1
|
Yu K, Li F, Ye L, Yu F. Accumulation of DNA G-quadruplex in mitochondrial genome hallmarks mesenchymal senescence. Aging Cell 2024; 23:e14265. [PMID: 38955799 PMCID: PMC11464107 DOI: 10.1111/acel.14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Searching for biomarkers of senescence remains necessary and challenging. Reliable and detectable biomarkers can indicate the senescence condition of individuals, the need for intervention in a population, and the effectiveness of that intervention in controlling or delaying senescence progression and senescence-associated diseases. Therefore, it is of great importance to fulfill the unmet requisites of senescence biomarkers especially when faced with the growing global senescence nowadays. Here, we established that DNA G-quadruplex (G4) in mitochondrial genome was a reliable hallmark for mesenchymal senescence. Via developing a versatile and efficient mitochondrial G4 (mtG4) probe we revealed that in multiple types of senescence, including chronologically healthy senescence, progeria, and replicative senescence, mtG4 hallmarked aged mesenchymal stem cells. Furthermore, we revealed the underlying mechanisms by which accumulated mtG4, specifically within respiratory chain complex (RCC) I and IV loci, repressed mitochondrial genome transcription, finally impairing mitochondrial respiration and causing mitochondrial dysfunction. Our findings endowed researchers with the visible senescence biomarker based on mitochondrial genome and furthermore revealed the role of mtG4 in inhibiting RCC genes transcription to induce senescence-associated mitochondrial dysfunction. These findings depicted the crucial roles of mtG4 in predicting and controlling mesenchymal senescence.
Collapse
Affiliation(s)
- Kangkang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of ChemistrySichuan UniversityChengduChina
- Key Laboratory of bio‐Resources and eco‐Environment (Ministry of Education), College of Life SciencesSichuan UniversityChengduChina
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Pediatric DentistryWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
2
|
Ortiz de Luzuriaga I, Lopez X, Gil A. Learning to Model G-Quadruplexes: Current Methods and Perspectives. Annu Rev Biophys 2021; 50:209-243. [PMID: 33561349 DOI: 10.1146/annurev-biophys-060320-091827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: (a) classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and (b) quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.
Collapse
Affiliation(s)
- Iker Ortiz de Luzuriaga
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain
| | - Xabier Lopez
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Uniberstitatea, UPV/EHU, 20080 Donostia, Euskadi, Spain.,Donostia International Physics Center, 20018 Donostia, Spain
| | - Adrià Gil
- CIC nanoGUNE BRTA, 20018 Donostia, Euskadi, Spain; .,BioISI-Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal;
| |
Collapse
|
3
|
Haiduc I. Review. Inverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 2. Six-membered rings. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1670349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ionel Haiduc
- Facultatea de Chimie, Universitatea Babeş-Bolyai, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Qin QP, Zou BQ, Hu FL, Huang GB, Wang SL, Gu YQ, Tan MX. Platinum(ii) complexes with rutaecarpine and tryptanthrin derivatives induce apoptosis by inhibiting telomerase activity and disrupting mitochondrial function. MEDCHEMCOMM 2018; 9:1639-1648. [PMID: 30429969 PMCID: PMC6195000 DOI: 10.1039/c8md00247a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Four new platinum(ii) complexes, [Pt(Rut)(DMSO)Cl2] (Rut-Pt), [Pt(Try)(DMSO)Cl2] (Try-Pt), [Pt(ITry)(DMSO)Cl2] (ITry-Pt) and [Pt(BrTry)(DMSO)Cl2] (BrTry-Pt), with rutaecarpine (Rut), tryptanthrin (Try), 8-iodine-tryptanthrin (ITry) and 8-bromo-tryptanthrin (BrTry) as ligands were synthesized and fully characterized. In these complexes, the platinum(ii) adopts a four-coordinated square planar geometry. The inhibitory activity evaluated by the MTT assay showed that BrTry-Pt (IC50 = of 0.21 ± 0.25 μM) could inhibit the growth of T-24 tumor cells (human bladder cancer cell line) more so than the other three complexes. In addition, all of these Pt complexes exhibited low toxicity against non-cancerous HL-7702 cells. BrTry-Pt induced cell cycle arrest in the S phase, leading to the down-regulation of cyclin A and CDK2 proteins. BrTry-Pt acts as a telomerase inhibitor targeting the c-myc promoter. In addition, BrTry-Pt also caused mitochondrial dysfunction. Importantly, the in vitro anticancer activity of BrTry-Pt was higher than those of Rut-Pt, Try-Pt and ITry-Pt, and it was more selective for T-24 cells than for non-cancerous HL-7702 cells.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Guangxi University for Nationalities , Nanning , 530006 , P. R. China
| | - Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yun-Qiong Gu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| |
Collapse
|
5
|
Zhang S, Wu Q, Zhang H, Wang Q, Wang X, Mei W, Wu X, Zheng W. Microwave-assisted synthesis of ruthenium(II) complexes with alkynes as potential inhibitor by selectively recognizing c-myc G-quadruplex DNA. J Inorg Biochem 2017; 176:113-122. [PMID: 28888786 DOI: 10.1016/j.jinorgbio.2017.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/11/2017] [Accepted: 08/05/2017] [Indexed: 11/20/2022]
Abstract
Herein, two polypyridyl ruthenium(II) complexes with alkynes, [Ru(bpy)2L](ClO4)2 (L=p-TEPIP (1) and p-BEPIP (2); bpy=2,2'-bipyridine; p-TEPIP=2-(4-trimethylsilylpropargyl)-1H-imidazo[4,5f][1,10]phenanthroline; p-BEPIP=2-(4-phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline) have been successfully achieved in yields of 32%-89% by a Sonogashira coupling reaction under microwave irradiation. We studied these complexes as potential stabilizers of c-myc G-quadruplex DNA. Observations revealed that both complexes could selectively bind to and stabilize c-myc G-quadruplex DNA with a constant of approximately 1.61±0.78 and 9.47±4.20×103M-1, respectively, as determined from ITC (isothermal ttitration calorimetry) experiments, FRET (fluorescence resonance energy ttransfer) assay and competitive FRET assay. Moreover, the melting point (Tm) of the c-myc G-quadruplex DNA increased in the presence of 1 and 2 ([Ru]=0.2μM) by approximately 9 and 19.9°C, respectively. It is noteworthy that the conformation of the c-myc G-quadruplex DNA appeared to change when titrated with 1 and 2, which was accompanied by a negative-induced CD (circular dichroism) signal that appeared at a wavelength of 295nm. Furthermore, the conformational change in c-myc G-quadruplex DNA induced by 1 and 2have also been confirmed by TEM (transmission electron microscopy) and AFM (atomic force microscopy). Consequently, the replication of c-myc DNA was blocked by 1 and 2, and especially by 2, as verified by PCR (polymerase chain reaction) -stop assay and Western-blot assay. Thus, these ruthenium(II) complexes can be developed as potential inhibitors in chemotherapy through their binding and stabilization of c-myc G-quadruplex DNA.
Collapse
Affiliation(s)
- Shuangyan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hao Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Qi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiaohui Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Xi SF, Bao LY, Xu ZL, Wang YX, Ding ZD, Gu ZG. Enhanced Stabilization of G-Quadruplex DNA by [Ni4
L6
]8+
Cages with Large Rigid Aromatic Ligands. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sai-Fei Xi
- The Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 214122 Wuxi China
| | - Ling-Yu Bao
- The Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 214122 Wuxi China
| | - Zong-Li Xu
- The Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 214122 Wuxi China
| | - Yu-Xia Wang
- The Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 214122 Wuxi China
| | - Zheng-Dong Ding
- The Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 214122 Wuxi China
| | - Zhi-Guo Gu
- The Key Laboratory of Synthetic and Biological Colloids; Ministry of Education; School of Chemical and Material Engineering; Jiangnan University; 214122 Wuxi China
| |
Collapse
|
7
|
Zheng XH, Nie X, Fang Y, Zhang Z, Xiao Y, Mao Z, Liu H, Ren J, Wang F, Xia L, Huang J, Zhao Y. A Cisplatin Derivative Tetra-Pt(bpy) as an Oncotherapeutic Agent for Targeting ALT Cancer. J Natl Cancer Inst 2017; 109:3752362. [PMID: 28521363 DOI: 10.1093/jnci/djx061] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background In approximately 15% of human cancers, telomere length is maintained independently of telomerase by the homologous recombination (HR)-mediated alternative lengthening of telomeres (ALT) pathway. Whether the ALT pathway can be exploited for therapeutic treatment remains unknown. The purpose of this study is to develop oncotherapeutic agent to target ALT cancers. Methods Surface plasmon resonance assay, antibody to G-quadruplex, and fluorescence in situ hybridization (FISH) were used to discover Tetra-Pt(bpy), a cisplatin derivative that specifically targets telomeric G-quadruplex. We used immunofluorescence, FISH, C-circle assay, and chromosome orientation FISH to evaluate the inhibitory effect of Tetra-Pt(bpy) on ALT activity in human ALT cancers. The shortening of telomere length induced by Tetra-Pt(bpy) was determined by telomere restriction fragment or Q-FISH. Cell destination after Tetra-Pt(bpy) treatment was determined by β-gal staining or apoptosis assay. Nude mice (n = 4 per group) were injected with U2OS cells to evaluate the effects of Tetra-Pt(bpy) on tumor growth. All statistical tests were two-sided. Results Tetra-Pt(bpy) inhibits the strand invasion/annealing step of telomeric homologous recombination by selectively converting telomeric ssDNA to a G-quadruplex. ALT-cells treated with Tetra-Pt(bpy) show fewer ALT-associated promyelocytic leukemia bodies (untreated: mean±SD = 5.9±0.2 vs treated: mean±SD = 3.1±0.1, P < .001), fewer extrachromosomal C-circles (untreated: mean±SD = 100.5±1.6 vs treated: mean±SD = 18.0±1.7, P < .001), and reduced telomere sister chromatin exchanges (untreated: mean±SD = 25.2%±1.5% vs treated: mean±SD = 13.1%±1.9%, P < .001). Consequently, critically short telomeres accumulate after multiple population doublings (untreated: mean±SD = 18.9%±1.7% vs treated: mean±SD = 57.4%±2.2%, P < .001), resulting in cell death by apoptosis or senescence. In vivo, Tetra-Pt(bpy) severely inhibits the growth of ALT-cell xenograft tumors in mice (untreated: mean±SD = 57.1±3.7 mm 3 vs treated: mean±SD = 19.0±3.2 mm 3 , P < .001). Importantly, Tetra-Pt(bpy) exhibits no adverse effects on proliferation, gene expression, or telomere metabolism in normal cells. Conclusions These results reveal the potential of Tetra-Pt(bpy) as a novel oncotherapeutic agent for targeting ALT cancer cells.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Sun Yat-sen University, Guangzhou, P. R. China; Medical School, Shenzhen University, Shenzhen, P. R. China
| | - Xin Nie
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yiming Fang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zepeng Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yingnan Xiao
- School of basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Zongwan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, P. R. China
| | - Haiying Liu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jian Ren
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, P. R. China
| | - Feng Wang
- School of basic Medical Sciences, Tianjin Medical University, Tianjin, P. R. China
| | - Lixin Xia
- Sun Yat-sen University, Guangzhou, P. R. China; Medical School, Shenzhen University, Shenzhen, P. R. China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong Zhao
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, P. R. China
| |
Collapse
|
8
|
Qin QP, Qin JL, Chen M, Li YL, Meng T, Zhou J, Liang H, Chen ZF. Chiral platinum (II)-4-(2,3-dihydroxypropyl)- formamide oxo-aporphine (FOA) complexes promote tumor cells apoptosis by directly targeting G-quadruplex DNA in vitro and in vivo. Oncotarget 2017; 8:61982-61997. [PMID: 28977920 PMCID: PMC5617480 DOI: 10.18632/oncotarget.18778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Three platinum(II) complexes, 4 (LC-004), 5 (LC-005), and 6 (LC-006), with the chiral FOA ligands R/S-(±)-FOA (1), R-(+)-FOA (2) and S-(–)-FOA (3), respectively, were synthesized and characterized. As potential anti-tumor agents, these complexes show higher cytotoxicity to BEL-7404 cells than the HL-7702 normal cells. They are potential telomerase inhibitors that target c-myc and human telomeric G-quadruplex DNA. Compared to complexes 4 and 5, 6 exhibited higher binding affinities towards telomeric, c-myc G-quadruplex DNA and caspase-3/9, thereby inducing senescence and apoptosis to a greater extent in tumor cells. Moreover, our in vivo studies showed that complex 6 can effectively inhibit tumor growth in the BEL-7404 and BEL-7402 xenograft mouse models and is less toxic than 5-fluorouracil and cisplatin. The effective inhibition of tumor growth is attributed to its interactions with 53BP1, TRF1, c-myc, TRF2, and hTERT. Thus, complex 6 can serve as a novel lead compound and a potential drug candidate for anticancer chemotherapy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jie Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
9
|
Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RKO, Mao ZW. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00300a] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the recent development of G4 DNA targeted metal complexes and discusses their potential as anticancer drugs.
Collapse
Affiliation(s)
- Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yi Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Eva Freisinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Peter Z. Qin
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
10
|
Xu CX, Zhang X, Zhou YW, Wang H, Cao Q, Shen Y, Ji LN, Mao ZW, Qin PZ. A Nitroxide-Tagged Platinum(II) Complex Enables the Identification of DNA G-Quadruplex Binding Mode. Chemistry 2016; 22:3405-3413. [PMID: 26845489 DOI: 10.1002/chem.201504960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We reported a novel strategy for investigating small molecule binding to G-quadruplexes (GQs). A newly synthesized dinuclear platinum(II) complex (Pt2L) containing a nitroxide radical was shown to selectively bind a GQ-forming sequence derived from human telomere (hTel). Using the nitroxide moiety as a spin label, electron paramagnetic resonance (EPR) spectroscopy was carried out to investigate binding between Pt2L and hTel GQ. Measurements indicated that two molecules of Pt2L bind with one molecule of hTel GQ. The inter-spin distance measured between the two bound Pt2L, together with molecular docking analyses, revealed that Pt2L predominately binds to the neighboring narrow and wide grooves of the G-tetrads as hTel adopts the antiparallel conformation. The design and synthesis of nitroxide tagged GQ binders, and the use of spin-labeling/EPR to investigate their interactions with GQs, will aid the development of small molecules for manipulating GQs involved in crucial biological processes.
Collapse
Affiliation(s)
- Cui-Xia Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Xiaojun Zhang
- Department of Chemistry, University of Southern California Los Angeles, California, 90089 (USA)
| | - Yi-Wei Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Hanqiang Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Yong Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry and Chemical Engineering, Sun Yat-Sen University Guangzhou, Guangdong, 510275 (P.R. China)
| | - Peter Z Qin
- Department of Chemistry, University of Southern California Los Angeles, California, 90089 (USA)
| |
Collapse
|
11
|
Ou Z, Qian Y, Gao Y, Wang Y, Yang G, Li Y, Jiang K, Wang X. Photophysical, G-quadruplex DNA binding and cytotoxic properties of terpyridine complexes with a naphthalimide ligand. RSC Adv 2016. [DOI: 10.1039/c6ra01441k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The complex3inhibits A549 cells selectively over non-cancerous NIH3T3 cells, which may correlate with its selective G-quadruplex binding and nuclear location.
Collapse
Affiliation(s)
- Zhize Ou
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Yimeng Qian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Yunyan Gao
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Yunqing Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Guoqiang Yang
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Yi Li
- Key Laboratory of Photochemical Convesion and Optoelectronic Material
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing
- People's Republic of China
| | - Kaiyue Jiang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Xin Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| |
Collapse
|
12
|
Platinum(II) phenanthroimidazole G-quadruplex ligand induces selective telomere shortening in A549 cancer cells. Biochimie 2015; 121:287-97. [PMID: 26724375 DOI: 10.1016/j.biochi.2015.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 11/21/2022]
Abstract
Telomere maintenance, achieved by the binding of protective shelterin capping proteins to telomeres and by either telomerase or a recombination-based alternative lengthening of telomere (ALT) mechanism, is critical for cell proliferation and survival. Extensive telomere shortening or loss of telomere integrity activates DNA damage checkpoints, leading to cell senescence or death. Although telomerase upregulation is an attractive target for anti-cancer therapy, the lag associated with telomere shortening and the potential activation of ALT pose a challenge. An alternative approach is to modify telomere interactions with binding proteins (telomere uncapping). G-quadruplex ligands stabilize structures generated from single-stranded G-rich 3'-telomere end (G-quadruplex) folding, which in principle, cannot be elongated by telomerase, thus leading to telomere shortening. Ligands can also mediate rapid anti-proliferative effects by telomere uncapping. We previously reported that the G-quadruplex ligand, phenylphenanthroimidazole ethylenediamine platinum(II) (PIP), inhibits telomerase activity in vitro[47]. In the current study, a long-term seeding assay showed that PIP significantly inhibited the seeding capacity of A549 lung cancer cells and to a lesser extent primary MRC5 fibroblast cells. Importantly, treatment with PIP caused a significant dose- and time-dependent decrease in average telomere length of A549 but not MRC5 cells. Moreover, cell cycle analysis revealed a significant increase in G1 arrest upon treatment of A549 cells, but not MRC5 cells. Both apoptosis and cellular senescence may contribute to the anti-proliferative effects of PIP. Our studies validate the development of novel and specific therapeutic ligands targeting telomeric G-quadruplex structures in cancer cells.
Collapse
|
13
|
Surana S, Shenoy AR, Krishnan Y. Designing DNA nanodevices for compatibility with the immune system of higher organisms. NATURE NANOTECHNOLOGY 2015; 10:741-7. [PMID: 26329110 PMCID: PMC4862568 DOI: 10.1038/nnano.2015.180] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/17/2015] [Indexed: 05/05/2023]
Abstract
DNA is proving to be a powerful scaffold to construct molecularly precise designer DNA devices. Recent trends reveal their ever-increasing deployment within living systems as delivery devices that not only probe but also program and re-program a cell, or even whole organisms. Given that DNA is highly immunogenic, we outline the molecular, cellular and organismal response pathways that designer nucleic acid nanodevices are likely to elicit in living systems. We address safety issues applicable when such designer DNA nanodevices interact with the immune system. In light of this, we discuss possible molecular programming strategies that could be integrated with such designer nucleic acid scaffolds to either evade or stimulate the host response with a view to optimizing and widening their applications in higher organisms.
Collapse
Affiliation(s)
- Sunaina Surana
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, 60637 Illinois, USA
| | - Avinash R. Shenoy
- Section of Microbiology, Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK
- ;
| | - Yamuna Krishnan
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, 60637 Illinois, USA
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK-UAS, Bellary Road, Bangalore 560065, India
- ;
| |
Collapse
|
14
|
Zheng XH, Cao Q, Ding YL, Zhong YF, Mu G, Qin PZ, Ji LN, Mao ZW. Platinum(II) clovers targeting G-quadruplexes and their anticancer activities. Dalton Trans 2015; 44:50-3. [PMID: 25373495 DOI: 10.1039/c4dt02760d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two porphyrin-bridged tetranuclear platinum(II) complexes are found to effectively stabilize various kinds of G-quadruplexes. Their clover-like shape endows them with the capability of targeting G-quadruplexes rather than the double-stranded structure. Their excellent anticancer activity is the result of a dual effect, inhibition of the telomerase activity and repression of oncogene expression.
Collapse
Affiliation(s)
- Xiao-Hui Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bhowmik D, Fiorillo G, Lombardi P, Suresh Kumar G. Recognition of human telomeric G-quadruplex DNA by berberine analogs: effect of substitution at the 9 and 13 positions of the isoquinoline moiety. J Mol Recognit 2015; 28:722-30. [DOI: 10.1002/jmr.2486] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Debipreeta Bhowmik
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| | - Gaetano Fiorillo
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - Paolo Lombardi
- Naxospharma srl; Via G. Di Vittorio 70 20026 Novate Milanese MI Italy
| | - G. Suresh Kumar
- Biophysical Chemistry Laboratory; CSIR-Indian Institute of Chemical Biology; Kolkata 700 032 India
| |
Collapse
|
16
|
Müller S, Rodriguez R. G-quadruplex interacting small molecules and drugs: from bench toward bedside. Expert Rev Clin Pharmacol 2014; 7:663-79. [DOI: 10.1586/17512433.2014.945909] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Xu CX, Shen Y, Hu Q, Zheng YX, Cao Q, Qin PZ, Zhao Y, Ji LN, Mao ZW. Stabilization of human telomeric G-quadruplex and inhibition of telomerase activity by propeller-shaped trinuclear Pt(II) complexes. Chem Asian J 2014; 9:2519-26. [PMID: 24996049 DOI: 10.1002/asia.201402258] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/15/2014] [Indexed: 12/21/2022]
Abstract
Two novel propeller-shaped, trigeminal-ligand-containing, flexible trinuclear Pt(II) complexes, {[Pt(dien)]3(ptp)}(NO3)6 (1) and {[Pt(dpa)]3(ptp)}(NO3)6 (2) (dien: diethylenetriamine; dpa: bis-(2-pyridylmethyl)amine; ptp: 6'-(pyridin-3-yl)-3,2':4',3''-terpyridine), have been designed and synthesized, and their interactions with G-quadruplex (G4) sequences are characterized. A combination of biophysical and biochemical assays reveals that both Pt(II) complexes exhibit higher affinity for human telomeric (hTel) and c-myc promoter G4 sequences than duplex DNA. Complex 1 binds and stabilizes hTel G4 sequence more effectively than complex 2. Both complexes are found to induce and stabilize either antiparallel or parallel conformation of G4 structures. Molecular docking studies indicate that complex 1 binds into the large groove of the antiparallel hTel G4 structure (PDB ID: 143D) and complex 2 stacks onto the exposed G-quartet of the parallel hTel G4 structure (PDB ID: 1KF1). Telomeric repeat amplification protocol assays demonstrate that both complexes are good telomerase inhibitors, with IC50 values of (16.0±0.4) μM and (4.20±0.25) μM for 1 and 2, respectively. Collectively, the results suggest that these propeller-shaped flexible trinuclear Pt(II) complexes are effective and selective G4 binders and good telomerase inhibitors. This work provides valuable information for the interaction between multinuclear metal complexes with G4 DNA.
Collapse
Affiliation(s)
- Cui-Xia Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510275 (China), Fax: (+86) 20-84112245
| | | | | | | | | | | | | | | | | |
Collapse
|