1
|
Zhao C, Yang Y, Zhao P, Shi C, Tan T, Bai H, Feng J. Tuning the Sensitivity of MoS 2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. SMALL METHODS 2025; 9:e2401532. [PMID: 39555656 DOI: 10.1002/smtd.202401532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Indexed: 11/19/2024]
Abstract
DNA methylation discrimination is often challenged by complicated pretreatment, insufficient sensitivity, and suboptimal accuracy. Here, single-molecule readout of DNA methylation is reported using single-layer MoS2 nanopores. By tuning pore dimension, the sensitivity of MoS2 nanopores is manipulated, empowering both labeling and labeling-free strategies for DNA methylation discrimination. With methyl-CpG-binding domain protein 1 (MBD1)-labeled methylated DNA translocation in customized nanopores, multiple methylated sites with distance as short as 70 bp in double strand DNA can be resolved. To further improve spatial resolution, small MoS2 nanopores are engineered with single-nucleotide sensitivity, realizing labeling-free methylation detection with single-nucleotide resolution to recognize two nucleotides with only one methyl difference. This study demonstrates the availability of engineered MoS2 nanopores in DNA methylation detection, underscoring their potential for epigenetic alteration research at the single-molecule level.
Collapse
Affiliation(s)
- Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibo Yang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Pinlong Zhao
- School of Cyberspace, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Chongbin Shi
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tianhui Tan
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongzhen Bai
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
2
|
Zou A, Zhu X, Fu R, Wang Z, Wang Y, Ruan Z, Xianyu Y, Zhang J. Harnessing Nanomaterials for Next-Generation DNA Methylation Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408246. [PMID: 39821963 DOI: 10.1002/smll.202408246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is an epigenetic mechanism that regulates gene expression and is implicated in diseases such as cancer and atherosclerosis. However, traditional clinical methods for detecting DNA methylation often lack sensitivity and specificity, making early diagnosis challenging. Nanomaterials offer a solution with their unique properties, enabling highly sensitive photochemical and electrochemical detection techniques. These advanced methods enhance the accuracy and efficiency of identifying DNA methylation patterns, providing a powerful tool for early diagnosis and treatment of methylation-related diseases. This review summarizes nanomaterial-based techniques, categorized into electrochemical and photochemical methods for developing next-generation biosensors for DNA methylation. Electrochemical approaches based on nanostructured or nanomaterial-modified electrodes can detect methylation through electrical signals and can directly identify methylation sites via ionic current changes based on nanopore sequencing. Photochemical methods based on nanoparticles allow for optical detection through colorimetry, fluorescence, surface plasmon resonance, and Raman spectroscopy. Nanotechnology-implemented methodologies enable ultrasensitive and selective biosensors as point-of-care platforms for DNA methylation analysis, thereby advancing epigenetic research and clinical diagnostics.
Collapse
Affiliation(s)
- Anlai Zou
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Xiaoxue Zhu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ruijie Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zexiang Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yidan Wang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| | - Yunlei Xianyu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, 310016, China
| |
Collapse
|
3
|
Ali I, Ali MM, Liu Q, Hu L. Unraveling Clinical Glycoproteome by Integrating Affinity Enrichment with Nanopore Sequencing. Chembiochem 2024; 25:e202400419. [PMID: 39234982 DOI: 10.1002/cbic.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/28/2024] [Indexed: 09/06/2024]
Abstract
This prospect explores the integration of enrichment strategies with nanopore detection to advance clinical glycoproteomics. Glycoproteins, crucial for understanding biological processes, pose challenges due to their low abundance and structural diversity. Enrichment techniques using lectin affinity, boronate affinity, and hydrazide chemistry and especially molecular imprinted polymers may selectively and specifically isolate glycoproteins from complex samples, while nanopore technology enables label-free, real-time, and single-molecule analysis. This approach holds promise for disease-related glycosylation studies, biomarker discovery, personalized medicine, and streamlined clinical analysis. Standardization, optimization, and data analysis remain challenges, requiring interdisciplinary collaborations and technological advancements. Overall, this integration may offer transformative potential for clinical glycoproteomics and innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Irshad Ali
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, US
| | - Quanjun Liu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Wei G, Hu R, Lu W, Wang Z, Zhao Q. Bidirectional Peptide Translocation through Ultrasmall Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20831-20839. [PMID: 39301609 DOI: 10.1021/acs.langmuir.4c03212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
It is important to obtain the configuration of polypeptides and the sequence information on amino acids for understanding various life processes and many biological applications. Nanopores, as a newly developed single-molecule detection technology, exhibit unique advantages in real-time dynamics detection. Here, we designed a special peptide chain with 10 arginine in the head and achieved successful single-molecule detection by ultrasmall solid-state nanopores (2-3 nm). Unique bidirectional translocation signals were observed and explained under the framework of charge distribution of the peptide and interaction with the nanopore wall. Two natural peptide chains, histatin-5 and angiopep-2, were also explored by nanopore experiments to confirm our conjecture. Our designed peptide chain could realize multiple detections of the same peptide chain, offering possibilities for high-resolution peptide detection and fingerprinting by solid-state nanopores in the future.
Collapse
Affiliation(s)
- Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Zhan Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
5
|
Chingarande RG, Tian K, Kuang Y, Sarangee A, Hou C, Ma E, Ren J, Hawkins S, Kim J, Adelstein R, Chen S, Gillis KD, Gu LQ. Real-time label-free detection of dynamic aptamer-small molecule interactions using a nanopore nucleic acid conformational sensor. Proc Natl Acad Sci U S A 2023; 120:e2108118120. [PMID: 37276386 PMCID: PMC10268594 DOI: 10.1073/pnas.2108118120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Nucleic acids can undergo conformational changes upon binding small molecules. These conformational changes can be exploited to develop new therapeutic strategies through control of gene expression or triggering of cellular responses and can also be used to develop sensors for small molecules such as neurotransmitters. Many analytical approaches can detect dynamic conformational change of nucleic acids, but they need labeling, are expensive, and have limited time resolution. The nanopore approach can provide a conformational snapshot for each nucleic acid molecule detected, but has not been reported to detect dynamic nucleic acid conformational change in response to small -molecule binding. Here we demonstrate a modular, label-free, nucleic acid-docked nanopore capable of revealing time-resolved, small molecule-induced, single nucleic acid molecule conformational transitions with millisecond resolution. By using the dopamine-, serotonin-, and theophylline-binding aptamers as testbeds, we found that these nucleic acids scaffolds can be noncovalently docked inside the MspA protein pore by a cluster of site-specific charged residues. This docking mechanism enables the ion current through the pore to characteristically vary as the aptamer undergoes conformational changes, resulting in a sequence of current fluctuations that report binding and release of single ligand molecules from the aptamer. This nanopore tool can quantify specific ligands such as neurotransmitters, elucidate nucleic acid-ligand interactions, and pinpoint the nucleic acid motifs for ligand binding, showing the potential for small molecule biosensing, drug discovery assayed via RNA and DNA conformational changes, and the design of artificial riboswitch effectors in synthetic biology.
Collapse
Affiliation(s)
- Rugare G. Chingarande
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Kai Tian
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Yu Kuang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Aby Sarangee
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Chengrui Hou
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Emily Ma
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Jarett Ren
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sam Hawkins
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Joshua Kim
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Ray Adelstein
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Sally Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
| | - Kevin D. Gillis
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| | - Li-Qun Gu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO65211
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO65211
| |
Collapse
|
6
|
Dynamics of DNA Through Solid‐state Nanopores Fabricated by Controlled Dielectric Breakdown. Chem Asian J 2022; 17:e202200888. [DOI: 10.1002/asia.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Indexed: 11/19/2022]
|
7
|
Nanodevices for Biological and Medical Applications: Development of Single-Molecule Electrical Measurement Method. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A comprehensive detection of a wide variety of diagnostic markers is required for the realization of personalized medicine. As a sensor to realize such personalized medicine, a single molecule electrical measurement method using nanodevices is currently attracting interest for its comprehensive simultaneous detection of various target markers for use in biological and medical application. Single-molecule electrical measurement using nanodevices, such as nanopore, nanogap, or nanopipette devices, has the following features:; high sensitivity, low-cost, high-throughput detection, easy-portability, low-cost availability by mass production technologies, and the possibility of integration of various functions and multiple sensors. In this review, I focus on the medical applications of single- molecule electrical measurement using nanodevices. This review provides information on the current status and future prospects of nanodevice-based single-molecule electrical measurement technology, which is making a full-scale contribution to realizing personalized medicine in the future. Future prospects include some discussion on of the current issues on the expansion of the application requirements for single-mole-cule measurement.
Collapse
|
8
|
Bhatti H, Lu Z, Liu Q. Nanopore Detection of Cancer Biomarkers: A Challenge to Science. Technol Cancer Res Treat 2022; 21:15330338221076669. [PMID: 35229683 PMCID: PMC8891933 DOI: 10.1177/15330338221076669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is the most complex and leading cause of fatality worldwide. Despite meritorious research in the field of cancer, it is still a substantial threat to human life. In this article, we address a question on the present strategies and manifest the importance of critical biomarkers for cancer screening and early diagnosis before the symptoms appear. However, this goal can only be achieved if scientists will focus on ultra-sensitive detection techniques such as "Nanopore." Nanopore sensing is a simple and rapid single-molecule detection technique that can detect multiple cancer biomarkers in femto-Molar concentrations in real time. Last but not least, we propose a systematic policy to win the war against cancer that is a big challenge to science.
Collapse
Affiliation(s)
- Huma Bhatti
- Southeast University, Nanjing, People’s Republic of China
| | - Zuhong Lu
- Southeast University, Nanjing, People’s Republic of China
| | - Quanjun Liu
- Southeast University, Nanjing, People’s Republic of China
| |
Collapse
|
9
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. BIOPHYSICAL REPORTS 2021; 1:100028. [PMID: 36425454 PMCID: PMC9680810 DOI: 10.1016/j.bpr.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 06/16/2023]
Abstract
Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- Algorithm379, Laisvės g. 7, LT 12007, Vilnius, Lithuania
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | | | - Darius Widera
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| |
Collapse
|
11
|
Z-DNA as a Tool for Nuclease-Free DNA Methyltransferase Assay. Int J Mol Sci 2021; 22:ijms222111990. [PMID: 34769422 PMCID: PMC8585049 DOI: 10.3390/ijms222111990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/16/2023] Open
Abstract
Methylcytosines in mammalian genomes are the main epigenetic molecular codes that switch off the repertoire of genes in cell-type and cell-stage dependent manners. DNA methyltransferases (DMT) are dedicated to managing the status of cytosine methylation. DNA methylation is not only critical in normal development, but it is also implicated in cancers, degeneration, and senescence. Thus, the chemicals to control DMT have been suggested as anticancer drugs by reprogramming the gene expression profile in malignant cells. Here, we report a new optical technique to characterize the activity of DMT and the effect of inhibitors, utilizing the methylation-sensitive B-Z transition of DNA without bisulfite conversion, methylation-sensing proteins, and polymerase chain reaction amplification. With the high sensitivity of single-molecule FRET, this method detects the event of DNA methylation in a single DNA molecule and circumvents the need for amplification steps, permitting direct interpretation. This method also responds to hemi-methylated DNA. Dispensing with methylation-sensitive nucleases, this method preserves the molecular integrity and methylation state of target molecules. Sparing methylation-sensing nucleases and antibodies helps to avoid errors introduced by the antibody’s incomplete specificity or variable activity of nucleases. With this new method, we demonstrated the inhibitory effect of several natural bio-active compounds on DMT. All taken together, our method offers quantitative assays for DMT and DMT-related anticancer drugs.
Collapse
|
12
|
Deplano A, Karlsson J, Moraca F, Svensson M, Cristiano C, Morgillo CM, Fowler CJ, Russo R, Catalanotti B, Onnis V. Design, synthesis and in vitro and in vivo biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents. J Enzyme Inhib Med Chem 2021; 36:940-953. [PMID: 33896320 PMCID: PMC8079065 DOI: 10.1080/14756366.2021.1875459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds.
Collapse
Affiliation(s)
- Alessandro Deplano
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Karlsson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Federica Moraca
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.,Net4Science srl, University "Magna Graecia", Catanzaro, Italy
| | - Mona Svensson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Claudia Cristiano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmine Marco Morgillo
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Valentina Onnis
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| |
Collapse
|
13
|
Lin B, Hui J, Mao H. Nanopore Technology and Its Applications in Gene Sequencing. BIOSENSORS-BASEL 2021; 11:bios11070214. [PMID: 34208844 PMCID: PMC8301755 DOI: 10.3390/bios11070214] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
In recent years, nanopore technology has become increasingly important in the field of life science and biomedical research. By embedding a nano-scale hole in a thin membrane and measuring the electrochemical signal, nanopore technology can be used to investigate the nucleic acids and other biomacromolecules. One of the most successful applications of nanopore technology, the Oxford Nanopore Technology, marks the beginning of the fourth generation of gene sequencing technology. In this review, the operational principle and the technology for signal processing of the nanopore gene sequencing are documented. Moreover, this review focuses on the applications using nanopore gene sequencing technology, including the diagnosis of cancer, detection of viruses and other microbes, and the assembly of genomes. These applications show that nanopore technology is promising in the field of biological and biomedical sensing.
Collapse
Affiliation(s)
- Bo Lin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Hui
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (B.L.); (J.H.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-21-62511070-8707
| |
Collapse
|
14
|
Yang H, Saqib M, Hao R. Single-Entity Detection With TEM-Fabricated Nanopores. Front Chem 2021; 9:664820. [PMID: 34026729 PMCID: PMC8138203 DOI: 10.3389/fchem.2021.664820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Nanopore-based single-entity detection shows immense potential in sensing and sequencing technologies. Solid-state nanopores permit unprecedented detail while preserving mechanical robustness, reusability, adjustable pore size, and stability in different physical and chemical environments. The transmission electron microscope (TEM) has evolved into a powerful tool for fabricating and characterizing nanometer-sized pores within a solid-state ultrathin membrane. By detecting differences in the ionic current signals due to single-entity translocation through the nanopore, solid-state nanopores can enable gene sequencing and single molecule/nanoparticle detection with high sensitivity, improved acquisition speed, and low cost. Here we briefly discuss the recent progress in the modification and characterization of TEM-fabricated nanopores. Moreover, we highlight some key applications of these nanopores in nucleic acids, protein, and nanoparticle detection. Additionally, we discuss the future of computer simulations in DNA and protein sequencing strategies. We also attempt to identify the challenges and discuss the future development of nanopore-detection technology aiming to promote the next-generation sequencing technology.
Collapse
Affiliation(s)
| | | | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
15
|
Dumschott K, Schmidt MHW, Chawla HS, Snowdon R, Usadel B. Oxford Nanopore sequencing: new opportunities for plant genomics? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5313-5322. [PMID: 32459850 PMCID: PMC7501810 DOI: 10.1093/jxb/eraa263] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 05/25/2020] [Indexed: 05/06/2023]
Abstract
DNA sequencing was dominated by Sanger's chain termination method until the mid-2000s, when it was progressively supplanted by new sequencing technologies that can generate much larger quantities of data in a shorter time. At the forefront of these developments, long-read sequencing technologies (third-generation sequencing) can produce reads that are several kilobases in length. This greatly improves the accuracy of genome assemblies by spanning the highly repetitive segments that cause difficulty for second-generation short-read technologies. Third-generation sequencing is especially appealing for plant genomes, which can be extremely large with long stretches of highly repetitive DNA. Until recently, the low basecalling accuracy of third-generation technologies meant that accurate genome assembly required expensive, high-coverage sequencing followed by computational analysis to correct for errors. However, today's long-read technologies are more accurate and less expensive, making them the method of choice for the assembly of complex genomes. Oxford Nanopore Technologies (ONT), a third-generation platform for the sequencing of native DNA strands, is particularly suitable for the generation of high-quality assemblies of highly repetitive plant genomes. Here we discuss the benefits of ONT, especially for the plant science community, and describe the issues that remain to be addressed when using ONT for plant genome sequencing.
Collapse
Affiliation(s)
- Kathryn Dumschott
- Institute for Biology I, BioSC, RWTH Aachen University, Aachen, Germany
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Maximilian H-W Schmidt
- Institute for Biology I, BioSC, RWTH Aachen University, Aachen, Germany
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Rod Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, Aachen, Germany
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Data Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
17
|
Liu X, Zimny P, Zhang Y, Rana A, Nagel R, Reisner W, Dunbar WB. Flossing DNA in a Dual Nanopore Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905379. [PMID: 31858745 DOI: 10.1002/smll.201905379] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/12/2019] [Indexed: 05/16/2023]
Abstract
Solid-state nanopores are a single-molecule technique that can provide access to biomolecular information that is otherwise masked by ensemble averaging. A promising application uses pores and barcoding chemistries to map molecular motifs along single DNA molecules. Despite recent research breakthroughs, however, it remains challenging to overcome molecular noise to fully exploit single-molecule data. Here, an active control technique termed "flossing" that uses a dual nanopore device is presented to trap a proteintagged DNA molecule and up to 100's of back-and-forth electrical scans of the molecule are performed in a few seconds. The protein motifs bound to 48.5 kb λ-DNA are used as detectable features for active triggering of the bidirectional control. Molecular noise is suppressed by averaging the multiscan data to produce averaged intertag distance estimates that are comparable to their known values. Since nanopore feature-mapping applications require DNA linearization when passing through the pore, a key advantage of flossing is that trans-pore linearization is increased to >98% by the second scan, compared to 35% for single nanopore passage of the same set of molecules. In concert with barcoding methods, the dual-pore flossing technique could enable genome mapping and structural variation applications, or mapping loci of epigenetic relevance.
Collapse
Affiliation(s)
- Xu Liu
- Ontera Inc., Santa Cruz, CA, 95060, USA
| | | | - Yuning Zhang
- Department of Physics, McGill University Montreal, QC H3A 2T8, Canada
| | | | | | - Walter Reisner
- Department of Physics, McGill University Montreal, QC H3A 2T8, Canada
| | | |
Collapse
|
18
|
A novel shaped-controlled fabrication of nanopore and its applications in quantum electronics. Sci Rep 2019; 9:18663. [PMID: 31819125 PMCID: PMC6901593 DOI: 10.1038/s41598-019-55190-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/25/2019] [Indexed: 02/05/2023] Open
Abstract
High-intensity (107–108 A m−2) electron beams can be used to fabricate nanoscale pores. This approach enables real-time observation of nanopore drilling and precise control of the diameter of the nanopore. Nevertheless, it is not suitable for tuning the nanopore’s sidewall shape. In this study, we demonstrate the use of low-intensity electron beams to fabricate nanopores on a silicon nitride (SiNx) membrane. This technique allows the precise adjustment of the nanopore dimension and the shaping of its three-dimensional (3D) nanostructure. The 3D structures of the nanopore were evaluated by electron tomography, and series of oblique images were used in reconstructing the 3D images of nanopores using a weighted back-projection method. The sidewall shape of the nanopore was observed at different electron-beam conditions, and the formation mechanism was elucidated based on these results. The nanopore fabricated with this technique can be used as a template to develop electronics at the nanoscale based on which a quantum-dot device can be prepared with a simple evaporation process. The measured results show that the device can resolve well-defined electronic states that are characteristic for the behaviors of the quantum-dot device.
Collapse
|
19
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
20
|
Sina AAI, Carrascosa LG, Trau M. DNA Methylation-Based Point-of-Care Cancer Detection: Challenges and Possibilities. Trends Mol Med 2019; 25:955-966. [PMID: 31253589 DOI: 10.1016/j.molmed.2019.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022]
Abstract
Eukaryotic cell DNA conserves a distinct genomic methylation pattern, which acts as a molecular switch to control the transcriptional machinery of the cell. However, pathological processes can alter this methylation pattern, leading to the onset of diseases such as cancer. Recent advances in methylation analysis provide a more precise understanding of the consequence of DNA methylation changes towards cancer progression. Consequently, the discoveries of numerous methylation-based biomarkers have inspired the development of simple tests for cancer detection. In this opinion article, we systematically discuss the benefits and challenges associated with the promising methylation-based approaches and develop a point-of-care index to evaluate their potential in terms of point-of-care cancer diagnostics.
Collapse
Affiliation(s)
- Abu Ali Ibn Sina
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), Corner College and Cooper Roads (Bldg 75), The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
21
|
Vu T, Borgesi J, Soyring J, D'Alia M, Davidson SL, Shim J. Employing LiCl salt gradient in the wild-type α-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. NANOSCALE 2019; 11:10536-10545. [PMID: 31116213 DOI: 10.1039/c9nr00502a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this research, we demonstrate a label-free detection, biological nanopore-based method to distinguish methylated cytosine (mC) from naked cytosine (C) in sample mixtures containing both C and mC at a prolonged translocation duration. Using a 15-fold increase in LiCl salt concentration going from a cis to trans chamber, we increased the translocation dwell time of ssDNA by over 5-fold and the event capture rate by 6-fold in comparison with the symmetric concentration of 1.0 M KCl (control). This is a consequence of counter-ion binding and effective lowering of the overall charge of DNA, which in turn lessens the electrophoretic drive of the system and slows the translocation velocity. Moreover, salt gradients can create a large electric field that will funnel ions and polymers towards the pore, increasing the capture rate and translocation dwell time of DNA. As a result, in 0.2 M-3.0 M LiCl solution, ssDNA achieved a prolonged dwell time of 52 μs per nucleotide and a capture rate of 60 ssDNA per second. Importantly, lowering the translocation speed of ssDNA enhances the resulting resolution, allowing 5'-mC to be distinguished from C without using methyl-specific labels. We successfully distinguished 5'-mC from C when mixed together at ratios of 1 : 1, 3 : 7 and 7 : 3. The distribution of current blockade amplitudes of all mixtures adopted bimodal shapes, with peak-to-peak ratios coarsely corresponding to the mixture composition (e.g. the density and distribution of events shifted in correspondence with changes in 18b-0mC and 18-2mC concentration ratios in the mixture).
Collapse
Affiliation(s)
- Trang Vu
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zeng H, He B, Yi C. Compilation of Modern Technologies To Map Genome-Wide Cytosine Modifications in DNA. Chembiochem 2019; 20:1898-1905. [PMID: 30809902 DOI: 10.1002/cbic.201900035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Indexed: 12/19/2022]
Abstract
Over the past few decades, various DNA modification detection methods have been developed; many of the high-resolution methods are based on bisulfite treatment, which leads to DNA degradation, to a degree. Thus, novel bisulfite-free approaches have been developed in recent years and shown to be useful for epigenome analysis in otherwise difficult-to-handle, but important, DNA samples, such as hmC-seal and hmC-CATCH. Herein, an overview of advances in the development of epigenome sequencing methods for these important DNA modifications is provided.
Collapse
Affiliation(s)
- Hu Zeng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Bo He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and, Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
23
|
Yu JS, Lee J, Ju M, Cho OH, Kim HM, Nam KT, Kim KB. DNA translocation through a nanopore in an ultrathin self-assembled peptide membrane. NANOTECHNOLOGY 2019; 30:195602. [PMID: 30721897 DOI: 10.1088/1361-6528/ab0488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we explore the possibility of using peptide-based materials as a membrane in solid-state nanopore devices in an effort to develop a sequence-specific, programmable biological membrane platform. We use a recently developed tyrosine-mediated self-assembly peptide sheet. At the air/water interface, the 5mer peptide YFCFY self-assembles into a uniform and robust two-dimensional (2D) structure, and the peptide sheet is easily transferred to a low-noise glass substrate. The thickness of the peptide membrane can be adjusted to approximately 5 nm (or even to 2 nm) by an etching process, and the diameters of the peptide nanopores can be precisely controlled using a focused electron beam with an attuned spot size. The ionic current noise of the peptide nanopore is comparable to those of typical silicon nitride nanopores or multilayer 2D materials. Using this membrane, we successfully observe translocation of 1000 bp double-stranded DNA with a sufficient signal-to-noise ratio of ∼30 and an elongated translocation speed of ∼1 bp μs-1. Our results suggest that the self-assembled peptide film can be used as a sensitive nanopore membrane and employed as a platform for applying biological functionalities to solid-state substrates.
Collapse
Affiliation(s)
- Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu Z, Shi X, Wu H. Coarse-grained molecular dynamics study of wettability influence on protein translocation through solid nanopores. NANOTECHNOLOGY 2019; 30:165701. [PMID: 30634172 DOI: 10.1088/1361-6528/aafdd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Protein translocation through nanopores is widely involved in molecular sensing and analyzing devices, whereby nanopore surface properties are crucial. However, fundamental understanding of how these properties affect protein motion inside nanopores remains lacking. In this work, we study the influence of nanopore surface wettability on voltage-driven protein translocation through nanopores with coarse-grained molecular dynamics simulations. The results show that the electrophoretic mobility of protein translocation increases as the contact angle of nanopore surface increases from 0° to 90°, but becomes almost constant as the contact angle is above 90°. This observation can be attributed to the variation of the friction coefficient of protein translocation through the nanopores with different nanopore contact angles. We further show that the interaction between nanopore and water, rather than that between the nanopore and protein, dominates the protein transport in nanopores. These findings provide new insights into protein translocation dynamics across nanopores and will be beneficial to the design of high-efficiency nanopore devices for single molecule protein sensing.
Collapse
Affiliation(s)
- Zhenyu Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240, People's Republic of China
| | | | | |
Collapse
|
25
|
Yu JS, Hong SC, Wu S, Kim HM, Lee C, Lee JS, Lee JE, Kim KB. Differentiation of selectively labeled peptides using solid-state nanopores. NANOSCALE 2019; 11:2510-2520. [PMID: 30672547 DOI: 10.1039/c8nr09315f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Determination of the amino acid sequence of a protein is critical for understanding various biological processes. Mass spectrometry has mainly been used for protein identification; however, there are limitations to its sensitivity when detecting low abundance proteins. In this study, we attempted to distinguish between three similar peptide sequences (∼40 amino acids, ∼5 kDa) that differed only by the location or number of cysteine residues with solid-state nanopores. The cysteine residues are located at one end, one at the center, and at both ends for each of the three peptides. We found that differentiation of the three types of peptides by nanopore signals was difficult. However, when the cysteine residue was labeled with a negatively charged molecule, Flamma® 496, the labeled peptides showed distinct signals for each peptide. Comparing the relative current blockades of labeled peptides with applied voltages, we found that the label was able to change peptide conformations and the resulting ionic current signals from the three labeled peptides were distinguished based on the relative current blockade, full width at half-maximum of the current blockade distribution, and single-molecule level peak shape analysis. Our results suggest that solid-state nanopores combined with a targeted labeling strategy could be used to obtain characteristic peptide signatures that could ultimately be used for protein identification.
Collapse
Affiliation(s)
- Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bello J, Mowla M, Troise N, Soyring J, Borgesi J, Shim J. Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients. Electrophoresis 2019; 40:1082-1090. [DOI: 10.1002/elps.201800426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Julian Bello
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Maksudul Mowla
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Nicholas Troise
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Joanna Soyring
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Julia Borgesi
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| | - Jiwook Shim
- Department of Biomedical EngineeringRowan University Glassboro NJ USA 08028
| |
Collapse
|
27
|
Vu T, Davidson SL, Shim J. Investigation of compacted DNA structures induced by Na + and K + monovalent cations using biological nanopores. Analyst 2019; 143:906-913. [PMID: 29362734 DOI: 10.1039/c7an01857f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In aqueous solutions, an elongated, negatively charged DNA chain can quickly change its conformation into a compacted globule in the presence of positively charged molecules, or cations. This well-known process, called DNA compaction, is a method with great potential for gene therapy and delivery. Experimental conditions to induce these compacted DNA structures are often limited to the use of common compacting agents, such as cationic surfactants, polymers, and multivalent cations. In this study, we show that in highly concentrated buffers of 1 M monovalent cation solutions at pH 7.2 and 10, biological nanopores allow real-time sensing of individual compacted structures induced by K+ and Na+, the most abundant monovalent cations in human bodies. Herein, we studied the ratio between compacted and linear structures for 15-mer single-stranded DNA molecules containing only cytosine nucleotides, optimizing the probability of linear DNA chains being compacted. Since the binding affinity of each nucleotide to cation is different, the ability of the DNA strand to fold into a compacted structure greatly depends on the type of cations and nucleotides present. Our experimental results compare favorably with findings from previous molecular dynamics simulations for the DNA compacting potential of K+ and Na+ monovalent cations. We estimate that the majority of single-stranded DNA molecules in our experiment are compacted. From the current traces of nanopores, the ratio of compacted DNA to linear DNA molecules is approximately 30 : 1 and 15 : 1, at a pH of 7.2 and 10, respectively. Our comparative studies reveal that Na+ monovalent cations have a greater potential of compacting the 15C-ssDNA than K+ cations.
Collapse
Affiliation(s)
- Trang Vu
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, USA.
| | | | | |
Collapse
|
28
|
Varongchayakul N, Hersey J, Squires A, Meller A, Grinstaff M. A Solid-State Hard Microfluidic-Nanopore Biosensor with Multilayer Fluidics and On-Chip Bioassay/Purification Chamber. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1804182. [PMID: 31632230 PMCID: PMC6800661 DOI: 10.1002/adfm.201804182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 05/21/2023]
Abstract
Solid-state nanopores are an emerging biosensor for nucleic acid and protein characterization. For use in a clinical setting, solid-state nanopore sensing requires sample preparation and purification, fluid handling, a heating element, electrical noise insulators, and an electrical readout detector, all of which hamper its translation to a point-of-care diagnostic device. A stand-alone microfluidic-based nanopore device is described that combines a bioassay reaction/purification chamber with a solid-state nanopore sensor. The microfluidic device is composed of the high-temperature/solvent resistance Zeonex plastic, formed via micro-machining and heat bonding, enabling the use of both a heat regulator and a magnetic controller. Fluid control through the microfluidic channels and chambers is controlled via fluid port selector valves and allows up-to eight different solutions. Electrical noise measurements and DNA translocation experiments demonstrate the integrity of the device, with performance comparable to a conventional stand-alone nanopore setup. However, the microfluidic-nanopore setup is superior in terms of ease of use. To showcase the utility of the device, single molecule detection of a DNA PCR product, after magnetic bead DNA separation, is accomplished on chip.
Collapse
Affiliation(s)
- Nitinun Varongchayakul
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| | - Joseph Hersey
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| | - Allison Squires
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Amit Meller
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| | - Mark Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston MA, 02215, USA
| |
Collapse
|
29
|
Syedmoradi L, Esmaeili F, Norton ML. Towards DNA methylation detection using biosensors. Analyst 2018; 141:5922-5943. [PMID: 27704092 DOI: 10.1039/c6an01649a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
30
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
31
|
JIANG XJ, LIANG RN, QIN W. Research Advances in Ion Channel-based Electrochemical Sensing Techniques. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61108-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Liu L, Zhang Y, Jiang D, Du S, Deng Z, Wang L, Chen S. Recent Advances in the Genomic Profiling of Bacterial Epigenetic Modifications. Biotechnol J 2018; 14:e1800001. [PMID: 29878585 DOI: 10.1002/biot.201800001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Yizhou Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
| | - Dongxu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| |
Collapse
|
33
|
Mayne L, Lin CY, Christie SDR, Siwy ZS, Platt M. The Design and Characterization of Multifunctional Aptamer Nanopore Sensors. ACS NANO 2018; 12:4844-4852. [PMID: 29718658 DOI: 10.1021/acsnano.8b01583] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aptamer-modified nanomaterials provide a simple, yet powerful sensing platform when combined with resistive pulse sensing technologies. Aptamers adopt a more stable tertiary structure in the presence of a target analyte, which results in a change in charge density and velocity of the carrier particle. In practice the tertiary structure is specific for each aptamer and target, and the strength of the signal varies with different applications and experimental conditions. Resistive pulse sensors (RPS) have single particle resolution, allowing for the detailed characterization of the sample. Measuring the velocity of aptamer-modified nanomaterials as they traverse the RPS provides information on their charge state and densities. To help understand how the aptamer structure and charge density effects the sensitivity of aptamer-RPS assays, here we study two metal binding aptamers. This creates a sensor for mercury and lead ions that is capable of being run in a range of electrolyte concentrations, equivalent to river to seawater conditions. The observed results are in excellent agreement with our proposed model. Building on this we combine two aptamers together in an attempt to form a dual sensing strand of DNA for the simultaneous detection of two metal ions. We show experimental and theoretical responses for the aptamer which creates layers of differing charge densities around the nanomaterial. The density and diameter of these zones effects both the viability and sensitivity of the assay. While this approach allows the interrogation of the DNA structure, the data also highlight the limitations and considerations for future assays.
Collapse
Affiliation(s)
- Laura Mayne
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| | | | - Steven D R Christie
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| | | | - Mark Platt
- Department of Chemistry , Loughborough University , Loughborough LE11 3TU , United Kingdom
| |
Collapse
|
34
|
Ananth A, Genua M, Aissaoui N, Díaz L, Eisele NB, Frey S, Dekker C, Richter RP, Görlich D. Reversible Immobilization of Proteins in Sensors and Solid-State Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703357. [PMID: 29611258 DOI: 10.1002/smll.201703357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The controlled functionalization of surfaces with proteins is crucial for many analytical methods in life science research and biomedical applications. Here, a coating for silica-based surfaces is established which enables stable and selective immobilization of proteins with controlled orientation and tunable surface density. The coating is reusable, retains functionality upon long-term storage in air, and is applicable to surfaces of complex geometry. The protein anchoring method is validated on planar surfaces, and then a method is developed to measure the anchoring process in real time using silicon nitride solid-state nanopores. For surface attachment, polyhistidine tags that are site specifically introduced into recombinant proteins are exploited, and the yeast nucleoporin Nsp1 is used as model protein. Contrary to the commonly used covalent thiol chemistry, the anchoring of proteins via polyhistidine tag is reversible, permitting to take proteins off and replace them by other ones. Such switching in real time in experiments on individual nanopores is monitored using ion conductivity. Finally, it is demonstrated that silica and gold surfaces can be orthogonally functionalized to accommodate polyhistidine-tagged proteins on silica but prevent protein binding to gold, which extends the applicability of this surface functionalization method to even more complex sensor devices.
Collapse
Affiliation(s)
- Adithya Ananth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - María Genua
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Nesrine Aissaoui
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Leire Díaz
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Nico B Eisele
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
| | - Steffen Frey
- Department for Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Ralf P Richter
- CIC biomaGUNE, Biosurfaces Lab, Paseo Miramon 182, 20014, San Sebastian, Spain
- Faculty of Biological Sciences, School of Biomedical Sciences, Faculty of Mathematics and Physical Sciences, School of Physics and Astronomy, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Dirk Görlich
- Department for Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
35
|
|
36
|
Liang L, Liu F, Kong Z, Shen JW, Wang H, Wang H, Li L. Theoretical studies on key factors in DNA sequencing using atomically thin molybdenum disulfide nanopores. Phys Chem Chem Phys 2018; 20:28886-28893. [DOI: 10.1039/c8cp06167j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Applied voltage and MoS2 nanopore diameter affect the resolution of MoS2 nanopore-based DNA sequencing.
Collapse
Affiliation(s)
- Lijun Liang
- College of Life Information Science and Instrument Engineering
- Hangzhou Dianzi University
- Hangzhou
- People's Republic of China
| | - Fei Liu
- College of Life Information Science and Instrument Engineering
- Hangzhou Dianzi University
- Hangzhou
- People's Republic of China
| | - Zhe Kong
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou
- People's Republic of China
| | - Jia-Wei Shen
- School of Medicine
- Hangzhou Normal University
- Hangzhou 310016
- People's Republic of China
| | - Hongbo Wang
- College of Automation
- Hangzhou Dianzi University
- Hangzhou
- People's Republic of China
| | - Haodong Wang
- College of Materials and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou
- People's Republic of China
| | - Lihua Li
- College of Life Information Science and Instrument Engineering
- Hangzhou Dianzi University
- Hangzhou
- People's Republic of China
| |
Collapse
|
37
|
Zhu Z, Zhou Y, Xu X, Wu R, Jin Y, Li B. Adaption of a Solid-State Nanopore to Homogeneous DNA Organization Verification and Label-Free Molecular Analysis without Covalent Modification. Anal Chem 2017; 90:814-820. [PMID: 29172452 DOI: 10.1021/acs.analchem.7b03442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances have shown increasing designs of nucleic acid organizations via controlling the thermodynamics and kinetics of oligonucleotides. Nevertheless, deeper understanding and further applications of these DNA nanotechnologies are majorly hampered by the lack of effective analytical methodologies that are competent enough to investigate them. To deliver a potential solution, here we developed an innovative exploration that employed the emerging nanopore technique to characterize DNA organization at the single-molecule level and in completely homogeneous condition without covalent modification. With the help of counting and profiling the translocation-induced current drop of a DNA assembly structure passing through a conical glass nanopore (CGN), we have directly verified the formation of the individual double-helix concatemer generated from our model, hybridization chain reaction (HCR). Due to the ultrasensitivity of the nanopore technology, those concatemers that were difficult to observe on a conventional electrophoresis image were brought to light. The translocation duration time also provided the approximate length and folding information for the concatemers. These advantages were proven also applicable to structures with more sophisticated folding behaviors. Eventually, when coupling with an upstream reaction, CGN was further turned to a universal detector that was capable of even detecting other nucleic acid organization behaviors as well as targets that were unable to generate huge products. All of these results are expected to promote deeper study and applications of the nanopore technique in the field of nucleic acid nanotechnology.
Collapse
Affiliation(s)
- Zhentong Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ya Zhou
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Xiaolong Xu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Yongdong Jin
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science , Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
38
|
Guha R, Mohajerani F, Mukhopadhyay A, Collins MD, Sen A, Velegol D. Modulation of Spatiotemporal Particle Patterning in Evaporating Droplets: Applications to Diagnostics and Materials Science. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43352-43362. [PMID: 29143530 DOI: 10.1021/acsami.7b13675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spatiotemporal particle patterning in evaporating droplets lacks a common design framework. Here, we demonstrate autonomous control of particle distribution in evaporating droplets through the imposition of a salt-induced self-generated electric field as a generalized patterning strategy. Through modeling, a new dimensionless number, termed "capillary-phoresis" (CP) number, arises, which determines the relative contributions of electrokinetic and convective transport to pattern formation, enabling one to accurately predict the mode of particle assembly by controlling the spontaneous electric field and surface potentials. Modulation of the CP number allows the particles to be focused in a specific region in space or distributed evenly. Moreover, starting with a mixture of two different particle types, their relative placement in the ensuing pattern can be controlled, allowing coassemblies of multiple, distinct particle populations. By this approach, hypermethylated DNA, prevalent in cancerous cells, can be qualitatively distinguished from normal DNA of comparable molecular weights. In other examples, we show uniform dispersion of several particle types (polymeric colloids, multiwalled carbon nanotubes, and molecular dyes) on different substrates (metallic Cu, metal oxide, and flexible polymer), as dictated by the CP number. Depending on the particle, the highly uniform distribution leads to surfaces with a lower sheet resistance, as well as superior dye-printed displays.
Collapse
Affiliation(s)
- Rajarshi Guha
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Farzad Mohajerani
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ahana Mukhopadhyay
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Matthew D Collins
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Darrell Velegol
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
39
|
Jain T, Rasera BC, Guerrero RJS, Lim JM, Karnik R. Microfluidic multiplexing of solid-state nanopores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:484001. [PMID: 29116942 DOI: 10.1088/1361-648x/aa9455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.
Collapse
Affiliation(s)
- Tarun Jain
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, United States of America
| | | | | | | | | |
Collapse
|
40
|
Jou I, Muthukumar M. Effects of Nanopore Charge Decorations on the Translocation Dynamics of DNA. Biophys J 2017; 113:1664-1672. [PMID: 29045861 DOI: 10.1016/j.bpj.2017.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
We have investigated the dynamics of single-stranded DNA as it translocates through charge-mutated protein nanopores. Translocation of DNA is a crucial step in nanopore-based sequencing platforms, where control over translocation speed remains one of the main challenges. Taking advantage of the interactions between negatively charged DNA and positively charged amino acid residues, the translocation speed of DNA can be manipulated by deliberate charge decorations inside the nanopore. We employed coarse-grained Langevin dynamics simulations to monitor the step-by-step movement of DNA through different mutations of α-hemolysin protein nanopores. We found that although the average translocation time per nucleotide is longer, in agreement with experiments, the DNA nucleotides do not translocate with a uniform speed. Furthermore, the location and spacing of the charge decorations can alter the translocation dynamics significantly, trapping DNA in some cases. Our findings can give insights when designing charge patterns in nanopores.
Collapse
Affiliation(s)
- Ining Jou
- Department of Polymer Science and Engineering, Conte Research Center, University of Massachusetts, Amherst, Massachusetts
| | - Murugappan Muthukumar
- Department of Polymer Science and Engineering, Conte Research Center, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
41
|
Zhang X, Zhang D, Zhao C, Tian K, Shi R, Du X, Burcke AJ, Wang J, Chen SJ, Gu LQ. Nanopore electric snapshots of an RNA tertiary folding pathway. Nat Commun 2017; 8:1458. [PMID: 29133841 PMCID: PMC5684407 DOI: 10.1038/s41467-017-01588-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022] Open
Abstract
The chemical properties and biological mechanisms of RNAs are determined by their tertiary structures. Exploring the tertiary structure folding processes of RNA enables us to understand and control its biological functions. Here, we report a nanopore snapshot approach combined with coarse-grained molecular dynamics simulation and master equation analysis to elucidate the folding of an RNA pseudoknot structure. In this approach, single RNA molecules captured by the nanopore can freely fold from the unstructured state without constraint and can be programmed to terminate their folding process at different intermediates. By identifying the nanopore signatures and measuring their time-dependent populations, we can “visualize” a series of kinetically important intermediates, track the kinetics of their inter-conversions, and derive the RNA pseudoknot folding pathway. This approach can potentially be developed into a single-molecule toolbox to investigate the biophysical mechanisms of RNA folding and unfolding, its interactions with ligands, and its functions. While RNA folding is critical for its function, study of this process is challenging. Here, the authors combine nanopore single-molecule manipulation with theoretical analysis to follow the folding of an RNA pseudoknot, monitoring the intermediate states and the kinetics of their interconversion.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Dong Zhang
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Chenhan Zhao
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA
| | - Kai Tian
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Ruicheng Shi
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Xiao Du
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Andrew J Burcke
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jing Wang
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Shi-Jie Chen
- Department of Physics, University of Missouri, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA. .,Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.
| | - Li-Qun Gu
- Department of Bioengineering, University of Missouri, Columbia, MO, 65211, USA. .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
42
|
Shim J, Banerjee S, Qiu H, Smithe KKH, Estrada D, Bello J, Pop E, Schulten K, Bashir R. Detection of methylation on dsDNA using nanopores in a MoS 2 membrane. NANOSCALE 2017; 9:14836-14845. [PMID: 28795735 PMCID: PMC5890527 DOI: 10.1039/c7nr03092d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Methylation at the 5-carbon position of the cytosine nucleotide base in DNA has been shown to be a reliable diagnostic biomarker for carcinogenesis. Early detection of methylation and intervention could drastically increase the effectiveness of therapy and reduce the cancer mortality rate. Current methods for detecting methylation involve bisulfite genomic sequencing, which are cumbersome and demand a large sample size of bodily fluids to yield accurate results. Hence, more efficient and cost effective methods are desired. Based on our previous work, we present a novel nanopore-based assay using a nanopore in a MoS2 membrane, and the methyl-binding protein (MBP), MBD1x, to detect methylation on dsDNA. We show that the dsDNA translocation was effectively slowed down using an asymmetric concentration of buffer and explore the possibility of profiling the position of methylcytosines on the DNA strands as they translocate through the 2D membrane. Our findings advance us one step closer towards the possible use of nanopore sensing technology in medical applications such as cancer detection.
Collapse
Affiliation(s)
- Jiwook Shim
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028
- Corresponding Authors: Jiwook Shim, Ph.D., Department of Biomedical Engineering, Henry M. Rowan College of Engineering, owan University, 201 Mullica Hill Road, Glassboro, NJ 08028, U.S.A., , Phone: 856-256-5393, Rashid Bashir, Ph.D., Department of Bioengineering, University of Illinois at Urbana – Champaign, 1270 Digital Computer Laboratory, Urbana, IL 61801, , Phone: 217-333-1867
| | - Shouvik Banerjee
- Department of Material Science and Engineering, University of Illinois at Urbana – Champaign, Urbana, IL 61801
| | - Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kirby K. H. Smithe
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - David Estrada
- Department of Material Science and Engineering, Boise State University, Boise, ID 83725
| | - Julian Bello
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana – Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana – Champaign, Urbana, IL 61801
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana – Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana – Champaign, Urbana, IL 61801
- Corresponding Authors: Jiwook Shim, Ph.D., Department of Biomedical Engineering, Henry M. Rowan College of Engineering, owan University, 201 Mullica Hill Road, Glassboro, NJ 08028, U.S.A., , Phone: 856-256-5393, Rashid Bashir, Ph.D., Department of Bioengineering, University of Illinois at Urbana – Champaign, 1270 Digital Computer Laboratory, Urbana, IL 61801, , Phone: 217-333-1867
| |
Collapse
|
43
|
Tumor and serum DNA methylation in women receiving preoperative chemotherapy with or without vorinostat in TBCRC008. Breast Cancer Res Treat 2017; 167:107-116. [PMID: 28918548 DOI: 10.1007/s10549-017-4503-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Methylated gene markers have shown promise in predicting breast cancer outcomes and treatment response. We evaluated whether baseline and changes in tissue and serum methylation levels would predict pathological complete response (pCR) in patients with HER2-negative early breast cancer undergoing preoperative chemotherapy. METHODS The TBCRC008 trial investigated pCR following 12 weeks of preoperative carboplatin and albumin-bound paclitaxel + vorinostat/placebo (n = 62). We measured methylation of a 10-gene panel by quantitative multiplex methylation-specific polymerase chain reaction and expressed results as cumulative methylation index (CMI). We evaluated association between CMI level [baseline, day 15 (D15), and change] and pCR using univariate and multivariable logistic regression models controlling for treatment and hormone receptor (HR) status, and performed exploratory subgroup analyses. RESULTS In univariate analysis, one log unit increase in tissue CMI levels at D15 was associated with 40% lower chance of obtaining pCR (odds ratio, OR 0.60, 95% CI 0.37-0.97; p = 0.037). Subgroup analyses suggested a significant association between tissue D15 CMI levels and pCR in vorinostat-treated [OR 0.44 (0.20, 0.93), p = 0.03], but not placebo-treated patients. CONCLUSION In this study investigating the predictive roles of tissue and serum CMI levels in patients with early breast cancer for the first time, we demonstrate that high D15 tissue CMI levels may predict poor response. Larger studies and improved analytical procedures to detect methylated gene markers in early stage breast cancer are needed. TBCRC008 is registered on ClinicalTrials.gov (NCT00616967).
Collapse
|
44
|
|
45
|
Carlsen AT, Briggs K, Hall AR, Tabard-Cossa V. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes. NANOTECHNOLOGY 2017; 28:085304-85304. [PMID: 28045003 PMCID: PMC5408306 DOI: 10.1088/1361-6528/aa564d] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.
Collapse
Affiliation(s)
- Autumn T. Carlsen
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Kyle Briggs
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Adam R. Hall
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston Salem, North Carolina 27101, United States
| | | |
Collapse
|
46
|
Identification of Methylation-Driven, Differentially Expressed STXBP6 as a Novel Biomarker in Lung Adenocarcinoma. Sci Rep 2017; 7:42573. [PMID: 28198450 PMCID: PMC5309775 DOI: 10.1038/srep42573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an essential epigenetic marker associated with the silencing of gene expression. Although various genome-wide studies revealed aberrantly methylated gene targets as molecular biomarkers for early detection, the survival rate of lung cancer patients is still poor. In order to identify methylation-driven biomarkers, genome-wide changes in DNA methylation and differential expression in 32 pairs of lung adenocarcinoma and adjacent normal lung tissue in non-smoking women were examined. This concurrent analysis identified 21 negatively correlated probes (r ≤ −0.5), corresponding to 17 genes. Examining the endogenous expression in lung cancer cell lines, five of the genes were found to be significantly down-regulated. Furthermore, in tumor cells alone, 5-aza-2′-deoxycytidine treatment increased the expression levels of STXBP6 in a dose dependent manner and pyrosequencing showed higher percentage of methylation in STXBP6 promoter. Functional analysis revealed that overexpressed STXBP6 in A549 and H1299 cells significantly decreased cell proliferation, colony formation, and migration, and increased apoptosis. Finally, significantly lower survival rates (P < 0.05) were observed when expression levels of STXBP6 were low. Our results provide a basis for the genetic etiology of lung adenocarcinoma by demonstrating the possible role of hypermethylation of STXBP6 in poor clinical outcomes in lung cancer patients.
Collapse
|
47
|
Vu T, Davidson SL, Borgesi J, Maksudul M, Jeon TJ, Shim J. Piecing together the puzzle: nanopore technology in detection and quantification of cancer biomarkers. RSC Adv 2017. [DOI: 10.1039/c7ra08063h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This mini-review paper is a comprehensive outline of nanopore technology applications in the detection and study of various cancer causal factors.
Collapse
Affiliation(s)
- Trang Vu
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Shanna-Leigh Davidson
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Julia Borgesi
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Mowla Maksudul
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| | - Tae-Joon Jeon
- Department of Biological Engineering
- Inha University
- Incheon 22212
- Republic of Korea
| | - Jiwook Shim
- Department of Biomedical Engineering
- Henry M. Rowan College of Engineering
- Rowan University
- Glassboro
- USA
| |
Collapse
|
48
|
Zhang JH, Liu XL, Hu ZL, Ying YL, Long YT. Intelligent identification of multi-level nanopore signatures for accurate detection of cancer biomarkers. Chem Commun (Camb) 2017; 53:10176-10179. [DOI: 10.1039/c7cc04745b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We combined a modified DBSCAN algorithm with the Hidden Markov Model (HMM) for the intelligent recognition of multi-level current blockage events from the measured nanopore data of serum samples.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- School of Information Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Xiu-Ling Liu
- School of Information Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Zheng-Li Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
49
|
Qiu H, Sarathy A, Schulten K, Leburton JP. Detection and Mapping of DNA Methylation with 2D Material Nanopores. NPJ 2D MATERIALS AND APPLICATIONS 2017; 1:3. [PMID: 29399640 PMCID: PMC5794036 DOI: 10.1038/s41699-017-0005-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/24/2016] [Accepted: 01/10/2017] [Indexed: 05/21/2023]
Abstract
DNA methylation is an epigenetic modification involving the addition of a methyl group to DNA, which is heavily involved in gene expression and regulation, thereby critical to the progression of diseases such as cancer. In this work we show that detection and localization of DNA methylation can be achieved with nanopore sensors made of two-dimensional (2D) materials such as graphene and molybdenum di-sulphide (MoS2). We label each DNA methylation site with a methyl-CpG binding domain protein (MBD1), and combine molecular dynamics simulations with electronic transport calculations to investigate the translocation of the methylated DNA-MBD1 complex through 2D material nanopores under external voltage biases. The passage of the MBD1-labeled methylation site through the pore is identified by dips in the current blockade induced by the DNA strand, as well as by peaks in the transverse electronic sheet current across the 2D layer. The position of the methylation sites can be clearly recognized by the relative positions of the dips in the recorded ionic current blockade with an estimated error ranging from 0% to 16%. Finally, we define the spatial resolution of the 2D material nanopore device as the minimal distance between two methylation sites identified within a single measurement, which is 15 base pairs by ionic current recognition, but as low as 10 base pairs by transverse electronic conductance detection, indicating better resolution with this latter technique. The present approach opens a new route for precise and efficient profiling of DNA methylation.
Collapse
Affiliation(s)
- Hu Qiu
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| | - Aditya Sarathy
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Klaus Schulten
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| | - Jean-Pierre Leburton
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Sarathy A, Qiu H, Leburton JP. Graphene Nanopores for Electronic Recognition of DNA Methylation. J Phys Chem B 2016; 121:3757-3763. [PMID: 28035832 DOI: 10.1021/acs.jpcb.6b11040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigate theoretically the ability of graphene nanopore membranes to detect methylated sites along a DNA molecule by electronic sheet current along the two-dimensional (2D) materials. Special emphasis is placed on the detection sensitivity changes due to pore size, shape, position, and the presence of defects around the nanopore in a membrane with constricted geometry. Enhanced sensitivity for detecting methylated CpG sites, labeled by methyl-CpG binding domain (MBD) proteins along a DNA molecule, is obtained for electronic transport through graphene midgap states caused by the constriction. A large square deviation from the graphene conductance with respect to the open nanopore is observed during the translocation of MBD proteins. This approach exhibits superior resolution in the detection of multiple methylated sites along the DNA compared to conventional ionic current blockade techniques.
Collapse
Affiliation(s)
- Aditya Sarathy
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| | - Hu Qiu
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| | - Jean-Pierre Leburton
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|