoacoustic source, due to their nanometric radial dimensions, peculiar thermal properties and broad band optical absorption. The generation mechanism of acoustic waves in water, upon excitation of both a single-wall (SW) and a multi-wall (MW) CNT with laser pulses of temporal width ranging from 5 ns down to ps, is theoretically investigated via a multiscale approach. We show that, depending on the combination of CNT size and laser pulse duration, the CNT can act as a thermophone or a mechanophone. As a thermophone, the CNT acts as a nanoheater for the surrounding water, which, upon thermal expansion, launches the pressure wave. As a mechanophone, the CNT acts as a nanopiston, its thermal expansion directly triggering the pressure wave in water. Activation of the mechanophone effect is sought to trigger few nanometers wavelength sound waves in water, matching the CNT acoustic frequencies. This is at variance with respect to the commonly addressed case of water-immersed single metallic nano-objects excited with ns laser pulses, where only the thermophone effect significantly contributes. The present findings might be of impact in fields ranging from nanoscale non-destructive testing to water dynamics at the meso to nanoscale.
Collapse
Affiliation(s)
- Michele Diego
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Marco Gandolfi
- CNR-INO, via Branze 45, Brescia, 25123, Italy
- Department of Information Engineering, Università di Brescia, via Branze 38, Brescia, 25123, Italy
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via della Garzetta 48, Brescia, I-25133, Italy
| | - Alessandro Casto
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
- Politecnico di Torino, Department of Energy, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | | | - Fabien Vialla
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Aurélien Crut
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Stefano Roddaro
- Dipartimento di Fisica ”E. Fermi”, Università di Pisa, Largo B Pontecorvo 3, Pisa, I-56127, Italy
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, piazza San Silvestro 12, Pisa, I-56127, Italy
| | - Matteo Fasano
- Politecnico di Torino, Department of Energy, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Fabrice Vallée
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Natalia Del Fatti
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Paolo Maioli
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| | - Francesco Banfi
- FemtoNanoOptics group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, 10 Rue Ada Byron, Villeurbanne, F-69622, France
| |
Collapse
|
17
|
Li Y, Jiang Y, Lan L, Ge X, Cheng R, Zhan Y, Chen G, Shi L, Wang R, Zheng N, Yang C, Cheng JX. Optically-generated focused ultrasound for noninvasive brain stimulation with ultrahigh precision. LIGHT, SCIENCE & APPLICATIONS 2022; 11:321. [PMID: 36323662 PMCID: PMC9630534 DOI: 10.1038/s41377-022-01004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
High precision neuromodulation is a powerful tool to decipher neurocircuits and treat neurological diseases. Current non-invasive neuromodulation methods offer limited precision at the millimeter level. Here, we report optically-generated focused ultrasound (OFUS) for non-invasive brain stimulation with ultrahigh precision. OFUS is generated by a soft optoacoustic pad (SOAP) fabricated through embedding candle soot nanoparticles in a curved polydimethylsiloxane film. SOAP generates a transcranial ultrasound focus at 15 MHz with an ultrahigh lateral resolution of 83 µm, which is two orders of magnitude smaller than that of conventional transcranial-focused ultrasound (tFUS). Here, we show effective OFUS neurostimulation in vitro with a single ultrasound cycle. We demonstrate submillimeter transcranial stimulation of the mouse motor cortex in vivo. An acoustic energy of 0.6 mJ/cm2, four orders of magnitude less than that of tFUS, is sufficient for successful OFUS neurostimulation. OFUS offers new capabilities for neuroscience studies and disease treatments by delivering a focus with ultrahigh precision non-invasively.
Collapse
Affiliation(s)
- Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Ying Jiang
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Lu Lan
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Ran Cheng
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Guo Chen
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Linli Shi
- Department of Chemistry, Boston University, Boston, MA, 02215, USA
| | - Runyu Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Nan Zheng
- Division of Materials Science and Engineering, Boston University, Boston, MA, 02215, USA
| | - Chen Yang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Biswas D, Heo J, Sang P, Dey P, Han K, Ko JH, Won SM, Son D, Suh M, Kim HS, Ok JG, Park HJ, Baac HW. Micro-ultrasonic Assessment of Early Stage Clot Formation and Whole Blood Coagulation Using an All-Optical Ultrasound Transducer and Adaptive Signal Processing Algorithm. ACS Sens 2022; 7:2940-2950. [PMID: 36107765 DOI: 10.1021/acssensors.2c00875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormal formation of solid thrombus inside a blood vessel can cause thrombotic morbidity and mortality. This necessitates early stage diagnosis, which requires quantitative assessment with a small volume, for effective therapy with low risk to unwanted development of various diseases. We propose a micro-ultrasonic diagnosis using an all-optical ultrasound-based spectral sensing (AOUSS) technique for sensitive and quantitative characterization of early stage and whole blood coagulation. The AOUSS technique detects and analyzes minute viscoelastic variations of blood at a micro-ultrasonic spot (<100 μm) defined by laser-generated focused ultrasound (LGFU). This utilizes (1) a uniquely designed optical transducer configuration for frequency-spectral matching and wideband operation (6 dB widths: 7-32 MHz and d.c. ∼ 46 MHz, respectively) and (2) an empirical mode decomposition (EMD)-based signal process particularly adapted to nonstationary LGFU signals backscattered from the spot. An EMD-derived spectral analysis enables one to assess viscoelastic variations during the initiation of fibrin formation, which occurs at a very early stage of blood coagulation (1 min) with high sensitivity (frequency transition per storage modulus increment = 8.81 MHz/MPa). Our results exhibit strong agreement with those obtained by conventional rheometry (Pearson's R > 0.95), which are also confirmed by optical microscopy. The micro-ultrasonic and high-sensitivity detection of AOUSS poses a potential clinical significance, serving as a screening modality to diagnose early stage clot formation (e.g., as an indicator for hypercoagulation of blood) and stages of blood-to-clot transition to check a potential risk for development into thrombotic diseases.
Collapse
Affiliation(s)
- Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.,School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Jeongmin Heo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pilgyu Sang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kayoung Han
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Department of Biomedical Engineering, Department of Intelligent Precision Healthcare Convergence (IPHC), Biomedical Institute of Convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong Hwan Ko
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Department of Biomedical Engineering, Department of Intelligent Precision Healthcare Convergence (IPHC), Biomedical Institute of Convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
19
|
Shock Wave Characterization Using Different Diameters of an Optoacoustic Carbon Nanotube Composite Transducer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Carbon nanotube–polymethyl siloxane (CNT-PDMS) composite transducers generate shock waves using optoacoustic technology. A thin layer of thermally conductive CNT and elastomeric polymer, PDMS, is applied on the concave surface of transparent polymethylmethacrylate (PMMA) to convert laser energy to acoustic energy using the thermoelastic effect of the composite transducer. The efficient conversion of laser energy requires an optimum utilization of the different properties of composite transducers. Among these properties, the diameter of composite transducers is a significant parameter. To practically verify and understand the effect of the diameter of composite transducers on the properties of shock waves, CNT-PDMS composite transducers with different diameters and focal lengths were constructed. Increases in the diameter of the composite transducer and input laser energy resulted in increased peak pressures of the shock waves. The maximum positive and negative pressures of the shock waves generated were 53 MPa and −25 MPa, respectively. This practically demonstrates that high peak amplitudes of shock waves can be achieved using larger transducers, which are suitable for practical applications in transcranial studies.
Collapse
|
20
|
Tašič Muc B, Vella D, Lukač N, Kos M, Jezeršek M. Amplification of high-intensity pressure waves and cavitation in water using a multi-pulsed laser excitation and black-TiOx optoacoustic lens. BIOMEDICAL OPTICS EXPRESS 2022; 13:3993-4006. [PMID: 35991925 PMCID: PMC9352300 DOI: 10.1364/boe.460713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
A method for amplification of high-intensity pressure waves generated with a multi-pulsed Nd:YAG laser coupled with a black-TiOx optoacoustic lens in the water is presented and characterized. The investigation was focused on determining how the multi-pulsed laser excitation with delays between 50 µs and 400 µs influences the dynamics of the bubbles formed by a laser-induced breakdown on the upper surface of the lens, the acoustic cavitation in the focal region of the lens, and the high-intensity pressure waves generation. A needle hydrophone and a high-speed camera were used to analyze the spatial distribution and time-dependent development of the above-mentioned phenomena. Our results show how different delays (td ) of the laser pulses influence optoacoustic dynamics. When td is equal to or greater than the bubble oscillation time, acoustic cavitation cloud size increases 10-fold after the fourth laser pulse, while the pressure amplitude increases by more than 75%. A quasi-deterministic creation of cavitation due to consecutive transient pressure waves is also discussed. This is relevant for localized ablative laser therapy.
Collapse
Affiliation(s)
- Blaž Tašič Muc
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, Slovenia
- Fotona d.o.o., Stegne 7, Ljubljana, Slovenia
| | - Daniele Vella
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, Slovenia
| | - Nejc Lukač
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, Slovenia
- Fotona d.o.o., Stegne 7, Ljubljana, Slovenia
| | - Matjaž Kos
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, Slovenia
| | - Matija Jezeršek
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, Ljubljana, Slovenia
| |
Collapse
|
21
|
Hu X, Ma Y, Wan Q, Ying KN, Dai LN, Hu Z, Chen F, Guan F, Ni C, Guo L. Laser ultrasonic improvement and its application in defect detection based on the composite coating method. APPLIED OPTICS 2022; 61:4145-4152. [PMID: 36256091 DOI: 10.1364/ao.454888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/10/2022] [Indexed: 06/16/2023]
Abstract
Herein, we studied the increasing tendency of photoacoustic (PA) conversion efficiency of the Au/polydimethylsiloxane (PDMS) composite. The thickness of the Au layer was optimized by modeling the PA process based on the Drude-Lorentz model and finite element analysis method, and corresponding results were verified. The results showed that the optimal Au thickness of the Au/PDMS composite was 35 nm. Finally, the Au/PDMS composites were coated onto the surface of aluminum alloys, which improved the thermoelastic laser ultrasonic (LU) signals to near 100 times. Besides, the defect mapping was performed by thermoelastic LU signals with Au/PDMS coating and ablation LU signals without coating; the Pearson correlation coefficient was higher than 0.95. The application in the defect detection in metal could provide guides for nondestructive detection on metals by laser ultrasound.
Collapse
|
22
|
Faraz M, Abbasi MA, Son D, Shin C, Lee KT, Won SM, Baac HW. Strain-Dependent Photoacoustic Characteristics of Free-Standing Carbon-Nanocomposite Transmitters. SENSORS 2022; 22:s22093432. [PMID: 35591121 PMCID: PMC9104446 DOI: 10.3390/s22093432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
In this paper we demonstrate strain-dependent photoacoustic (PA) characteristics of free-standing nanocomposite transmitters that are made of carbon nanotubes (CNT) and candle soot nanoparticles (CSNP) with an elastomeric polymer matrix. We analyzed and compared PA output performances of these transmitters which are prepared first on glass substrates and then in a delaminated free-standing form for strain-dependent characterization. This confirms that the nanocomposite transmitters with lower concentration of nanoparticles exhibit more flexible and stretchable property in terms of Young’s modulus in a range of 4.08–10.57 kPa. Then, a dynamic endurance test was performed revealing that both types of transmitters are reliable with pressure amplitude variation as low as 8–15% over 100–800 stretching cycles for a strain level of 5–28% with dynamic endurance in range of 0.28–2.8%. Then, after 2000 cycles, the transmitters showed pressure amplitude variation of 6–29% (dynamic endurance range of 0.21–1.03%) at a fixed strain level of 28%. This suggests that the free-standing nanocomposite transmitters can be used as a strain sensor under a variety of environments providing robustness under repeated stretching cycles.
Collapse
Affiliation(s)
- Muhammad Faraz
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Muhammad Awais Abbasi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Changhwan Shin
- School of Electrical Engineering, Korea University, Seoul 02841, Korea
| | - Kyu-Tae Lee
- Department of Physics, Inha University, Incheon 22212, Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
23
|
Chen Y, Zhu H, Wang Y, Yu H. Binary amplitude switch for photoacoustic transducer toward dynamic spatial acoustic field modulation. OPTICS LETTERS 2022; 47:738-741. [PMID: 35167513 DOI: 10.1364/ol.446714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Photoacoustic (PA) transducers are an attractive method of producing high-amplitude, high-frequency, broad-bandwidth ultrasound signals with excellent immunity to electromagnetic interference, when compared with their traditional electroacoustic counterparts. However, the lack of effective control over the spatial sound field prohibits PA transducer technology from further widespread application. This paper presents the first, to the best of our knowledge, experimental study on the dynamic spatial ultrasound modulation strategy for the use of PA transducers, in which a novel PA transducer element is designed. This consists of a suspended compound PA conversion film, whose backing condition can be switched between air and glass through pneumatic actuation to create destructive and constructive acoustic wave interference, respectively. As a result, nearly an order of magnitude contrast in the output acoustic amplitude can be obtained by switching the device's backing condition given the same laser excitation, thus achieving a binary amplitude tuning. Furthermore, a linear PA transducer array consisting of three independently controllable elements is used for a proof-of-concept demonstration of the dynamic spatial sound field manipulation. To the best of the authors' knowledge, this is the first time that such a unique capability has been successfully applied to PA transducer technology.
Collapse
|
24
|
Morco SR, Jensen BD, Bowden AE. Curvature-induced defects on carbon-infiltrated carbon nanotube forests. RSC Adv 2022; 12:2115-2122. [PMID: 35425237 PMCID: PMC8979125 DOI: 10.1039/d1ra07243a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022] Open
Abstract
A morphological study of the micro-scale defects induced by growing a carbon-infiltrated carbon nanotube (CICNT) forest on concave substrates was conducted. Two CICNT heights (roughly 60 μm and 400 μm) and 4 curvatures (1–4 mm ID) were studied in order to test the geometric limitations. Defects were categorized and quantified by scanning electron microscopy (SEM) of the tops and cross-sections. These deformities were categorized as increased roughness on the top surface, a corrugated (also called wavy or rippled) forest, a curved forest, an inside crevice where the forest separates, and increased forest density on the top surface. Roughness increased nearly 3-fold with the taller forest heights no matter the substrate curvature. Due to the geometric limitations of CICNT height and substrate curvature, all other microscale defects were significantly more present on samples with a small radius of curvature and a tall CICNT forest (p < 0.05). These buckling and warping types of defects were attributed to the increase in circumferential compression as the forest grows as well as the van der Waals interactions between the nanotubes. Because the fabrication process for CICNT involves growing a CNT forest and then infiltrating it with pyrolytic carbon, this work may be applicable to other CNT forests on concave substrates within these forest heights and substrate curvatures. A morphological study of the micro-scale defects induced by growing a carbon-infiltrated carbon nanotube (CICNT) forest on concave substrates was conducted.![]()
Collapse
Affiliation(s)
- Stephanie R Morco
- Brigham Young University, Department of Mechanical Engineering 350 Engineering Building Provo UT 84602 USA
| | - Brian D Jensen
- Brigham Young University, Department of Mechanical Engineering 350 Engineering Building Provo UT 84602 USA
| | - Anton E Bowden
- Brigham Young University, Department of Mechanical Engineering 350 Engineering Building Provo UT 84602 USA
| |
Collapse
|
25
|
Li C, Li N, Chang L, Gu Z, Zhang J. Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Abedini-Nassab R, Emami SM, Nowghabi AN. Nanotechnology and Acoustics in Medicine and Biology. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:198-206. [PMID: 33913408 DOI: 10.2174/1872210515666210428134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Nanotechnology plays an important role in various engineering fields, one of which is acoustics. METHOD Here, we review the use of nanotechnology in multiple acoustic-based bioapplications, with a focus on recent patents and advances. Nanoparticles, nanorods, nanotubes, and nanofilms used in acoustic devices are discussed. We cover ultrasonic transducers, biosensors, imaging tools, nanomotors, and particle sorters. RESULTS AND CONCLUSION The way these ideas help in fundamental disciplines such as medicine is shown. We believe the current work is a good collection of advances in the field.
Collapse
|
27
|
Peng C, Chen M, Spicer JB, Jiang X. Acoustics at the nanoscale (nanoacoustics): A comprehensive literature review.: Part I: Materials, devices and selected applications. SENSORS AND ACTUATORS. A, PHYSICAL 2021; 332:112719. [PMID: 34937991 PMCID: PMC8691753 DOI: 10.1016/j.sna.2021.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the past decade, acoustics at the nanoscale (i.e., nanoacoustics) has evolved rapidly with continuous and substantial expansion of capabilities and refinement of techniques. Motivated by research innovations in the last decade, for the first time, recent advancements of acoustics-associated nanomaterials/nanostructures and nanodevices for different applications are outlined in this comprehensive review, which is written in two parts. As part I of this two part review, firstly, active and passive nanomaterials and nanostructures for acoustics are presented. Following that, representative applications of nanoacoustics including material property characterization, nanomaterial/nanostructure manipulation, and sensing, are discussed in detail. Finally, a summary is presented with point of views on the current challenges and potential solutions in this burgeoning field.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - James B. Spicer
- Department of Materials Science and Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
28
|
Abbasi MA, Faraz M, Joo MG, Son D, Won SM, Ok JG, Park HJ, Baac HW. Variable-focus optoacoustic lens with wide dynamic range and long focal length by using a flexible polymer nano-composite membrane. ULTRASONICS 2021; 117:106545. [PMID: 34343758 DOI: 10.1016/j.ultras.2021.106545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/04/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate a variable-focus optoacoustic lens (VFOL) by pneumatically controlling a flexible polymer nano-composite membrane, which can produce laser-generated focused ultrasound (LGFU) with a high peak amplitude (>30 MPa) and a tight focal dimension (several hundred μm) over a wide dynamic range of focus variation (>20 mm) together with a long focal length up to 60 mm, each of which is widest and longest among optoacoustic lenses developed so far. Two different designs in lens dimension have been fabricated and characterized: VFOL-L with a 40-mm diameter and VFOL-S with 10 mm. VFOL-L exhibits a wide dynamic range of focal length variation from 38.52 to 60.39 mm with a center frequency near ~ 10 MHz, which is proper for practical long-range applications with several-cm depth. In comparison, VFOL-S covers a focal variation range from 6.75 to 11.1 mm with ~ 14 MHz, producing a relatively higher-pressure amplitude, which allows the inception of acoustic cavitation at an impedance-mismatched boundary. The nano-composite membrane of VFOL is actuated from a planar to deeply curved shape by externally injecting liquid into the VFOL, resulting in a focal gain up to 255 and a positive peak pressure of > 30 MPa in the VFOL-L case. The minimum-geometrical f-number as low as 0.963 is achieved at the shortest focal length (38.52 mm) with 6-dB lateral and axial spot dimensions of 304 μm and 2.86 mm, respectively. We expect that the proposed VFOL-based LGFU with a high peak pressure, a wide dynamic axial range, and a tight focal dimension are suitably applied for depth-dependent characterization of tissues and shockwave treatment, taking advantages of optoacoustic pulses as input with inherent broadband high-frequency characteristics.
Collapse
Affiliation(s)
- Muhammad Awais Abbasi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Muhammad Faraz
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Min Gyu Joo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
29
|
Bodian S, Colchester RJ, Macdonald TJ, Ambroz F, Briceno de Gutierrez M, Mathews SJ, Fong YMM, Maneas E, Welsby KA, Gordon RJ, Collier P, Zhang EZ, Beard PC, Parkin IP, Desjardins AE, Noimark S. CuInS 2 Quantum Dot and Polydimethylsiloxane Nanocomposites for All-Optical Ultrasound and Photoacoustic Imaging. ADVANCED MATERIALS INTERFACES 2021; 8:2100518. [PMID: 34777946 PMCID: PMC8573612 DOI: 10.1002/admi.202100518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Indexed: 05/13/2023]
Abstract
Dual-modality imaging employing complementary modalities, such as all-optical ultrasound and photoacoustic imaging, is emerging as a well-suited technique for guiding minimally invasive surgical procedures. Quantum dots are a promising material for use in these dual-modality imaging devices as they can provide wavelength-selective optical absorption. The first quantum dot nanocomposite engineered for co-registered laser-generated ultrasound and photoacoustic imaging is presented. The nanocomposites developed, comprising CuInS2 quantum dots and medical-grade polydimethylsiloxane (CIS-PDMS), are applied onto the distal ends of miniature optical fibers. The films exhibit wavelength-selective optical properties, with high optical absorption (> 90%) at 532 nm for ultrasound generation, and low optical absorption (< 5%) at near-infrared wavelengths greater than 700 nm. Under pulsed laser irradiation, the CIS-PDMS films generate ultrasound with pressures exceeding 3.5 MPa, with a corresponding bandwidth of 18 MHz. An ultrasound transducer is fabricated by pairing the coated optical fiber with a Fabry-Pérot (FP) fiber optic sensor. The wavelength-selective nature of the film is exploited to enable co-registered all-optical ultrasound and photoacoustic imaging of an ink-filled tube phantom. This work demonstrates the potential for quantum dots as wavelength-selective absorbers for all-optical ultrasound generation.
Collapse
Affiliation(s)
- Semyon Bodian
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
- Materials Chemistry CentreDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Richard J. Colchester
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
| | - Thomas J. Macdonald
- Materials Chemistry CentreDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Filip Ambroz
- Materials Chemistry CentreDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | | | - Sunish J. Mathews
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
| | - Yu Man Mandy Fong
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
- Materials Chemistry CentreDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Efthymios Maneas
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
| | - Kathryn A. Welsby
- Central Laser FacilityHarwell Science and Innovation CampusChiltonDidcotOX11 0DEUK
| | - Ross J. Gordon
- Johnson Matthey Technology CentreSonning CommonReadingRG4 9NHUK
| | - Paul Collier
- Johnson Matthey Technology CentreSonning CommonReadingRG4 9NHUK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
| | - Ivan P. Parkin
- Materials Chemistry CentreDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
| | - Sacha Noimark
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Wellcome/ESPRC Centre for Surgical and Interventional SciencesUniversity College LondonCharles Bell House, 67–73 Riding House StreetLondonW1W 7EJUK
- Materials Chemistry CentreDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|
30
|
Sang PG, Biswas D, Lee SJ, Won SM, Son D, Ok JG, Park HJ, Baac HW. Experimental Demonstration of a Stacked Hybrid Optoacoustic-Piezoelectric Transducer for Localized Heating and Enhanced Cavitation. MICROMACHINES 2021; 12:mi12101268. [PMID: 34683319 PMCID: PMC8540735 DOI: 10.3390/mi12101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Laser-generated focused ultrasound (LGFU) is an emerging modality for cavitation-based therapy. However, focal pressure amplitudes by LGFU alone to achieve pulsed cavitation are often lacking as a treatment depth increases. This requires a higher pressure from a transmitter surface and more laser energies that even approach to a damage threshold of transmitter. To mitigate the requirement for LGFU-induced cavitation, we propose LGFU configurations with a locally heated focal zone using an additional high-intensity focused ultrasound (HIFU) transmitter. After confirming heat-induced cavitation enhancement using two separate transmitters, we then developed a stacked hybrid optoacoustic-piezoelectric transmitter, which is a unique configuration made by coating an optoacoustic layer directly onto a piezoelectric substrate. This shared curvature design has great practical advantage without requiring the complex alignment of two focal zones. Moreover, this enabled the amplification of cavitation bubble density by 18.5-fold compared to the LGFU operation alone. Finally, the feasibility of tissue fragmentation was confirmed through a tissue-mimicking gel, using the combination of LGFU and HIFU (not via a stacked structure). We expect that the stacked transmitter can be effectively used for stronger and faster tissue fragmentation than the LGFU transmitter alone.
Collapse
Affiliation(s)
- Pil Gyu Sang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Seung Jin Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
| | - Jong G. Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Korea;
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea; (P.G.S.); (D.B.); (S.J.L.); (S.M.W.); (D.S.)
- Correspondence:
| |
Collapse
|
31
|
Colchester RJ, Little CD, Alles EJ, Desjardins AE. Flexible and directional fibre optic ultrasound transmitters using photostable dyes. OSA CONTINUUM 2021; 4:2488-2495. [PMID: 37841369 PMCID: PMC10575603 DOI: 10.1364/osac.431444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 10/17/2023]
Abstract
All-optical ultrasound transducers are well-suited for use in imaging during minimally invasive surgical procedures. This requires highly miniaturised and flexible devices. Here we present optical ultrasound transmitters for imaging applications based on modified optical fibre distal tips which allow for larger transmitter element sizes, whilst maintaining small diameter proximal optical fibre. Three optical ultrasound transmitter configurations were compared; a 400 µm core optical fibre, a 200 µm core optical fibre with a 400 µm core optical fibre distal tip, and a 200 µm core optical fibre with a 400 µm core capillary distal tip. All the transmitters used a polydimethylsiloxane-dye composite material for ultrasound generation. The material comprised a photostable infra-red absorbing dye to provide optical absorption for the ultrasound transduction. The generated ultrasound beam profile for the three transmitters was compared, demonstrating similar results, with lateral beam widths <1.7 mm at a depth of 10 mm. The composite material demonstrates a promising alternative to previously reported materials, generating ultrasound pressures exceeding 2 MPa, with corresponding bandwidths ca. 30 MHz. These highly flexible ultrasound transmitters can be readily incorporated into medical devices with small lateral dimensions.
Collapse
Affiliation(s)
- Richard J. Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/ESPRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Callum D. Little
- Wellcome/ESPRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
- Department of Cardiovascular Medicine, Royal Free NHS Foundation Trust, London, UK
| | - Erwin J. Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/ESPRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, UK
- Wellcome/ESPRC Centre for Interventional and Surgical Sciences, 43-45 Foley Street, London, W1W 7TY, UK
| |
Collapse
|
32
|
Du X, Li J, Niu G, Yuan JH, Xue KH, Xia M, Pan W, Yang X, Zhu B, Tang J. Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging. Nat Commun 2021; 12:3348. [PMID: 34099728 PMCID: PMC8184828 DOI: 10.1038/s41467-021-23788-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 05/06/2021] [Indexed: 11/08/2022] Open
Abstract
Lead halide perovskites have exhibited excellent performance in solar cells, LEDs and detectors. Thermal properties of perovskites, such as heat capacity and thermal conductivity, have rarely been studied and corresponding devices have barely been explored. Considering the high absorption coefficient (104~105 cm-1), low specific heat capacity (296-326 J kg-1 K-1) and small thermal diffusion coefficient (0.145 mm2 s-1), herein we showcase the successful use of perovskite in optoacoustic transducers. The theoretically calculated phonon spectrum shows that the overlap of optical phonons and acoustic phonons leads to the up-conversion of acoustic phonons, and thus results in experimentally measured low thermal diffusion coefficient. The assembled device of PDMS/MAPbI3/PDMS simultaneously achieves broad bandwidths (-6 dB bandwidth: 40.8 MHz; central frequency: 29.2 MHz), and high conversion efficiency (2.97 × 10-2), while all these parameters are the record values for optoacoustic transducers. We also fabricate miniatured devices by assembling perovskite film onto fibers, and clearly resolve the fine structure of fisheyes, which demonstrates the strong competitiveness of perovskite based optoacoustic transducers for ultrasound imaging.
Collapse
Affiliation(s)
- Xinyuan Du
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| | - Jiapu Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun-Hui Yuan
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| | - Kan-Hao Xue
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| | - Mengling Xia
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| | - Weicheng Pan
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Yang
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| | - Benpeng Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China.
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics, School of Optical and electronic information, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
YANG GUANG, HUANG HENGBO, LUO HONGBO, KOU SITAI, AMIDI EGHBAL, ACHILEFU SAMUEL, ZHU QUING. Fiber endface photoacoustic generator for quantitative photoacoustic tomography. OPTICS LETTERS 2021; 46:2706-2709. [PMID: 34061093 PMCID: PMC8522196 DOI: 10.1364/ol.426033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate a novel fiber endface photoacoustic (PA) generator using infrared (IR) 144 laser dye dispersed within an ultraviolet adhesive. The generator provides a wide acoustic bandwidth in the transducer frequency range of 2-7 MHz, high thermal conversion efficiency (${\gt}90\%$), good PA signal controllability (well-controlled IR 144 concentration), and high feasibility (simple procedures). Through a series of experimental validations, we show that this fiber-based endface PA generator can be a useful tool for a broad range of biomedical applications such as calibrating the local absorption coefficient of biological tissue for quantitative PA tomography.
Collapse
Affiliation(s)
- GUANG YANG
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - HENGBO HUANG
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - HONGBO LUO
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - SITAI KOU
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - EGHBAL AMIDI
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - SAMUEL ACHILEFU
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - QUING ZHU
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
34
|
Aytac-Kipergil E, Desjardins AE, Treeby BE, Noimark S, Parkin IP, Alles EJ. Modelling and measurement of laser-generated focused ultrasound: Can interventional transducers achieve therapeutic effects? THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2732. [PMID: 33940866 PMCID: PMC8060049 DOI: 10.1121/10.0004302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/05/2021] [Accepted: 03/26/2021] [Indexed: 05/02/2023]
Abstract
Laser-generated focused ultrasound (LGFU) transducers used for ultrasound therapy commonly have large diameters (6-15 mm), but smaller lateral dimensions (<4 mm) are required for interventional applications. To address the question of whether miniaturized LGFU transducers could generate sufficient pressure at the focus to enable therapeutic effects, a modelling and measurement study is performed. Measurements are carried out for both linear and nonlinear propagation for various illumination schemes and compared with the model. The model comprises several innovations. First, the model allows for radially varying acoustic input distributions on the surface of the LGFU transducer, which arise from the excitation light impinging on the curved transducer surfaces. This realistic representation of the source prevents the overestimation of the achievable pressures (shown here to be as high as 1.8 times). Second, an alternative inverse Gaussian illumination paradigm is proposed to achieve higher pressures; a 35% increase is observed in the measurements. Simulations show that LGFU transducers as small as 3.5 mm could generate sufficient peak negative pressures at the focus to exceed the cavitation threshold in water and blood. Transducers of this scale could be integrated with interventional devices, thereby opening new opportunities for therapeutic applications from inside the body.
Collapse
Affiliation(s)
- Esra Aytac-Kipergil
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, United Kingdom
| | - Adrien E Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, United Kingdom
| | - Sacha Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, United Kingdom
| | - Ivan P Parkin
- Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Erwin J Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, United Kingdom
| |
Collapse
|
35
|
Chen Y, Li Q, Zhu H, Wang Y, Zhang X, Yu H. Air-backed photoacoustic transmitter for significantly improving negative acoustic pressure output. OPTICS LETTERS 2021; 46:1149-1152. [PMID: 33649679 DOI: 10.1364/ol.415850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Aiming to pursue an ultrasound signal with a significantly improved negative acoustic pressure level, which is one of the critical characteristics for exciting the ultrasound cavitation effect, a real applicable air-backed photoacoustic transmitter is presented. Different from the conventional solution of relying on a complicated focusing structure design, it works based on an acoustic signal phase reversal and amplitude superposition strategy. By using an innovative sandwich-like suspending photoacoustic layer with optimized structure design, the initial backward-propagating positive sound pressure can be converted into the forward-propagating negative one efficiently. For proof-of-concept demonstration, photoacoustic transmitter prototypes adopting a polydimethylsiloxane (PDMS)/candle soot nanoparticle/PDMS-PDMS composite as a photoacoustic conversion layer were fabricated and characterized. From experiment results, an acoustic signal with a remarkable ratio of negative pressure level to a positive one of 1.3 was successfully realized, which is the largest value ever reported, to the best of our knowledge. Moreover, when compared to the commonly used glass and PDMS-backing conditions in the photoacoustic area, nearly 200% and 400% enhancements in negative pressure output were achieved, respectively.
Collapse
|
36
|
Li Q, Li J, Zhu H, Chen Y, Zhu B, Yu H. Dynamic acoustic focusing in photoacoustic transmitter. PHOTOACOUSTICS 2021; 21:100224. [PMID: 34745880 PMCID: PMC8552345 DOI: 10.1016/j.pacs.2020.100224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 05/10/2023]
Abstract
Photoacoustic transmitter represents a promising substitute for conventional piezoelectric counterparts. However, lack of easy and effective method for dynamically manipulating the focused acoustic field is a common and tricky problem faced by current photoacoustic technology. In this paper, a new strategy for constructing focus tunable photoacoustic transmitter is proposed. Different from existed prevailing device architecture, a sandwich like photoacoustic conversion layer is innovatively designed into a suspending elastic membrane with clamped boundary and it can be deformed using integrated pneumatic actuator. Owing to the membrane deflection property, concave spherical contours with variable radius of curvature can be obtained. Considering the shape determined sound emission characteristic, continuous tuning on the axial focusing length of the acoustic field has been successfully demonstrated in the photoacoustic transmitter for the first time. Besides, acoustic signal with significantly improved negative pressure has also been achieved especially at the focus, bringing additional advantage for applications.
Collapse
Affiliation(s)
- Qi Li
- School of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Jiapu Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haobo Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yujie Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Benpeng Zhu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Corresponding authors at: School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Hongbin Yu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Corresponding authors at: School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
37
|
Heo J, Biswas D, Park KK, Son D, Park HJ, Baac HW. Laser-generated focused ultrasound transducer using a perforated photoacoustic lens for tissue characterization. BIOMEDICAL OPTICS EXPRESS 2021; 12:1375-1390. [PMID: 33796360 PMCID: PMC7984797 DOI: 10.1364/boe.416884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 05/08/2023]
Abstract
We demonstrate a laser-generated focused ultrasound (LGFU) transducer using a perforated-photoacoustic (PA) lens and a piezoelectric probe hydrophone suitable for high-frequency ultrasound tissue characterization. The perforated-PA lens employed a centrally located hydrophone to achieve a maximum directional response at 0° from the axial direction of the lens. Under pulsed laser irradiation, the lens produced LGFU pulses with a frequency bandwidth of 6-30 MHz and high-peak pressure amplitudes of up to 46.5 MPa at a 70-µm lateral focal width. Since the hydrophone capable of covering the transmitter frequency range (∼20 MHz) was integrated with the lens, this hybrid transducer differentiated tissue elasticity by generating and detecting high-frequency ultrasound signals. Backscattered (BS) waves from excised tissues (bone, skin, muscle, and fat) were measured and also confirmed by laser-flash shadowgraphy. We characterized the LGFU-BS signals in terms of mean frequency and spectral energy in the frequency domain, enabling to clearly differentiate tissue types. Tissue characterization was also performed with respect to the LGFU penetration depth (from the surface, 1-, and 2-mm depth). Despite acoustic attenuation over the penetration depth, LGFU-BS characterization shows consistent results that can differentiate the elastic properties of tissues. We expect that the proposed transducer can be utilized for other tissue types and also for non-destructive evaluation based on the elasticity of unknown materials.
Collapse
Affiliation(s)
- Jeongmin Heo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- These authors equally contributed to this work
| | - Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- These authors equally contributed to this work
| | - Kyu Kwan Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
38
|
Silva AD, Henriques CA, Malva DV, Calvete MJF, Pereira MM, Serpa C, Arnaut LG. Photoacoustic generation of intense and broadband ultrasound pulses with functionalized carbon nanotubes. NANOSCALE 2020; 12:20831-20839. [PMID: 33043332 DOI: 10.1039/d0nr04986g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanotubes (CNT) functionalized with siloxane groups were dissolved in polystyrene/tetrahydrofuran to produce thin films that generate broadband and intense ultrasound pulses when excited by pulsed lasers. These films absorb >99% of light in the visible and near-infrared and show no signs of fatigue after thousands of laser pulses. Picosecond laser pulses with fluences of 50 mJ cm-2 generate photoacoustic waves with exceptionally wide bandwidths (170 MHz at -6 dB) and peak pressures >1 MPa several millimeters away from the source. The ability to generate such broadband ultrasound pulses is assigned to the ultrafast dissipation of heat by CNT-siloxanes, and to the formation of very thin photoacoustic sources thanks to the high speed of sound of polystyrene. The wide bandwidths achieved allow for axial resolutions of 8 μm at depths less than 1 mm, similar to the resolution of histology but based on real-time non-invasive methods.
Collapse
Affiliation(s)
- Alexandre D Silva
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - César A Henriques
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Daniel V Malva
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Mario J F Calvete
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Mariette M Pereira
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Carlos Serpa
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Luis G Arnaut
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|
39
|
Kim H, Chang WY, Kim T, Jiang X. Stress-Sensing Method via Laser-Generated Ultrasound Wave Using Candle Soot Nanoparticle Composite. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1867-1876. [PMID: 32324547 DOI: 10.1109/tuffc.2020.2989035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article aims to develop a semi-noncontact stress-sensing system using a laser-generated ultrasound (LGU) wave assisted by candle soot nanoparticle (CSNP) composite. While the acoustoelastic effect is commonly targeted to measure the stress level, efforts to combine it with the LGU wave signal have been lacking due to weak signal intensity. In this study, the CSNP-based transducer is designed to potentiate the photoacoustic energy conversion. To demonstrate the wave propagation with the designed parameters, a numerical simulation was first conducted. The experimental results showed that a laser intensity of 6.5 mJ/cm2 was enough to generate the subsurface longitudinal (SSL) wave from the CSNP composite transducer. The normal beam projection is the most effective wave-generation method, exhibiting the highest signal magnitude compared with inclined projection cases. Finally, the laser-assisted stress-sensing system was assessed by increasing the internal pressure of an air tank. The sensitivity of the developed sensor system was estimated to be 0.296 ns/MPa, showing a correlation of 0.983 with the theoretical prediction. The proposed sensing system can be used to monitor the structural integrity of nuclear power plants.
Collapse
|
40
|
Lee J, Paeng DG, Ha K. Attenuation of the human skull at broadband frequencies by using a carbon nanotube composite photoacoustic transducer. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:1121. [PMID: 33003863 DOI: 10.1121/10.0001791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/06/2020] [Indexed: 05/20/2023]
Abstract
The shockwave generated from a focused carbon nanotube (CNT) composite photoacoustic transducer has a wide frequency band that reaches several MHz in a single pulse. The objective of this study was to measure the transmission characteristics of a shockwave generated by a CNT composite photoacoustic transducer through Asian skulls and compare the results with numerical simulation ones. Three Korean cadaver skulls were used, and five sites were measured for each skull. The average densities and sound speeds of the three skulls were calculated from computed tomography images. The sound pressure after skull penetration was about 11% of the one before skull penetration. High-frequency energy was mostly attenuated. The average attenuation coefficients measured at the five sites of the three skulls were 3.59 ± 0.29, 5.99 ± 1.07, and 3.90 ± 0.86 np/cm/MHz. These values were higher than those previously measured at 270, 836, and 1402 kHz from other groups. The attenuation coefficients simulated by Sim4life were slightly smaller than the experimental values, with similar trends at most sites. The attenuation coefficients varied with measurement sites, skull shape, and thickness. These results may provide important data for future applications of shockwaves in noninvasive neurological treatments.
Collapse
Affiliation(s)
- Jooho Lee
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Kanglyeol Ha
- Department of Physics, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan, Republic of Korea
| |
Collapse
|
41
|
Girshova EI, Mikitchuk AP, Belonovski AV, Morozov KM, Ivanov KA, Pozina G, Kozadaev KV, Egorov AY, Kaliteevski MA. Proposal for a photoacoustic ultrasonic generator based on Tamm plasmon structures. OPTICS EXPRESS 2020; 28:26161-26169. [PMID: 32906892 DOI: 10.1364/oe.400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
The scheme of a generation of ultrasound waves based on optically excited Tamm plasmon structures is proposed. It is shown that Tamm plasmon structures can provide total absorption of a laser pulse with arbitrary wavelength in a metallic layer providing the possibility of the use of an infrared semiconductor laser for the excitation of ultrasound waves. Laser pulse absorption, heat transfer and dynamical properties of the structure are modeled, and the optimal design of the structure is found. It is demonstrated that the Tamm plasmon-based photoacoustic generator can emit ultrasound waves in the frequency band up to 100 MHz with predefined frequency spectrum.
Collapse
|
42
|
Luo H, Kusunose J, Pinton G, Caskey CF, Grissom WA. Rapid quantitative imaging of high intensity ultrasonic pressure fields. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:660. [PMID: 32873034 PMCID: PMC7414943 DOI: 10.1121/10.0001689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
High intensity focused ultrasound (FUS) is a noninvasive technique for treatment of tissues that can lie deep within the body. There is a need for methods to rapidly and quantitatively map FUS pressure beams for quality assurance and accelerate development of FUS systems and techniques. However, conventional ultrasound pressure beam mapping instruments, including hydrophones and optical techniques, are slow, not portable, and expensive, and most cannot map beams at actual therapeutic pressure levels. Here, a rapid projection imaging method to quantitatively map FUS pressure beams based on continuous-wave background-oriented schlieren (CW-BOS) imaging is reported. The method requires only a water tank, a background pattern, and a camera and uses a multi-layer deep neural network to reconstruct two-dimensional root-mean-square (RMS) projected pressure maps that resolve the ultrasound propagation dimension and one lateral dimension. In this work, the method was applied to collect beam maps over a 3 × 1 cm2 field-of-view with 0.425 mm resolution for focal pressures up to 9 MPa. Results at two frequencies and comparisons to hydrophone measurements show that CW-BOS imaging produces high-resolution quantitative RMS projected FUS pressure maps in under 10 s, the technique is linear and robust to beam rotations and translations, and it can map aberrated beams.
Collapse
Affiliation(s)
- Huiwen Luo
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University Station B Number 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, USA
| | - Jiro Kusunose
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - Gianmarco Pinton
- Department of Biomedical Engineering, University of North Carolina, 333 South Columbia Street, Chapel Hill, North Carolina 27514, USA
| | - Charles F Caskey
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, Nashville, Tennessee 37232, USA
| | - William A Grissom
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt University Station B Number 351631, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1631, USA
| |
Collapse
|
43
|
Chen YC, Gonzalez ME, Burman B, Zhao X, Anwar T, Tran M, Medhora N, Hiziroglu AB, Lee W, Cheng YH, Choi Y, Yoon E, Kleer CG. Mesenchymal Stem/Stromal Cell Engulfment Reveals Metastatic Advantage in Breast Cancer. Cell Rep 2020; 27:3916-3926.e5. [PMID: 31242423 DOI: 10.1016/j.celrep.2019.05.084] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/18/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Twenty percent of breast cancer (BC) patients develop distant metastasis for which there is no cure. Mesenchymal stem/stromal cells (MSCs) in the tumor microenvironment were shown to stimulate metastasis, but the mechanisms are unclear. Here, we identified and quantified cancer cells engulfing stromal cells in clinical samples of BC metastasis by dual immunostaining for EZH2 and ALDH1 expression. Using flow cytometry and a microfluidic single-cell paring and retrieval platform, we show that MSC engulfment capacity is associated with BC cell metastatic potential and generates cells with mesenchymal-like, invasion, and stem cell traits. Whole-transcriptome analyses of selectively retrieved engulfing BC cells identify a gene signature of MSC engulfment consisting of WNT5A, MSR1, ELMO1, IL1RL2, ZPLD1, and SIRPB1. These results delineate a mechanism by which MSCs in the tumor microenvironment promote metastasis and provide a microfluidic platform with the potential to predict BC metastasis in clinical samples.
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Forbes Institute for Cancer Discovery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria E Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xintao Zhao
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Talha Anwar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Molecular Cellular and Pathology Training Program, University of Michigan, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mai Tran
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Medhora
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayse B Hiziroglu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Woncheol Lee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Heng Cheng
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yehyun Choi
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Celina G Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Stretchable and Robust Candle-Soot Nanoparticle-Polydimethylsiloxane Composite Films for Laser-Ultrasound Transmitters. MICROMACHINES 2020; 11:mi11070631. [PMID: 32605328 PMCID: PMC7407116 DOI: 10.3390/mi11070631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 01/25/2023]
Abstract
Considerable attention has been devoted to the development of nanomaterial-based photoacoustic transmitters for ultrasound therapy and diagnosis applications. Here, we fabricate and characterize candle-soot nanoparticles (CSNPs) and polydimethylsiloxane (PDMS) composite-based photoacoustic transmitters, based on a solution process, not just to achieve high-frequency and high-amplitude pressure outputs, but also to develop physically stretchable ultrasound transmitters. Owing to its non-porous and non-agglomerative characteristics, the composite exhibits unique photo-thermal and mechanical properties. The output pressure amplitudes from CSNPs-PDMS composites were 20-26 dB stronger than those of Cr film, used as a reference. The proposed transmitters also offered a center frequency of 2.44-13.34 MHz and 6-dB bandwidths of 5.80-13.62 MHz. Importantly, we characterize the mechanical robustness of CSNPs-PDMS quantitatively, by measuring laser-damage thresholds, to evaluate the upper limit of laser energy that can be ultimately used as an input, i.e., proportional to the maximum-available pressure output. The transmitters could endure an input laser fluence of 54.3-108.6 mJ·cm-2. This is 1.65-3.30 times higher than the Cr film, and is significantly higher than the values of other CSNPs-PDMS transmitters reported elsewhere (22-81 mJ·cm-2). Moreover, we characterized the strain-dependent photoacoustic output of a stretchable nanocomposite film, obtained by delaminating it from the glass substrate. The transmitter could be elongated elastically up to a longitudinal strain of 0.59. Under this condition, it maintained a center frequency of 6.72-9.44 MHz, and 6-dB bandwidth ranges from 12.05 to 14.02 MHz. We believe that the stretchable CSNPs-PDMS composites would be useful in developing patch-type ultrasound devices conformally adhered on skin for diagnostic and therapeutic applications.
Collapse
|
45
|
Choi WY, Kwon SW, Kim YH, Kang KC, Park KK. Single-Shot Near-Field Volumetric Imaging System for Optical Ultrasound and Photoacoustics Using Capacitive Micromachined Ultrasonic Transducer Without Transmission Mode. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1151-1158. [PMID: 31976884 DOI: 10.1109/tuffc.2020.2965600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, we present a single-shot dual-mode imaging system that uses optical ultrasound (US) as an ultrasonic pulser without a transmission circuit. The ultrasonic pulse-echo system comprises an optical US pulser generated by carbon nanotubes (CNTs), which generate a high-power photoacoustic (PA) signal and a capacitive micromachined ultrasonic transducer (CMUT) receiver. By fabricating a thin CNT-polydimethylsiloxane (PDMS) composite capable of semiabsorption of the laser, a single-shot imaging system was developed. By transmitting a semipenetration light to the object, US and PA imaging were performed in a single shot. A CNT thickness of [Formula: see text] produced a maximum pressure of 154 kPa, and US was received by CMUT with a 2-MHz center frequency in PDMS. Additionally, a low-profile and near-depth imaging system was constructed with an intermediate layer of the 6-mm PDMS for the dry contact method. We performed a single-shot dual-mode imaging experiment on point and line phantoms, as well as the particle spread in the soft tissue. Thus, we examined the feasibility of the near-depth and single-shot dual-mode (US and PA) imaging system capable of a dry contact.
Collapse
|
46
|
Kwon SW, Choi WY, Jo HG, Park KK. Frequency modulation of laser ultrasound transducer using carbon nanotube-coated polyethylene microsphere. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:EL351. [PMID: 32359249 DOI: 10.1121/10.0000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
An ultrasound transducer was fabricated by dropping a multi-walled carbon nanotube solution containing a mixture of carbon nanotubes and ethoxyethanol directly on the surface of polyethylene microspheres. The frequency modulation depended on the diameter of the polyethylene microspheres. To investigate this relationship, three types of polyethylene microspheres with different diameters were used in simulations and experiments. These specimens were attached to polydimethylsiloxane and glass plates. A comparison revealed that the 50 μm diameter polyethylene spheres coated with carbon nanotubes had the highest ultrasound frequency. This work showed that smaller polyethylene microspheres generate higher ultrasound frequencies.
Collapse
Affiliation(s)
- Soo Won Kwon
- Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, South , , ,
| | - Won Young Choi
- Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, South , , ,
| | - Hyeong Geun Jo
- Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, South , , ,
| | - Kwan Kyu Park
- Department of Convergence Mechanical Engineering, Hanyang University, Seoul 04763, South , , ,
| |
Collapse
|
47
|
Optoacoustic brain stimulation at submillimeter spatial precision. Nat Commun 2020; 11:881. [PMID: 32060282 PMCID: PMC7021819 DOI: 10.1038/s41467-020-14706-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/17/2020] [Indexed: 02/08/2023] Open
Abstract
Low-intensity ultrasound is an emerging modality for neuromodulation. Yet, transcranial neuromodulation using low-frequency piezo-based transducers offers poor spatial confinement of excitation volume, often bigger than a few millimeters in diameter. In addition, the bulky size limits their implementation in a wearable setting and prevents integration with other experimental modalities. Here, we report spatially confined optoacoustic neural stimulation through a miniaturized Fiber-Optoacoustic Converter (FOC). The FOC has a diameter of 600 μm and generates omnidirectional ultrasound wave locally at the fiber tip through the optoacoustic effect. We show that the acoustic wave generated by FOC can directly activate individual cultured neurons and generate intracellular Ca2+ transients. The FOC activates neurons within a radius of 500 μm around the fiber tip, delivering superior spatial resolution over conventional piezo-based low-frequency transducers. Finally, we demonstrate direct and spatially confined neural stimulation of mouse brain and modulation of motor activity in vivo. Low-intensity ultrasound can be used for neuromodulation in vivo, but it has poor spatial confinement and can result in unwanted cochlear pathway activation. Here the authors use the optoacoustic effect to generate spatially confined ultrasound waves to activate neurons within a 500 μm radius in the mouse brain.
Collapse
|
48
|
Aytac-Kipergil E, Alles EJ, Pauw HC, Karia J, Noimark S, Desjardins AE. Versatile and scalable fabrication method for laser-generated focused ultrasound transducers. OPTICS LETTERS 2019; 44:6005-6008. [PMID: 32628218 PMCID: PMC7059213 DOI: 10.1364/ol.44.006005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/18/2023]
Abstract
A versatile and scalable fabrication method for laser-generated focused ultrasound transducers is proposed. The method is based on stamping a coated negative mold onto polydimethylsiloxane, and it can be adapted to include different optical absorbers that are directly transferred or synthesized in situ. Transducers with a range of sizes down to 3 mm in diameter are presented, incorporating two carbonaceous (multiwalled carbon nanoparticles and candle soot nanoparticles) and one plasmonic (gold nanoparticles) optically absorbing component. The fabricated transducers operate at central frequencies in the vicinity of 10 MHz with bandwidths in the range of 15-20 MHz. A transducer with a diameter of 5 mm was found to generate a positive peak pressure greater than 35 MPa in the focal zone with a tight focal spot of 150 μm in lateral width. Ultrasound cavitation on the tip of an optical fiber was demonstrated in water for a transducer with a diameter as small as 3 mm.
Collapse
Affiliation(s)
- E. Aytac-Kipergil
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
- Corresponding author:
| | - E. J. Alles
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - H. C. Pauw
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - J. Karia
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - S. Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - A. E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| |
Collapse
|
49
|
Lim W, Lee S, Park S, Baac HW. Differential detachment of intact and viable cells of different sizes using laser-induced microbubbles. BIOMEDICAL OPTICS EXPRESS 2019; 10:4919-4930. [PMID: 31646019 PMCID: PMC6788613 DOI: 10.1364/boe.10.004919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Single cell isolation is a prerequisite for the analysis of rare or small cell subtypes. Here, we selectively detach single cells in a heterogeneous population comprised of different morphological subtypes whose sizes vary in body and extension. Such a cellular environment is first accommodated for by a photomechanical method in which pulsed laser irradiation produces microbubbles from a polymer substrate, thus pushing out and detaching cultured cells in an intact, viable, and spatially tailored way. While this has previously only bene used at a very low cell density with lack of quantitative characterization, we determine optimal detachment conditions for different cell sizes in terms of an optical fluence and the number of laser pulses. Importantly, our approach is employed to isolate cancer cells with inherent size variation and elucidate cellular heterogeneity in drug sensitivity: i.e., higher resistance for larger cell size. For cells detached by laser-induced microbubbles, morphology, proliferation, and viability are compared with those of conventional trypsin-treated cells detached without any spatial selectivity. These results support the suitability of our photomechanical method for biochemical screen and secondary analysis of cells with unusual responses.
Collapse
Affiliation(s)
- Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungsu Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
50
|
Kim J, Kim H, Chang WY, Huang W, Jiang X, Dayton PA. Candle Soot Carbon Nanoparticles in Photoacoustics: Advantages and Challenges for Laser Ultrasound Transmitters. IEEE NANOTECHNOLOGY MAGAZINE 2019; 13:13-28. [PMID: 31178946 DOI: 10.1109/mnano.2019.2904773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This manuscript provides a review of candle-soot nanoparticle (CSNP) composite laser ultrasound transmitters (LUT), and compares and contrasts this technology to other carboncomposite designs. Among many carbon-based composite LUTs, a CSNP composite has shown its advantages of maximum energy conversion and fabrication simplicity for developing highly efficient ultrasound transmitters. This review focuses on the advantages and challenges of the CSNP-composite transmitter in the aspects of nanostructure design, fabrication procedure, and promising applications. Included are a brief description of the basic principles of the laser ultrasound transmitter, a review of general properties of CSNPs, as well as details on the fabrication method, photoacoustic performance, and design factors. A comparison of the CSNP-nanocomposite to other carbon-nanocomposites is provided. Lastly, representative applications of carbon-nanocomposite transmitters and future perspectives on CSNP-composite transmitters are presented.
Collapse
Affiliation(s)
- Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill and North Carolina State University, Raleigh
| | - Howuk Kim
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Wei-Yi Chang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Wenbin Huang
- State Key Lab of Mechanical Transmissions, Chongqing University, Chongqing, China
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill and North Carolina State University, Raleigh
| |
Collapse
|