1
|
Yamazaki S, Matsuda Y. Antibody Modification via Lipoic Acid Ligase A-Mediated Site-Specific Labeling. Chem Biodivers 2025; 22:e202402113. [PMID: 39435640 DOI: 10.1002/cbdv.202402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Enzymatic modification, particularly utilizing lipoic acid ligase (LplA), has emerged as a transformative approach in biopharmaceuticals, enabling precise and site-specific protein modifications. This review delves into the innovative applications of LplA in antibody modifications, including the creation of antibody-drug conjugates (ADCs) and the advancement of tag-free conjugation techniques. LplA's ability to facilitate the incorporation of bioorthogonal groups and its adaptability to various substrates underscores its versatility. Key developments include the successful generation of dual-labeled antibodies and the application of LplA in modifying antibody fragments. Additionally, the review explores the potential for LplA to enhance the therapeutic efficacy of ADCs through improved drug-to-antibody ratios and site-specific payload attachment. The implications of these advancements are significant, suggesting that LplA-mediated modifications could lead to more effective and targeted antibody-based therapies. This review aims to provide a comprehensive overview of LplA's role in expanding the possibilities of enzymatic conjugation, setting the stage for future research and clinical applications.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| | - Yutaka Matsuda
- Ajinomoto, Co., Inc., 1-1 Suzuki-cho, Kawasaki, Kanagawa, 210-8681, Japan
| |
Collapse
|
2
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
3
|
Koutsopetras I, Mishra AK, Benazza R, Hernandez-Alba O, Cianférani S, Chaubet G, Nicolai S, Waser J. Cysteine-Cysteine Cross-Conjugation of both Peptides and Proteins with a Bifunctional Hypervalent Iodine-Electrophilic Reagent. Chemistry 2023; 29:e202302689. [PMID: 37712523 DOI: 10.1002/chem.202302689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Peptide and protein bioconjugation sees ever-growing applications in the pharmaceutical sector. Novel strategies and reagents that can address the chemo- and regioselectivity issues inherent to these biomolecules, while delivering stable and functionalizable conjugates, are therefore needed. Herein, we introduce the crosslinking ethynylbenziodazolone (EBZ) reagent JW-AM-005 for the conjugation of peptides and proteins through the selective linkage of cysteine residues. This easily accessed compound gives access to peptide dimers or stapled peptides under mild and tuneable conditions. Applied to the antibody fragment of antigen binding (Fab) species, JW-AM-005 delivered rebridged proteins in a one-pot three-reaction process with high regioselectivity, outperforming the standard reagents commonly used for this transformation.
Collapse
Affiliation(s)
- Ilias Koutsopetras
- UMR 7199 CNRS-UdS, Chime Bio-Fonctionnelle, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Guilhem Chaubet
- UMR 7199 CNRS-UdS, Chime Bio-Fonctionnelle, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Sasso J, Tenchov R, Bird R, Iyer KA, Ralhan K, Rodriguez Y, Zhou QA. The Evolving Landscape of Antibody-Drug Conjugates: In Depth Analysis of Recent Research Progress. Bioconjug Chem 2023; 34:1951-2000. [PMID: 37821099 PMCID: PMC10655051 DOI: 10.1021/acs.bioconjchem.3c00374] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Antibody-drug conjugates (ADCs) are targeted immunoconjugate constructs that integrate the potency of cytotoxic drugs with the selectivity of monoclonal antibodies, minimizing damage to healthy cells and reducing systemic toxicity. Their design allows for higher doses of the cytotoxic drug to be administered, potentially increasing efficacy. They are currently among the most promising drug classes in oncology, with efforts to expand their application for nononcological indications and in combination therapies. Here we provide a detailed overview of the recent advances in ADC research and consider future directions and challenges in promoting this promising platform to widespread therapeutic use. We examine data from the CAS Content Collection, the largest human-curated collection of published scientific information, and analyze the publication landscape of recent research to reveal the exploration trends in published documents and to provide insights into the scientific advances in the area. We also discuss the evolution of the key concepts in the field, the major technologies, and their development pipelines with company research focuses, disease targets, development stages, and publication and investment trends. A comprehensive concept map has been created based on the documents in the CAS Content Collection. We hope that this report can serve as a useful resource for understanding the current state of knowledge in the field of ADCs and the remaining challenges to fulfill their potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Rumiana Tenchov
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | | | | - Yacidzohara Rodriguez
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
5
|
Kegulian NC, Langen R, Moradian-Oldak J. The Dynamic Interactions of a Multitargeting Domain in Ameloblastin Protein with Amelogenin and Membrane. Int J Mol Sci 2023; 24:3484. [PMID: 36834897 PMCID: PMC9966149 DOI: 10.3390/ijms24043484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The enamel matrix protein Ameloblastin (Ambn) has critical physiological functions, including regulation of mineral formation, cell differentiation, and cell-matrix adhesion. We investigated localized structural changes in Ambn during its interactions with its targets. We performed biophysical assays and used liposomes as a cell membrane model. The xAB2N and AB2 peptides were rationally designed to encompass regions of Ambn that contained self-assembly and helix-containing membrane-binding motifs. Electron paramagnetic resonance (EPR) on spin-labeled peptides showed localized structural gains in the presence of liposomes, amelogenin (Amel), and Ambn. Vesicle clearance and leakage assays indicated that peptide-membrane interactions were independent from peptide self-association. Tryptophan fluorescence and EPR showed competition between Ambn-Amel and Ambn-membrane interactions. We demonstrate localized structural changes in Ambn upon interaction with different targets via a multitargeting domain, spanning residues 57 to 90 of mouse Ambn. Structural changes of Ambn following its interaction with different targets have relevant implications for the multifunctionality of Ambn in enamel formation.
Collapse
Affiliation(s)
- Natalie C. Kegulian
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
7
|
Dimasi N, Kumar A, Gao C. Generation of bispecific antibodies using chemical conjugation methods. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 40:13-24. [PMID: 34916015 DOI: 10.1016/j.ddtec.2021.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
Bispecific antibodies combine the specificity of two antibodies into one molecule. During the past two decades, advancement in protein engineering enabled the development of more than 100 bispecific formats, three of which are approved by the FDA for clinical use. In parallel to protein engineering methods, advancement in conjugation chemistries have spurred the use of chemical engineering approaches to generate bispecific antibodies. Herein, we review selected chemical strategies employed to generate bispecific antibodies that cannot be made using protein engineering methods.
Collapse
Affiliation(s)
- Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Amit Kumar
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, USA.
| |
Collapse
|
8
|
Khozeimeh Sarbisheh E, Dewaele-Le Roi G, Shannon WE, Tan S, Xu Y, Zeglis BM, Price EW. DiPODS: A Reagent for Site-Specific Bioconjugation via the Irreversible Rebridging of Disulfide Linkages. Bioconjug Chem 2020; 31:2789-2806. [PMID: 33210532 DOI: 10.1021/acs.bioconjchem.0c00590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemoselective reactions with thiols have long held promise for the site-specific bioconjugation of antibodies and antibody fragments. Yet bifunctional probes bearing monovalent maleimides-long the "gold standard" for thiol-based ligations-are hampered by two intrinsic issues: the in vivo instability of the maleimide-thiol bond and the need to permanently disrupt disulfide linkages in order to facilitate bioconjugation. Herein, we present the synthesis, characterization, and validation of DiPODS, a novel bioconjugation reagent containing a pair of oxadiazolyl methyl sulfone moieties capable of irreversibly forming covalent bonds with two thiolate groups while simultaneously rebridging disulfide linkages. The reagent was synthesized from commercially available starting materials in 8 steps, during which rotamers were encountered and investigated both experimentally and computationally. DiPODS is designed to be modular and can thus be conjugated to any payload through a pendant terminal primary amine (DiPODS-PEG4-NH2). Subsequently, the modification of a HER2-targeting Fab with a fluorescein-conjugated variant of DiPODS (DiPODS-PEG4-FITC) reinforced the site-specificity of the reagent, illustrated its ability to rebridge disulfide linkages, and produced an immunoconjugate with in vitro properties superior to those of an analogous construct created using traditional stochastic bioconjugation techniques. Ultimately, we believe that this work has particularly important implications for the synthesis of immunoconjugates, specifically for ensuring that the attachment of cargoes to immunoglobulins is robust, irreversible, and biologically and structurally benign.
Collapse
Affiliation(s)
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10021, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Whitney E Shannon
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N-5C9, Canada
| | - Sally Tan
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Yujia Xu
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10021, United States
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10021, United States.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N-5C9, Canada
| |
Collapse
|
9
|
Juan A, Cimas FJ, Bravo I, Pandiella A, Ocaña A, Alonso-Moreno C. An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics 2020; 12:pharmaceutics12090802. [PMID: 32854255 PMCID: PMC7558516 DOI: 10.3390/pharmaceutics12090802] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023] Open
Abstract
Nanoparticles (NPs) are promising drug delivery systems (DDS) for identifying and treating cancer. Active targeting NPs can be generated by conjugation with ligands that bind overexpressed or mutant cell surface receptors on target cells that are poorly or not even expressed on normal cells. Receptor-mediated endocytosis of the NPs occurs and the drug is released inside the cell or in the surrounding tissue due to the bystander effect. Antibodies are the most frequently used ligands to actively target tumor cells. In this context, antibody-based therapies have been extensively used in HER2+ breast cancer. However, some patients inherently display resistance and in advanced stages, almost all eventually progress. Functionalized NPs through conjugation with antibodies appear to be a promising strategy to optimize targeted therapies due to properties related to biocompatibility, suitable delivery control and efficiency of functionalization. This review is focused on the different strategies to conjugate antibodies into polymeric NPs. Recent antibody conjugation approaches applied to the improvement of breast cancer therapy are highlighted in this review.
Collapse
Affiliation(s)
- Alberto Juan
- Oncología traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
| | - Francisco J. Cimas
- Oncología traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
| | - Iván Bravo
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Atanasio Pandiella
- Centro de Investigación del Cáncer-CSIC, IBSAL- Salamanca and CIBERONC, 37007 Salamanca, Spain;
| | - Alberto Ocaña
- Oncología traslacional, Unidad de Investigación del Complejo Hospitalario Universitario de Albacete, 02008 Albacete, Spain; (A.J.); (F.J.C.)
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, 28040 Madrid, Spain
- Correspondence: (A.O.); (C.A.-M.); Tel.: +34-635-681806 (A.O.); +34-9675-99200 (C.A.-M)
| | - Carlos Alonso-Moreno
- Centro Regional de Investigaciones Biomédicas, Unidad NanoCRIB, 02008 Albacete, Spain;
- School of Pharmacy, University of Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence: (A.O.); (C.A.-M.); Tel.: +34-635-681806 (A.O.); +34-9675-99200 (C.A.-M)
| |
Collapse
|
10
|
Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry 2020; 26:7638-7646. [PMID: 32307728 PMCID: PMC7318359 DOI: 10.1002/chem.202000417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/13/2020] [Indexed: 12/17/2022]
Abstract
Protein-protein interactions (PPIs) control virtually all cellular processes and have thus emerged as potential targets for development of molecular therapeutics. Peptide-based inhibitors of PPIs are attractive given that they offer recognition potency and selectivity features that are ideal for function, yet, they do not predominantly populate the bioactive conformation, frequently suffer from poor cellular uptake and are easily degraded, for example, by proteases. The constraint of peptides in a bioactive conformation has emerged as a promising strategy to mitigate against these liabilities. In this work, using peptides derived from hypoxia-inducible factor 1 (HIF-1α) together with dibromomaleimide stapling, we identify constrained peptide inhibitors of the HIF-1α/p300 interaction that are more potent than their unconstrained sequences. Contrary to expectation, the increased potency does not correlate with an increased population of an α-helical conformation in the unbound state as demonstrated by experimental circular dichroism analysis. Rather, the ability of the peptide to adopt a bioactive α-helical conformation in the p300 bound state is better supported in the constrained variant as demonstrated by molecular dynamics simulations and circular dichroism difference spectra.
Collapse
Affiliation(s)
- Kristina Hetherington
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Zsofia Hegedus
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Richard B. Sessions
- School of BiochemistryUniversity of BristolMedical Sciences Building, University WalkBristolBS8 1TDUK
- BrisSynBioUniversity of Bristol, Life Sciences BuildingTyndall AvenueBristolBS8 1TQUK
| | - Adam Nelson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
11
|
Huang R, Sheng Y, Wei D, Yu J, Chen H, Jiang B. Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody-drug conjugates. Eur J Med Chem 2020; 190:112080. [PMID: 32018094 DOI: 10.1016/j.ejmech.2020.112080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
Abstract
Disulfide re-bridging strategy has demonstrated significant advantages in the construction of homogeneous antibody drug conjugates (ADCs). However, a major issue that disulfide scrambling at the hinge region of antibody leads to the formation of "half-antibody" has appeared for many re-bridging linkers. We present bis(vinylsulfonyl)piperazines (BVP) as efficient linkers to selectively re-bridge disulfides at the antigen-binding fragment (Fab) regions and produce highly homogeneous conjugates with a loading of two drugs without disulfide scrambling. We also found that optically active (S)-configuration linkers led to more sufficient conjugation compared with (R)-configuration. The BVP-linked ADCs demonstrated superior efficacy and antigen-selectivity in vitro cytotoxicity.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jianghui Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
12
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Sousa AR, Oliveira MJ, Sarmento B. Impact of CEA-targeting Nanoparticles for Drug Delivery in Colorectal Cancer. J Pharmacol Exp Ther 2019; 370:657-670. [PMID: 30670480 DOI: 10.1124/jpet.118.254441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world, mainly owing to distant metastasis events. Developing targeted strategies to treat and follow individuals in more developed stages is needed. The carcinoembryonic antigen (CEA) is a cell surface-overexpressed glycoprotein in most CRC patients, and the evaluation of its serum levels is recommended in the clinic. These reasons motivated the production of CEA-targeted nanotechnologies for monitorization of CRC progression, but only a few centers have reported their use for drug delivery. The cellular internalization of CEA-linked nanosystems occurs by the natural recycling of the CEA itself, enabling longer retention and sustained release of the cargo. The functionalization of nanoparticles with lower affinity ligands for CEA is possibly the best choice to avoid their binding to the soluble CEA. Here, we also highlight the use of nanoparticles made of poly(lactic-co-glycolic acid) (PLGA) polymer, a well known material, owing to its biocompatibility and low toxicity. This work offers support to the contribution of antibody fragment-functionalized nanoparticles as promising high affinity molecules to decorate nanosystems. The linkers and conjugation chemistries chosen for ligand-nanoparticle coupling will be addressed herein as an elements essential to the modulation of nanosystem features. This review, to our knowledge, is the first that focuses on CEA-targeted nanotechnologies to serve colorectal cancer therapy and monitorization.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Instituto de Investigação e Inovação em Saúde (A.R.S., M.J.O., B.S.), Instituto de Engenharia Biomédica (A.R.S., M.J.O., B.S.), Instituto de Ciências Biomédicas Abel Salazar (A.R.S., M.J.O.), and Faculdade de Medicina da (M.J.O.), Universidade do Porto, Porto, Portugal; Instituto Português de Oncologia do Porto, Porto, Portugal (A.R.S.); and Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal (B.S.)
| | - Maria José Oliveira
- Instituto de Investigação e Inovação em Saúde (A.R.S., M.J.O., B.S.), Instituto de Engenharia Biomédica (A.R.S., M.J.O., B.S.), Instituto de Ciências Biomédicas Abel Salazar (A.R.S., M.J.O.), and Faculdade de Medicina da (M.J.O.), Universidade do Porto, Porto, Portugal; Instituto Português de Oncologia do Porto, Porto, Portugal (A.R.S.); and Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal (B.S.)
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (A.R.S., M.J.O., B.S.), Instituto de Engenharia Biomédica (A.R.S., M.J.O., B.S.), Instituto de Ciências Biomédicas Abel Salazar (A.R.S., M.J.O.), and Faculdade de Medicina da (M.J.O.), Universidade do Porto, Porto, Portugal; Instituto Português de Oncologia do Porto, Porto, Portugal (A.R.S.); and Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal (B.S.)
| |
Collapse
|
14
|
Bahou C, Richards DA, Maruani A, Love EA, Javaid F, Caddick S, Baker JR, Chudasama V. Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Org Biomol Chem 2019; 16:1359-1366. [PMID: 29405223 PMCID: PMC6058253 DOI: 10.1039/c7ob03138f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report novel protocols for the generation and application of dibromopyridazinediones, an exciting class of disulfide bridging reagents.
Due to their exquisite cysteine-selectivity, excellent stability, and ability to functionally rebridge disulfide bonds, dibromopyridazinediones are emerging as an exciting new class of bioconjugation reagents, particularly in the field of antibody conjugation. Despite this, relatively little work has been performed on the optimisation of their synthesis and subsequent reaction with immunoglobulins. Herein we present a novel synthetic route towards functionalised dibromopyridazinediones, proceeding via an isolatable dibromopyridazinedione-NHS ester. Reaction of this activated intermediate with a variety of amines produces functional dibromopyridazinediones in good to excellent yields. The disulfide rebridging capacity of these reagents was optimised on the clinically relevant IgG1 trastuzumab, resulting in a general method which allows for the generation of site-selectively modified native trastuzumab with over 90% homogeneity (no disulfide scrambling) without the need for protein engineering or enzymatic conjugation.
Collapse
Affiliation(s)
- Calise Bahou
- Department of Chemistry, University College London, London, UK.
| | | | - Antoine Maruani
- Department of Chemistry, University College London, London, UK.
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, UK
| | - Faiza Javaid
- Department of Chemistry, University College London, London, UK.
| | - Stephen Caddick
- Department of Chemistry, University College London, London, UK.
| | - James R Baker
- Department of Chemistry, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK. and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Morais M, Forte N, Chudasama V, Baker JR. Application of Next-Generation Maleimides (NGMs) to Site-Selective Antibody Conjugation. Methods Mol Biol 2019; 2033:15-24. [PMID: 31332744 DOI: 10.1007/978-1-4939-9654-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Site-selective antibody conjugation is widely recognized as a key strategy for the optimum construction of antibody-drug conjugates (ADCs). Achieving such bioconjugation directly onto native antibodies would represent the ideal solution, as it would afford greatly improved homogeneity whilst avoiding the need for genetic engineering, and even allow the repurposing of existing antibodies "off-the shelf." Here we describe a protocol for the use of next-generation maleimides (NGMs) for the selective modification of the four interchain disulfide bonds present in a typical IgG1 antibody format. These reagents retain the efficiency of classical maleimides whilst serving to rebridge each reduced disulfide bond, affording one attachment per disulfide. The approach is simple, uses readily available reagents, and generates robustly stable conjugates which are ideal for in vitro or in vivo applications. In addition to use in the construction of ADCs these reagents can also be used to develop antibody conjugates for imaging, bispecifics, and broadly for use across biology and medicine.
Collapse
Affiliation(s)
- Maurício Morais
- Department of Chemistry, University College London, London, UK
| | - Nafsika Forte
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK
| | - James R Baker
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
16
|
Forte N, Chudasama V, Baker JR. Homogeneous antibody-drug conjugates via site-selective disulfide bridging. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:11-20. [PMID: 30553515 DOI: 10.1016/j.ddtec.2018.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 06/09/2023]
Abstract
Antibody-drug conjugates (ADCs) constructed using site-selective labelling methodologies are likely to dominate the next generation of these targeted therapeutics. To this end, disulfide bridging has emerged as a leading strategy as it allows the production of highly homogeneous ADCs without the need for antibody engineering. It consists of targeting reduced interchain disulfide bonds with reagents which reconnect the resultant pairs of cysteine residues, whilst simultaneously attaching drugs. The 3 main reagent classes which have been exemplified for the construction of ADCs by disulfide bridging will be discussed in this review; bissulfones, next generation maleimides and pyridazinediones, along with others in development.
Collapse
Affiliation(s)
- Nafsika Forte
- Department of Chemistry, University College London, London, UK
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| | - James R Baker
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
17
|
Richards DA. Exploring alternative antibody scaffolds: Antibody fragments and antibody mimics for targeted drug delivery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:35-46. [PMID: 30553519 DOI: 10.1016/j.ddtec.2018.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 05/20/2023]
Abstract
The field of targeted therapeutics has benefitted immeasurably from the development of high-affinity antibodies. These important ligands have facilitated the development of effective therapies, particularly when conjugated to potent cytotoxic payloads i.e. in antibody-drug conjugates (ADCs). The success of ADCs is evidenced by rapid adoption within the pharmaceuticals community; many major companies have dedicated ADC research programmes. However, despite the advantages, the field of ADCs has failed to live up to its full potential. Studies have emerged suggesting that traditional IgG scaffolds may not be the optimal format for targeted payload delivery. In response, the protein engineering community has begun to explore alternative high-binding protein scaffolds as antibody mimics. In this short review I will summarise the generation, modification, and application of emerging antibody fragments and synthetic antibody mimics, with a focus on their use as drug carriers. The review aims to highlight the advantages of antibody mimics, and how they could be employed to overcome the issues and limitations of traditional ADCs.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
18
|
Ravasco JMJM, Faustino H, Trindade A, Gois PMP. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemistry 2018; 25:43-59. [PMID: 30095185 DOI: 10.1002/chem.201803174] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 02/06/2023]
Abstract
Maleimide chemistry stands out in the bioconjugation toolbox by virtue of its synthetic accessibility, excellent reactivity, and practicability. The second-generation of clinically approved antibody-drug conjugates (ADC) and much of the current ADC pipeline in clinical trials contain the maleimide linkage. However, thiosuccinimide linkages are now known to be less robust than once thought, and ergo, are correlated with suboptimal pharmacodynamics, pharmacokinetics, and safety profiles in some ADC constructs. Rational design of novel generations of maleimides and maleimide-type reagents have been reported to address the shortcomings of classical maleimides, allowing for the formation of robust bioconjugate linkages. This review highlights the main strategies for rational reagent design that have allowed irreversible bioconjugations in cysteines, reversible labelling strategies and disulfide re-bridging.
Collapse
Affiliation(s)
- João M J M Ravasco
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Hélio Faustino
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Alexandre Trindade
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro M P Gois
- Bioorganic Chemistry Department, Research Institute for Medicines, (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
19
|
Morais M, Ma MT. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:91-104. [PMID: 30553525 PMCID: PMC6291455 DOI: 10.1016/j.ddtec.2018.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Antibodies and their derivatives radiolabelled with positron- and gamma-emitting radiometals enable sensitive and quantitative molecular Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) imaging of antibody distribution in vivo. Chelators that are covalently attached to antibodies allow radiolabelling with metallic PET and SPECT radioisotopes. Conventional strategies for chelator-protein conjugation generate heterogeneous mixtures of bioconjugates that can exhibit reduced affinity for their receptor targets, and undesirable biodistribution and pharmacokinetics. Recent advances in bioconjugation technology enable site-specific modification to generate well-defined constructs with superior properties. Herein we survey existing site-specific chelator-protein conjugation methods. These include chelator attachment to cysteines/disulfide bonds or the glycan region of the antibody, enzyme-mediated chelator conjugation, and incorporation of sequences of amino acids that chelate the radiometal. Such technology will allow better use of PET and SPECT imaging in the development of antibody-based therapies.
Collapse
Affiliation(s)
- Mauricio Morais
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
20
|
Haugland MM, Lovett JE, Anderson EA. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling. Chem Soc Rev 2018; 47:668-680. [PMID: 29192696 DOI: 10.1039/c6cs00550k] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
EPR spectroscopy is an increasingly useful analytical tool to probe biomolecule structure, dynamic behaviour, and interactions. Nitroxide radicals are the most commonly used radical probe in EPR experiments, and many methods have been developed for their synthesis, as well as incorporation into biomolecules using site-directed spin labelling. In this Tutorial Review, we discuss the most practical methods for the synthesis of nitroxides, focusing on the tunability of their structures, the manipulation of their sidechains into spin labelling handles, and their installation into biomolecules.
Collapse
Affiliation(s)
- Marius M Haugland
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Rd, Oxford, OX1 3TA, UK.
| | | | | |
Collapse
|
21
|
Forte N, Livanos M, Miranda E, Morais M, Yang X, Rajkumar VS, Chester KA, Chudasama V, Baker JR. Tuning the Hydrolytic Stability of Next Generation Maleimide Cross-Linkers Enables Access to Albumin-Antibody Fragment Conjugates and tri-scFvs. Bioconjug Chem 2018; 29:486-492. [PMID: 29384367 DOI: 10.1021/acs.bioconjchem.7b00795] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe investigations to expand the scope of next generation maleimide cross-linkers for the construction of homogeneous protein-protein conjugates. Diiodomaleimides are shown to offer the ideal properties of rapid bioconjugation with reduced hydrolysis, allowing the cross-linking of even sterically hindered systems. The optimized linkers are exploited to link human serum albumin to antibody fragments (Fab or scFv) as a prospective half-life extension platform, with retention of antigen binding and robust serum stability. Finally, a triprotein conjugate is formed, by linking scFv antibody fragments targeting carcinoembryonic antigen. This tri-scFv is shown to infer a combination of greater antigen avidity and increased in vivo half-life, representing a promising platform for antibody therapeutic development.
Collapse
Affiliation(s)
- Nafsika Forte
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| | - Maria Livanos
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Enrique Miranda
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Maurício Morais
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| | - Xiaoping Yang
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| | - Vineeth S Rajkumar
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Kerry A Chester
- Cancer Institute, University College London , 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Vijay Chudasama
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa , 1649-004 Lisbon, Portugal
| | - James R Baker
- Department of Chemistry, University College London , 20 Gordon Street, London, WC1H OAJ, United Kingdom
| |
Collapse
|
22
|
Grison CM, Burslem GM, Miles JA, Pilsl LKA, Yeo DJ, Imani Z, Warriner SL, Webb ME, Wilson AJ. Double quick, double click reversible peptide "stapling". Chem Sci 2017; 8:5166-5171. [PMID: 28970902 PMCID: PMC5618791 DOI: 10.1039/c7sc01342f] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/11/2017] [Indexed: 12/23/2022] Open
Abstract
A versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation and bearing a functional handle for inhibition of protein–protein interactions is described.
The development of constrained peptides for inhibition of protein–protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine (hCys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein–protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne–azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.
Collapse
Affiliation(s)
- Claire M Grison
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - George M Burslem
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Jennifer A Miles
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Ludwig K A Pilsl
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - David J Yeo
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Zeynab Imani
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Stuart L Warriner
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Michael E Webb
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| | - Andrew J Wilson
- School of Chemistry , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK . .,Astbury Centre For Structural Molecular Biology , University of Leeds , Woodhouse Lane , Leeds LS2 9JT , UK
| |
Collapse
|
23
|
Creation of Antigen-Dependent β-Lactamase Fusion Protein Tethered by Circularly Permuted Antibody Variable Domains. Methods Mol Biol 2017. [PMID: 28293886 DOI: 10.1007/978-1-4939-6940-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Antibody-based molecular switches that are able to recognize a range of exogenous antigens can be highly useful as a versatile biosensor. However, regulating the catalytic activity of enzymes by antibodies is still hard to achieve. Here, we describe a design method of unique antibody variable region Fv introduced with two circular permutations, called Clampbody. By tethering the Clampbody to a circularly permuted TEM-1 β-lactamase (BLA), we successfully constructed a genetically encoded molecular switch Cbody-cpBLA that shows antigen-dependent catalytic activity.
Collapse
|
24
|
Lee MTW, Maruani A, Richards DA, Baker JR, Caddick S, Chudasama V. Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering. Chem Sci 2017; 8:2056-2060. [PMID: 28451324 PMCID: PMC5399535 DOI: 10.1039/c6sc03655d] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
The generation of antibody conjugates with a loading of two modules is desirable for a host of reasons. Whilst certain antibody engineering approaches have been useful in the preparation of such constructs, a reliable method based on a native antibody scaffold without the use of enzymes or harsh oxidative conditions has hitherto not been achieved. The use of native antibodies has several advantages in terms of cost, practicality, accessibility, time and overall efficiency. Herein we present a novel, reliable method of furnishing antibody conjugates with a loading of two modules starting from a native antibody scaffold.
Collapse
Affiliation(s)
- Maximillian T W Lee
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Daniel A Richards
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - James R Baker
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Stephen Caddick
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , UK . ; Tel: +44 (0)207 679 2077
| |
Collapse
|
25
|
Nunes JPM, Vassileva V, Robinson E, Morais M, Smith MEB, Pedley RB, Caddick S, Baker JR, Chudasama V. Use of a next generation maleimide in combination with THIOMAB™ antibody technology delivers a highly stable, potent and near homogeneous THIOMAB™ antibody-drug conjugate (TDC). RSC Adv 2017. [DOI: 10.1039/c7ra04606e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conjugation of next generation maleimides to engineered cysteines in a THIOMAB™ antibody delivers a highly stable and potent THIOMAB™ antibody-drug conjugate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James R. Baker
- Department of Chemistry
- University College London
- London
- UK
| | - Vijay Chudasama
- Department of Chemistry
- University College London
- London
- UK
- Research Institute for Medicines (iMed.ULisboa)
| |
Collapse
|
26
|
Robinson E, Nunes JPM, Vassileva V, Maruani A, Nogueira JCF, Smith MEB, Pedley RB, Caddick S, Baker JR, Chudasama V. Pyridazinediones deliver potent, stable, targeted and efficacious antibody–drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody. RSC Adv 2017. [DOI: 10.1039/c7ra00788d] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Delivering potent, stable, targeted and in vivo efficacious antibody–drug conjugates (ADCs) using pyridazinedione functional disulfide re-bridging reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James R. Baker
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
27
|
Morais M, Nunes JPM, Karu K, Forte N, Benni I, Smith MEB, Caddick S, Chudasama V, Baker JR. Optimisation of the dibromomaleimide (DBM) platform for native antibody conjugation by accelerated post-conjugation hydrolysis. Org Biomol Chem 2017; 15:2947-2952. [DOI: 10.1039/c7ob00220c] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dibromomaleimide (DBM) reagents are described which hydrolyse rapidly post-conjugation, representing an optimised platform for homogeneous and stable antibody conjugation.
Collapse
|
28
|
Kuan SL, Wang T, Weil T. Site-Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome. Chemistry 2016; 22:17112-17129. [PMID: 27778400 PMCID: PMC5600100 DOI: 10.1002/chem.201602298] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Indexed: 01/06/2023]
Abstract
The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site-directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site-selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tao Wang
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031P.R. China
| | - Tanja Weil
- Institute of Organic Chemistry IIIUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
29
|
Adumeau P, Sharma SK, Brent C, Zeglis BM. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 1: Cysteine Residues and Glycans. Mol Imaging Biol 2016; 18:1-17. [PMID: 26754790 PMCID: PMC4722084 DOI: 10.1007/s11307-015-0919-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Due to their remarkable selectivity and specificity for cancer biomarkers, immunoconjugates have emerged as extremely promising vectors for the delivery of diagnostic radioisotopes and fluorophores to malignant tissues. Paradoxically, however, these tools for precision medicine are synthesized in a remarkably imprecise way. Indeed, the vast majority of immunoconjugates are created via the random conjugation of bifunctional probes (e.g., DOTA-NCS) to amino acids within the antibody (e.g., lysines). Yet antibodies have multiple copies of these residues throughout their macromolecular structure, making control over the location of the conjugation reaction impossible. This lack of site specificity can lead to the formation of poorly defined, heterogeneous immunoconjugates with suboptimal in vivo behavior. Over the past decade, interest in the synthesis and development of site-specifically labeled immunoconjugates—both antibody-drug conjugates as well as constructs for in vivo imaging—has increased dramatically, and a number of reports have suggested that these better defined, more homogeneous constructs exhibit improved performance in vivo compared to their randomly modified cousins. In this two-part review, we seek to provide an overview of the various methods that have been developed to create site-specifically modified immunoconjugates for positron emission tomography, single photon emission computed tomography, and fluorescence imaging. We will begin with an introduction to the structure of antibodies and antibody fragments. This is followed by the core of the work: sections detailing the four different approaches to site-specific modification strategies based on cysteine residues, glycans, peptide tags, and unnatural amino acids. These discussions will be divided into two installments: cysteine residues and glycans will be detailed in Part 1 of the review, while peptide tags and unnatural amino acids will be addressed in Part 2. Ultimately, we sincerely hope that this review fosters interest and enthusiasm for site-specific immunoconjugates within the nuclear medicine and molecular imaging communities.
Collapse
Affiliation(s)
- Pierre Adumeau
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY10065, NY, USA
| | - Colleen Brent
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA
| | - Brian M Zeglis
- Department of Chemistry and Biochemistry, Hunter College and the Graduate Center of the City University of New York, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY10065, NY, USA.
| |
Collapse
|
30
|
Motamedi-Shad N, Jagger AM, Liedtke M, Faull SV, Nanda AS, Salvadori E, Wort JL, Kay CW, Heyer-Chauhan N, Miranda E, Perez J, Ordóñez A, Haq I, Irving JA, Lomas DA. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J 2016; 473:3269-90. [PMID: 27407165 PMCID: PMC5264506 DOI: 10.1042/bcj20160159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
Abstract
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.
Collapse
Affiliation(s)
- Neda Motamedi-Shad
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Alistair M. Jagger
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Maximilian Liedtke
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
| | - Sarah V. Faull
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Arjun Scott Nanda
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Enrico Salvadori
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Joshua L. Wort
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Christopher W.M. Kay
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
- London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, U.K
| | - Narinder Heyer-Chauhan
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - Elena Miranda
- Department of Biology and Biotechnologies ‘Charles Darwin’, Sapienza University of Rome, Rome 00185, Italy
| | - Juan Perez
- Departamento de Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Campus Teatinos, Universidad de Malaga, Malaga 29071, Spain
| | - Adriana Ordóñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, U.K
| | - Imran Haq
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - James A. Irving
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| | - David A. Lomas
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, U.K
- Institute of Structural and Molecular Biology/Birkbeck, University of London, London WC1E 7HX, U.K
| |
Collapse
|
31
|
Chen Z, Li N, Chen L, Lee J, Gassensmith JJ. Dual Functionalized Bacteriophage Qβ as a Photocaged Drug Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4563-4571. [PMID: 27351167 DOI: 10.1002/smll.201601053] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Proteinatious nanoparticles are emerging as promising materials in biomedical research owing to their many unique properties and our interest focuses on integrating environmental responsivity into these systems. In this work, the use of a virus-like particle (VLP) derived from bacteriophage Qβ as a photocaged drug delivery system is investigated. Ideally, a photocaged nanoparticle platform should be harmless and inert without activation by light yet, upon photoirradiation, should cause cell death. Approximately 530 photocleavable doxorubicin complexes are installed initially onto the surface of Qβ by CuAAC reaction for photocaging therapy; however, aggregation and precipitation are found to cause cell death at higher concentrations. In order to improve solution stability, thiol-dibromomaleimide chemistry has been developed to orthogonally modify the VLP. This chemistry provides a robust method of incorporating additional functionality at the disulfides on Qβ, which was used to increase the stability and solubility of the drug-loaded VLPs. As a result, the dual functionalied VLPs with polyethylene glycol and photocaged doxorubicin show not only negligible cytotoxicity before photoactivation but also highly controllable photorelease and cell killing power.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Na Li
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Luxi Chen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
32
|
Richards DA, Fletcher SA, Nobles M, Kossen H, Tedaldi L, Chudasama V, Tinker A, Baker JR. Photochemically re-bridging disulfide bonds and the discovery of a thiomaleimide mediated photodecarboxylation of C-terminal cysteines. Org Biomol Chem 2016; 14:455-459. [PMID: 26603469 DOI: 10.1039/c5ob02120k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described in this work is a novel method for photochemically manipulating peptides and proteins via the installation of cysteine-selective photoactive tags. Thiomaleimides, generated simply by the addition of bromomaleimides to reduced disulfide bonds, undergo [2 + 2] photocycloadditions to reconnect the crosslink between the two cysteine residues. This methodology is demonstrated to enable photoactivation of a peptide by macrocyclisation, and reconnection of the heavy and light chains in an antibody fragment to form thiol stable conjugates. Finally we report on an intriguing thiomaleimide mediated photochemical decarboxylation of C-terminal cysteines, discovered during this study.
Collapse
Affiliation(s)
- Daniel A Richards
- Department of Chemistry, University College London, 20 Gordon St, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kondo N, Temma T, Shimizu Y, Ono M, Saji H. Radioiodinated Peptidic Imaging Probes for in Vivo Detection of Membrane Type-1 Matrix Metalloproteinase in Cancers. Biol Pharm Bull 2016; 38:1375-82. [PMID: 26328493 DOI: 10.1248/bpb.b15-00314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) plays pivotal roles in tumor progression and metastasis, and holds great promise as an early biomarker for malignant tumors. Therefore, the ability to evaluate MT1-MMP expression could be valuable for molecular biological and clinical studies. For this purpose, we aimed to develop short peptide-based nuclear probes because of their facile radiosynthesis, chemically uniform structures, and high specific activity, as compared to antibody-based probes, which could allow them to be more effective for in vivo MT1-MMP imaging. To the best of our knowledge, there have been no reports of radiolabeled peptide probes for the detection of MT1-MMP in cancer tissues. In this study, we designed and prepared four probes which consist of a MT1-MMP-specific binding peptide sequence (consisting of L or D amino acid isomers) and an additional cysteine (at the N or C-terminus) for conjugation with N-(m-[(123/125)I]iodophenyl) maleimide. We investigated probe affinity, probe stability in mice plasma, and probe biodistribution in tumor-bearing mice. Finally, in vivo micro single photon emission computed tomography (SPECT) imaging and ex vivo autoradiography were performed. Consequently, [(123)I]I-DC, a D-form peptide probe radioiodinated at the C-terminus, demonstrated greater than 1000-fold higher specific activity than previously reported antibody probes, and revealed comparably moderate binding affinity. [(125)I]I-DC showed higher stability as expected, and [(123)I]I-DC successfully identified MT1-MMP expressing tumor tissue by SPECT imaging. Furthermore, ex vivo autoradiographic analysis revealed that the radioactivity distribution profiles corresponded to MT1-MMP-positive areas. These findings suggest that [(123)I]I-DC is a promising peptide probe for the in vivo detection of MT1-MMP in cancers.
Collapse
Affiliation(s)
- Naoya Kondo
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | | | | | | |
Collapse
|
34
|
Fletcher SA, Sin PKB, Nobles M, Årstad E, Tinker A, Baker JR. A dual optical and nuclear imaging reagent for peptide labelling via disulfide bridging. Org Biomol Chem 2016; 13:9559-63. [PMID: 26299430 DOI: 10.1039/c5ob01468a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a concise approach to a multimodal imaging reagent for peptide labelling via disulfide bridging. The reagent is constructed using a one pot, three component, [3 + 2] cycloaddition of a fluorescent azide with a dithiomaleimide-alkyne, with concomitant incorporation of (125)I. The dithiomaleimide handle then enables site selective conjugation to a disulfide bond of a peptide whilst retaining the key structural bridging functionality, as exemplified on the therapeutic peptide octreotide.
Collapse
Affiliation(s)
- Sally A Fletcher
- Department of Chemistry, University College London, 20 Gordon St, London, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Affiliation(s)
- David Y. Jackson
- Igenica Biotherapeutics, 863A Mitten Road, Suite 100B, Burlingame, California 94010, United States
| |
Collapse
|
36
|
Akkapeddi P, Azizi SA, Freedy AM, Cal PMSD, Gois PMP, Bernardes GJL. Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci 2016; 7:2954-2963. [PMID: 29997785 PMCID: PMC6005007 DOI: 10.1039/c6sc00170j] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/10/2016] [Indexed: 12/13/2022] Open
Abstract
Systemic chemotherapy, the current standard of care for the treatment of cancer, is rarely curative and is often accompanied by debilitating side effects. Targeted drug delivery stands as an alternative to chemotherapy, with the potential to improve upon its low efficacy and systemic toxicity. Among targeted therapeutic options, antibody-drug conjugates (ADCs) have emerged as the most promising. These conjugates represent a new class of biopharmaceuticals that selectively deliver potent cytotoxic drugs to cancer cells, sparing healthy tissue throughout the body. Despite this promise, early heterogenous ADCs suffered from stability, pharmacokinetic, and efficacy issues that hindered clinical development. Recent advances in antibody engineering, linkers for drug-release, and chemical site-selective antibody conjugation have led to the creation of homogenous ADCs that have proven to be more efficacious than their heterogeneous predecessors both in vitro and in vivo. In this minireview, we focus on and discuss recent advances in chemical site-selective modification strategies for the conjugation of drugs to antibodies and the resulting potential for the development of a new generation of homogenous ADCs.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Saara-Anne Azizi
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Allyson M Freedy
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| | - Pedro M S D Cal
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal .
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , UK .
| |
Collapse
|
37
|
Griebenow N, Dilmaç AM, Greven S, Bräse S. Site-Specific Conjugation of Peptides and Proteins via Rebridging of Disulfide Bonds Using the Thiol-Yne Coupling Reaction. Bioconjug Chem 2016; 27:911-7. [PMID: 27031217 DOI: 10.1021/acs.bioconjchem.5b00682] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we describe an extension of our previously reported photomediated disulfide rebridging methodology to the conjugation of peptides and proteins. The methodology proved to be reproducible with various alkynes and different peptides. This study includes the first rebridging of the disulfide bond of a peptide through a thiol-yne reaction with a cyclooctyne. In all cases, the rebridging was proven by MS analyses and confirmed by the absence of olefinic protons on (1)H NMR spectra of the resulting products. Finally, this one-pot reduction thiol-yne conjugation was successfully applied to an antibody Fab fragment with a promising conversion, which set a good ground for the future syntheses of new protein and antibody conjugates.
Collapse
Affiliation(s)
| | - Alicia M Dilmaç
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | | | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
38
|
Iwai H, Kojima-Misaizu M, Dong J, Ueda H. Creation of a Ligand-Dependent Enzyme by Fusing Circularly Permuted Antibody Variable Region Domains. Bioconjug Chem 2016; 27:868-73. [DOI: 10.1021/acs.bioconjchem.6b00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hiroto Iwai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Miki Kojima-Misaizu
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jinhua Dong
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Ueda
- Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
39
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
40
|
Wang T, Riegger A, Lamla M, Wiese S, Oeckl P, Otto M, Wu Y, Fischer S, Barth H, Kuan SL, Weil T. Water-soluble allyl sulfones for dual site-specific labelling of proteins and cyclic peptides. Chem Sci 2016; 7:3234-3239. [PMID: 29997815 PMCID: PMC6006486 DOI: 10.1039/c6sc00005c] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
Allyl sulfones as efficient disulfide rebridging agents for site-specific protein modifications with up to two additional functionalities in water.
Water-soluble allyl sulfones provide convenient site-specific disulfide rebridging of native proteins and cyclic peptides. The site-selective functionalization of (a) the peptide hormone somatostatin, (b) the interchain disulfide of bovine insulin and (c) functionalization of the proteins GFP and lysozyme with allyl sulfones proceeds in aqueous solution. Allyl sulfones offer three functionalizable sites that react with thiol containing molecules in a step-wise fashion. Dual labeling of proteins and cyclic peptides is achieved i.e. the attachment of a chromophore and an affinity tag in a single reaction step, which is of great significance for the construction of precise multifunctional peptide and protein conjugates.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Andreas Riegger
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Markus Lamla
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics , University of Ulm Medical Center , D-89081 Ulm , Germany
| | - Patrick Oeckl
- Department of Neurology , University of Ulm Medical Center , Oberer Eselsberg 45 , D-89081 Ulm , Germany
| | - Markus Otto
- Department of Neurology , University of Ulm Medical Center , Oberer Eselsberg 45 , D-89081 Ulm , Germany
| | - Yuzhou Wu
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Stephan Fischer
- Institute of Pharmacology and Toxicology , University of Ulm Medical Center , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology , University of Ulm Medical Center , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany
| | - Seah Ling Kuan
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| | - Tanja Weil
- Institute of Organic Chemistry III , Ulm University , Albert-Einstein-Allee 11 , D-89081 Ulm , Germany .
| |
Collapse
|
41
|
Lee MTW, Maruani A, Baker JR, Caddick S, Chudasama V. Next-generation disulfide stapling: reduction and functional re-bridging all in one. Chem Sci 2016; 7:799-802. [PMID: 28966772 PMCID: PMC5580075 DOI: 10.1039/c5sc02666k] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/13/2015] [Indexed: 01/30/2023] Open
Abstract
Herein we present a significant step towards next-generation disulfide stapling reagents. A novel class of reagent has been designed to effect both disulfide reduction and functional re-bridging. The strategy has been applied to great success across various peptides and proteins. Moreover, application to a multi-disulfide system resulted in functional re-bridging without disulfide scrambling.
Collapse
Affiliation(s)
- Maximillian T W Lee
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - Antoine Maruani
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - James R Baker
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - Stephen Caddick
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| | - Vijay Chudasama
- Department of Chemistry , University College London , 20 Gordon Street , London , WC1H 0AJ , United Kingdom . ; Tel: +44207 679 2077
| |
Collapse
|
42
|
Papaioannou D, Geibel S, Kunze MBA, Kay CWM, Waksman G. Structural and biophysical investigation of the interaction of a mutant Grb2 SH2 domain (W121G) with its cognate phosphopeptide. Protein Sci 2015; 25:627-37. [PMID: 26645482 DOI: 10.1002/pro.2856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/27/2015] [Indexed: 11/11/2022]
Abstract
The adaptor protein Grb2 is a key element of mitogenetically important signaling pathways. With its SH2 domain it binds to upstream targets while its SH3 domains bind to downstream proteins thereby relaying signals from the cell membranes to the nucleus. The Grb2 SH2 domain binds to its targets by recognizing a phosphotyrosine (pY) in a pYxNx peptide motif, requiring an Asn at the +2 position C-terminal to the pY with the residue either side of this Asn being hydrophobic. Structural analysis of the Grb2 SH2 domain in complex with its cognate peptide has shown that the peptide adopts a unique β-turn conformation, unlike the extended conformation that phosphopeptides adopt when bound to other SH2 domains. TrpEF1 (W121) is believed to force the peptide into this unusual conformation conferring this unique specificity to the Grb2 SH2 domain. Using X-ray crystallography, electron paramagnetic resonance (EPR) spectroscopy, and isothermal titration calorimetry (ITC), we describe here a series of experiments that explore the role of TrpEF1 in determining the specificity of the Grb2 SH2 domain. Our results demonstrate that the ligand does not adopt a pre-organized structure before binding to the SH2 domain, rather it is the interaction between the two that imposes the hairpin loop to the peptide. Furthermore, we find that the peptide adopts a similar structure when bound to both the wild-type Grb2 SH2 domain and a TrpEF1Gly mutant. This suggests that TrpEF1 is not the determining factor for the conformation of the phosphopeptide.
Collapse
Affiliation(s)
- Danai Papaioannou
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| | - Sebastian Geibel
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom.,Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2, Haus D15, Würzburg, 97080, Germany
| | - Micha B A Kunze
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| | - Christopher W M Kay
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom.,London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom
| | - Gabriel Waksman
- UCL And Birkbeck, Institute of Structural and Molecular Biology, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
43
|
Nunes JPM, Morais M, Vassileva V, Robinson E, Rajkumar VS, Smith MEB, Pedley RB, Caddick S, Baker JR, Chudasama V. Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem Commun (Camb) 2015; 51:10624-7. [PMID: 26051118 DOI: 10.1039/c5cc03557k] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein we report the use of next generation maleimides (NGMs) for the construction of a potent antibody-drug conjugate (ADC) via functional disulfide bridging. The linker has excellent stability in blood serum and the ADC, armed with monomethyl auristatin E (MMAE), shows excellent potency and cancer cell selectivity in vitro.
Collapse
Affiliation(s)
- João P M Nunes
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boonstra MC, Tolner B, Schaafsma BE, Boogerd LSF, Prevoo HAJM, Bhavsar G, Kuppen PJK, Sier CFM, Bonsing BA, Frangioni JV, van de Velde CJH, Chester KA, Vahrmeijer AL. Preclinical evaluation of a novel CEA-targeting near-infrared fluorescent tracer delineating colorectal and pancreatic tumors. Int J Cancer 2015; 137:1910-20. [PMID: 25895046 DOI: 10.1002/ijc.29571] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/28/2022]
Abstract
Surgery is the cornerstone of oncologic therapy with curative intent. However, identification of tumor cells in the resection margins is difficult, resulting in nonradical resections, increased cancer recurrence and subsequent decreased patient survival. Novel imaging techniques that aid in demarcating tumor margins during surgery are needed. Overexpression of carcinoembryonic antigen (CEA) is found in the majority of gastrointestinal carcinomas, including colorectal and pancreas. We developed ssSM3E/800CW, a novel CEA-targeted near-infrared fluorescent (NIRF) tracer, based on a disulfide-stabilized single-chain antibody fragment (ssScFv), to visualize colorectal and pancreatic tumors in a clinically translatable setting. The applicability of the tracer was tested for cell and tissue binding characteristics and dosing using immunohistochemistry, flow cytometry, cell-based plate assays and orthotopic colorectal (HT-29, well differentiated) and pancreatic (BXPC-3, poorly differentiated) xenogeneic human-mouse models. NIRF signals were visualized using the clinically compatible FLARE™ imaging system. Calculated clinically relevant doses of ssSM3E/800CW selectively accumulated in colorectal and pancreatic tumors/cells, with highest tumor-to-background ratios of 5.1 ± 0.6 at 72 hr postinjection, which proved suitable for intraoperative detection and delineation of tumor boarders and small (residual) tumor nodules in mice, between 8 and 96 hr postinjection. Ex vivo fluorescence imaging and pathologic examination confirmed tumor specificity and the distribution of the tracer. Our results indicate that ssSM3E/800CW shows promise as a diagnostic tool to recognize colorectal and pancreatic cancers for fluorescent-guided surgery applications. If successfully translated clinically, this tracer could help improve the completeness of surgery and thus survival.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Berend Tolner
- Department of Oncology, Royal Free & University College Medical School, London, United Kingdom
| | | | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Guarav Bhavsar
- Department of Oncology, Royal Free & University College Medical School, London, United Kingdom
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - John V Frangioni
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA.,Curadel, LLC, Worcester, MA
| | | | - Kerry A Chester
- Department of Oncology, Royal Free & University College Medical School, London, United Kingdom
| | | |
Collapse
|
45
|
Zhang L, Zhao W, Liu X, Wang G, Wang Y, Li D, Xie L, Gao Y, Deng H, Gao W. Site-selective in situ growth of fluorescent polymer-antibody conjugates with enhanced antigen detection by signal amplification. Biomaterials 2015; 64:2-9. [PMID: 26102329 DOI: 10.1016/j.biomaterials.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
This paper reports a new and general in situ methodology to grow fluorescent polymer conjugates from the interchain disulfide bridging sites of a monoclonal antibody. Atom transfer radical polymerization (ATRP) initiators were attached to a monoclonal antibody at its interchain disulfide bridging sites by disulfide re-bridging to yield a macroinitiator. Subsequent in situ ATRP of PEG-like monomers with dye-functionalized monomers from the macroinitiator formed antibody-polymer-dye conjugates with site-selectivity and tunable dye-to-antibody ratios. Notably, these conjugates can amplify antigen detection signal by reducing label-density dependent fluorescence quenching and by increasing dye-to-antibody ratios. The method developed may be applicable to a variety of antibodies, dyes and drugs to create a number of antibody-polymer-dye/drug conjugates for advanced diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenguo Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinyu Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guilin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Wang
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Dong Li
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Liangzhi Xie
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Yan Gao
- Protein Chemistry Facility, School of Biological Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Protein Chemistry Facility, School of Biological Sciences, Tsinghua University, Beijing 100084, China
| | - Weiping Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
46
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
47
|
Singh SK, Luisi DL, Pak RH. Antibody-Drug Conjugates: Design, Formulation and Physicochemical Stability. Pharm Res 2015; 32:3541-71. [PMID: 25986175 DOI: 10.1007/s11095-015-1704-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 01/13/2023]
Abstract
The convergence of advanced understanding of biology with chemistry has led to a resurgence in the development of antibody-drug conjugates (ADCs), especially with two recent product approvals. Design and development of ADCs requires the synergistic combination of the monoclonal antibody, the linker and the payload. Advances in antibody science has enabled identification and generation of high affinity, highly selective, humanized or human antibodies for a given target. Novel linker technologies have been synthesized and highly potent cytotoxic drug payloads have been created. As the first generation of ADCs utilizing lysine and cysteine chemistries moves through the clinic and into commercialization, second generation ADCs involving site specific conjugation technologies are being evaluated and tested. The latter aim to be better characterized and controlled, with wider therapeutic indices as well as improved pharmacokinetic-pharmacodynamic (PK-PD) profiles. ADCs offer some interesting physicochemical properties, due to conjugation itself, and to the (often) hydrophobic payloads that must be considered during their CMC development. New analytical methodologies are required for the ADCs, supplementing those used for the antibody itself. Regulatory filings will be a combination of small molecule and biologics. The regulators have put forth some broad principles but this landscape is still evolving.
Collapse
Affiliation(s)
- Satish K Singh
- Pfizer, Inc., Pharmaceutical R&D, 700 Chesterfield Parkway West, Chesterfield, Missouri, 63017, USA
| | - Donna L Luisi
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA
| | - Roger H Pak
- Pfizer, Inc., Pharmaceutical R&D, 1 Burtt Road, Bldg. K, Andover, Massachusetts, 01810, USA.
| |
Collapse
|
48
|
Marculescu C, Kossen H, Morgan RE, Mayer P, Fletcher SA, Tolner B, Chester KA, Jones LH, Baker JR. Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds. Chem Commun (Camb) 2015; 50:7139-42. [PMID: 24853662 DOI: 10.1039/c4cc02107j] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tuning the properties of maleimide reagents holds significant promise in expanding the toolbox of available methods for bioconjugation. Herein we describe aryloxymaleimides which represent 'next generation maleimides' of attenuated reactivity, and demonstrate their ability to enable new methods for protein modification at disulfide bonds.
Collapse
Affiliation(s)
- Cristina Marculescu
- Department of Chemistry, University College London, 20 Gordon St, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 2015; 6:6645. [PMID: 25824906 PMCID: PMC4389247 DOI: 10.1038/ncomms7645] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/15/2015] [Indexed: 12/13/2022] Open
Abstract
Although recent methods for the engineering of antibody–drug conjugates (ADCs) have gone some way to addressing the challenging issues of ADC construction, significant hurdles still remain. There is clear demand for the construction of novel ADC platforms that offer greater stability, homogeneity and flexibility. Here we describe a significant step towards a platform for next-generation antibody-based therapeutics by providing constructs that combine site-specific modification, exceptional versatility and high stability, with retention of antibody binding and structure post-modification. The relevance of the work in a biological context is also demonstrated in a cytotoxicity assay and a cell internalization study with HER2-positive and -negative breast cancer cell lines. Antibody–drug conjugates are a class of therapeutic combining the directing ability of antibodies with the cell-killing ability of cytotoxic drugs. Here the authors describe an approach based on click chemistry that enables the rapid assembly of dual-modified antibodies with potential for new therapeutic modalities.
Collapse
|
50
|
Youziel J, Akhbar AR, Aziz Q, Smith MEB, Caddick S, Tinker A, Baker JR. Bromo- and thiomaleimides as a new class of thiol-mediated fluorescence 'turn-on' reagents. Org Biomol Chem 2014; 12:557-60. [PMID: 24297212 DOI: 10.1039/c3ob42141d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bromo- and thiomaleimides are shown to serve as highly effective quenchers of a covalently attached fluorophore. Reactions with thiols that lead to removal of the maleimide conjugation, or detachment of the fluorophore from the maleimide, result in 'turn-on' of the fluorescence. These reagents thus offer opportunities in thiol sensing and intracellular reporting.
Collapse
Affiliation(s)
- Judith Youziel
- Department of Chemistry, University College London, 20 Gordon St, London, UK.
| | | | | | | | | | | | | |
Collapse
|