1
|
Ghani S, Bandehpour M, Yarian F, Baghaei K, Kazemi B. Production of a Ribosome-Displayed Mouse scFv Antibody Against CD133, Analysis of Its Molecular Docking, and Molecular Dynamic Simulations of Their Interactions. Appl Biochem Biotechnol 2024; 196:1399-1418. [PMID: 37410352 DOI: 10.1007/s12010-023-04609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The pentaspan transmembrane glycoprotein CD133, prominin-1, is expressed in cancer stem cells in many tumors and is promising as a novel target for the delivery of cytotoxic drugs to cancer-initiating cells. In this study, we prepared a mouse library of single-chain variable fragment (scFv) antibodies using mRNAs isolated from mice immunized with the third extracellular domain of a recombinant CD133 (D-EC3). First, the scFvs were directly exposed to D-EC3 to select a new specific scFv with high affinity against CD133 using the ribosome display method. Then, the selected scFv was characterized by the indirect enzyme-linked immunosorbent assay (ELISA), immunocytochemistry (ICC), and in silico analyses included molecular docking and molecular dynamics simulations. Based on ELISA results, scFv 2 had a higher affinity for recombinant CD133, and it was considered for further analysis. Next, the immunocytochemistry and flow cytometry experiments confirmed that the obtained scFv could bind to the CD133 expressing HT-29 cells. Furthermore, the results of in silico analysis verified the ability of the scFv 2 antibody to bind and detect the D-EC3 antigen through key residues employed in antigen-antibody interactions. Our results suggest that ribosome display could be applied as a rapid and valid method for isolation of scFv with high affinity and specificity. Also, studying the mechanism of interaction between CD133's scFv and D-EC3 with two approaches of experimental and in silico analysis has potential importance for the design and development of antibody with improved properties.
Collapse
Affiliation(s)
- Sepideh Ghani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Yarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Georg Magalhães C, Ploeger Mansueli C, Manieri TM, Quintilio W, Garbuio A, de Jesus Marinho J, de Moraes JZ, Tsuruta LR, Moro AM. Impaired proliferation and migration of HUVEC and melanoma cells by human anti-FGF2 mAbs derived from a murine hybridoma by guided selection. Bioengineered 2023; 14:2252667. [PMID: 37661761 PMCID: PMC10478743 DOI: 10.1080/21655979.2023.2252667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 09/05/2023] Open
Abstract
Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.
Collapse
Affiliation(s)
| | | | | | - Wagner Quintilio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | - Angélica Garbuio
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
| | | | - Jane Zveiter de Moraes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Moro
- Laboratory of Biopharmaceuticals, Butantan Institute, São Paulo, Brazil
- CeRDI, Center for Research and Development in Immunobiologicals, Butantan Institute, São Paulo, Brazil
| |
Collapse
|
3
|
Li W, Wang Z, Gao T, Sun S, Xu M, Pei R. Selection of CD133-targeted DNA Aptamers for the Efficient and Specific Therapy of Colorectal Cancer. J Mater Chem B 2022; 10:2057-2066. [DOI: 10.1039/d1tb02729h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor-targeted delivery of antitumor drugs is considered a promising strategy for improving chemotherapeutic efficiency and reducing the incidence of side effects. The development of tumor-targeted aptamers to accommodate drugs has...
Collapse
|
4
|
Simultaneously target of normal and stem cells-like gastric cancer cells via cisplatin and anti-CD133 CAR-T combination therapy. Cancer Immunol Immunother 2021; 70:2795-2803. [PMID: 33635343 DOI: 10.1007/s00262-021-02891-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
CD133 + cancer stem cells mediate chemoresistance in multiple aggressive cancers, and anti-CD133 chimeric antigen receptor T (CAR-T) cells are designed to selectively target cisplatin-resistant gastric cancer stem cells in this investigation. The relative CD133 expression was detected in gastric cancer patients before and after cisplatin treatment. Anti-CD133 CAR-T cells were incubated with cisplatin-exposed CD133+ BGC-823 cells to evaluate the killing efficacy. At the same time, the canonical T cell activation markers were assayed by fluorescence-activated cell sorting, and the functional cytokine profile was detected with enzyme-linked immunosorbent assays. In addition to the percentage of CD133 positive stem cell-like cells, the volume and weight of subcutaneous tumors in BGC-823, KATO III and MKN-28 xenograft models were measured to evaluate the anti-tumor activity of cisplatin and anti-CD133 CAR-T combination strategy. After cisplatin treatment, both human samples and BGC-823 cells showed up-regulated CD133 expression. Anti-CD133 CAR-T cells exhibited pronounced killing efficiency against cisplatin-exposed CD133+ BGC-823 cells with up-regulated activation markers and cytotoxicity cytokine production. Moreover, cisplatin and anti-CD133 CAR-T combination treatment inhibited tumor progression in three different xenograft models with diminished CD133 positive stem cell-like cell infiltration. These results indicate that cisplatin and anti-CD133 CAR-T combination strategy can simultaneously target normal and stem cell-like gastric cancer cells to improve the treatment outcome.
Collapse
|
5
|
Moazen B, Zarrinhaghighi A, Nejatollahi F. Selection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells. Rep Biochem Mol Biol 2018; 7:45-51. [PMID: 30324117 PMCID: PMC6175597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND CD90, a membrane-associated glycoprotein is a marker used to identify mesenchymal stem cells (MSCs). Recent studies have introduced CD90, which induces tumorigenic activity, as a cancer stem cell (CSC) marker in various malignancies. Blocking CD90 activity with anti-CD90 monoclonal antibodies enhanced anti-tumor effects. To date, highly specific antibody single-chain variable fragments (scFvs) have been isolated against various targets and showed promising results in cancer immunotherapy. METHODS A phage antibody was produced from a scFv library using M13KO7 helper phage. The phage library was panned against a CD90 epitope. To select specific clones, PCR and DNA fingerprinting were performed and common patterns were identified. The panning results were confirmed by phage ELISA. RESULTS Of 20 clones selected after panning, 16 shared identical fingerprints. One clone from this group reacted specifically with the epitope in phage ELISA. The average absorbance of wells coated with the CD90 peptide was significantly greater than that of wells containing no peptide (p=0.03). CONCLUSION Currently, recombinant antibodies are used not only as highly specific detection tools, but due to their specific characteristics, are applied in targeted cancer therapies. The anti-CD90 scFv selected in this study has the potential to be used to detect MSCs and target CSCs and offers promising strategies for treatment of various cancers.
Collapse
Affiliation(s)
- Bahareh Moazen
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Zarrinhaghighi
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Foroogh Nejatollahi
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening. Int J Biol Macromol 2018; 107:920-928. [DOI: 10.1016/j.ijbiomac.2017.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022]
|
7
|
Eyvazi S, Kazemi B, Bandehpour M, Dastmalchi S. Identification of a novel single chain fragment variable antibody targeting CD24-expressing cancer cells. Immunol Lett 2017; 190:240-246. [DOI: 10.1016/j.imlet.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
|
8
|
Wang D, Yue Y, Wu G, Tian Y, Liu Y, Yu J, Ji Y, Wang J, Li J, Pan R, Ma H, Zhang G. Preparation and characterization of a human scFv against the Clostridium perfringens type A alpha-toxin. Toxicon 2017; 130:79-86. [DOI: 10.1016/j.toxicon.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 01/30/2023]
|
9
|
Bagheri S, Yousefi M, Safaie Qamsari E, Riazi-Rad F, Abolhassani M, Younesi V, Dorostkar R, Movassaghpour AA, Sharifzadeh Z. Selection of single chain antibody fragments binding to the extracellular domain of 4-1BB receptor by phage display technology. Tumour Biol 2017; 39:1010428317695924. [PMID: 28347235 DOI: 10.1177/1010428317695924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 4-1BB is a surface glycoprotein that pertains to the tumor necrosis factor-receptor family. There is compelling evidence suggesting important roles for 4-1BB in the immune response, including cell activation and proliferation and also cytokine induction. Because of encouraging results of different agonistic monoclonal antibodies against 4-1BB in the treatment of cancer, infectious, and autoimmune diseases, 4-1BB has been suggested as an attractive target for immunotherapy. In this study, single chain variable fragment phage display libraries, Tomlinson I+J, were screened against specific synthetic oligopeptides (peptides I and II) designed from 4-1BB extracellular domain. Five rounds of panning led to selection of four 4-1BB specific single chain variable fragments (PI.12, PI.42, PII.16, and PII.29) which showed specific reaction to relevant peptides in phage enzyme-linked immunosorbent assay. The selected clones were successfully expressed in Escherichia coli Rosetta-gami 2, and their expression was confirmed by western blot analysis. Enzyme-linked immunosorbent assay experiments indicated that these antibodies were able to specifically recognize 4-1BB without any cross-reactivity with other antigens. Flow cytometry analysis demonstrated an acceptable specific binding of the single chain variable fragments to 4-1BB expressed on CCRF-CEM cells, while no binding was observed with an irrelevant antibody. Anti-4-1BB single chain variable fragments enhanced surface CD69 expression and interleukin-2 production in stimulated CCRF-CEM cells which confirmed the agonistic effect of the selected single chain variable fragments. The data from this study have provided a rationale for further experiments involving the biological functions of anti-4-1BB single chain variable fragments in future studies.
Collapse
Affiliation(s)
- Salman Bagheri
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Yousefi
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Safaie Qamsari
- 1 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Farhad Riazi-Rad
- 4 Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Abolhassani
- 3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Ruhollah Dorostkar
- 6 Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Movassaghpour
- 2 Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sharifzadeh
- 3 Hybridoma Laboratory, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Akbari B, Ahdi Khosroshahi S. Development of a Novel Human Single Chain Antibody Against EGFRVIII Antigen by Phage Display Technology. Adv Pharm Bull 2017; 6:563-571. [PMID: 28101463 DOI: 10.15171/apb.2016.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/22/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022] Open
Abstract
Purpose: EGFRvIII as the most common mutant variant of the epidermal growth factor receptor is resulting from deletion of exons 2-7 in the coding sequence and junction of exons 1 and 8 through a novel glycine residue. EGFRvIII is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. The aim of the present study was identification of a novel single chain antibody against EGFRvIII as a promising target for cancer therapy. Methods: In this study, a synthetic peptide corresponding to EGFRvIII protein was used for screening a naive human scFv phage library. A novel five-round selection strategy was used for enrichment of rare specific clones. Results: After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, only three clones had expected size in PCR reaction. The specific interaction of two of the scFv clones with EGFRvIII was confirmed by indirect ELISA. One phage clone with higher affinity in scFv ELISA was purified for further analysis. The purity of the produced scFv antibody was confirmed using SDS-PAGE and Western blotting analyses. Conclusion: In the present study, a human anti- EGFRvIII scFv with high affinity was first identified from a scFv phage library. This study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.
Collapse
Affiliation(s)
- Leila Rahbarnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Tanomand A, Akbari B. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology. Biologicals 2016; 44:567-573. [DOI: 10.1016/j.biologicals.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/31/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
|
12
|
Rahbarnia L, Farajnia S, Babaei H, Majidi J, Dariushnejad H, Hosseini MK. Isolation and characterization of a novel human scFv inhibiting EGFR vIII expressing cancers. Immunol Lett 2016; 180:31-38. [PMID: 27984065 DOI: 10.1016/j.imlet.2016.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022]
Abstract
EGFRvIII, a mutant form of epidermal growth factor receptor is highly expressed in glioblastoma, carcinoma of the breast, ovary, and lung but not in normal cells. This tumor specific antigen has emerged as a promising candidate for antibody based therapy of several cancers. The aim of the present study was isolation and characterization of a human single chain antibody against EGFRvIII as a promising target for cancer therapy. For this, a synthetic peptide corresponding to EGFRvIII protein was used for screening the naive human scFv phage library. Selection was performed using a novel screening strategy for enrichment of rare specific clones. After five rounds of screening, six positive scFv clones against EGFRvIII were selected using monoclonal phage ELISA, among them, a clone with an amber mutation in VH CDR2 coding sequence showed higher reactivity. The mutation was corrected through site directed mutagenesis and then scFv fragment was expressed after subcloning into the bacterial expression vector. Expression in BL21 pLysS resulted in a highly soluble scFv appeared in soluble fraction of E. coli lysate. Bioinformatic in silico analysis between scFv and EGFRvIII sequences confirmed specific binding of desired scFv to EGFRvIII in CDR regions. The specific reactivity of the purified scFv with native EGFRvIII was confirmed by cell based ELISA and western blot. In conclusion, human anti- EGFRvIII scFv isolated from a scFv phage library displayed high reactivity with EGFRvIII. The scFv isolated in this study can be the groundwork for developing more effective diagnostic and therapeutic agents against EGFRvIII expressing cancers.
Collapse
Affiliation(s)
- Leila Rahbarnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student research committee, University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dariushnejad
- Biotechnology Research Center, Tabriz University of Medical Sciences Tabriz, Iran
| | | |
Collapse
|
13
|
Thamm K, Graupner S, Werner C, Huttner WB, Corbeil D. Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133). PLoS One 2016; 11:e0164079. [PMID: 27701459 PMCID: PMC5049760 DOI: 10.1371/journal.pone.0164079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023] Open
Abstract
The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
Collapse
Affiliation(s)
- Kristina Thamm
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Sylvi Graupner
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Carsten Werner
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
- DFG-Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
14
|
Chang CCH, Li C, Webb GI, Tey B, Song J, Ramanan RN. Periscope: quantitative prediction of soluble protein expression in the periplasm of Escherichia coli. Sci Rep 2016; 6:21844. [PMID: 26931649 PMCID: PMC4773868 DOI: 10.1038/srep21844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022] Open
Abstract
Periplasmic expression of soluble proteins in Escherichia coli not only offers a much-simplified downstream purification process, but also enhances the probability of obtaining correctly folded and biologically active proteins. Different combinations of signal peptides and target proteins lead to different soluble protein expression levels, ranging from negligible to several grams per litre. Accurate algorithms for rational selection of promising candidates can serve as a powerful tool to complement with current trial-and-error approaches. Accordingly, proteomics studies can be conducted with greater efficiency and cost-effectiveness. Here, we developed a predictor with a two-stage architecture, to predict the real-valued expression level of target protein in the periplasm. The output of the first-stage support vector machine (SVM) classifier determines which second-stage support vector regression (SVR) classifier to be used. When tested on an independent test dataset, the predictor achieved an overall prediction accuracy of 78% and a Pearson's correlation coefficient (PCC) of 0.77. We further illustrate the relative importance of various features with respect to different models. The results indicate that the occurrence of dipeptide glutamine and aspartic acid is the most important feature for the classification model. Finally, we provide access to the implemented predictor through the Periscope webserver, freely accessible at http://lightning.med.monash.edu/periscope/.
Collapse
Affiliation(s)
- Catherine Ching Han Chang
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan 46150, Bandar Sunway, Selangor, Malaysia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne VIC 3800, Australia
| | - Chen Li
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne VIC 3800, Australia
| | - Geoffrey I. Webb
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia
| | - BengTi Tey
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan 46150, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, School of Engineering, Monash University, Jalan Lagoon Selatan 46150, Bandar Sunway, Selangor, Malaysia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne VIC 3800, Australia
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne VIC 3800, Australia
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan 46150, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, School of Engineering, Monash University, Jalan Lagoon Selatan 46150, Bandar Sunway, Selangor, Malaysia
- School of Chemistry, Monash University, Melbourne VIC 3800, Australia
| |
Collapse
|
15
|
Moradi-Kalbolandi S, Davani D, Golkar M, Habibi-Anbouhi M, Abolhassani M, Shokrgozar MA. Soluble Expression and Characterization of a New scFv Directed to Human CD123. Appl Biochem Biotechnol 2016; 178:1390-406. [DOI: 10.1007/s12010-015-1954-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/07/2015] [Indexed: 12/23/2022]
|
16
|
Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, Madej M, Bereta J. A new expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I + J phagemid libraries. Immunol Lett 2015. [DOI: 10.1016/j.imlet.2015.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Islam F, Gopalan V, Wahab R, Smith RA, Lam AKY. Cancer stem cells in oesophageal squamous cell carcinoma: Identification, prognostic and treatment perspectives. Crit Rev Oncol Hematol 2015; 96:9-19. [PMID: 25913844 DOI: 10.1016/j.critrevonc.2015.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/03/2015] [Accepted: 04/07/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a vital subpopulation of cells to target for the treatment of cancers. In oesophageal squamous cell carcinoma (ESCC), there are several markers such as CD44, ALDH, Pygo2, MAML1, Twist1, Musashi1, Side population (SP), CD271 and CD90 that have been proposed to identify the cancer stem cells in individual cancer masses. It has also been demonstrated that stem cell markers like ALDH1, HIWI, Oct3/4, ABCG2, SOX2, SALL4, BMI-1, NANOG, CD133 and podoplanin are associated with patient's prognosis, pathological stages, cancer recurrence and therapy resistance. Finding new cancer stem cell targets or designing drugs to manipulate the known molecular targets in CSCs could be useful for improvements in clinical outcomes of the disease. To conclude, data suggest that CSCs in oesophageal squamous cell carcinoma are related to resistance to therapy and poor prognosis of patients with ESCC. Therefore, innovative insights into CSC biology and CSC-targeted therapies will help to achieve more effective management of patients with oesophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Riajul Wahab
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Robert A Smith
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K-Y Lam
- Cancer Molecular Pathology, School of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
18
|
Yan J, Wang P, Zhu M, Li G, Romão E, Xiong S, Wan Y. Characterization and applications of Nanobodies against human procalcitonin selected from a novel naïve Nanobody phage display library. J Nanobiotechnology 2015; 13:33. [PMID: 25944262 PMCID: PMC4475299 DOI: 10.1186/s12951-015-0091-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nanobodies (Nbs) are single-domain antigen-binding fragments derived from the camelids heavy-chain only antibodies (HCAbs). Their unique advantageous properties make Nbs highly attractive in various applications. The general approach to obtain Nbs is to isolate them from immune libraries by phage display technology. However, it is unfeasible when the antigens are toxic, lethal, transmissible or of low immunogenicity. Naïve libraries could be an alternative way to solve the above problems. RESULTS We constructed a large camel naïve phage display Nanobody (Nb) library with great diversity. The generated library contains to 6.86 × 10(11) clones and to our best of knowledge, this is the biggest naïve phage display Nb library. Then Nbs against human procalcitonin (PCT) were isolated from this library. These Nbs showed comparable affinity and antigen-binding thermostability at 37°C and 60°C compared to the PCT Nbs from an immune phage-displayed library. Furthermore, two PCT Nbs that recognize unique epitopes on PCT have been successfully applied to develop a sandwich enzyme-linked immunosorbent assay (ELISA) to detect PCT, which showed a linear working range from 10-1000 ng/mL of PCT. CONCLUSION We have constructed a large and diverse naïve phage display Nb library, which potentially functioning as a good resource for selecting antigen-binders with high quality. Moreover, functional Nbs against PCT were successfully characterized and applied, providing great values on medical application.
Collapse
Affiliation(s)
- Junrong Yan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Pingyan Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Min Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Guanghui Li
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China.
| | - Ema Romão
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Faculty of Science, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510630, PR China.
| | - Yakun Wan
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, 210096, PR China. .,Jiangsu Nanobody Engineering and Research Center, Nantong, 226010, PR China.
| |
Collapse
|
19
|
Zinzi L, Contino M, Cantore M, Capparelli E, Leopoldo M, Colabufo NA. ABC transporters in CSCs membranes as a novel target for treating tumor relapse. Front Pharmacol 2014; 5:163. [PMID: 25071581 PMCID: PMC4091306 DOI: 10.3389/fphar.2014.00163] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022] Open
Abstract
CSCs are responsible for the high rate of recurrence and chemoresistance of different types of cancer. The current antineoplastic agents able to inhibit bulk replicating cancer cells and radiation treatment are not efficacious toward CSCs since this subpopulation has several intrinsic mechanisms of resistance. Among these mechanisms, the expression of ATP-Binding Cassette (ABC) transporters family and the activation of different signaling pathways (such as Wnt/β-catenin signaling, Hedgehog, Notch, Akt/PKB) are reported. Therefore, considering ABC transporters expression on CSCs membranes, compounds able to modulate MDR could induce cytotoxicity in these cells disclosing an exciting and alternative strategy for targeting CSCs in tumor therapy. The next challenge in the cure of cancer relapse may be a multimodal strategy, an approach where specific CSCs targeting drugs exert simultaneously the ability to circumvent tumor drug resistance (ABC transporters modulation) and cytotoxic activity toward CSCs and the corresponding differentiated tumor cells. The efficacy of suggested multimodal strategy could be probed by using several scaffolds active toward MDR pumps on CSCs isolated by tumor specimens.
Collapse
Affiliation(s)
- Laura Zinzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Mariangela Cantore
- Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| | - Elena Capparelli
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy ; Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "A. Moro," Bari, Italy ; Dipartimento di Farmacia-Scienze del Farmaco, Biofordrug srl, Spin-off of University of Bari Bari, Italy
| |
Collapse
|