1
|
Cohen SA, Tagliamonte MS, Mavian C, Iovine NM, Zhai Y, Jeong KC, Prosperi M, Tyndall JA, Salemi M, Morris JG. Dynamic Networks of Methicillin-Resistant Staphylococcus aureus in Communities Drive Hospital Transmission. Open Forum Infect Dis 2025; 12:ofaf264. [PMID: 40376189 PMCID: PMC12079653 DOI: 10.1093/ofid/ofaf264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/25/2025] [Indexed: 05/18/2025] Open
Abstract
Background Although methicillin-resistant Staphylococcus aureus (MRSA) transmission has traditionally been viewed separately in hospital and community settings, this distinction is increasingly blurred. We used whole-genome sequencing and epidemiologic analyses to characterize the movement of MRSA across these interfaces in a rural-urban population. Methods Serial cross-sectional sampling of MRSA isolates occurred at a tertiary care hospital between 2010 and 2019. Community-onset MRSA was prospectively isolated from patients presenting to the emergency department with acute skin and soft tissue infections (SSTIs), while hospital-onset MRSA was sampled before (2010), during (2015-2017), and after (2019) this community collection period. MRSA transmission was assessed using a joint application of epidemiological approaches and phylodynamic analysis of whole-genome sequences. Results After whole-genome sequencing on community and hospital MRSA isolates, phylogenetic analysis revealed 2 major clades distinguished by clonal complex (CC) CC8/t008 and CC5/t002 spa types. Multiple independent introductions of MRSA lineages from the community to the hospital were observed. Geographic clustering of community-onset MRSA was uniquely present outside of the urban center. Subjects with rural residence or livestock exposure were more likely to have community-onset MRSA SSTI compared with those with non-MRSA SSTI. Conclusions MRSA transmission in hospital settings was introduced from strains with ancestral origins in community settings. Although community-onset MRSA transmission appears sustained with limited influence from hospital strains, more comprehensive surveillance is required to quantify this relationship. Nosocomial MRSA outbreak prevention strategies should target unique aspects of the community in addition to the hospital, particularly hot spots, risk behaviors, and strain reservoirs.
Collapse
Affiliation(s)
- Scott A Cohen
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Massimiliano S Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nicole M Iovine
- Division of Infectious Diseases, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Animal Sciences, College of Agriculture and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Animal Sciences, College of Agriculture and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mattia Prosperi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Bellis KL, Dissanayake OM, Harrison EM, Aggarwal D. Community methicillin-resistant Staphylococcus aureus outbreaks in areas of low prevalence. Clin Microbiol Infect 2025; 31:182-189. [PMID: 38897351 DOI: 10.1016/j.cmi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Community-acquired (CA), community-onset methicillin-resistant Staphylococcus aureus (CO-MRSA) infection presents a significant public health challenge, even where MRSA rates are historically lower. Despite successes in reducing hospital-onset MRSA, CO-MRSA rates are increasing globally, with a need to understand this trend, and the potential risk factors for re-emergence. OBJECTIVES This review aims to explore the characteristics of outbreaks of community-acquired community-onset methicillin-resistant Staphylococcus aureus in low-prevalence areas, to understand the factors involved in its rise, and to translate this knowledge into public health policy and further research needs. SOURCES PubMed, EMBASE, and Google Scholar were searched using combinations of the terms 'transmission', 'acquisition', 'community-acquired', 'MRSA', 'CA-MRSA', 'low prevalence', 'genomic', 'outbreak', 'colonisation', and 'carriage'. Wherever evidence was limited, additional articles were sought specifically, via PubMed searches. Papers where materials were not available in English were excluded. CONTENT Challenges in defining low-prevalence areas and the significance of exposure to various risk factors for community acquisition, such as healthcare settings, travel, livestock, and environmental factors, are discussed. The importance of genomic surveillance in identifying outbreak strains and understanding the transmission dynamics is highlighted, along with the need for robust public health policies and control measures. IMPLICATIONS The findings emphasise the complexity of CO-MRSA transmission and the necessity of a multifaceted approach in low-prevalence areas. This includes integrated and systematic surveillance of hospital-onset-, CO-, and livestock-associated MRSA, as has been effective in some Northern European countries. The evolution of CO-MRSA underscores the need for global collaboration, routine genomic surveillance, and comprehensive antimicrobial stewardship to mitigate the rise of CO-MRSA and address the broader challenge of antimicrobial resistance. These efforts are crucial for maintaining low MRSA prevalence and managing the increasing burden of CO-MRSA in both low and higher prevalence regions.
Collapse
Affiliation(s)
- Katherine L Bellis
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK; Wellcome Sanger Institute, Parasites and Microbes, Hinxton, Saffron Walden, UK
| | - Oshani M Dissanayake
- University College London, Global Business School for Health, Gower St, London, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK; Wellcome Sanger Institute, Parasites and Microbes, Hinxton, Saffron Walden, UK
| | - Dinesh Aggarwal
- Department of Medicine, University of Cambridge, Hills Rd, Cambridge, UK; Wellcome Sanger Institute, Parasites and Microbes, Hinxton, Saffron Walden, UK; Department of Medicine, Cambridge University Hospital NHS Foundation Trust, Hills Rd, Cambridge, UK.
| |
Collapse
|
3
|
Fisk-Hoffman RJ, Parisi CE, Siuluta N, Ding DD, Widmeyer M, Somboonwit C, Cook RL. Antiretroviral Therapy Concealment Behaviors and their Association with Antiretroviral Therapy Adherence among People with HIV: Findings from the Florida Cohort Study. AIDS Behav 2024; 28:1047-1057. [PMID: 37861924 PMCID: PMC10922241 DOI: 10.1007/s10461-023-04214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Little is known about HIV medication concealment behaviors and the effect of medication concealment on antiretroviral therapy (ART) adherence among people with HIV (PWH). This study aims to (1) to describe medication concealment behaviors and factors associated with these behaviors, and (2) assess the association between medication concealment and suboptimal ART adherence. The Florida Cohort Study enrolled adult PWH from community-based clinics around the state from October 2020 to September 2022 (n = 416, 62% aged 50+, 56% male, 44% non-Hispanic Black, 18% Hispanic). Participants responded to questions about sociodemographics, stigma, ART adherence (≥ 85%), symptoms of depression, social networks and disclosure to their networks, and actions to conceal ART to avoid inadvertent disclosure of their HIV status. Analyses were conducted using multivariable logistic regressions models. The most common concealment behavior was hiding ART while having guests over (32%), followed by removing ART labels (26%), and putting ART into a different bottle (16%). Overall, 43% reported ≥ 1 behavior. In multivariable models, depressive symptoms, incomplete disclosure of HIV to close social networks, and not having a close social network were associated with ART concealment. After adjusting for risk factors for suboptimal ART adherence, endorsing hiding medication while having guests was associated with suboptimal ART adherence (aOR 2.87, 95% CI 1.15-7.55). Taking any action and other individual behaviors were not associated. ART concealment behaviors were common but did not consistently negatively influence adherence when accounting for other factors. PWH may want to receive ART medications in ways that ensure privacy and reduce the risk of inadvertent disclosure.
Collapse
Affiliation(s)
- Rebecca J Fisk-Hoffman
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina E Parisi
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nanyangwe Siuluta
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA
| | - Delaney D Ding
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Charurut Somboonwit
- Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Robert L Cook
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Worley JN, Crothers JW, Wolfgang WJ, Venkata SLG, Hoffmann M, Jayeola V, Klompas M, Allard M, Bry L. Prospective Genomic Surveillance Reveals Cryptic MRSA Outbreaks with Local to International Origins among NICU Patients. J Clin Microbiol 2023; 61:e0001423. [PMID: 37022157 PMCID: PMC10204624 DOI: 10.1128/jcm.00014-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections cause substantive morbidity and mortality in neonates. Using publicly available resources from the National Center of Biotechnology Information (NCBI) and Food and Drug Administration's (FDA) GalaxyTrakr pipeline, we illustrate the dynamics of MRSA colonization and infection in neonates. Over 217 days of prospective surveillance, analyses revealed concurrent MRSA transmission chains affecting 11 of 17 MRSA-colonized patients (65%), with two clusters that demonstrated intervals of more than a month among the appearance of isolates. All MRSA infected neonates (n = 3) showed previous colonization with the infecting strain. GalaxyTrakr clustering of the NICU strains, in the context of 21,521 international isolates deposited in NCBI's Pathogen Detection Resource, revealed NICU isolates to be distinct from adult MRSA strains seen locally and internationally. Clustering of the NICU strains within an international context enhanced the resolution of strain clusters and supported the rule-out of suspected, local transmission events within the NICU. Analyses also identified sequence type 1535 isolates, emergent in the Middle East, carrying a unique SCCmec with fusC and aac(6')-Ie/aph(2'')-1a that provided a multidrug-resistant phenotype. NICU genomic pathogen surveillance, leveraging public repositories and outbreak detection tools, supports rapid identification of cryptic MRSA clusters, and can inform infection prevention interventions for this vulnerable patient population. Results demonstrate that sporadic infections in the NICU may be indicative of hidden chains of asymptomatic transmission best identified with sequenced-based approaches.
Collapse
Affiliation(s)
- Jay N. Worley
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica W. Crothers
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont, USA
- Translational Global Infectious Disease Research Center, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - William J. Wolfgang
- Wadsworth Center, Division of Infectious Diseases, New York State Department of Health, Albany, New York, USA
| | - Sai Laxmi Gubbala Venkata
- Wadsworth Center, Division of Infectious Diseases, New York State Department of Health, Albany, New York, USA
| | - Maria Hoffmann
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Victor Jayeola
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marc Allard
- Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Marini S, Boucher C, Noyes N, Prosperi M. The K-mer antibiotic resistance gene variant analyzer (KARGVA). Front Microbiol 2023; 14:1060891. [PMID: 36960290 PMCID: PMC10027697 DOI: 10.3389/fmicb.2023.1060891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023] Open
Abstract
Characterization of antibiotic resistance genes (ARGs) from high-throughput sequencing data of metagenomics and cultured bacterial samples is a challenging task, with the need to account for both computational (e.g., string algorithms) and biological (e.g., gene transfers, rearrangements) aspects. Curated ARG databases exist together with assorted ARG classification approaches (e.g., database alignment, machine learning). Besides ARGs that naturally occur in bacterial strains or are acquired through mobile elements, there are chromosomal genes that can render a bacterium resistant to antibiotics through point mutations, i.e., ARG variants (ARGVs). While ARG repositories also collect ARGVs, there are only a few tools that are able to identify ARGVs from metagenomics and high throughput sequencing data, with a number of limitations (e.g., pre-assembly, a posteriori verification of mutations, or specification of species). In this work we present the k-mer, i.e., strings of fixed length k, ARGV analyzer - KARGVA - an open-source, multi-platform tool that provides: (i) an ad hoc, large ARGV database derived from multiple sources; (ii) input capability for various types of high-throughput sequencing data; (iii) a three-way, hash-based, k-mer search setup to process data efficiently, linking k-mers to ARGVs, k-mers to point mutations, and ARGVs to k-mers, respectively; (iv) a statistical filter on sequence classification to reduce type I and II errors. On semi-synthetic data, KARGVA provides very high accuracy even in presence of high sequencing errors or mutations (99.2 and 86.6% accuracy within 1 and 5% base change rates, respectively), and genome rearrangements (98.2% accuracy), with robust performance on ad hoc false positive sets. On data from the worldwide MetaSUB consortium, comprising 3,700+ metagenomics experiments, KARGVA identifies more ARGVs than Resistance Gene Identifier (4.8x) and PointFinder (6.8x), yet all predictions are below the expected false positive estimates. The prevalence of ARGVs is correlated to ARGs but ecological characteristics do not explain well ARGV variance. KARGVA is publicly available at https://github.com/DataIntellSystLab/KARGVA under MIT license.
Collapse
Affiliation(s)
- Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- Department of Pathology, University of Florida, Gainesville, FL, United States
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Noelle Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL, United States
- *Correspondence: Mattia Prosperi,
| |
Collapse
|
6
|
Phylodynamic signatures in the emergence of community-associated MRSA. Proc Natl Acad Sci U S A 2022; 119:e2204993119. [PMID: 36322765 PMCID: PMC9659408 DOI: 10.1073/pnas.2204993119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Community-associated, methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (R<sub>e</sub>) and sustained transmission (R<sub>e</sub> > 1) coincided with spread of progenitor methicillin-susceptible <i>S. aureus</i> (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated <i>S. aureus</i> lineages from America, Asia, Australasia, and Europe. Surges in R<sub>e</sub> were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.
Collapse
|
7
|
Hamada M, Yamaguchi T, Sato A, Ono D, Aoki K, Kajiwara C, Kimura S, Maeda T, Sasaki M, Murakami H, Ishii Y, Tateda K. Increased Incidence and Plasma-Biofilm Formation Ability of SCC mec Type IV Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated From Patients With Bacteremia. Front Cell Infect Microbiol 2021; 11:602833. [PMID: 33842382 PMCID: PMC8032974 DOI: 10.3389/fcimb.2021.602833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
In Japan, Staphylococcal cassette chromosome mec (SCCmec) type IV methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prominent cause of bacteremia, but the virulence of most of these strains is unclear. We aimed to investigate the relationship between the molecular characteristics and the ability to form biofilms in the presence of blood plasma (plasma-biofilms) of MRSA strains isolated from bloodstream infections. In this study, the molecular characteristics and biofilms of MRSA strains isolated from blood cultures between 2015 and 2017 were analyzed by PCR-based assays, crystal violet staining, and confocal reflection microscopy methods. Among the 90 MRSA isolates, the detection rate of SCCmec type II clones decreased from 60.7 to 20.6%. The SCCmec type IV clone replaced the SCCmec type II clone as the dominant clone, with a detection rate increasing from 32.1 to 73.5%. The plasma-biofilm formation ability of the SCCmec type IV clone was higher than the SCCmec type II clone and even higher in strains harboring the cna or arcA genes. Plasma-biofilms, mainly composed of proteins, were formed quickly and strongly. Our study demonstrated the increased plasma-biofilm formation ability of SCCmec type IV strains.
Collapse
Affiliation(s)
- Masakaze Hamada
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tetsuo Yamaguchi
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Ayami Sato
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Department of Surgery, Toho University Sakura Medical Center, Chiba, Japan
| | - Daisuke Ono
- Department of Infectious Diseases and Infection Control, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Kotaro Aoki
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Chiaki Kajiwara
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Tadashi Maeda
- Department of General Medicine and Emergency Care, Toho University Omori Medical Center, Tokyo, Japan
| | - Masakazu Sasaki
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Hinako Murakami
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
| | - Kazuhiro Tateda
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Department of Clinical Laboratories, Toho University Omori Medical Center, Tokyo, Japan
| |
Collapse
|
8
|
Lofgren ET, Mietchen M, Dicks KV, Moehring R, Anderson D. Estimated Methicillin-Resistant Staphylococcus aureus Decolonization in Intensive Care Units Associated With Single-Application Chlorhexidine Gluconate or Mupirocin. JAMA Netw Open 2021; 4:e210652. [PMID: 33662133 PMCID: PMC7933999 DOI: 10.1001/jamanetworkopen.2021.0652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPORTANCE Chlorhexidine gluconate (CHG) and mupirocin are widely used to decolonize patients with methicillin-resistant Staphylococcus aureus (MRSA) and reduce risks associated with infection in hospitalized populations. Quantifying the association of an application of CHG alone or in combination with mupirocin with risk of MRSA infection is important for studies evaluating alternative decolonization strategies or schedules and for identifying whether there is room for improved decolonizing agents. OBJECTIVE To estimate the proportion of patients with MRSA decolonized per application of CHG and mupirocin from existing population-level studies. DESIGN, SETTING, AND PARTICIPANTS A stochastic mathematical model of an 18-bed intensive care unit (ICU) in an academic medical center operating over 1 year was used to estimate parameters for the proportion of simulated patients with MRSA decolonized per application of CHG and mupirocin. The model was conducted using approximate bayesian computation with data from an existing meta-analysis of studies conducted from February 2005 through January 2015. Data were analyzed from January 2018 through November 2019. EXPOSURE A universal decolonization protocol for colonized patients in the ICU using CHG or CHG and mupirocin in combination was simulated. MAIN OUTCOMES AND MEASURES The proportion of patients with MRSA decolonized per application of CHG and mupirocin was estimated. RESULTS The estimated proportion of patients with MRSA decolonized per application of CHG was 0.15 (95% credible interval, 0.01-0.42), and the estimated proportion per application of mupirocin in conjunction with CHG was 0.15 (95% credible interval, 0.01-0.54). A lag in colonization detection was associated with decreases in the CHG estimate (0.11; 95% credible interval, 0.01-0.30) and mupirocin estimate (0.10; 95% credible interval, 0.00-0.34), which were sensitive to the value of the modeled contact rate between nurses and patients. A 1% increase in the value of this parameter was associated with a 0.73% increase in the estimated combined outcomes associated with CHG and mupirocin (95% CI: 0.71, 0.75). Gaps longer than 24 hours in the administration of decolonizing agents were associated with a decrease of within-ICU MRSA transmission. Compared with a mean (SD) of 1.23 (0.27) acquisitions per 1000 patient-days in scenarios with no decolonizing bathing, a bathing protocol administering CHG and mupirocin every 120 hours was associated with a mean (SD) acquisition rate of 1.03 (0.24) acquisitions per 1000 patient days, a 16.3% decrease (95% CI, 14.7%-18.0%; P > .001). CONCLUSIONS AND RELEVANCE These findings suggest that there may be room for significant improvement in anti-MRSA disinfectants, including the compounds themselves and their delivery mechanisms. Despite the decolonization estimates found in this study, these agents are associated with robust outcomes after delays in administration, which may help in alleviating concerns over patient comfort and toxic effects.
Collapse
Affiliation(s)
- Eric T. Lofgren
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington
| | - Matthew Mietchen
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington
| | - Kristen V. Dicks
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
| | - Rebekah Moehring
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
| | - Deverick Anderson
- Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
| |
Collapse
|
9
|
Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol 2021; 19:287-302. [PMID: 33542518 PMCID: PMC7861009 DOI: 10.1038/s41579-020-00506-3] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide. However, the emergence and spread of antimicrobial resistance (AMR) has been highlighted as a global threat by different health organizations, and pathogens resistant to antimicrobials cause substantial morbidity and death. As resistance to multiple drugs increases, novel and effective therapies as well as prevention strategies are needed. In this Review, we discuss evidence that vaccines can have a major role in fighting AMR. Vaccines are used prophylactically, decreasing the number of infectious disease cases, and thus antibiotic use and the emergence and spread of AMR. We also describe the current state of development of vaccines against resistant bacterial pathogens that cause a substantial disease burden both in high-income countries and in low- and medium-income countries, discuss possible obstacles that hinder progress in vaccine development and speculate on the impact of next-generation vaccines against bacterial infectious diseases on AMR.
Collapse
Affiliation(s)
- Francesca Micoli
- grid.425088.3GSK Vaccines Institute for Global Health, Siena, Italy
| | | | | | | |
Collapse
|
10
|
Schulz M, Calabrese S, Hausladen F, Wurm H, Drossart D, Stock K, Sobieraj AM, Eichenseher F, Loessner MJ, Schmelcher M, Gerhardts A, Goetz U, Handel M, Serr A, Haecker G, Li J, Specht M, Koch P, Meyer M, Tepper P, Rother R, Jehle M, Wadle S, Zengerle R, von Stetten F, Paust N, Borst N. Point-of-care testing system for digital single cell detection of MRSA directly from nasal swabs. LAB ON A CHIP 2020; 20:2549-2561. [PMID: 32568322 DOI: 10.1039/d0lc00294a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present an automated point-of-care testing (POCT) system for rapid detection of species- and resistance markers in methicillin-resistant Staphylococcus aureus (MRSA) at the level of single cells, directly from nasal swab samples. Our novel system allows clear differentiation between MRSA, methicillin-sensitive S. aureus (MSSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS), which is not the case for currently used real-time quantitative PCR based systems. On top, the novel approach outcompetes the culture-based methods in terms of its short time-to-result (1 h vs. up to 60 h) and reduces manual labor. The walk-away test is fully automated on the centrifugal microfluidic LabDisk platform. The LabDisk cartridge comprises the unit operations swab-uptake, reagent pre-storage, distribution of the sample into 20 000 droplets, specific enzymatic lysis of Staphylococcus spp. and recombinase polymerase amplification (RPA) of species (vicK) - and resistance (mecA) -markers. LabDisk actuation, incubation and multi-channel fluorescence detection is demonstrated with a clinical isolate and spiked nasal swab samples down to a limit of detection (LOD) of 3 ± 0.3 CFU μl-1 for MRSA. The novel approach of the digital single cell detection is suggested to improve hospital admission screening, timely decision making, and goal-oriented antibiotic therapy. The implementation of a higher degree of multiplexing is required to translate the results into clinical practice.
Collapse
Affiliation(s)
- Martin Schulz
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bride LDL, Pereira MF, Barbosa MC, Silva NC, Klein NM, Nascimento TC, Schuenck RP. Differences in resistance profiles and virulence genes among methicillin-resistant and methicillin-susceptible Staphylococcus aureus of different lineages at a public tertiary hospital. Rev Soc Bras Med Trop 2019; 52:e20190095. [PMID: 31340369 DOI: 10.1590/0037-8682-0095-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Staphylococcus aureus is a major nosocomial pathogen that is associated with high virulence and the rapid development of drug resistance. METHODS We analyzed and compared the antimicrobial resistance, virulence profiles, and molecular epidemiology of 67 S. aureus strains, including 36 methicillin-sensitive (MSSA) and 31 methicillin-resistant (MRSA) strains recovered from a public hospital located in south-eastern Brazil. RESULTS The clones circulating in this hospital presented a great diversity, and the majority of the strains were related to clones responsible for causing worldwide epidemics: these included USA100 (New York/Japan clone), USA300, and USA600. The 31 MRSA (22 SCCmecII and 9 SCCmecIV) and 36 MSSA strains exhibited low resistance against gentamicin and trimethoprim/sulfamethoxazole. No MRSA strain showed resistance to tetracycline. Virulence gene carriage was more diverse and abundant in MSSA than in MRSA. Of the evaluated adhesion-related genes, ebpS was the most prevalent in both MSSA and MRSA strains. The genes bbp and cna showed a strong association with MSSA strains. CONCLUSIONS Our findings reinforce the idea that MSSA and MRSA strains should be carefully monitored, owing to their high pathogenic potential.
Collapse
Affiliation(s)
- Lais de Lima Bride
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - Monalessa Fábia Pereira
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - Maralisi Coutinho Barbosa
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - Nayara Carvalho Silva
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | | | - Thiago César Nascimento
- Departamento de Enfermagem Básica, Escola de Enfermagem, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Ricardo Pinto Schuenck
- Departamento de Patologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| |
Collapse
|
12
|
Kateete DP, Bwanga F, Seni J, Mayanja R, Kigozi E, Mujuni B, Ashaba FK, Baluku H, Najjuka CF, Källander K, Rutebemberwa E, Asiimwe BB, Joloba ML. CA-MRSA and HA-MRSA coexist in community and hospital settings in Uganda. Antimicrob Resist Infect Control 2019; 8:94. [PMID: 31171965 PMCID: PMC6547506 DOI: 10.1186/s13756-019-0551-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/28/2019] [Indexed: 01/17/2023] Open
Abstract
Background Methicillin resistant Staphylococcus aureus (MRSA) strains were once confined to hospitals however, in the last 20 years MRSA infections have emerged in the community in people with no prior exposure to hospitals. Strains causing such infections were novel and referred to as community-associated MRSA (CA-MRSA). The aim of this study was to determine the MRSA carriage rate in children in eastern Uganda, and to investigate coexistence between CA-MRSA and hospital-associated (HA-MRSA). Methods Between February and October 2011, nasopharyngeal samples (one per child) from 742 healthy children under 5 years in rural eastern Uganda were processed for isolation of MRSA, which was identified based on inhibition zone diameter of ≤19 mm on 30 μg cefoxitin disk. SCCmec and spa typing were performed for MRSA isolates. Results A total of 140 S. aureus isolates (18.9%, 140/742) were recovered from the children of which 5.7% (42/742) were MRSA. Almost all (95.2%, 40/42) MRSA isolates were multidrug resistant (MDR). The most prevalent SCCmec elements were types IV (40.5%, 17/42) and I (38.1%, 16/42). The overall frequency of SCCmec types IV and V combined, hence CA-MRSA, was 50% (21/42). Likewise, the overall frequency of SCCmec types I, II and III combined, hence HA-MRSA, was 50% (21/42). Spa types t002, t037, t064, t4353 and t12939 were detected and the most frequent were t064 (19%, 8/42) and t037 (12%, 5/42). Conclusion The MRSA carriage rate in children in eastern Uganda is high (5.7%) and comparable to estimates for Mulago Hospital in Kampala city. Importantly, HA-MRSA (mainly of spa type t037) and CA-MRSA (mainly of spa type t064) coexist in children in the community in eastern Uganda, and due to high proportion of MDR detected, outpatient treatment of MRSA infection in eastern Uganda might be difficult.
Collapse
Affiliation(s)
- David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Freddie Bwanga
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jeremiah Seni
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
- Catholic University of Health and Allied Sciences – Bugando, Mwanza, Tanzania
| | - Raymond Mayanja
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Brian Mujuni
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Fred K. Ashaba
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Hannington Baluku
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Christine F. Najjuka
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Karin Källander
- Malaria Consortium, London, UK
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Benon B. Asiimwe
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
13
|
Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Med 2018; 10:82. [PMID: 30424799 PMCID: PMC6234625 DOI: 10.1186/s13073-018-0593-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.
Collapse
Affiliation(s)
- Serena Manara
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Edoardo Pasolli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Daniela Dolce
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Novella Ravenni
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Silvia Campana
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Guido Grandi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
14
|
Pulsed-Field Gel Electrophoresis Used for Typing of Extended-Spectrum-β-Lactamases- Producing Escherichia coli Isolated from Infant ҆S Respiratory and Digestive System. MACEDONIAN VETERINARY REVIEW 2018. [DOI: 10.2478/macvetrev-2018-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Escherichia coli infections are becoming increasingly difficult to treat because of emerging antimicrobial resistance, mostly to expanded-spectrum cephalosporins, due to the production of extended-spectrum β-lactamases (ESBLs).Despite extensive studies of ESBL- producing E.coli in adult patients, there is a lack of information about the epidemiology and spread of ESBL organisms in pediatric population. The aim of this study was to examine the gastrointestinal tract as an endogenous reservoir for the respiratory tract colonization with ESBL- E. coli in children, hospitalized because of the severity of the respiratory illness. The study group consists of 40 children with ESBL-producing E. coli strains isolated from the sputum and from the rectal samples. A control group of 15 E. coli isolated from rectal swabs of healthy children were included in the analysis. The comparison of the strains was done by using antimicrobial susceptibility patterns of the stains, and pulsed field gel electrophoresis was performed for molecular typing, using XbaI digestion. 90% of the compared pairs of strains in the study group were with identical antimicrobial susceptibility patterns and indistinguishable in 79.2% by the obtained PFGE – profiles.33.3% (5/15) of confirmed E. coli strains from the control group were found to be ESBL – producers. Resulting band profiles of all isolates demonstrated presence of 12 pulsotypes, with 100% similarity within the pulsotypes. Although, some isolates obtained from different patients were genetically indistinguishable, these strains were not hospital acquired, as none of the patients satisfied the criteria for hospital acquired pneumonia, and there was a lack of an obvious transmission chain. All ESBL –E. coli isolated from sputum in clinical cases were obtained from patients under the age of one. According to the resistance profile of the compared pairs and the PFGE comparison of all isolates, it can be concluded that the gastrointestinal tract is the main reservoir of ESBL-E. coli. Small age in infants is a risk factor for translocation of bacteria, enabling the colonization of the respiratory tract.
Collapse
|
15
|
Mironova LV, Gladkikh AS, Ponomareva AS, Feranchuk SI, Bochalgin NО, Basov EA, Yu Khunkheeva Z, Balakhonov SV. Comparative genomics of Vibrio cholerae El Tor strains isolated at epidemic complications in Siberia and at the Far East. INFECTION GENETICS AND EVOLUTION 2018; 60:80-88. [PMID: 29462719 DOI: 10.1016/j.meegid.2018.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 11/30/2022]
Abstract
The territory of Siberia and the Far East of Russia is classified as epidemically safe for cholera; however, in the 1970s and 1990s a number of infection importation cases and acute outbreaks associated with the cholera importation were reported. Here, we analyze genomes of four Vibrio cholerae El Tor strains isolated from humans during epidemic complications (imported cases, an outbreak) in the 1990s. The analyzed strains harbor the classical allele of the cholera toxin subunit B gene (ctxB1); thus, belong to genetically altered variants of the El Tor biotype. Analysis of the genomes revealed their high homology with the V. cholerae N16961 reference strain: 85-93 SNPs were identified in the core genome as compared to the reference. The determined features of SNPs in the CTX prophage made it possible to propose the presence of a new subtype - CTX-2a in two strains; the other two strains carried the prophage of CTX-3 type. Results of phylogenetic analysis based on SNP-typing demonstrated that two strains belonged to the second wave, and two - to the early third wave of cholera dissemination in the world. Phylogenetic reconstruction in combination with epidemiological data permitted to trace the origin of the strains and the way of their importation to the Russian Federation directly or through temporary cholera foci.
Collapse
Affiliation(s)
- Liliya V Mironova
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Anna S Gladkikh
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia.
| | - Anna S Ponomareva
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Sergey I Feranchuk
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia; Limnological Institute of Siberian Branch of Russian Academy of Sciences, 3, Ulan-Batorskaya str., Irkutsk 664033, Russia
| | - Nikita О Bochalgin
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Evgenii A Basov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Zhanna Yu Khunkheeva
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| | - Sergey V Balakhonov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, 78, Trillisser str., Irkutsk 664047, Russia
| |
Collapse
|
16
|
Asadollahi P, Farahani NN, Mirzaii M, Khoramrooz SS, van Belkum A, Asadollahi K, Dadashi M, Darban-Sarokhalil D. Distribution of the Most Prevalent Spa Types among Clinical Isolates of Methicillin-Resistant and -Susceptible Staphylococcus aureus around the World: A Review. Front Microbiol 2018; 9:163. [PMID: 29487578 PMCID: PMC5816571 DOI: 10.3389/fmicb.2018.00163] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Background:Staphylococcus aureus, a leading cause of community-acquired and nosocomial infections, remains a major health problem worldwide. Molecular typing methods, such as spa typing, are vital for the control and, when typing can be made more timely, prevention of S. aureus spread around healthcare settings. The current study aims to review the literature to report the most common clinical spa types around the world, which is important for epidemiological surveys and nosocomial infection control policies. Methods: A search via PubMed, Google Scholar, Web of Science, Embase, the Cochrane library, and Scopus was conducted for original articles reporting the most prevalent spa types among S. aureus isolates. The search terms were “Staphylococcus aureus, spa typing.” Results: The most prevalent spa types were t032, t008 and t002 in Europe; t037 and t002 in Asia; t008, t002, and t242 in America; t037, t084, and t064 in Africa; and t020 in Australia. In Europe, all the isolates related to spa type t032 were MRSA. In addition, spa type t037 in Africa and t037and t437 in Australia also consisted exclusively of MRSA isolates. Given the fact that more than 95% of the papers we studied originated in the past decade there was no option to study the dynamics of regional clone emergence. Conclusion: This review documents the presence of the most prevalent spa types in countries, continents and worldwide and shows big local differences in clonal distribution.
Collapse
Affiliation(s)
- Parisa Asadollahi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narges Nodeh Farahani
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirzaii
- Department of Microbiology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyed Sajjad Khoramrooz
- Department of Microbiology, Faculty of Medicine, Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux 3, La Balme Les Grottes, France
| | - Khairollah Asadollahi
- Department of Social Medicine, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran.,Faculty of Medicine, Biotechnology and Medicinal Plants Researches Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Masoud Dadashi
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Range Expansion and the Origin of USA300 North American Epidemic Methicillin-Resistant Staphylococcus aureus. mBio 2018; 9:mBio.02016-17. [PMID: 29295910 PMCID: PMC5750399 DOI: 10.1128/mbio.02016-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The USA300 North American epidemic (USA300-NAE) clone of methicillin-resistant Staphylococcus aureus has caused a wave of severe skin and soft tissue infections in the United States since it emerged in the early 2000s, but its geographic origin is obscure. Here we use the population genomic signatures expected from the serial founder effects of a geographic range expansion to infer the origin of USA300-NAE and identify polymorphisms associated with its spread. Genome sequences from 357 isolates from 22 U.S. states and territories and seven other countries are compared. We observe two significant signatures of range expansion, including decreases in genetic diversity and increases in derived allele frequency with geographic distance from the Pennsylvania region. These signatures account for approximately half of the core nucleotide variation of this clone, occur genome wide, and are robust to heterogeneity in temporal sampling of isolates, human population density, and recombination detection methods. The potential for positive selection of a gyrA fluoroquinolone resistance allele and several intergenic regions, along with a 2.4 times higher recombination rate in a resistant subclade, is noted. These results are the first to show a pattern of genetic variation that is consistent with a range expansion of an epidemic bacterial clone, and they highlight a rarely considered but potentially common mechanism by which genetic drift may profoundly influence bacterial genetic variation. The process of geographic spread of an origin population by a series of smaller populations can result in distinctive patterns of genetic variation. We detect these patterns for the first time with an epidemic bacterial clone and use them to uncover the clone’s geographic origin and variants associated with its spread. We study the USA300 clone of methicillin-resistant Staphylococcus aureus, which was first noticed in the early 2000s and subsequently became the leading cause of skin and soft tissue infections in the United States. The eastern United States is the most likely origin of epidemic USA300. Relatively few variants, which include an antibiotic resistance mutation, have persisted during this clone’s spread. Our study suggests that an early chapter in the genetic history of this epidemic bacterial clone was greatly influenced by random subsampling of isolates during the clone’s geographic spread.
Collapse
|
18
|
Millar EV, Rice GK, Elassal EM, Schlett CD, Bennett JW, Redden CL, Mor D, Law NN, Tribble DR, Hamilton T, Ellis MW, Bishop-Lilly KA. Genomic Characterization of USA300 Methicillin-Resistant Staphylococcus aureus (MRSA) to Evaluate Intraclass Transmission and Recurrence of Skin and Soft Tissue Infection (SSTI) Among High-Risk Military Trainees. Clin Infect Dis 2017; 65:461-468. [PMID: 28419202 PMCID: PMC5849051 DOI: 10.1093/cid/cix327] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Military trainees are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infection (SSTI). Whole genome sequencing (WGS) can refine our understanding of MRSA transmission and microevolution in congregate settings. METHODS We conducted a prospective case-control study of SSTI among US Army infantry trainees at Fort Benning, Georgia, from July 2012 to December 2014. We identified clusters of USA300 MRSA SSTI within select training classes and performed WGS on clinical isolates. We then linked genomic, phylogenetic, epidemiologic, and clinical data in order to evaluate intra- and interclass disease transmission. Furthermore, among cases of recurrent MRSA SSTI, we evaluated the intrahost relatedness of infecting strains. RESULTS Nine training classes with ≥5 cases of USA300 MRSA SSTI were selected. Eighty USA300 MRSA clinical isolates from 74 trainees, 6 (8.1%) of whom had recurrent infection, were subjected to WGS. We identified 2719 single nucleotide variants (SNVs). The overall median (range) SNV difference between isolates was 173 (1-339). Intraclass median SNV differences ranged from 23 to 245. Two phylogenetic clusters were suggestive of interclass MRSA transmission. One of these clusters stemmed from 2 classes that were separated by a 13-month period but housed in the same barracks. Among trainees with recurrent MRSA SSTI, the intrahost median SNV difference was 7.5 (1-48). CONCLUSIONS Application of WGS revealed intra- and interclass transmission of MRSA among military trainees. An interclass cluster between 2 noncontemporaneous classes suggests a long-term reservoir for MRSA in this setting.
Collapse
Affiliation(s)
- Eugene V Millar
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
| | - Gregory K Rice
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
- Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick
| | - Emad M Elassal
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
| | - Carey D Schlett
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
| | - Jason W Bennett
- Walter Reed Army Institute of Research, Silver Spring
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Cassie L Redden
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
- Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick
| | - Deepika Mor
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
| | - Natasha N Law
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
- Martin Army Community Hospital, Fort Benning, Georgia
| | - David R Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda
| | - Theron Hamilton
- Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick
| | - Michael W Ellis
- University of Toledo College of Medicine and Life Sciences, Ohio
| | - Kimberly A Bishop-Lilly
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville
- Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick
| |
Collapse
|
19
|
Spa typing and identification of pvl genes of meticillin-resistant Staphylococcus aureus isolated from a Libyan hospital in Tripoli. J Glob Antimicrob Resist 2017; 10:179-181. [PMID: 28735052 DOI: 10.1016/j.jgar.2017.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES The purpose of the study was to investigate the molecular characteristics of meticillin-resistant Staphylococcus aureus (MRSA) isolated from clinical sources in Tripoli, Libya. METHODS A total of 95 MRSA strains collected at the Tripoli medical Centre were investigated by spa typing and identification of the Panton-Valentine Leukocidin (pvl) genes. RESULTS A total of 26 spa types were characterized and distributed among nine clonal complexes; CC5 (n=32), CC80 (n=18), CC8 (n=17) and CC22 (n=12) were the most prevalent clonal complexes. In total, 34% of the isolates were positive for PVL. CONCLUSIONS This study demonstrated the presence of CA-MRSA and pvl positive strains in hospital settings and underlines the importance of using molecular typing to investigate the epidemiology of MRSA. Preventative measures and surveillance systems are needed to control and minimize the spread of MRSA in the Libyan health care system.
Collapse
|
20
|
Infection control in the new age of genomic epidemiology. Am J Infect Control 2017; 45:170-179. [PMID: 28159067 DOI: 10.1016/j.ajic.2016.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022]
Abstract
With the growing importance of infectious diseases in health care and communicable disease outbreaks garnering increasing attention, new technologies are playing a greater role in helping us prevent health care-associated infections and provide optimal public health. The microbiology laboratory has always played a large role in infection control by providing tools to identify, characterize, and track pathogens. Recently, advances in DNA sequencing technology have ushered in a new era of genomic epidemiology, where traditional molecular diagnostics and genotyping methods are being enhanced and even replaced by genomics-based methods to aid epidemiologic investigations of communicable diseases. The ability to analyze and compare entire pathogen genomes has allowed for unprecedented resolution into how and why infectious diseases spread. As these genomics-based methods continue to improve in speed, cost, and accuracy, they will be increasingly used to inform and guide infection control and public health practices.
Collapse
|
21
|
Azarian T, Maraqa NF, Cook RL, Johnson JA, Bailey C, Wheeler S, Nolan D, Rathore MH, Morris JG, Salemi M. Genomic Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Neonatal Intensive Care Unit. PLoS One 2016; 11:e0164397. [PMID: 27732618 PMCID: PMC5061378 DOI: 10.1371/journal.pone.0164397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
Despite infection prevention efforts, neonatal intensive care unit (NICU) patients remain at risk of Methicillin-resistant Staphylococcus aureus (MRSA) infection. Modes of transmission for healthcare-associated (HA) and community-associated (CA) MRSA remain poorly understood and may vary by genotype, hindering the development of effective prevention and control strategies. From 2008–2010, all patients admitted to a level III NICU were screened for MRSA colonization, and all available isolates were spa-typed. Spa-type t008, the most prevalent CA- genotype in the United States, spa-type t045, a HA- related genotype, and a convenience sample of strains isolated from 2003–2011, underwent whole-genome sequencing and phylodynamic analysis. Patient risk factors were compared between colonized and noncolonized infants, and virulence and resistance genes compared between spa-type t008 and non-t008 strains. Epidemiological and genomic data were used to estimate MRSA importations and acquisitions through transmission reconstruction. MRSA colonization was identified in 9.1% (177/1940) of hospitalized infants and associated with low gestational age and birth weight. Among colonized infants, low gestational age was more common among those colonized with t008 strains. Our data suggest that approximately 70% of colonizations were the result of transmission events within the NICU, with the remainder likely to reflect importations of “outside” strains. While risk of transmission within the NICU was not affected by spa-type, patterns of acquisition and importation differed between t008 and t045 strains. Phylodynamic analysis showed the effective population size of spa-type t008 has been exponentially increasing in both community and hospital, with spa-type t008 strains possessed virulence genes not found among t045 strains; t045 strains, in contrast, appeared to be of more recent origin, with a possible hospital source. Our data highlight the importance of both intra-NICU transmission and recurrent introductions in maintenance of MRSA colonization within the NICU environment, as well as spa-type-specific differences in epidemiology.
Collapse
Affiliation(s)
- Taj Azarian
- College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, University of Florida, Gainesville, FL, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Nizar F. Maraqa
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
- University of Florida Center for HIV/AIDS Research, Education and Service, University of Florida, College of Medicine, Jacksonville, FL, United States of America
| | - Robert L. Cook
- College of Public Health and Health Professions and College of Medicine, Department of Epidemiology, University of Florida, Gainesville, FL, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Judith A. Johnson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| | - Christine Bailey
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
| | - Sarah Wheeler
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
| | - David Nolan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| | - Mobeen H. Rathore
- Infectious Diseases and Immunology, Wolfson Children’s Hospital, Jacksonville, FL, United States of America
- University of Florida Center for HIV/AIDS Research, Education and Service, University of Florida, College of Medicine, Jacksonville, FL, United States of America
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Division of Infectious Diseases, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
22
|
Ayala AJ, Dimitrov KM, Becker CR, Goraichuk IV, Arns CW, Bolotin VI, Ferreira HL, Gerilovych AP, Goujgoulova GV, Martini MC, Muzyka DV, Orsi MA, Scagion GP, Silva RK, Solodiankin OS, Stegniy BT, Miller PJ, Afonso CL. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds. PLoS One 2016; 11:e0162484. [PMID: 27626272 PMCID: PMC5023329 DOI: 10.1371/journal.pone.0162484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023] Open
Abstract
Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.
Collapse
Affiliation(s)
- Andrea J. Ayala
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
- National Diagnostic Research Veterinary Medical Institute, Sofia, Bulgaria
| | - Cassidy R. Becker
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Clarice W. Arns
- Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Vitaly I. Bolotin
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Helena L. Ferreira
- Department of Veterinary Medicine, College of Animal Science and Food Engineering and Graduate Program in Experimental Epidemiology of Zoonosis, University of São Paulo, São Paulo, Brazil
- Post-Graduate Program in the Experimental Epidemiology of Zoonoses, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Anton P. Gerilovych
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | | | - Matheus C. Martini
- Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Denys V. Muzyka
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Maria A. Orsi
- National Agricultural Laboratory of São Paulo, Lanagro/SP, Campinas, Brazil
| | - Guilherme P. Scagion
- Laboratory of Animal Virology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Renata K. Silva
- Post-Graduate Program in the Experimental Epidemiology of Zoonoses, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Olexii S. Solodiankin
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Boris T. Stegniy
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine
| | - Patti J. Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, Georgia, United States of America
| |
Collapse
|
23
|
Comparing the epidemiology of hospital-acquired methicillin-resistant Staphylococcus aureus clone groups in Alberta, Canada. Epidemiol Infect 2016; 144:2184-90. [PMID: 26947456 DOI: 10.1017/s0950268816000376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Patients with methicillin-resistant Staphylococcus aureus (MRSA) clones, which were traditionally seen in the community setting (USA400/CMRSA7 and USA300/CMRSA10), are often identified as hospital-acquired (HA) infections using Infection Prevention and Control (IPC) surveillance definitions. This study examined the demographics and healthcare risk factors of patients with HA-MRSA to help understand if community MRSA clones are from a source internal or external to the hospital setting. Despite USA300/CMRSA10 being the predominant clone in Alberta, hospital clones (USA100/CMRSA2) still dominated in the acute care setting. In the Alberta hospitalized population, patients with USA400/CMRSA7 and USA300/CMRSA10 clones were significantly younger, had fewer comorbidities, and a greater proportion had none or ambulatory care-only healthcare exposure. These findings suggest that there are two distinct populations of HA-MRSA patients, and the patients with USA400/CMRSA7 and USA300/CMRSA10 clones identified in hospital more greatly resemble patients affected by those clones in the community. It is possible that epidemiological assessment overidentifies HA acquisition of MRSA in patients unscreened for MRSA on admission to acute care.
Collapse
|
24
|
Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci Rep 2016; 6:24748. [PMID: 27103062 PMCID: PMC4840435 DOI: 10.1038/srep24748] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 12/23/2022] Open
Abstract
Berberine is an isoquinoline alkaloid widely used in the treatment of microbial infections. Recent studies have shown that berberine can enhance the inhibitory efficacy of antibiotics against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). However, the underlying mechanisms are poorly understood. Here, we demonstrated that sub-minimum inhibitory concentrations (MICs) of berberine exhibited no bactericidal activity against MRSA, but affected MRSA biofilm development in a dose dependent manner within the concentration ranging from 1 to 64 μg/mL. Further study indicated that berberine inhibited MRSA amyloid fibrils formation, which consist of phenol-soluble modulins (PSMs). Molecular dynamics simulation revealed that berberine could bind with the phenyl ring of Phe19 in PSMα2 through hydrophobic interaction. Collectively, berberine can inhibit MRSA biofilm formation via affecting PSMs’ aggregation into amyloid fibrils, and thereby enhance bactericidal activity of antibiotics. These findings will provide new insights into the multiple pharmacological properties of berberine in the treatment of microbial-generated amyloid involved diseases.
Collapse
|
25
|
Lapierre M, Blin C, Lambert A, Achaz G, Rocha EPC. The Impact of Selection, Gene Conversion, and Biased Sampling on the Assessment of Microbial Demography. Mol Biol Evol 2016; 33:1711-25. [PMID: 26931140 PMCID: PMC4915353 DOI: 10.1093/molbev/msw048] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies have linked demographic changes and epidemiological patterns in bacterial populations using coalescent-based approaches. We identified 26 studies using skyline plots and found that 21 inferred overall population expansion. This surprising result led us to analyze the impact of natural selection, recombination (gene conversion), and sampling biases on demographic inference using skyline plots and site frequency spectra (SFS). Forward simulations based on biologically relevant parameters from Escherichia coli populations showed that theoretical arguments on the detrimental impact of recombination and especially natural selection on the reconstructed genealogies cannot be ignored in practice. In fact, both processes systematically lead to spurious interpretations of population expansion in skyline plots (and in SFS for selection). Weak purifying selection, and especially positive selection, had important effects on skyline plots, showing patterns akin to those of population expansions. State-of-the-art techniques to remove recombination further amplified these biases. We simulated three common sampling biases in microbiological research: uniform, clustered, and mixed sampling. Alone, or together with recombination and selection, they further mislead demographic inferences producing almost any possible skyline shape or SFS. Interestingly, sampling sub-populations also affected skyline plots and SFS, because the coalescent rates of populations and their sub-populations had different distributions. This study suggests that extreme caution is needed to infer demographic changes solely based on reconstructed genealogies. We suggest that the development of novel sampling strategies and the joint analyzes of diverse population genetic methods are strictly necessary to estimate demographic changes in populations where selection, recombination, and biased sampling are present.
Collapse
Affiliation(s)
- Marguerite Lapierre
- Atelier de Bioinformatique, UMR7205 ISYEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France
| | - Camille Blin
- Sorbonne Universités, UPMC Univ Paris06, IFD, 4 Place Jussieu, Paris Cedex05, France Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR3525, Paris, France
| | - Amaury Lambert
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France UPMC Univ Paris 06, Laboratoire de Probabilités et Modèles Aléatoires (LPMA), CNRS UMR 7599, Paris, France
| | - Guillaume Achaz
- Atelier de Bioinformatique, UMR7205 ISYEB, MNHN-UPMC-CNRS-EPHE, Muséum National d'Histoire Naturelle, Paris, France Collège de France, Center for Interdisciplinary Research in Biology (CIRB), CNRS UMR 7241, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
26
|
Chang HH, Dordel J, Donker T, Worby CJ, Feil EJ, Hanage WP, Bentley SD, Huang SS, Lipsitch M. Identifying the effect of patient sharing on between-hospital genetic differentiation of methicillin-resistant Staphylococcus aureus. Genome Med 2016; 8:18. [PMID: 26873713 PMCID: PMC4752745 DOI: 10.1186/s13073-016-0274-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 01/29/2016] [Indexed: 01/17/2023] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common healthcare-associated pathogens. To examine the role of inter-hospital patient sharing on MRSA transmission, a previous study collected 2,214 samples from 30 hospitals in Orange County, California and showed by spa typing that genetic differentiation decreased significantly with increased patient sharing. In the current study, we focused on the 986 samples with spa type t008 from the same population. Methods We used genome sequencing to determine the effect of patient sharing on genetic differentiation between hospitals. Genetic differentiation was measured by between-hospital genetic diversity, FST, and the proportion of nearly identical isolates between hospitals. Results Surprisingly, we found very similar genetic diversity within and between hospitals, and no significant association between patient sharing and genetic differentiation measured by FST. However, in contrast to FST, there was a significant association between patient sharing and the proportion of nearly identical isolates between hospitals. We propose that the proportion of nearly identical isolates is more powerful at determining transmission dynamics than traditional estimators of genetic differentiation (FST) when gene flow between populations is high, since it is more responsive to recent transmission events. Our hypothesis was supported by the results from coalescent simulations. Conclusions Our results suggested that there was a high level of gene flow between hospitals facilitated by patient sharing, and that the proportion of nearly identical isolates is more sensitive to population structure than FST when gene flow is high. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0274-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Janina Dordel
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK. .,Department of Biology, Drexel University, Philadelphia, PA, USA.
| | - Tjibbe Donker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Colin J Worby
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Edward J Feil
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | - William P Hanage
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Stephen D Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA, UK.
| | - Susan S Huang
- Division of Infectious Diseases and Health Policy Research Institute, University of California Irvine School of Medicine, Irvine, CA, USA.
| | - Marc Lipsitch
- Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
27
|
The Impact of Molecular Diagnostics on Surveillance of Foodborne Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Hernandez FJ, Hernandez LI, Kavruk M, Arıca YM, Bayramoğlu G, Borsa BA, Öktem HA, Schäfer T, Özalp VC. NanoKeepers: stimuli responsive nanocapsules for programmed specific targeting and drug delivery. Chem Commun (Camb) 2015; 50:9489-92. [PMID: 25008577 DOI: 10.1039/c4cc04248d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial resistance is a high priority clinical issue worldwide. Thus, an effective system that rapidly provides specific treatment for bacterial infections using controlled dose release remains an unmet clinical need. Herein, we report on the NanoKeepers approach for the specific targeting of S. aureus with controlled release of antibiotics based on nuclease activity.
Collapse
Affiliation(s)
- Frank J Hernandez
- POLYMAT, University of Basque Country UPV/EHU, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM, Cookson BT, Shendure J, Salipante SJ. A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota. PLoS Genet 2015; 11:e1005413. [PMID: 26230489 PMCID: PMC4521703 DOI: 10.1371/journal.pgen.1005413] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/02/2015] [Indexed: 01/05/2023] Open
Abstract
Bacterial whole genome sequencing holds promise as a disruptive technology in clinical microbiology, but it has not yet been applied systematically or comprehensively within a clinical context. Here, over the course of one year, we performed prospective collection and whole genome sequencing of nearly all bacterial isolates obtained from a tertiary care hospital's intensive care units (ICUs). This unbiased collection of 1,229 bacterial genomes from 391 patients enables detailed exploration of several features of clinical pathogens. A sizable fraction of isolates identified as clinically relevant corresponded to previously undescribed species: 12% of isolates assigned a species-level classification by conventional methods actually qualified as distinct, novel genomospecies on the basis of genomic similarity. Pan-genome analysis of the most frequently encountered pathogens in the collection revealed substantial variation in pan-genome size (1,420 to 20,432 genes) and the rate of gene discovery (1 to 152 genes per isolate sequenced). Surprisingly, although potential nosocomial transmission of actively surveilled pathogens was rare, 8.7% of isolates belonged to genomically related clonal lineages that were present among multiple patients, usually with overlapping hospital admissions, and were associated with clinically significant infection in 62% of patients from which they were recovered. Multi-patient clonal lineages were particularly evident in the neonatal care unit, where seven separate Staphylococcus epidermidis clonal lineages were identified, including one lineage associated with bacteremia in 5/9 neonates. Our study highlights key differences in the information made available by conventional microbiological practices versus whole genome sequencing, and motivates the further integration of microbial genome sequencing into routine clinical care.
Collapse
Affiliation(s)
- David J. Roach
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Joshua N. Burton
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Bethany Stackhouse
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Susan M. Butler-Wu
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Brad T. Cookson
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Stephen J. Salipante
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Whole-genome sequencing for outbreak investigations of methicillin-resistant Staphylococcus aureus in the neonatal intensive care unit: time for routine practice? Infect Control Hosp Epidemiol 2015; 36:777-85. [PMID: 25998499 DOI: 10.1017/ice.2015.73] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Infants in the neonatal intensive care unit (NICU) are at increased risk for methicillin-resistant Staphylococcus aureus (MRSA) acquisition. Outbreaks may be difficult to identify due in part to limitations in current molecular genotyping available in clinical practice. Comparison of genome-wide single nucleotide polymorphisms (SNPs) may identify epidemiologically distinct isolates among a population sample that appears homogenous when evaluated using conventional typing methods. OBJECTIVE To investigate a putative MRSA outbreak in a NICU utilizing whole-genome sequencing and phylogenetic analysis to identify recent transmission events. DESIGN Clinical and surveillance specimens collected during clinical care and outbreak investigation. PATIENTS A total of 17 neonates hospitalized in a 43-bed level III NICU in northeastern Florida from December 2010 to October 2011 were included in this study. METHODS We assessed epidemiological data in conjunction with 4 typing methods: antibiograms, PFGE, spa types, and phylogenetic analysis of genome-wide SNPs. RESULTS Among the 17 type USA300 isolates, 4 different spa types were identified using pulsed-field gel electrophoresis. Phylogenetic analysis identified 5 infants as belonging to 2 clusters of epidemiologically linked cases and excluded 10 unlinked cases from putative transmission events. The availability of these results during the initial investigation would have improved infection control interventions. CONCLUSION Whole-genome sequencing and phylogenetic analysis are invaluable tools for epidemic investigation; they identify transmission events and exclude cases mistakenly implicated by traditional typing methods. When routinely applied to surveillance and investigation in the clinical setting, this approach may provide actionable intelligence for measured, appropriate, and effective interventions.
Collapse
|
31
|
Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. mBio 2014; 5:mBio.01824-14. [PMID: 25538191 PMCID: PMC4278535 DOI: 10.1128/mbio.01824-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UNLABELLED Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. IMPORTANCE Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in Haiti over a 2-year period. Our results indicate that even during such a short time scale, V. cholerae in Haiti has undergone evolution and diversification driven by positive selection, which may have implications for understanding the global clinical and epidemiological patterns of the disease. Furthermore, the continued presence of the epidemic strain in Haitian aquatic environments has implications for transmission.
Collapse
|
32
|
Absence of patient-to-patient intrahospital transmission of Staphylococcus aureus as determined by whole-genome sequencing. mBio 2014; 5:e01692-14. [PMID: 25293757 PMCID: PMC4196229 DOI: 10.1128/mbio.01692-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nosocomial transmission of pathogens is a major health care challenge. The increasing spread of antibiotic-resistant strains represents an ongoing threat to public health. Previous Staphylococcus aureus transmission studies have focused on transmission of S. aureus between asymptomatic carriers or used low-resolution typing methods such as multilocus sequence typing (MLST) or spa typing. To identify patient-to-patient intrahospital transmission using high-resolution genetic analysis, we sequenced the genomes of a consecutive set of 398 S. aureus isolates from sterile-site infections. The S. aureus strains were collected from four hospitals in the Houston Methodist Hospital System over a 6-month period. Importantly, we discovered no evidence of transmission of S. aureus between patients with sterile-site infections. The lack of intrahospital transmission may reflect a fundamental difference between day-to-day transmission events in the hospital setting and the more frequently studied outbreak scenarios. Previous studies have suggested that nosocomial transmission of S. aureus is common. Our data revealed an unexpected lack of evidence for intrahospital transmission of S. aureus between patients with invasive infections. This finding has important implications for hospital infection control and public health efforts. In addition, our data demonstrate that highly related pools of S. aureus strains exist in the community which may complicate outbreak investigations.
Collapse
|
33
|
Nüesch‐Inderbinen MT, Stadler U, Johler S, Hächler H, Stephan R, Nüesch H. Intrafamilial spread of a Panton‐Valentine leukocidin‐positive community‐acquired methicillin‐resistant Staphylococcus aureus belonging to the paediatric clone ST5 SSCmecIV. JMM Case Rep 2014. [DOI: 10.1099/jmmcr.0.001859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Magdalena T. Nüesch‐Inderbinen
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Ueli Stadler
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Sophia Johler
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Herbert Hächler
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- National Centre for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
34
|
Abstract
The present study investigated the drug-resistance to the selected antibiotics in Escherichia coli, Salmonella typhimurium and beta-haemolytic coagulase-positive staphylococci isolated from pigeons bred in Poland. In the case of E. coli, tetracyclines and amoxicillin were least effective. In the staphylococci, the highest resistance was detected for oxytetracycline and quinolones and 5% were resistant to methicillin. The lowest drug-resistance was reported for Salmonella typhimurium.
Collapse
|
35
|
Stakeholder consultation insights on the future of genomics at the clinical-public health interface. Transl Res 2014; 163:466-77. [PMID: 24434657 DOI: 10.1016/j.trsl.2013.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 02/03/2023]
Abstract
In summer 2011, the Centers for Disease Control and Prevention Office of Public Health Genomics conducted a stakeholder consultation, administered by the University of Michigan Center for Public Health and Community Genomics, and Genetic Alliance, to recommend priorities for public health genomics from 2012 through 2017. Sixty-two responses from health professionals, administrators, and members of the public were pooled with 2 sets of key informant interviews and 3 discussion groups. NVivo 9 and manual methods were used to organize themes. This review offers an interim analysis of progress with respect to the final recommendations, which demonstrated a strong interest in moving genomic discoveries toward implementation and comparative effectiveness (T3/T4) translational research. A translational research continuum exists with familial breast and ovarian cancer at one end and prostate cancer at the other. Cascade screening for inherited arrhythmia syndromes and hypercholesterolemia lags stakeholder recommendations in the United States but not in Europe; implementation of health service-based screening for Lynch syndrome, and integration into electronic health information systems, is on pace with the recommended timeline. A number of options exist to address deficits in the funding of translational research, particularly for oncogenomic gene expression profiling. The goal of personalized risk assessment necessitates both research progress (eg, in whole genome sequencing, as well as provider education in the differentiation of low- vs high-risk status. The public health approach supports an emphasis on genetic test validation while endorsing clinical translation research inclusion of an environmental and population-based perspective.
Collapse
|
36
|
Molecular tracing of the emergence, diversification, and transmission of S. aureus sequence type 8 in a New York community. Proc Natl Acad Sci U S A 2014; 111:6738-43. [PMID: 24753569 DOI: 10.1073/pnas.1401006111] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
During the last 2 decades, community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains have dramatically increased the global burden of S. aureus infections. The pandemic sequence type (ST)8/pulsed-field gel type USA300 is the dominant CA-MRSA clone in the United States, but its evolutionary history and basis for biological success are incompletely understood. Here, we use whole-genome sequencing of 387 ST8 isolates drawn from an epidemiological network of CA-MRSA infections and colonizations in northern Manhattan to explore short-term evolution and transmission patterns. Phylogenetic analysis predicted that USA300 diverged from a most common recent ancestor around 1993. We found evidence for multiple introductions of USA300 and reconstructed the phylogeographic spread of isolates across neighborhoods. Using pair-wise single-nucleotide polymorphism distances as a measure of genetic relatedness between isolates, we observed that most USA300 isolates had become endemic in households, indicating their critical role as reservoirs for transmission and diversification. Using the maximum single-nucleotide polymorphism variability of isolates from within households as a threshold, we identified several possible transmission networks beyond households. Our study also revealed the evolution of a fluoroquinolone-resistant subpopulation in the mid-1990s and its subsequent expansion at a time of high-frequency outpatient antibiotic use. This high-resolution phylogenetic analysis of ST8 has documented the genomic changes associated with USA300 evolution and how some of its recent evolution has been shaped by antibiotic use. By integrating whole-genome sequencing with detailed epidemiological analyses, our study provides an important framework for delineating the full diversity and spread of USA300 and other emerging pathogens in large urban community populations.
Collapse
|
37
|
Human cathelicidin LL-37 resistance and increased daptomycin MIC in methicillin-resistant Staphylococcus aureus strain USA600 (ST45) are associated with increased mortality in a hospital setting. J Clin Microbiol 2014; 52:2172-4. [PMID: 24648548 DOI: 10.1128/jcm.00189-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bacteremia caused by methicillin-resistant Staphylococcus aureus (MRSA) USA600 has been associated with increased patient mortality. We found that USA600 MRSA exhibited significantly increased resistance to human cathelicidin LL-37 killing and daptomycin MIC creep compared to non-USA600 MRSA. Virulent health care-associated MRSA strains may coevolve innate host defense peptide and antibiotic resistances.
Collapse
|
38
|
Fournier PE, Drancourt M, Colson P, Rolain JM, Scola BL, Raoult D. Modern clinical microbiology: new challenges and solutions. Nat Rev Microbiol 2013; 11:574-85. [PMID: 24020074 PMCID: PMC7097238 DOI: 10.1038/nrmicro3068] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the twenty-first century, the clinical microbiology laboratory plays a central part in optimizing the management of infectious diseases and surveying local and global epidemiology. This pivotal role is made possible by the adoption of rational sampling, point-of-care tests, extended automation and new technologies, including mass spectrometry for colony identification, real-time genomics for isolate characterization, and versatile and permissive culture systems. When balanced with cost, these developments can improve the workflow and output of clinical microbiology laboratories and, by identifying and characterizing microbial pathogens, provide significant input to scientific discovery.
Collapse
Affiliation(s)
- Pierre-Edouard Fournier
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13385 France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13385 France
| | - Philippe Colson
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13385 France
| | - Jean-Marc Rolain
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13385 France
| | - Bernard La Scola
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13385 France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, 13385 France
| |
Collapse
|