1
|
Sridhar S, Nikolov ME, Beutler EK, Knobeloch M, Paranzino B, Vernon KL, Zhong Y, Ye X, Baker LA, Skrabalak SE, Masiello DJ, Willets KA. Scattering vs Interference in Interferometric Scattering Spectroscopy of Plasmonic Nanoparticles. J Phys Chem Lett 2025; 16:4410-4418. [PMID: 40273367 DOI: 10.1021/acs.jpclett.5c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Interferometric scattering (iSCAT) is a powerful tool to study single plasmonic nanoparticles (NPs), particularly when the particles become too small to be observed by their scattering signal alone. This sensitivity to NP size makes the technique a promising tool to monitor dynamic morphological changes in NPs in electrochemical or other reactive environments. However, because the signal measured in iSCAT consists of both the NP scattering and its interference with a reflected reference field, the role of the substrate and local environment can have an outsize influence, leading to significant differences between iSCAT and dark-field scattering spectra, even for large particles where scattering is expected to dominate. In this work, we show that the iSCAT contrast spectra of gold NPs can be tuned between scattering- or interference-dominated regimes by changing the refractive index of the embedding medium, the reflectivity of the substrate-medium interface, and the size of the NP. We compare the iSCAT spectra to dark-field scattering spectra to show how the interference contribution can shift spectral features away from the plasmon resonance and use a dipole oscillator model to explain the observed spectral lineshapes. Lastly, we demonstrate the need to measure the iSCAT signal at multiple illumination wavelengths during electrodissolution experiments to extract kinetic parameters that are representative of the NP's morphological changes.
Collapse
Affiliation(s)
- Sanjay Sridhar
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Marie E Nikolov
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Elliot K Beutler
- Department of Chemistry, University of Washington, Seattle, Washington 89195, United States
| | - Megan Knobeloch
- Department of Chemistry, Indiana University-Bloomington, Bloomington, Indiana 47405, United States
| | - Bianca Paranzino
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kelly L Vernon
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University-Bloomington, Bloomington, Indiana 47405, United States
| | - Xingchen Ye
- Department of Chemistry, University of Washington, Seattle, Washington 89195, United States
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University-Bloomington, Bloomington, Indiana 47405, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 89195, United States
| | - Katherine A Willets
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
2
|
Uji S, Nakamura K, Kobayashi N. The effect of a polymer capping agent on electrodeposited silver nanoparticles in a silver deposition-based electrochromic device. Phys Chem Chem Phys 2024; 26:16466-16476. [PMID: 38600848 DOI: 10.1039/d3cp06281c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this study, polyvinylpyrrolidone (PVP) was introduced into an Ag deposition-based electrochromic (EC) device as a capping agent for electrodeposited Ag nanoparticles (AgNPs) to improve the coloration characteristics of EC devices and to precisely control the size and shape of the AgNPs. Through the coordination of PVP molecules with Ag+ ions in the EC electrolyte, the critical voltage for the deposition of AgNPs decreased, resulting in a lower operating voltage of the EC device in comparison with the conventional one. Because particle growth and AgNP aggregation were suppressed by the capping effect of PVP, uniform electrodeposition of AgNPs was achieved. Aggregation suppression enabled vivid cyan, yellow, and red coloration using a simple driving procedure. The suppression of AgNP aggregation by PVP was demonstrated even in an electrochemical system. Furthermore, the capping effect of PVP also improved image retention. Better color retention properties were achieved even without the use of any counter-modified electrode cells.
Collapse
Affiliation(s)
- Shun Uji
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Kazuki Nakamura
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | - Norihisa Kobayashi
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
3
|
Kim K, Lee WG. Portable, Automated and Deep-Learning-Enabled Microscopy for Smartphone-Tethered Optical Platform Towards Remote Homecare Diagnostics: A Review. SMALL METHODS 2023; 7:e2200979. [PMID: 36420919 DOI: 10.1002/smtd.202200979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Globally new pandemic diseases induce urgent demands for portable diagnostic systems to prevent and control infectious diseases. Smartphone-based portable diagnostic devices are significantly efficient tools to user-friendly connect personalized health conditions and collect valuable optical information for rapid diagnosis and biomedical research through at-home screening. Deep learning algorithms for portable microscopes also help to enhance diagnostic accuracy by reducing the imaging resolution gap between benchtop and portable microscopes. This review highlighted recent progress and continued efforts in a smartphone-tethered optical platform through portable, automated, and deep-learning-enabled microscopy for personalized diagnostics and remote monitoring. In detail, the optical platforms through smartphone-based microscopes and lens-free holographic microscopy are introduced, and deep learning-based portable microscopic imaging is explained to improve the image resolution and accuracy of diagnostics. The challenges and prospects of portable optical systems with microfluidic channels and a compact microscope to screen COVID-19 in the current pandemic are also discussed. It has been believed that this review offers a novel guide for rapid diagnosis, biomedical imaging, and digital healthcare with low cost and portability.
Collapse
Affiliation(s)
- Kisoo Kim
- Intelligent Optical Module Research Center, Korea Photonics Technology Institute (KOPTI), Buk-gu, Gwangju, 61007, Republic of Korea
| | - Won Gu Lee
- Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea
| |
Collapse
|
4
|
Blood-declustering excretable metal clusters assembled in DNA matrix. Biomaterials 2022; 289:121754. [DOI: 10.1016/j.biomaterials.2022.121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/21/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022]
|
5
|
Baker M, Liu W, McLeod E. Accurate and fast modeling of scattering from random arrays of nanoparticles using the discrete dipole approximation and angular spectrum method. OPTICS EXPRESS 2021; 29:22761-22777. [PMID: 34266032 DOI: 10.1364/oe.431754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Lens-free microscopes can utilize holographic reconstruction techniques to recover the image of an object from the digitally recorded superposition of an unperturbed plane wave and a wave scattered by the object. Image reconstruction most commonly relies on the scalar angular spectrum method (ASM). While fast, the scalar ASM can be inaccurate for nanoscale objects, either because of the scalar approximation, or more generally, because it only models field propagation and not light-matter interaction, including inter-particle coupling. Here we evaluate the accuracy of the scalar ASM when combined with three different light-matter interaction models for computing the far-field light scattered by random arrays of gold and polystyrene nanoparticles. Among the three models-a dipole-matched transmission model, an optical path length model, and a binary amplitude model-we find that which model is most accurate depends on the nanoparticle material and packing density. For polystyrene particles at any packing density, there is always at least one model with error below 20%, while for gold nanoparticles with 40% or 50% surface coverage, there are no models that can provide errors better than 30%. The ASM error is determined in comparison to a discrete dipole approximation model, which is more computationally efficient than other full-wave modeling techniques. The knowledge of when and how the ASM fails can serve as a first step toward improved resolution in lens-free reconstruction and can also be applied to other random nanoparticle array applications such as lens-based super-resolution imaging, sub-diffraction beam focusing, and biomolecular sensing.
Collapse
|
6
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
7
|
Xiong Z, Potter CJ, McLeod E. High-Speed Lens-Free Holographic Sensing of Protein Molecules Using Quantitative Agglutination Assays. ACS Sens 2021; 6:1208-1217. [PMID: 33587611 DOI: 10.1021/acssensors.0c02481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate, cost-effective, easy-to-use, and point-of-care sensors for protein biomarker levels are important for disease diagnostics. A cost-effective and compact readout approach that has been used for several diagnostic applications is lens-free holographic microscopy, which provides an ultralarge field of view and submicron resolution when it is coupled with pixel super-resolution techniques. Despite its potential as a diagnostic technique, lens-free microscopy has not previously been applied to quantitative protein molecule sensing in solution, which can simplify sensing protocols and ultimately enable measurements of binding kinetics in physiological conditions. Here, we sense interferon-γ (an immune system biomarker) and NeutrAvidin molecules in solution by combining lens-free microscopy with a one-step bead-based agglutination assay, enabled by a custom high-speed light-emitting diode (LED) array and automated image processing routines. We call this a quantitative large-area binding (QLAB) sensor. The high-speed light source provides, for the first time, pixel super-resolved imaging of >104 2 μm beads in solution undergoing Brownian motion, without significant motion blur. The automated image processing routines enable the counting of individual beads and clusters, providing a quantitative sensor readout that depends on both bead and analyte concentrations. Fits to the chemical binding theory are provided. For NeutrAvidin, we find a limit of detection (LOD) of <27 ng/mL (450 pM) and a dynamic range of 2-4 orders of magnitude. For mouse interferon-γ, the LOD is <3 ng/mL (200 pM) and the dynamic range is at least 4 orders of magnitude. The QLAB sensor holds promise for point-of-care applications in low-resource communities and where protocol simplicity is important.
Collapse
Affiliation(s)
- Zhen Xiong
- Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85719, United States
| | - Colin J. Potter
- Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85719, United States
| | - Euan McLeod
- Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85719, United States
| |
Collapse
|
8
|
Spies RM, Cole GH, Engevik MA, Nordberg BG, Scharnick EA, Vliem IM, Brolo AG, Lindquist NC. Digital plasmonic holography with iterative phase retrieval for sensing. OPTICS EXPRESS 2021; 29:3026-3037. [PMID: 33770910 DOI: 10.1364/oe.412844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Propagating surface plasmon waves have been used for many applications including imaging and sensing. However, direct in-plane imaging of micro-objects with surface plasmon waves suffers from the lack of simple, two-dimensional lenses, mirrors, and other optical elements. In this paper, we apply lensless digital holographic techniques and leakage radiation microscopy to achieve in-plane surface imaging with propagating surface plasmon waves. As plasmons propagate in two-dimensions and scatter from various objects, a hologram is formed over the surface. Iterative phase retrieval techniques applied to this hologram remove twin image interference for high-resolution in-plane imaging and enable further applications in real-time plasmonic phase sensing.
Collapse
|
9
|
Haleem A, Javaid M, Khan IH. Holography applications toward medical field: An overview. Indian J Radiol Imaging 2020; 30:354-361. [PMID: 33273770 PMCID: PMC7694722 DOI: 10.4103/ijri.ijri_39_20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose: 3D Holography is a commercially available, disruptive innovation, which can be customised as per the requirements and is supporting Industry 4.0. The purpose of this paper is to study the potential applications of 3D holography in the medical field. This paper explores the concept of holography and its significant benefits in the medical field. Methods: The paper is derived through the study of various research papers on Holography and its applications in the medical field. The study tries to identify the direction of research &development and see how this innovative technology can be used effectively for better treatment of patients. Results: Holography uses digital imaging inputs and provides an extensive visualisation of the data for training doctors, surgeons and students. Holography converts information about the body into a digital format and has the potential to inform, promote and entertain the medical students and doctors. However, it needs a large amount of space for data storage and extensive software support for analysis and skills for customising. This technology seems good to solve a variety of medical issues by storing and using patient data in developing 3D holograms, which are useful to assist successful treatment and surgery. It seems useful in providing flexible solutions in the area of medical research. Finally, the paper identifies 13 significant applications of this technology in the medical field and discusses them appropriately. Conclusion: The paper explores holographic applications in medical research due to its extensive capability of image processing. Holographic images are non-contact 3D images having a large field of depth. A physician can now zoom the holographic image for a better view of the medical part. This innovative technology can create advancements in the diagnosis and treatment process, which can improve medical practice. It helps in quick detection of problems in various organs like brain, heart, liver, kidney etc. By using this technology, medical practitioners can see colourful organs at multiple angles with better accuracy. It opens up an innovative way of planning, testing of procedures and diagnosis. With technological developments, compact hardware and software are now available to help medical research and related applications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ibrahim Haleem Khan
- School of Engineering Sciences and Technology, Jamia Hamdard, New Delhi, India
| |
Collapse
|
10
|
Zhang S, Li Z, Wei Q. Smartphone-based cytometric biosensors for point-of-care cellular diagnostics. NANOTECHNOLOGY AND PRECISION ENGINEERING 2020. [DOI: 10.1016/j.npe.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Yang H, Zhang Y, Chen S, Hao R. Micro-optical Components for Bioimaging on Tissues, Cells and Subcellular Structures. MICROMACHINES 2019; 10:E405. [PMID: 31248115 PMCID: PMC6630880 DOI: 10.3390/mi10060405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022]
Abstract
Bioimaging generally indicates imaging techniques that acquire biological information from living forms. Among different imaging techniques, optical microscopy plays a predominant role in observing tissues, cells and biomolecules. Along with the fast development of microtechnology, developing miniaturized and integrated optical imaging systems has become essential to provide new imaging solutions for point-of-care applications. In this review, we will introduce the basic micro-optical components and their fabrication technologies first, and further emphasize the development of integrated optical systems for in vitro and in vivo bioimaging, respectively. We will conclude by giving our perspectives on micro-optical components for bioimaging applications in the near future.
Collapse
Affiliation(s)
- Hui Yang
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Zhang
- Institute of Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA.
| | - Sihui Chen
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Rui Hao
- Laboratory of Biomedical Microsystems and Nano Devices, Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Hernández-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson M. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med 2019; 285:19-39. [PMID: 30079527 PMCID: PMC6334517 DOI: 10.1111/joim.12820] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advancements in bioanalytical techniques have led to the development of novel and robust diagnostic approaches that hold promise for providing optimal patient treatment, guiding prevention programs and widening the scope of personalized medicine. However, these advanced diagnostic techniques are still complex, expensive and limited to centralized healthcare facilities or research laboratories. This significantly hinders the use of evidence-based diagnostics for resource-limited settings and the primary care, thus creating a gap between healthcare providers and patients, leaving these populations without access to precision and quality medicine. Smartphone-based imaging and sensing platforms are emerging as promising alternatives for bridging this gap and decentralizing diagnostic tests offering practical features such as portability, cost-effectiveness and connectivity. Moreover, towards simplifying and automating bioanalytical techniques, biosensors and lab-on-a-chip technologies have become essential to interface and integrate these assays, bringing together the high precision and sensitivity of diagnostic techniques with the connectivity and computational power of smartphones. Here, we provide an overview of the emerging field of clinical smartphone diagnostics and its contributing technologies, as well as their wide range of areas of application, which span from haematology to digital pathology and rapid infectious disease diagnostics.
Collapse
Affiliation(s)
- I Hernández-Neuta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - F Neumann
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - J Brightmeyer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - T Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - N Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - Q Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A Ozcan
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - M Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| |
Collapse
|
13
|
Xiong Z, Melzer JE, Garan J, McLeod E. Optimized sensing of sparse and small targets using lens-free holographic microscopy. OPTICS EXPRESS 2018; 26:25676-25692. [PMID: 30469666 DOI: 10.1364/oe.26.025676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Lens-free holographic microscopy offers sub-micron resolution over an ultra-large field-of-view >20 mm2, making it suitable for bio-sensing applications that require the detection of small targets at low concentrations. Various pixel super-resolution techniques have been shown to enhance resolution and boost signal-to-noise ratio (SNR) by combining multiple partially-redundant low-resolution frames. However, it has been unclear which technique performs best for small-target sensing. Here, we quantitatively compare SNR and resolution in experiments using no regularization, cardinal-neighbor regularization, and a novel implementation of sparsity-promoting regularization that uses analytically-calculated gradients from Bayer-pattern image sensors. We find that sparsity-promoting regularization enhances the SNR by ~8 dB compared to the other methods when imaging micron-scale beads with surface coverages up to ~4%.
Collapse
|
14
|
Min J, Im H, Allen M, McFarland PJ, Degani I, Yu H, Normandin E, Pathania D, Patel J, Castro CM, Weissleder R, Lee H. Computational Optics Enables Breast Cancer Profiling in Point-of-Care Settings. ACS NANO 2018; 12:9081-9090. [PMID: 30113824 PMCID: PMC6519708 DOI: 10.1021/acsnano.8b03029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The global burden of cancer, severe diagnostic bottlenecks in underserved regions, and underfunded health care systems are fueling the need for inexpensive, rapid, and treatment-informative diagnostics. On the basis of advances in computational optics and deep learning, we have developed a low-cost digital system, termed AIDA (artificial intelligence diffraction analysis), for breast cancer diagnosis of fine needle aspirates. Here, we show high accuracy (>90%) in (i) recognizing cells directly from diffraction patterns and (ii) classifying breast cancer types using deep-learning-based analysis of sample aspirates. The image algorithm is fast, enabling cellular analyses at high throughput (∼3 s per 1000 cells), and the unsupervised processing allows use by lower skill health care workers. AIDA can perform quantitative molecular profiling on individual cells, revealing intratumor molecular heterogeneity, and has the potential to improve cancer diagnosis and treatment. The system could be further developed for other cancers and thus find widespread use in global health.
Collapse
Affiliation(s)
- Jouha Min
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| | - Matthew Allen
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | | | - Ismail Degani
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hojeong Yu
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Erica Normandin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Divya Pathania
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Jaymin Patel
- BreastCare Center, Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Cesar M. Castro
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Massachusetts General Hospital Cancer Center, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
15
|
Nelson JW, Knefelkamp GR, Brolo AG, Lindquist NC. Digital plasmonic holography. LIGHT, SCIENCE & APPLICATIONS 2018; 7:52. [PMID: 30839569 PMCID: PMC6107013 DOI: 10.1038/s41377-018-0049-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 06/09/2023]
Abstract
We demonstrate digital plasmonic holography for direct in-plane imaging with propagating surface-plasmon waves. Imaging with surface plasmons suffers from the lack of simple in-plane lenses and mirrors. Lens-less digital holography techniques, however, rely on digitally decoding an interference pattern between a reference wave and an object wave. With far-field diffractive optics, this decoding scheme provides a full recording, i.e., a hologram, of the amplitude and phase of the object wave, giving three-dimensional information from a two-dimensional recording. For plasmonics, only a one-dimensional recording is needed, and both the phase and amplitude of the propagating plasmons can be extracted for high-resolution in-plane imaging. Here, we demonstrate lens-less, point-source digital plasmonic holography using two methods to record the plasmonic holograms: a dual-probe near-field scanning optical microscope and lithographically defined circular fluorescent screens. The point-source geometry gives in-plane magnification, allowing for high-resolution imaging with relatively lower-resolution microscope objectives. These results pave the way for a new form of in-plane plasmonic imaging, gathering the full complex wave, without the need for plasmonic mirrors or lenses.
Collapse
Affiliation(s)
- Joseph W. Nelson
- Department of Physics and Engineering, Bethel University, 3900 Bethel Drive, St Paul, MN 55112 USA
| | - Greta R. Knefelkamp
- Department of Physics and Engineering, Bethel University, 3900 Bethel Drive, St Paul, MN 55112 USA
| | - Alexandre G. Brolo
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 Canada
- Center for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 Canada
| | - Nathan C. Lindquist
- Department of Physics and Engineering, Bethel University, 3900 Bethel Drive, St Paul, MN 55112 USA
| |
Collapse
|
16
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
17
|
Rodríguez-Fajardo V, Sanz V, de Miguel I, Berthelot J, Aćimović SS, Porcar-Guezenec R, Quidant R. Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells. NANOSCALE 2018; 10:4019-4027. [PMID: 29431802 DOI: 10.1039/c7nr09408f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Noble metal nanoparticles (NPs) supporting localized surface plasmon resonances are widely used in the context of biotechnology as optical and absorption contrast agents with great potential applicability to both diagnostics and less invasive therapies. In this framework, it is crucial to have access to simple and reliable microscopy techniques to monitor the NPs that have internalized into cells. While dark field (DF) microscopy takes advantage of the enhanced NP scattering at their plasmon resonance, its use in cells is limited by the large scattering background from the internal cell compartments. Here, we report on a novel two-color dark field microscopy that addresses these limitations by significantly reducing the cell scattering contribution. We first present the technique and demonstrate its enhanced contrast, specificity and reliability for NP detection compared to a standard optical dark field. We then demonstrate its potential suitability in two different settings, namely wide-field parallel screening of circulating cells in microfluidic chips and high-resolution tracking of internalized NPs in cells. These proof of principle experiments show a promising capability of this approach with possible extension to other kinds of targeted systems like bacteria and vesicles.
Collapse
Affiliation(s)
- Valeria Rodríguez-Fajardo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
This critical review summarizes the developments in the integration of micro-optical elements with microfluidic platforms for facilitating detection and automation of bio-analytical applications.
Collapse
Affiliation(s)
- Hui Yang
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Science
- 518055 Shenzhen
- China
| | - Martin A. M. Gijs
- Laboratory of Microsystems
- Ecole Polytechnique Fédérale de Lausanne
- 1015 Lausanne
- Switzerland
| |
Collapse
|
19
|
Wu Y, Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 2017; 136:4-16. [PMID: 28864356 DOI: 10.1016/j.ymeth.2017.08.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 01/06/2023] Open
Abstract
Optical compound microscope has been a major tool in biomedical imaging for centuries. Its performance relies on relatively complicated, bulky and expensive lenses and alignment mechanics. In contrast, the lensless microscope digitally reconstructs microscopic images of specimens without using any lenses, as a result of which it can be made much smaller, lighter and lower-cost. Furthermore, the limited space-bandwidth product of objective lenses in a conventional microscope can be significantly surpassed by a lensless microscope. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable and cost-effective devices to potentially address various point-of-care, global-health and telemedicine related challenges. In this review, we discuss the operation principles and the methods behind lensless digital holographic on-chip microscopy. We also go over various applications that are enabled by cost-effective and compact implementations of lensless microscopy, including some recent work on air quality monitoring, which utilized machine learning for high-throughput and accurate quantification of particulate matter in air. Finally, we conclude with a brief future outlook of this computational imaging technology.
Collapse
Affiliation(s)
- Yichen Wu
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA; Bioengineering Department, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA; Bioengineering Department, University of California, Los Angeles, CA 90095, USA; California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA; David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Koydemir HC, Ozcan A. Mobile phones create new opportunities for microbiology research and clinical applications. Future Microbiol 2017; 12:641-644. [PMID: 28541094 DOI: 10.2217/fmb-2017-0046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, CA 90095, USA.,Bioengineering Department, University of California, Los Angeles, CA 90095, USA.,California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Wu M, Mao Z, Chen K, Bachman H, Chen Y, Rufo J, Ren L, Li P, Wang L, Huang TJ. Acoustic Separation of Nanoparticles in Continuous Flow. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1606039. [PMID: 29104525 PMCID: PMC5668689 DOI: 10.1002/adfm.201606039] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The separation of nanoscale particles based on their differences in size is an essential technique to the nanoscience and nanotechnology community. Here, nanoparticles are successfully separated in a continuous flow by using tilted-angle standing surface acoustic waves. The acoustic field deflects nanoparticles based on volume, and the fractionation of nanoparticles is optimized by tuning the cutoff parameters. The continuous separation of nanoparticlesis demonstrated with a ≈90% recovery rate. The acoustic nanoparticle separation method is versatile, non-invasive, and simple.
Collapse
Affiliation(s)
- Mengxi Wu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Kejie Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Joseph Rufo
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Liqiang Ren
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Peng Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Lin Wang
- Ascent Bio-Nano Technologies Inc., Research Triangle Park, NC 27709, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Roy M, Seo D, Oh S, Yang JW, Seo S. A review of recent progress in lens-free imaging and sensing. Biosens Bioelectron 2017; 88:130-143. [DOI: 10.1016/j.bios.2016.07.115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/27/2016] [Accepted: 07/31/2016] [Indexed: 01/24/2023]
|
23
|
Han Y, Gu Y, Zhang AC, Lo YH. Review: imaging technologies for flow cytometry. LAB ON A CHIP 2016; 16:4639-4647. [PMID: 27830849 PMCID: PMC5311077 DOI: 10.1039/c6lc01063f] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High-throughput single cell imaging is a critical enabling and driving technology in molecular and cellular biology, biotechnology, medicine and related areas. Imaging flow cytometry combines the single-cell imaging capabilities of microscopy with the high-throughput capabilities of conventional flow cytometry. Recent advances in imaging flow cytometry are remarkably revolutionizing single-cell analysis. This article describes recent imaging flow cytometry technologies and their challenges.
Collapse
Affiliation(s)
- Yuanyuan Han
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA.
| | - Yi Gu
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA.
| | - Alex Ce Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA.
| | - Yu-Hwa Lo
- Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, USA.
| |
Collapse
|
24
|
McLeod E, Ozcan A. Unconventional methods of imaging: computational microscopy and compact implementations. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:076001. [PMID: 27214407 DOI: 10.1088/0034-4885/79/7/076001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.
Collapse
Affiliation(s)
- Euan McLeod
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
25
|
Shir D, Ballard ZS, Ozcan A. Flexible Plasmonic Sensors. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:4600509. [PMID: 27547023 PMCID: PMC4990213 DOI: 10.1109/jstqe.2015.2507363] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Mechanical flexibility and the advent of scalable, low-cost, and high-throughput fabrication techniques have enabled numerous potential applications for plasmonic sensors. Sensitive and sophisticated biochemical measurements can now be performed through the use of flexible plasmonic sensors integrated into existing medical and industrial devices or sample collection units. More robust sensing schemes and practical techniques must be further investigated to fully realize the potentials of flexible plasmonics as a framework for designing low-cost, embedded and integrated sensors for medical, environmental, and industrial applications.
Collapse
Affiliation(s)
| | | | - Aydogan Ozcan
- Electrical Engineering, Bioengineering and Surgery Departments, and the California NanoSystems Institute (CNSI) at the University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
26
|
Demosaiced pixel super-resolution for multiplexed holographic color imaging. Sci Rep 2016; 6:28601. [PMID: 27353242 PMCID: PMC4926095 DOI: 10.1038/srep28601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022] Open
Abstract
To synthesize a holographic color image, one can sequentially take three holograms at different wavelengths, e.g., at red (R), green (G) and blue (B) parts of the spectrum, and digitally merge them. To speed up the imaging process by a factor of three, a Bayer color sensor-chip can also be used to demultiplex three wavelengths that simultaneously illuminate the sample and digitally retrieve individual set of holograms using the known transmission spectra of the Bayer color filters. However, because the pixels of different channels (R, G, B) on a Bayer color sensor are not at the same physical location, conventional demosaicing techniques generate color artifacts in holographic imaging using simultaneous multi-wavelength illumination. Here we demonstrate that pixel super-resolution can be merged into the color de-multiplexing process to significantly suppress the artifacts in wavelength-multiplexed holographic color imaging. This new approach, termed Demosaiced Pixel Super-Resolution (D-PSR), generates color images that are similar in performance to sequential illumination at three wavelengths, and therefore improves the speed of holographic color imaging by 3-fold. D-PSR method is broadly applicable to holographic microscopy applications, where high-resolution imaging and multi-wavelength illumination are desired.
Collapse
|
27
|
Pathania D, Im H, Kilcoyne A, Sohani AR, Fexon L, Pivovarov M, Abramson JS, Randall TC, Chabner BA, Weissleder R, Lee H, Castro CM. Holographic Assessment of Lymphoma Tissue (HALT) for Global Oncology Field Applications. Am J Cancer Res 2016; 6:1603-10. [PMID: 27446494 PMCID: PMC4955059 DOI: 10.7150/thno.15534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 11/05/2022] Open
Abstract
Low-cost, rapid and accurate detection technologies are key requisites to cope with the growing global cancer challenges. The need is particularly pronounced in resource-limited settings where treatment opportunities are often missed due to the absence of timely diagnoses. We herein describe a Holographic Assessment of Lymphoma Tissue (HALT) system that adopts a smartphone as the basis for molecular cancer diagnostics. The system detects malignant lymphoma cells labeled with marker-specific microbeads that produce unique holographic signatures. Importantly, we optimized HALT to detect lymphomas in fine-needle aspirates from superficial lymph nodes, procedures that align with the minimally invasive biopsy needs of resource-constrained regions. We equipped the platform to directly address the practical needs of employing novel technologies for "real world" use. The HALT assay generated readouts in <1.5 h and demonstrated good agreement with standard cytology and surgical pathology.
Collapse
|
28
|
Abstract
High-resolution optical microscopy has traditionally relied on high-magnification and high-numerical aperture objective lenses. In contrast, lensless microscopy can provide high-resolution images without the use of any focusing lenses, offering the advantages of a large field of view, high resolution, cost-effectiveness, portability, and depth-resolved three-dimensional (3D) imaging. Here we review various approaches to lensless imaging, as well as its applications in biosensing, diagnostics, and cytometry. These approaches include shadow imaging, fluorescence, holography, superresolution 3D imaging, iterative phase recovery, and color imaging. These approaches share a reliance on computational techniques, which are typically necessary to reconstruct meaningful images from the raw data captured by digital image sensors. When these approaches are combined with physical innovations in sample preparation and fabrication, lensless imaging can be used to image and sense cells, viruses, nanoparticles, and biomolecules. We conclude by discussing several ways in which lensless imaging and sensing might develop in the near future.
Collapse
Affiliation(s)
- Aydogan Ozcan
- Department of Electrical Engineering.,Department of Bioengineering, and.,California NanoSystems Institute, University of California, Los Angeles, California 90095;
| | - Euan McLeod
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
29
|
McLeod E, Wei Q, Ozcan A. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics. Anal Chem 2015; 87:6434-45. [PMID: 26068279 PMCID: PMC4497296 DOI: 10.1021/acs.analchem.5b01381] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/12/2015] [Indexed: 01/28/2023]
Abstract
Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.
Collapse
Affiliation(s)
- Euan McLeod
- Department
of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California
Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Qingshan Wei
- Department
of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California
Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Department
of Electrical Engineering, University of
California Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California
Los Angeles (UCLA), Los Angeles, California 90095, United States
- California
NanoSystems Institute (CNSI), University
of California Los Angeles (UCLA), Los Angeles, California 90095, United States
| |
Collapse
|
30
|
McLeod E, Dincer TU, Veli M, Ertas YN, Nguyen C, Luo W, Greenbaum A, Feizi A, Ozcan A. High-throughput and label-free single nanoparticle sizing based on time-resolved on-chip microscopy. ACS NANO 2015; 9:3265-73. [PMID: 25688665 DOI: 10.1021/acsnano.5b00388] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sizing individual nanoparticles and dispersions of nanoparticles provides invaluable information in applications such as nanomaterial synthesis, air and water quality monitoring, virology, and medical diagnostics. Several conventional nanoparticle sizing approaches exist; however, there remains a lack of high-throughput approaches that are suitable for low-resource and field settings, i.e., methods that are cost-effective, portable, and can measure widely varying particle sizes and concentrations. Here we fill this gap using an unconventional approach that combines holographic on-chip microscopy with vapor-condensed nanolens self-assembly inside a cost-effective hand-held device. By using this approach and capturing time-resolved in situ images of the particles, we optimize the nanolens formation process, resulting in significant signal enhancement for the label-free detection and sizing of individual deeply subwavelength particles (smaller than λ/10) over a 30 mm(2) sample field-of-view, with an accuracy of ±11 nm. These time-resolved measurements are significantly more reliable than a single measurement at a given time, which was previously used only for nanoparticle detection without sizing. We experimentally demonstrate the sizing of individual nanoparticles as well as viruses, monodisperse samples, and complex polydisperse mixtures, where the sample concentrations can span ∼5 orders-of-magnitude and particle sizes can range from 40 nm to millimeter-scale. We believe that this high-throughput and label-free nanoparticle sizing platform, together with its cost-effective and hand-held interface, will make highly advanced nanoscopic measurements readily accessible to researchers in developing countries and even to citizen-scientists, and might especially be valuable for environmental and biomedical applications as well as for higher education and training programs.
Collapse
Affiliation(s)
- Euan McLeod
- †Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - T Umut Dincer
- †Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Muhammed Veli
- †Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Yavuz N Ertas
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | | | - Wei Luo
- †Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Alon Greenbaum
- †Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Alborz Feizi
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- †Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- ‡Bioengineering Department, University of California, Los Angeles, California 90095, United States
- ⊥California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- ∥Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems. ACS NANO 2014; 8:12175-84. [PMID: 25402207 PMCID: PMC4278689 DOI: 10.1021/nn503826r] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/07/2014] [Indexed: 05/20/2023]
Abstract
In this work, we develop an in situ method to grow highly controllable, sensitive, three-dimensional (3D) surface-enhanced Raman scattering (SERS) substrates via an optothermal effect within microfluidic devices. Implementing this approach, we fabricate SERS substrates composed of Ag@ZnO structures at prescribed locations inside microfluidic channels, sites within which current fabrication of SERS structures has been arduous. Conveniently, properties of the 3D Ag@ZnO nanostructures such as length, packing density, and coverage can also be adjusted by tuning laser irradiation parameters. After exploring the fabrication of the 3D nanostructures, we demonstrate a SERS enhancement factor of up to ∼2×10(6) and investigate the optical properties of the 3D Ag@ZnO structures through finite-difference time-domain simulations. To illustrate the potential value of our technique, low concentrations of biomolecules in the liquid state are detected. Moreover, an integrated cell-trapping function of the 3D Ag@ZnO structures records the surface chemical fingerprint of a living cell. Overall, our optothermal-effect-based fabrication technique offers an effective combination of microfluidics with SERS, resolving problems associated with the fabrication of SERS substrates in microfluidic channels. With its advantages in functionality, simplicity, and sensitivity, the microfluidic-SERS platform presented should be valuable in many biological, biochemical, and biomedical applications.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shikuan Yang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhangming Mao
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Li
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chenglong Zhao
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zane Cohick
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Po-Hsun Huang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics and Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Oliveira MB, Mano JF. High-throughput screening for integrative biomaterials design: exploring advances and new trends. Trends Biotechnol 2014; 32:627-36. [DOI: 10.1016/j.tibtech.2014.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/20/2014] [Accepted: 09/25/2014] [Indexed: 12/21/2022]
|
33
|
Abstract
Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles.
Collapse
|
34
|
Bianco V, Paturzo M, Ferraro P. Spatio-temporal scanning modality for synthesizing interferograms and digital holograms. OPTICS EXPRESS 2014; 22:22328-39. [PMID: 25321705 DOI: 10.1364/oe.22.022328] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We investigate the spatio-temporal scanning of a single-pixel row for building up synthetic interferograms or digital holograms, shifted each other of a desired phase step. This unusual recording modality exploits the object movement to synthesize interferograms with extended Field of View and improved noise contrast. We report the theoretical formulation of the synthetizing recording process and experimental evidence of various cases demonstrating quantitative phase retrieval by adopting this intrinsic phase-shifting procedure. The proposed method could be particularly suited in all cases where the object shift is an intrinsic feature of the investigated system, as e.g. in microfluidics imaging.
Collapse
|
35
|
Memmolo P, Miccio L, Merola F, Gennari O, Netti PA, Ferraro P. 3D morphometry of red blood cells by digital holography. Cytometry A 2014; 85:1030-6. [PMID: 25242067 DOI: 10.1002/cyto.a.22570] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/24/2014] [Accepted: 08/29/2014] [Indexed: 12/23/2022]
Abstract
Three dimensional (3D) morphometric analysis of flowing and not-adherent cells is an important aspect for diagnostic purposes. However, diagnostics tools need to be quantitative, label-free and, as much as possible, accurate. Recently, a simple holographic approach, based on shape from silhouette algorithm, has been demonstrated for accurate calculation of cells biovolume and displaying their 3D shapes. Such approach has been adopted in combination with holographic optical tweezers and successfully applied to cells with convex shape. Nevertheless, unfortunately, the method fails in case of specimen with concave surfaces. Here, we propose an effective approach to achieve correct 3D shape measurement that can be extended in case of cells having concave surfaces, thus overcoming the limit of the previous technique. We prove the new procedure for healthy red blood cells (RBCs) (i.e., discocytes) having a concave surface in their central region. Comparative analysis of experimental results with a theoretical 3D geometrical model of RBC is discussed in order to evaluate accuracy of the proposed approach. Finally, we show that the method can be also useful to classify, in terms of morphology, different varieties of RBCs.
Collapse
Affiliation(s)
- Pasquale Memmolo
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, Napoli, 80125, Italy; CNR-Istituto Nazionale di Ottica, Via Campi Flegrei 34, Pozzuoli (NA), I-80078, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings.
Collapse
Affiliation(s)
- Zoltán Göröcs
- Department of Electrical Engineering, University of California Los Angeles (UCLA Electrical Engineering and Bioengineering Departments), CA 90095, USA.
| | | |
Collapse
|
37
|
Huang X, Guo J, Wang X, Yan M, Kang Y, Yu H. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing. PLoS One 2014; 9:e104539. [PMID: 25111497 PMCID: PMC4128713 DOI: 10.1371/journal.pone.0104539] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023] Open
Abstract
Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single-frame super-resolution processing with on-line machine-learning for contact images of cells. A corresponding contact-imaging based microfluidic cytometer prototype is demonstrated for cell recognition and counting. Compared with commercial flow cytometer, less than 8% error is observed for absolute number of microbeads; and 0.10 coefficient of variation is observed for cell-ratio of mixed RBC and HepG2 cells in solution.
Collapse
Affiliation(s)
- Xiwei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jinhong Guo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaolong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mei Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yuejun Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail: (HY); (YK)
| | - Hao Yu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail: (HY); (YK)
| |
Collapse
|
38
|
Abstract
Nanostructured optical components, such as nanolenses, direct light at subwavelength scales to enable, among others, high-resolution lithography, miniaturization of photonic circuits, and nanoscopic imaging of biostructures. A major challenge in fabricating nanolenses is the appropriate positioning of the lens with respect to the sample while simultaneously ensuring it adopts the optimal size and shape for the intended use. One application of particular interest is the enhancement of contrast and signal-to-noise ratio in the imaging of nanoscale objects, especially over wide fields-of-view (FOVs), which typically come with limited resolution and sensitivity for imaging nano-objects. Here we present a self-assembly method for fabricating time- and temperature-tunable nanolenses based on the condensation of a polymeric liquid around a nanoparticle, which we apply to the high-throughput on-chip detection of spheroids smaller than 40 nm, rod-shaped particles with diameter smaller than 20 nm, and biofunctionalized nanoparticles, all across an ultralarge FOV of >20 mm(2). Previous nanoparticle imaging efforts across similar FOVs have detected spheroids no smaller than 100 nm, and therefore our results demonstrate the detection of particles >15-fold smaller in volume, which in free space have >240 times weaker Rayleigh scattering compared to the particle sizes detected in earlier wide-field imaging work. This entire platform, with its tunable nanolens condensation and wide-field imaging functions, is also miniaturized into a cost-effective and portable device, which might be especially important for field use, mobile sensing, and diagnostics applications, including, for example, the measurement of viral load in bodily fluids.
Collapse
Affiliation(s)
- Euan McLeod
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Chau Nguyen
- Chemistry & Biochemistry Department, University of California, Los Angeles, California 90095, United States
| | - Patrick Huang
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Wei Luo
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Muhammed Veli
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Electrical Engineering Department, University of California, Los Angeles, California 90095, United States
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- Address correspondence to ; http://innovate.ee.ucla.edu/
| |
Collapse
|
39
|
Wu L, Reinhard BM. Probing subdiffraction limit separations with plasmon coupling microscopy: concepts and applications. Chem Soc Rev 2014; 43:3884-97. [PMID: 24390574 PMCID: PMC4109285 DOI: 10.1039/c3cs60340g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to their advantageous material properties, noble metal nanoparticles are versatile tools in biosensing and imaging. A characteristic feature of gold and silver nanoparticles is their ability to sustain localized surface plasmons that provide both large optical cross-sections and extraordinary photophysical stability. Plasmon coupling microscopy takes advantage of the beneficial optical properties and utilizes electromagnetic near-field coupling between individual noble metal nanoparticle labels to resolve subdiffraction limit separations in an all-optical fashion. This Tutorial provides an introduction into the physical concepts underlying distance dependent plasmon coupling, discusses potential experimental implementation of plasmon coupling microscopy, and reviews applications in the area of biosensing and imaging.
Collapse
Affiliation(s)
- Linxi Wu
- Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts, USA.
| | | |
Collapse
|
40
|
Pushkarsky I, Liu Y, Lyb Y, Weaver W, Su TW, Mudanyali O, Ozcan A, Di Carlo D. Automated single-cell motility analysis on a chip using lensfree microscopy. Sci Rep 2014; 4:4717. [PMID: 24739819 PMCID: PMC3989554 DOI: 10.1038/srep04717] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/27/2014] [Indexed: 11/15/2022] Open
Abstract
Quantitative cell motility studies are necessary for understanding biophysical processes, developing models for cell locomotion and for drug discovery. Such studies are typically performed by controlling environmental conditions around a lens-based microscope, requiring costly instruments while still remaining limited in field-of-view. Here we present a compact cell monitoring platform utilizing a wide-field (24 mm2) lensless holographic microscope that enables automated single-cell tracking of large populations that is compatible with a standard laboratory incubator. We used this platform to track NIH 3T3 cells on polyacrylamide gels over 20 hrs. We report that, over an order of magnitude of stiffness values, collagen IV surfaces lead to enhanced motility compared to fibronectin, in agreement with biological uses of these structural proteins. The increased throughput associated with lensfree on-chip imaging enables higher statistical significance in observed cell behavior and may facilitate rapid screening of drugs and genes that affect cell motility.
Collapse
Affiliation(s)
- Ivan Pushkarsky
- Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | | | - Yunbo Lyb
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Westbrook Weaver
- Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ting-Wei Su
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Onur Mudanyali
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aydogan Ozcan
- 1] Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America [2] Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America [3] California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dino Di Carlo
- 1] Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America [2] California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America [3] Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Chen Y, Nawaz AA, Zhao Y, Huang PH, McCoy JP, Levine SJ, Wang L, Huang TJ. Standing surface acoustic wave (SSAW)-based microfluidic cytometer. LAB ON A CHIP 2014; 14:916-23. [PMID: 24406848 PMCID: PMC3956078 DOI: 10.1039/c3lc51139a] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of microfluidic chip-based cytometers has become an important area due to their advantages of compact size and low cost. Herein, we demonstrate a sheathless microfluidic cytometer which integrates a standing surface acoustic wave (SSAW)-based microdevice capable of 3D particle/cell focusing with a laser-induced fluorescence (LIF) detection system. Using SSAW, our microfluidic cytometer was able to continuously focus microparticles/cells at the pressure node inside a microchannel. Flow cytometry was successfully demonstrated using this system with a coefficient of variation (CV) of less than 10% at a throughput of ~1000 events s(-1) when calibration beads were used. We also demonstrated that fluorescently labeled human promyelocytic leukemia cells (HL-60) could be effectively focused and detected with our SSAW-based system. This SSAW-based microfluidic cytometer did not require any sheath flows or complex structures, and it allowed for simple operation over a wide range of sample flow rates. Moreover, with the gentle, bio-compatible nature of low-power surface acoustic waves, this technique is expected to be able to preserve the integrity of cells and other bioparticles.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
You J, Leonard K, Takahashi Y, Yonemura H, Yamada S. Effects of silver nanoparticles with different sizes on photochemical responses of polythiophene-fullerene thin films. Phys Chem Chem Phys 2014; 16:1166-73. [PMID: 24292622 DOI: 10.1039/c3cp53331j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effects of size and coverage density of silver nanoparticles (AgPs) on the fluorescence emission and fluorescence lifetime of poly(3-hexylthiophene-2,5-diyl) (P3HT) thin films were investigated. AgPs of 64 nm diameter showed greater effects on the fluorescence decay process of P3HT films as compared with 7 nm AgPs. The fluorescence lifetime (FL) of P3HT decreased from 0.61 to 0.22 ns in the presence of 64 nm AgPs, while no appreciable change (0.60 ns) was seen in the case of 7 nm AgPs. The results suggest that the 64 nm AgPs showed a greater effect on the enhancement of the decay rate of excited P3HT. The photoelectric conversion of thin films consisting of P3HT and phenyl-C61-butyric acid methyl ester (PCBM) was also investigated. AgPs of 7 or 64 nm diameters were first deposited on indium-tin-oxide substrates with controlled surface coverage densities from ~1 to 40%. When the coverage densities of deposited AgPs were ~20% for both 7 and 64 nm, the enhancement of photoelectric conversion efficiency reached maximum. The degree of enhancement in the case of 64 nm AgPs was larger than in the case of 7 nm AgPs.
Collapse
Affiliation(s)
- Jing You
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
43
|
Sencan I, Coskun AF, Sikora U, Ozcan A. Spectral demultiplexing in holographic and fluorescent on-chip microscopy. Sci Rep 2014; 4:3760. [PMID: 24441627 PMCID: PMC3895906 DOI: 10.1038/srep03760] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/23/2013] [Indexed: 12/22/2022] Open
Abstract
Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.
Collapse
Affiliation(s)
- Ikbal Sencan
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ahmet F Coskun
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Uzair Sikora
- Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aydogan Ozcan
- 1] Electrical Engineering Department, University of California Los Angeles, Los Angeles, California, United States of America [2] Bioengineering Department, University of California Los Angeles, Los Angeles, California, United States of America [3] California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
44
|
Colle F, Vercruysse D, Peeters S, Liu C, Stakenborg T, Lagae L, Del-Favero J. Lens-free imaging of magnetic particles in DNA assays. LAB ON A CHIP 2013; 13:4257-4262. [PMID: 24056677 DOI: 10.1039/c3lc50707f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.
Collapse
Affiliation(s)
- Frederik Colle
- imec, Smart Systems and Emerging Technologies unit, Department of Life Science Technologies, Kapeldreef 75, 3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|