1
|
Perkins SW, Hlaing MZ, Hicks KA, Rajakovich LJ, Snider MJ. Mechanism of the Multistep Catalytic Cycle of 6-Hydroxynicotinate 3-Monooxygenase Revealed by Global Kinetic Analysis. Biochemistry 2023; 62:1553-1567. [PMID: 37130364 DOI: 10.1021/acs.biochem.2c00514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The class A flavoenzyme 6-hydroxynicotinate 3-monooxygenase (NicC) catalyzes a rare decarboxylative hydroxylation reaction in the degradation of nicotinate by aerobic bacteria. While the structure and critical residues involved in catalysis have been reported, the mechanism of this multistep enzyme has yet to be determined. A kinetic understanding of the NicC mechanism would enable comparison to other phenolic hydroxylases and illuminate its bioengineering potential for remediation of N-heterocyclic aromatic compounds. Toward these goals, transient state kinetic analyses by stopped-flow spectrophotometry were utilized to follow rapid changes in flavoenzyme absorbance spectra during all three stages of NicC catalysis: (1) 6-HNA binding; (2) NADH binding and FAD reduction; and (3) O2 binding with C4a-adduct formation, substrate hydroxylation, and FAD regeneration. Global kinetic simulations by numeric integration were used to supplement analytical fitting of time-resolved data and establish a kinetic mechanism. Results indicate that 6-HNA binding is a two-step process that substantially increases the affinity of NicC for NADH and enables the formation of a charge-transfer-complex intermediate to enhance the rate of flavin reduction. Singular value decomposition of the time-resolved spectra during the reaction of the substrate-bound, reduced enzyme with dioxygen provides evidence for the involvement of C4a-hydroperoxy-flavin and C4a-hydroxy-flavin intermediates in NicC catalysis. Global analysis of the full kinetic mechanism suggests that steady-state catalytic turnover is partially limited by substrate hydroxylation and C4a-hydroxy-flavin dehydration to regenerate the flavoenzyme. Insights gleaned from the kinetic model and determined microscopic rate constants provide a fundamental basis for understanding NicC's substrate specificity and reactivity.
Collapse
Affiliation(s)
- Scott W Perkins
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - May Z Hlaing
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| | - Katherine A Hicks
- Department of Chemistry, The State University of New York College at Cortland, Cortland, New York 13045, United States
| | - Lauren J Rajakovich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mark J Snider
- Department of Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
2
|
Huang H, Shang J, Wang S. Physiology of a Hybrid Pathway for Nicotine Catabolism in Bacteria. Front Microbiol 2020; 11:598207. [PMID: 33281798 PMCID: PMC7688666 DOI: 10.3389/fmicb.2020.598207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
Nicotine is a major N-heterocyclic aromatic alkaloid produced in tobacco plants and the main toxic chemical in tobacco waste. Due to its complex physiological effects and toxicity, it has become a concern both in terms of public health and the environment. A number of bacteria belonging to the genera Arthrobacter and Pseudomonas can degrade nicotine via the pyridine and pyrrollidine pathways. Recently, a novel hybrid of the pyridine and pyrrolidine pathways (also known as the VPP pathway) was found in the Rhizobiale group bacteria Agrobacterium tumefaciens S33, Shinella sp. HZN7 and Ochrobactrum sp. SJY1 as well as in other group bacteria. The special mosaic pathway has attracted much attention from microbiologists in terms of the study of their molecular and biochemical mechanisms. This will benefit the development of new biotechnologies in terms of the use of nicotine, the enzymes involved in its catabolism, and the microorganisms capable of degrading the alkaloid. In this pathway, some metabolites are hydroxylated in the pyridine ring or modified in the side chain with active groups, which can be used as precursors for the synthesis of some important compounds in the pharmaceutical and agricultural industries. Moreover, some enzymes may be used for industrial biocatalysis to transform pyridine derivatives into desired chemicals. Here, we review the molecular and biochemical basis of the hybrid nicotine-degrading pathway and discuss the electron transport in its oxidative degradation for energy conservation and bacterial growth.
Collapse
Affiliation(s)
- Haiyan Huang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China.,Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Jinmeng Shang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Molecular Deceleration Regulates Toxicant Release to Prevent Cell Damage in Pseudomonas putida S16 (DSM 28022). mBio 2020; 11:mBio.02012-20. [PMID: 32873764 PMCID: PMC7468206 DOI: 10.1128/mbio.02012-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The underlying molecular mechanisms of flavin-dependent amine oxidases remain relatively poorly understood, even though many of these enzymes have been reported. The nicotine oxidoreductase NicA2 is a crucial enzyme for the first step of nicotine degradation in Pseudomonas putida S16 (DSM 28022). Here, we present the crystal structure of a ternary complex comprising NicA2 residues 21 to 482, flavin adenine dinucleotide (FAD), and nicotine at 2.25 Å resolution. Unlike other, related structures, NicA2 does not have an associated diacyl glycerophospholipid, wraps its substrate more tightly, and has an intriguing exit passage in which nine bulky amino acid residues occlude the release of its toxic product, pseudooxynicotine (PN). The replacement of these bulky residues by amino acids with small side chains effectively increases the catalytic turnover rate of NicA2. Our results indicate that the passage in wild-type NicA2 effectively controls the rate of PN release and thus prevents its rapid intracellular accumulation. It gives ample time for PN to be converted to less-harmful substances by downstream enzymes such as pseudooxynicotine amine oxidase (Pnao) before its accumulation causes cell damage or even death. The temporal metabolic regulation mode revealed in this study may shed light on the production of cytotoxic compounds.IMPORTANCE Flavin-dependent amine oxidases have received extensive attention because of their importance in drug metabolism, Parkinson's disease, and neurotransmitter catabolism. However, the underlying molecular mechanisms remain relatively poorly understood. Here, combining the crystal structure of NicA2 (an enzyme in the first step of the bacterial nicotine degradation pathway in Pseudomonas putida S16 (DSM 28022)), biochemical analysis, and mutant construction, we found an intriguing exit passage in which bulky amino acid residues occlude the release of the toxic product of NicA2, in contrast to other, related structures. The selective product exportation register for NicA2 has proven to be beneficial to cell growth. Those seeking to produce cytotoxic compounds could greatly benefit from the use of such an export register mechanism.
Collapse
|
4
|
Yu MF, Xia ZZ, Yao JC, Feng Z, Li DH, Liu T, Cheng GJ, He DL, Li XH. Functional analysis of the ocnE gene involved in nicotine-degradation pathways in Ochrobactrum intermedium SCUEC4 and its enzymatic properties. Can J Microbiol 2020; 67:138-146. [PMID: 32841574 DOI: 10.1139/cjm-2020-0118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The SCUEC4 strain of Ochrobactrum intermedium is a newly isolated bacterium that degrades nicotine can use nicotine as the sole carbon source via a series of enzymatic catalytic processes. The mechanisms underlying nicotine degradation in this bacterium and the corresponding functional genes remain unclear. Here, we analyzed the function and biological properties of the ocnE gene involved in the nicotine-degradation pathways in strain SCUEC4. The ocnE gene was cloned by PCR with total DNA of strain SCUEC4 and used to construct the recombinant plasmid pET28a-ocnE. The overexpression of the OcnE protein was detected by SDS-PAGE analysis, and study of the function of this protein was spectrophotometrically carried out by monitoring the changes of 2,5-dihydroxypyridine. Moreover, the effects of temperature, pH, and metal ions on the biological activities of the OcnE protein were analyzed. The optimal conditions for the biological activities of OcnE, a protein of approximately 37.6 kDa, were determined to be 25 °C, pH 7.0, and 25 μmol/L Fe2+, and the suitable storage conditions for the OcnE protein were 0 °C and pH 7.0. In conclusion, the ocnE gene is responsible for the ability of 2,5-dihydroxypyridine dioxygenase. These findings will be beneficial in clarifying the mechanisms of nicotine degradation in O. intermedium SCUEC4.
Collapse
Affiliation(s)
- Meng-Fei Yu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China.,Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory for the State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Zhen-Zhen Xia
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Jia-Cheng Yao
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Zhe Feng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Ding-Hua Li
- Hunan Beye Biotechnology Ltd., Changsha, Hunan 410139, People's Republic of China
| | - Tao Liu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Guo-Jun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Dong-Lan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Xiao-Hua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China.,Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, Key Laboratory for the State Ethnic Affairs Commission for Biological Technology, College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| |
Collapse
|
5
|
Zhao S, Hu C, Guo L, Li K, Yu H. Isolation of a 3-hydroxypyridine degrading bacterium, Agrobacterium sp. DW-1, and its proposed degradation pathway. AMB Express 2019; 9:65. [PMID: 31102032 PMCID: PMC6525221 DOI: 10.1186/s13568-019-0782-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/23/2019] [Indexed: 01/02/2023] Open
Abstract
A 3-hydroxypyridine degrading bacterium, designated strain DW-1, was isolated from petroleum contaminated soil in Liao River China. 16S rRNA-based phylogenetic analysis indicates that strain DW-1 belongs to genus Agrobacterium. The optimal cultivation temperature and pH for strain DW-1 with 3-hydroxypyridine were 30 °C and 8.0, respectively. Under optimal conditions, strain DW-1 could completely degrade up to 1500 mg/L of 3-hydroxypyridine in 66 h. The 3-hydroxypyridine degradation pathway of strain DW-1 was suggested by HPLC and LC-MS analysis. The first reaction of 3-hydroxypyridine degradation in strain DW-1 was α-hydroxylation so that the major metabolite 2,5-dihydroxypyridine was produced, and then 2,5-dihydroxypyridine was transformed by a Fe2+-dependent dioxygenase to form N-formylmaleamic acid. N-Formylmaleamic acid will be transformed to maleic acid and fumaric acid through maleamic acid. This is the first report of the 3-hydroxypyridine degradation pathway and the utilization of 3-hydroxypyridine by a Agrobacterium sp. It may be potentially used for the bioremediation of environments polluted with 3-hydroxypyridine.
Collapse
Affiliation(s)
- Shuxue Zhao
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Chunhui Hu
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, 238 Songling Road, Laoshan District, Qingdao, 266100 Shandong Province People’s Republic of China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| | - Kuiran Li
- Key Laboratory of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, 238 Songling Road, Laoshan District, Qingdao, 266100 Shandong Province People’s Republic of China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, 700 Changcheng Road, Chengyang District, Qingdao, 266109 Shandong Province People’s Republic of China
| |
Collapse
|
6
|
Catabolism of 2-Hydroxypyridine by Burkholderia sp. Strain MAK1: a 2-Hydroxypyridine 5-Monooxygenase Encoded by hpdABCDE Catalyzes the First Step of Biodegradation. Appl Environ Microbiol 2018; 84:AEM.00387-18. [PMID: 29602788 DOI: 10.1128/aem.00387-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022] Open
Abstract
Microbial degradation of 2-hydroxypyridine usually results in the formation of a blue pigment (nicotine blue). In contrast, the Burkholderia sp. strain MAK1 bacterium utilizes 2-hydroxypyridine without the accumulation of nicotine blue. This scarcely investigated degradation pathway presumably employs 2-hydroxypyridine 5-monooxygenase, an elusive enzyme that has been hypothesized but has yet to be identified or characterized. The isolation of the mutant strain Burkholderia sp. MAK1 ΔP5 that is unable to utilize 2-hydroxypyridine has led to the identification of a gene cluster (designated hpd) which is responsible for the degradation of 2-hydroxypyridine. The activity of 2-hydroxypyridine 5-monooxygenase has been assigned to a soluble diiron monooxygenase (SDIMO) encoded by a five-gene cluster (hpdA, hpdB, hpdC, hpdD, and hpdE). A 4.5-kb DNA fragment containing all five genes has been successfully expressed in Burkholderia sp. MAK1 ΔP5 cells. We have proved that the recombinant HpdABCDE protein catalyzes the enzymatic turnover of 2-hydroxypyridine to 2,5-dihydroxypyridine. Moreover, we have confirmed that emerging 2,5-dihydroxypyridine is a substrate for HpdF, an enzyme similar to 2,5-dihydroxypyridine 5,6-dioxygenases that are involved in the catabolic pathways of nicotine and nicotinic acid. The proteins and genes identified in this study have allowed the identification of a novel degradation pathway of 2-hydroxypyridine. Our results provide a better understanding of the biodegradation of pyridine derivatives in nature. Also, the discovered 2-hydroxypyridine 5-monooxygenase may be an attractive catalyst for the regioselective synthesis of various N-heterocyclic compounds.IMPORTANCE The degradation pathway of 2-hydroxypyridine without the accumulation of a blue pigment is relatively unexplored, as, to our knowledge, no genetic data related to this process have ever been presented. In this paper, we describe genes and enzymes involved in this little-studied catabolic pathway. This work provides new insights into the metabolism of 2-hydroxypyridine in nature. A broad-range substrate specificity of 2-hydroxypyridine 5-monooxygenase, a key enzyme in the degradation, makes this biocatalyst attractive for the regioselective hydroxylation of pyridine derivatives.
Collapse
|
7
|
Zheng C, Wang Q, Ning Y, Fan Y, Feng S, He C, Zhang TC, Shen Z. Isolation of a 2-picolinic acid-assimilating bacterium and its proposed degradation pathway. BIORESOURCE TECHNOLOGY 2017; 245:681-688. [PMID: 28917103 DOI: 10.1016/j.biortech.2017.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Burkholderia sp. ZD1, aerobically utilizes 2-picolinic acid as a source of carbon, nitrogen and energy, was isolated. ZD1 completely degraded 2-picolinic acid when the initial concentrations ranged from 25 to 300mg/L. Specific growth rate (μ) and specific consumption rate (q) increased continually in the concentration range of 25-100mg/L, and then declined. Based on the Haldane model and Andrew's model, μmax and qmax were calculated as 3.9 and 16.5h-1, respectively. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the main intermediates in the degradation pathway. Moreover, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was innovatively used to deduce the ring cleavage mechanism of N-heterocycle of 2-picolinic acid. To our knowledge, this is the first report on not only the utilization of 2-picolinic acid by a Burkholderia sp., but also applying FT-ICR-MS and ATR-FTIR for exploring the biodegradation pathway of organic compounds.
Collapse
Affiliation(s)
- Chunli Zheng
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Qiaorui Wang
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Yanli Ning
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, PR China
| | - Yurui Fan
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Shanshan Feng
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| | - Chi He
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China; School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | - Tian C Zhang
- 205D, PKI, Civil Engineering Department, University of Nebraska-Lincoln at Omaha campus, Omaha, NE 68182-0178, USA
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, PR China
| |
Collapse
|
8
|
Wang H, Zhi XY, Qiu J, Shi L, Lu Z. Characterization of a Novel Nicotine Degradation Gene Cluster ndp in Sphingomonas melonis TY and Its Evolutionary Analysis. Front Microbiol 2017; 8:337. [PMID: 28337179 PMCID: PMC5343071 DOI: 10.3389/fmicb.2017.00337] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/17/2017] [Indexed: 11/13/2022] Open
Abstract
Sphingomonas melonis TY utilizes nicotine as a sole source of carbon, nitrogen, and energy through a variant of the pyridine and pyrrolidine pathways (VPP). A 31-kb novel nicotine-degrading gene cluster, ndp, in strain TY exhibited a different genetic organization with the vpp cluster in strains Ochrobactrum rhizosphaerae SJY1 and Agrobacterium tumefaciens S33. Genes in vpp were separated by a 20-kb interval sequence, while genes in ndp were localized together. Half of the homolog genes were in different locus in ndp and vpp. Moreover, there was a gene encoding putative transporter of nicotine or other critical metabolite in ndp. Among the putative nicotine-degrading related genes, the nicotine hydroxylase, 6-hydroxy-L-nicotine oxidase, 6-hydroxypseudooxynicotine oxidase, and 6-hydroxy-3-succinyl-pyridine monooxygenase responsible for catalyzing the transformation of nicotine to 2, 5-dihydropyridine in the initial four steps of the VPP were characterized. Hydroxylation at C6 of the pyridine ring and dehydrogenation at the C2–C3 bond of the pyrrolidine ring were the key common reactions in the VPP, pyrrolidine and pyridine pathways. Besides, VPP and pyrrolidine pathway shared the same latter part of metabolic pathway. After analysis of metabolic genes in the pyridine, pyrrolidine, and VPP pathways, we found that both the evolutionary features and metabolic mechanisms of the VPP were more similar to the pyrrolidine pathway. The linked ndpHFEG genes shared by the VPP and pyrrolidine pathways indicated that these two pathways might share the same origin, but variants were observed in some bacteria. And we speculated that the pyridine pathway was distributed in Gram-positive bacteria and the VPP and pyrrolidine pathways were distributed in Gram-negative bacteria by using comprehensive homologs searching and phylogenetic tree construction.
Collapse
Affiliation(s)
- Haixia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University Kunming, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University Nanjing, China
| | - Longxiang Shi
- Institution of System Engineering, College of Computer Science and Technology, Zhejiang University Hangzhou, China
| | - Zhenmei Lu
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
9
|
Xia Z, Zhang W, Lei L, Liu X, Wei HL. Genome-wide investigation of the genes involved in nicotine metabolism in Pseudomonas putida J5 by Tn5 transposon mutagenesis. Appl Microbiol Biotechnol 2015; 99:6503-14. [PMID: 25808517 DOI: 10.1007/s00253-015-6529-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/14/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022]
Abstract
Pseudomonas putida J5 is an efficient nicotine-degrading bacterial strain isolated from the tobacco rhizosphere. We successfully performed a comprehensive whole-genome analysis of nicotine metabolism-associated genes by Tn5 transposon mutagenesis in P. putida J5. A total of 18 mutants with unique insertions screened from 16,324 Tn5-transformants failed to use nicotine as the sole carbon source. Flanking sequences of the Tn5 transposon were cloned with a shotgun method from all of the nicotine-growth-deficient mutants. The potentially essential products of mutated gene were classified as follows: oxidoreductases, protein and metal transport systems, proteases and peptidases, transcriptional and translational regulators, and unknown proteins. Bioinformatic analysis of the Tn5 insertion sites indicated that the nicotine metabolic genes were separated and widely distributed in the genome. One of the mutants, M2022, was a Tn5 insert into a gene encoding a homolog of 6-hydroxy-L-nicotine oxidase, the second enzyme of nicotine metabolism in Arthrobacter nicotinovorans. Genetic and biochemical analysis confirmed that three open reading frames (ORFs) from an approximately 13-kb fragment recovered from the mutant M2022 were responsible for the transformation of nicotine to 3-succinoyl-pyridine via pseudooxynicotine and 3-succinoyl semialdehyde-pyridine, the first three steps of nicotine degradation. Further research on these mutants and the Tn5-inserted genes will help us characterize nicotine metabolic processes in P. putida J5.
Collapse
Affiliation(s)
- Zhenyuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650021, Yunnan, China
| | | | | | | | | |
Collapse
|
10
|
Yu H, Tang H, Zhu X, Li Y, Xu P. Molecular mechanism of nicotine degradation by a newly isolated strain, Ochrobactrum sp. strain SJY1. Appl Environ Microbiol 2015; 81:272-81. [PMID: 25344232 PMCID: PMC4272752 DOI: 10.1128/aem.02265-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/16/2014] [Indexed: 11/20/2022] Open
Abstract
A newly isolated strain, SJY1, identified as Ochrobactrum sp., utilizes nicotine as a sole source of carbon, nitrogen, and energy. Strain SJY1 could efficiently degrade nicotine via a variant of the pyridine and pyrrolidine pathways (the VPP pathway), which highlights bacterial metabolic diversity in relation to nicotine degradation. A 97-kbp DNA fragment containing six nicotine degradation-related genes was obtained by gap closing from the genome sequence of strain SJY1. Three genes, designated vppB, vppD, and vppE, in the VPP pathway were cloned and heterologously expressed, and the related proteins were characterized. The vppB gene encodes a flavin-containing amine oxidase converting 6-hydroxynicotine to 6-hydroxy-N-methylmyosmine. Although VppB specifically catalyzes the dehydrogenation of 6-hydroxynicotine rather than nicotine, it shares higher amino acid sequence identity with nicotine oxidase (38%) from the pyrrolidine pathway than with its isoenzyme (6-hydroxy-l-nicotine oxidase, 24%) from the pyridine pathway. The vppD gene encodes an NADH-dependent flavin-containing monooxygenase, which catalyzes the hydroxylation of 6-hydroxy-3-succinoylpyridine to 2,5-dihydroxypyridine. VppD shows 62% amino acid sequence identity with the hydroxylase (HspB) from Pseudomonas putida strain S16, whereas the specific activity of VppD is ∼10-fold higher than that of HspB. VppE is responsible for the transformation of 2,5-dihydroxypyridine. Sequence alignment and phylogenetic analysis suggested that the VPP pathway, which evolved independently from nicotinic acid degradation, might have a closer relationship with the pyrrolidine pathway. The proteins and functional pathway identified here provide a sound basis for future studies aimed at a better understanding of molecular principles of nicotine degradation.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiongyu Zhu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yangyang Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Li H, Xie K, Huang H, Wang S. 6-hydroxy-3-succinoylpyridine hydroxylase catalyzes a central step of nicotine degradation in Agrobacterium tumefaciens S33. PLoS One 2014; 9:e103324. [PMID: 25054198 PMCID: PMC4108407 DOI: 10.1371/journal.pone.0103324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/01/2014] [Indexed: 12/02/2022] Open
Abstract
Nicotine is a main alkaloid in tobacco and is also the primary toxic compound in tobacco wastes. It can be degraded by bacteria via either pyridine pathway or pyrrolidine pathway. Previously, a fused pathway of the pyridine pathway and the pyrrolidine pathway was proposed for nicotine degradation by Agrobacterium tumefaciens S33, in which 6-hydroxy-3-succinoylpyridine (HSP) is a key intermediate connecting the two pathways. We report here the purification and properties of an NADH-dependent HSP hydroxylase from A. tumefaciens S33. The 90-kDa homodimeric flavoprotein catalyzed the oxidative decarboxylation of HSP to 2,5-dihydroxypyridine (2,5-DHP) in the presence of NADH and FAD at pH 8.0 at a specific rate of about 18.8 ± 1.85 µmol min-1 mg protein-1. Its gene was identified by searching the N-terminal amino acid residues of the purified protein against the genome draft of the bacterium. It encodes a protein composed of 391 amino acids with 62% identity to HSP hydroxylase (HspB) from Pseudomonas putida S16, which degrades nicotine via the pyrrolidine pathway. Considering the application potential of 2,5-DHP in agriculture and medicine, we developed a route to transform HSP into 2,5-DHP with recombinant HSP hydroxylase and an NADH-regenerating system (formate, NAD+ and formate dehydrogenase), via which around 0.53 ± 0.03 mM 2,5-DHP was produced from 0.76 ± 0.01 mM HSP with a molar conversion as 69.7%. This study presents the biochemical properties of the key enzyme HSP hydroxylase which is involved in the fused nicotine degradation pathway of the pyridine and pyrrolidine pathways and a new green route to biochemically synthesize functionalized 2,5-DHP.
Collapse
Affiliation(s)
- Huili Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, PR China
| | - Kebo Xie
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, PR China
| | - Haiyan Huang
- Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, PR China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, PR China
| |
Collapse
|
12
|
Wu G, Chen D, Tang H, Ren Y, Chen Q, Lv Y, Zhang Z, Zhao YL, Yao Y, Xu P. Structural insights into the specific recognition of N-heterocycle biodenitrogenation-derived substrates by microbial amide hydrolases. Mol Microbiol 2014; 91:1009-21. [PMID: 24397579 DOI: 10.1111/mmi.12511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 11/28/2022]
Abstract
N-heterocyclic compounds from industrial wastes, including nicotine, are environmental pollutants or toxicants responsible for a variety of health problems. Microbial biodegradation is an attractive strategy for the removal of N-heterocyclic pollutants, during which carbon-nitrogen bonds in N-heterocycles are converted to amide bonds and subsequently severed by amide hydrolases. Previous studies have failed to clarify the molecular mechanism through which amide hydrolases selectively recognize diverse amide substrates and complete the biodenitrogenation process. In this study, structural, computational and enzymatic analyses showed how the N-formylmaleamate deformylase Nfo and the maleamate amidase Ami, two pivotal amide hydrolases in the nicotine catabolic pathway of Pseudomonas putida S16, specifically recognize their respective substrates. In addition, comparison of the α-β-α groups of amidases, which include Ami, pinpointed several subgroup-characteristic residues differentiating the two classes of amide substrates as containing either carboxylate groups or aromatic rings. Furthermore, this study reveals the molecular mechanism through which the specially tailored active sites of deformylases and amidases selectively recognize their unique substrates. Our work thus provides a thorough elucidation of the molecular mechanism through which amide hydrolases accomplish substrate-specific recognition in the microbial N-heterocycles biodenitrogenation pathway.
Collapse
Affiliation(s)
- Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|