1
|
Miyamae C, Isozaki Y, Tsumoto K, Tomita M. Dual generation of stereo- and linear-specific monoclonal antibodies through B-cell receptors by DNA and cell immunization for therapeutic applications. Biochim Biophys Acta Gen Subj 2025:130822. [PMID: 40412732 DOI: 10.1016/j.bbagen.2025.130822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/08/2025] [Accepted: 05/17/2025] [Indexed: 05/27/2025]
Abstract
The optimized stereospecific targeting (SST) technique features selective generation of conformation-specific monoclonal antibodies against membranous proteins with high specificity after DNA and cell immunization. This technology consists of two critical steps, which are specific selection of sensitized B lymphocytes by antigen-expressing myeloma cells through B-cell receptors (BCRs) and selective fusion of B cell-myeloma cell complexes by electrical pulses to produce hybridoma cells secreting stereospecific monoclonal antibodies. Here we were able to verify the critical step for the selection of B lymphocytes by intact antigen-expressing myeloma cells by a double-label immunofluorescence analysis. Interestingly, the cell complex was a single attachment. Furthermore, we newly found the new progress that the optimized SST technique offered dual production of anti-intact and anti-linear specific monoclonal antibodies against a human ephrin type-A receptor 2 (hEphA2), . The optimized SST technique may be useful for producing not only stereospecific monoclonal antibodies, but also primary-specific monoclonal antibodies based on the selection of sensitized B lymphocytes by the target intact antigen through BCRs. It would elicit more advanced medical applications by generating dual monoclonal antibodies against the intact antigen.
Collapse
Affiliation(s)
- Chiho Miyamae
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Yushi Isozaki
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; Graduate School of Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako Hyogo 678-1297, Japan.
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Masahiro Tomita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
2
|
Arroyo JP, Jacobs EJ, Ahmad RN, Amin AJ, Verbridge SS, Davalos RV. Characterization of glioma spheroid viability and metastatic potential following monophasic and biphasic pulsed electric fields. Bioelectrochemistry 2025; 165:109005. [PMID: 40398060 DOI: 10.1016/j.bioelechem.2025.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
Currently, the leading 3D cell culture models for characterizing and validating pulsed electric fields (PEFs) are spheroids and cell-laden hydrogels. We hypothesize that incorporating a glioblastoma multicellular tumor spheroid (MTS) onto a collagen hydrogel will leverage their strengths to form a more physiologically relevant model to study viability, proliferation, and migration. The MTS-hydrogel platform was subjected to PEFs varying in pulse width and electric field (EF) strength. Treated MTS were monitored and evaluated for viability and proliferation (Live/Dead imaging, XTT Cell Viability Assay), and migration (brightfield imaging) over 5 days post-treatment. In vitro experimentation was validated with a multi-layered spheroid finite element model, evaluating transmembrane potential (TMP), pore density, and pore formation across the spheroid layers. MTS exposed to longer pulse widths (5, 100 μs) and higher EFs (2000, 2500 V/cm) experienced a complete ablation. Smaller pulse widths and lower EFs produced partial ablations initially reducing the MTS, but unable to prevent the MTS from recuperating. Similarly shown with the computational model, a TMP was accomplished through the MTS, inducing electroporation; however, pore formation was dictated by the increase in pulse width and EF beyond the superficial layer. EFs of 2000 V/cm and above severely constrained the migration independent of pulse width.
Collapse
Affiliation(s)
- Julio P Arroyo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology-Emory University, Atlanta, GA, United States; Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, United States.
| | - Edward J Jacobs
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology-Emory University, Atlanta, GA, United States
| | - Raffae N Ahmad
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - Ashil J Amin
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - Scott S Verbridge
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, United States
| | - Rafael V Davalos
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology-Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Vink P, Honaker LW, Deshpande S. Towards electrospray-assisted production of lipid-based synthetic cell assemblies. SOFT MATTER 2025; 21:2977-2985. [PMID: 40035737 PMCID: PMC11878373 DOI: 10.1039/d4sm01284d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Lipid-based vesicles are widely used, minimalistic model containers for in vitro reconstitution of biological systems and engineering synthetic cells. These containers provide a micro-chassis to encapsulate biomolecules and study biochemical interactions. Liposomes are often the most sought-after vesicles owing to their cell-mimicking nature, and numerous bulk and on-chip methods exist for their production. However, exploring the scope of synthetic containers, both in terms of the alternative lipid assemblies as well as newer production methods is useful for expanding the toolbox for synthetic biology. In this paper, we report the development of an electrospray-based technique, which we term "ATPS-templated lipid assemblies via electrofusion of SUVs" (ATLAES), to form lipid-based vesicles. Using an aqueous two-phase system (ATPS), free of organic solvents, we demonstrate efficient formation of microscopic vesicles stabilized via interfacial lipid assembly. Interestingly, the formed vesicles exhibit a nebulous and disordered, but highly stable coating of lipids, and tend to form interconnected vesicle populations. Remarkably, the lipid assemblies can continue to rearrange and reconfigure over time, leading to spherical vesicles with ultra-thin and smooth lipid coating, suggestive of liposomes. Our work provides a new avenue, in the form of electrospray, to form various lipid-based assemblies using all-aqueous systems and we believe this platform can be further exploited for high-throughput vesicle production and higher-order assemblies.
Collapse
Affiliation(s)
- Pim Vink
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands.
| | - Lawrence W Honaker
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands.
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Burnik T, Zupan J, Jeras M, Kandušer M. Fusion of Human Synovium-Derived Mesenchymal Stem/Stromal Cells with Primary Human Chondrocytes Using the Modified Adherence Method (MAM). Methods Mol Biol 2025. [PMID: 40106149 DOI: 10.1007/7651_2025_620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cell fusion is a complex phenomenon that is key in maintaining tissue homeostasis, particularly in aiding tissue regeneration processes. Studies show that mesenchymal stem/stromal cells (MSCs) are capable of restoring damaged tissue by adopting the phenotype of various cell types via cell fusion. As cell fusion of MSCs with cells of different origin remains poorly researched, we have developed a protocol that allows successful electrofusion between human synovium-derived MSCs and human chondrocytes. Building on from our protocol can help researchers study the cell fusion processes in the in vitro environment and could set basis for development of fusion cell-based advanced therapy medicinal products (ATMPs). In our protocol, we provide a detailed description on how to culture both of the fusion partner cells, how to carry out the modified adherence method (MAM) to achieve a high yield of successfully fused cells, and how to determine the yield of cell fusion using either methyl violet or fluorescent cell trackers.
Collapse
Affiliation(s)
- Tilen Burnik
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- Institute of Pharmacy, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Jeras
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute of Pharmacy, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Qu S, Ke Q, Li X, Yu L, Huang S. Influences of pulsed electric field parameters on cell electroporation and electrofusion events: Comprehensive understanding by experiments and molecular dynamics simulations. PLoS One 2025; 20:e0306945. [PMID: 39841685 PMCID: PMC11753653 DOI: 10.1371/journal.pone.0306945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025] Open
Abstract
Electroporation and electrofusion are efficient methods, which have been widely used in different areas of biotechnology and medicine. Pulse strength and width, as an external condition, play an important role in the process of these methods. However, comparatively little work has been done to explore the effects of pulsed electric field parameters on electroporation and electrofusion. Herein, influences of pulse strength and width on the electroporation and electrofusion of phospholipid bilayers were systematically investigated by using experiments combined with molecular dynamics simulations. Experimental results and machine learning-based regression analysis showed that the number of pores is mainly determined by pulse strength, while the sizes of pores were enlarged by increasing the pulse widths. In addition, the formation of large-size pores is the most crucial factor that affects the fusion rate of myeloma cells. The same trend has taken place on coarse-grained and all-atom MD simulations. The result suggested that electroporation events occur only in an electric field exceeding the strength of threshold, and the unbalanced degree of electric potential between two membranes leads to pores formation during the process of electroporation. Generally, this work provides a comprehensive understanding of how pulse strength and width govern the poration event of bilayer lipid membranes, as well as guidance on the experimental design of electrofusion.
Collapse
Affiliation(s)
- Sujun Qu
- Department of Pharmacy, Jingmen Central Hospital, Jingmen Central Hospital Affiliated to Jingchu University of Technology, Jingmen, Hubei, China
| | - Qiang Ke
- Nanjing Research Institute of Electronics Technology, Nanjing, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Xinhao Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Lin Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shuheng Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
7
|
Ušaj M, Pavlin M, Kandušer M. Feasibility Study for the Use of Gene Electrotransfer and Cell Electrofusion as a Single-Step Technique for the Generation of Activated Cancer Cell Vaccines. J Membr Biol 2024; 257:377-389. [PMID: 39133276 PMCID: PMC11584437 DOI: 10.1007/s00232-024-00320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024]
Abstract
Cell-based therapies hold great potential for cancer immunotherapy. This approach is based on manipulation of dendritic cells to activate immune system against specific cancer antigens. For the development of an effective cell vaccine platform, gene transfer, and cell fusion have been used for modification of dendritic or tumor cells to express immune (co)stimulatory signals and to load dendritic cells with tumor antigens. Both, gene transfer and cell fusion can be achieved by single technique, a cell membrane electroporation. The cell membrane exposed to external electric field becomes temporarily permeable, enabling introduction of genetic material, and also fusogenic, enabling the fusion of cells in the close contact. We tested the feasability of combining gene electrotransfer and electrofusion into a single-step technique and evaluated the effects of electroporation buffer, pulse parameters, and cell membrane fluidity for single or combined method of gene delivery or cell fusdion. We determined the percentage of fused cells expressing green fluorescence protein (GFP) in a murine cell model of melanoma B16F1, cell line used in our previous studies. Our results suggest that gene electrotransfer and cell electrofusion can be applied in a single step. The percentage of viable hybrid cells expressing GFP depends on electric pulse parameters and the composition of the electroporation buffer. Furthermore, our results suggest that cell membrane fluidity is not related to the efficiency of the gene electrotransfer and electrofusion. The protocol is compatible with microfluidic devices, however further optimization of electric pulse parameters and buffers is still needed.
Collapse
Affiliation(s)
- Marko Ušaj
- Faculty of Health and Life Sciences, Department of Chemistry and Biomedical Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Mojca Pavlin
- Faculty of Medicine, Institute of Biophysics, University of Ljubljana, Vrazov Trg 2, 1000, Ljubljana, Slovenia
- Faculty of Electrical Engineering, Group for Nano and Biotechnological Applications, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute for Pharmacy, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Bai Y, Yang C, Zhang X, Wu J, Yang J, Ju H, Hu N. Microfluidic Chip for Cell Fusion and In Situ Separation of Fused Cells. Anal Chem 2024. [PMID: 39560470 DOI: 10.1021/acs.analchem.4c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Electrofusion is an effective method for fusing two cells into a hybrid cell, and this method is widely used in immunomedicine, gene recombination, and other related fields. Although cell pairing and electrofusion techniques have been accomplished with microfluidic devices, the purification and isolation of fused cells remains limited due to expensive instruments and complex operations. In this study, through the optimization of microstructures and electrodes combined with buffer substitution, the entire cell electrofusion process, including cell capture, pairing, electrofusion, and precise separation of the targeted fused cells, is achieved on a single chip. The proposed microfluidic cell electrofusion achieves an efficiency of 80.2 ± 7.5%, and targeted cell separation could be conveniently performed through the strategic activation of individual microelectrodes via negative dielectrophoresis, which ensures accurate release of the fused cells with an efficiency of up to 91.1 ± 5.1%. Furthermore, the survival rates of the cells after electrofusion and release are as high as 94.7 ± 0.6% and 91.7 ± 1.2%, respectively. These results demonstrate that the in situ cell electrofusion and separation process did not affect the cell activity. This chip offers integrated multifunctional manipulation of cells in situ, and can be applied to multiple fields in the future, thus laying the foundation for the field of precise single-cell analysis.
Collapse
Affiliation(s)
- Yaqi Bai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Chen Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaoling Zhang
- School of Smart Health, Chongqing Polytechnic University of Electronic Technology, Chongqing 401331, P. R. China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
9
|
Budzynska K, Bozyk KT, Jarosinska K, Ziemiecka A, Siemionow K, Siemionow M. Developing Advanced Chimeric Cell Therapy for Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:10947. [PMID: 39456730 PMCID: PMC11507628 DOI: 10.3390/ijms252010947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal, X-linked disorder leading to muscle degeneration and premature death due to cardiopulmonary complications. Currently, there is no cure for DMD. We previously confirmed the efficacy of human Dystrophin-Expressing Chimeric (DEC) cells created via the fusion of myoblasts from normal and DMD-affected donors. The current study aimed to optimize the development of DEC therapy via the polyethylene glycol (PEG)-mediated fusion protocol of human myoblasts derived from normal, unrelated donors. The optimization of cell fusion assessed different factors influencing fusion efficacy, including myoblast passage number, the efficacy of PKH myoblast staining, the ratio of the single-stained myoblasts in the MIX, and PEG administration time. Additionally, the effect of PEG fusion procedure on cell viability was assessed. A correlation was found between the number of cells used for PKH staining and staining efficacy. Furthermore, the ratio of single-stained myoblasts in the MIX and PEG administration time correlated with fusion efficacy. There was no correlation found between the myoblast passage number and fusion efficacy. This study successfully optimized the myoblast fusion protocol for creation of human DEC cells, introducing DEC as a new Advanced Therapy Medicinal Product (ATMP) for DMD patients.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Katarzyna T. Bozyk
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Klaudia Jarosinska
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Anna Ziemiecka
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Krzysztof Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
| | - Maria Siemionow
- Dystrogen Therapeutics Technology Polska sp. z o.o., 00-777 Warsaw, Poland; (K.B.); (K.T.B.); (K.J.); (A.Z.); (K.S.)
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| |
Collapse
|
10
|
Bai Y, Hu N, Duan X, Yang J, Ju H. Mechanisms and Factors Influencing the Production of Uniform-Sized Giant Unilamellar Vesicles by Discrete Lipid Film Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45948-45955. [PMID: 39164880 DOI: 10.1021/acsami.4c07934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
In this paper, we innovatively proposed a highly uniform vesicle preparation scheme based on the intervesicle mechanical self-constraint effect of vesicle crowding. By adjusting the spacing of discrete microwell structures, we observed that during the self-assembly of phospholipid molecules in microwells to form giant unilamellar vesicles (GUVs), the scale swelling of the vesicles during the continuous growth process would lead to the crowding of vesicles in adjacent microwells, thus inducing the formation of intervesicle mechanical self-constraint effect. The results of the experiment showed that this paper obtained the optimized discretized microwell structure (micropillar side: 30 μm; pitch: 0 μm), and the corresponding lipid mass was measured and determined, yielding homogeneous giant GUVs of 37.9 ± 2.0 μm. In this paper, homogenized GUVs (∼40 μm) with different cholesterol concentrations (10, 20, and 30%) were obtained by this method, and the above vesicles were subjected to controlled electroporation experiment under external electric fields of 23, 31, and 41 kV/cm, respectively. It showed that the mechanical self-constraint effect of vesicle crowding induced by patterned microstructures during the self-assembly of phospholipid molecules significantly enhances the size homogeneity of GUVs, which would be helpful for the wide applications of GUVs in other areas such as cell-like models and controlled release of drugs.
Collapse
Affiliation(s)
- Yaqi Bai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Xinyu Duan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Rems L, Rainot A, Wiczew D, Szulc N, Tarek M. Cellular excitability and ns-pulsed electric fields: Potential involvement of lipid oxidation in the action potential activation. Bioelectrochemistry 2024; 155:108588. [PMID: 37879163 DOI: 10.1016/j.bioelechem.2023.108588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Recent studies showed that nanosecond pulsed electric fields (nsPEFs) can activate voltage-gated ion channels (VGICs) and trigger action potentials (APs) in excitable cells. Under physiological conditions, VGICs' activation takes place on time scales of the order 10-100 µs. These time scales are considerably longer than the applied pulse duration, thus activation of VGICs by nsPEFs remains puzzling and there is no clear consensus on the mechanisms involved. Here we propose that changes in local electrical properties of the cell membrane due to lipid oxidation might be implicated in AP activation. We first use MD simulations of model lipid bilayers with increasing concentration of primary and secondary lipid oxidation products and demonstrate that oxidation not only increases the bilayer conductance, but also the bilayer capacitance. Equipped with MD-based characterization of electrical properties of oxidized bilayers, we then resort to AP modelling at the cell level with Hodgkin-Huxley-type models. We confirm that a local change in membrane properties, particularly the increase in membrane conductance, due to formation of oxidized membrane lesions can be high enough to trigger an AP, even when no external stimulus is applied. However, excessive accumulation of oxidized lesions (or other conductive defects) can lead to altered cell excitability.
Collapse
Affiliation(s)
- Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia.
| | | | - Daniel Wiczew
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Natalia Szulc
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France.
| |
Collapse
|
12
|
Batista Napotnik T, Kos B, Jarm T, Miklavčič D, O'Connor RP, Rems L. Genetically engineered HEK cells as a valuable tool for studying electroporation in excitable cells. Sci Rep 2024; 14:720. [PMID: 38184741 PMCID: PMC10771480 DOI: 10.1038/s41598-023-51073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024] Open
Abstract
Electric pulses used in electroporation-based treatments have been shown to affect the excitability of muscle and neuronal cells. However, understanding the interplay between electroporation and electrophysiological response of excitable cells is complex, since both ion channel gating and electroporation depend on dynamic changes in the transmembrane voltage (TMV). In this study, a genetically engineered human embryonic kidney cells expressing NaV1.5 and Kir2.1, a minimal complementary channels required for excitability (named S-HEK), was characterized as a simple cell model used for studying the effects of electroporation in excitable cells. S-HEK cells and their non-excitable counterparts (NS-HEK) were exposed to 100 µs pulses of increasing electric field strength. Changes in TMV, plasma membrane permeability, and intracellular Ca2+ were monitored with fluorescence microscopy. We found that a very mild electroporation, undetectable with the classical propidium assay but associated with a transient increase in intracellular Ca2+, can already have a profound effect on excitability close to the electrostimulation threshold, as corroborated by multiscale computational modelling. These results are of great relevance for understanding the effects of pulse delivery on cell excitability observed in context of the rapidly developing cardiac pulsed field ablation as well as other electroporation-based treatments in excitable tissues.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Bor Kos
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Tomaž Jarm
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia
| | - Rodney P O'Connor
- École des Mines de Saint-Étienne, Department of Bioelectronics, Georges Charpak Campus, Centre Microélectronique de Provence, 880 Route de Mimet, 13120, Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška Cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
13
|
Jacobs IV EJ, Graybill PM, Jana A, Agashe A, Nain AS, Davalos RV. Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Bioelectrochemistry 2023; 152:108415. [PMID: 37011476 DOI: 10.1016/j.bioelechem.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023]
Abstract
The impact of cell shape on cell membrane permeabilization by pulsed electric fields is not fully understood. For certain applications, cell survival and recovery post-treatment is either desirable, as in gene transfection, electrofusion, and electrochemotherapy, or is undesirable, as in tumor and cardiac ablations. Understanding of how morphology affects cell viability post-electroporation may lead to improved electroporation methods. In this study, we use precisely aligned nanofiber networks within a microfluidic device to reproducibly generate elongated cells with controlled orientations to an applied electric field. We show that cell viability is significantly dependent on cell orientation, elongation, and spread. Further, these trends are dependent on the external buffer conductivity. Additionally, we see that cell survival for elongated cells is still supported by the standard pore model of electroporation. Lastly, we see that manipulating the cell orientation and shape can be leveraged for increased transfection efficiencies when compared to spherical cells. An improved understanding of cell shape and pulsation buffer conductivity may lead to improved methods for enhancing cell viability post-electroporation by engineering the cell morphology, cytoskeleton, and electroporation buffer conditions.
Collapse
|
14
|
Scuderi M, Dermol-Černe J, Batista Napotnik T, Chaigne S, Bernus O, Benoist D, Sigg DC, Rems L, Miklavčič D. Characterization of Experimentally Observed Complex Interplay between Pulse Duration, Electrical Field Strength, and Cell Orientation on Electroporation Outcome Using a Time-Dependent Nonlinear Numerical Model. Biomolecules 2023; 13:727. [PMID: 37238597 PMCID: PMC10216437 DOI: 10.3390/biom13050727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Electroporation is a biophysical phenomenon involving an increase in cell membrane permeability to molecules after a high-pulsed electric field is applied to the tissue. Currently, electroporation is being developed for non-thermal ablation of cardiac tissue to treat arrhythmias. Cardiomyocytes have been shown to be more affected by electroporation when oriented with their long axis parallel to the applied electric field. However, recent studies demonstrate that the preferentially affected orientation depends on the pulse parameters. To gain better insight into the influence of cell orientation on electroporation with different pulse parameters, we developed a time-dependent nonlinear numerical model where we calculated the induced transmembrane voltage and pores creation in the membrane due to electroporation. The numerical results show that the onset of electroporation is observed at lower electric field strengths for cells oriented parallel to the electric field for pulse durations ≥10 µs, and cells oriented perpendicular for pulse durations ~100 ns. For pulses of ~1 µs duration, electroporation is not very sensitive to cell orientation. Interestingly, as the electric field strength increases beyond the onset of electroporation, perpendicular cells become more affected irrespective of pulse duration. The results obtained using the developed time-dependent nonlinear model are corroborated by in vitro experimental measurements. Our study will contribute to the process of further development and optimization of pulsed-field ablation and gene therapy in cardiac treatments.
Collapse
Affiliation(s)
- Maria Scuderi
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Janja Dermol-Černe
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tina Batista Napotnik
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Sebastien Chaigne
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Olivier Bernus
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - David Benoist
- INSERM, CRCTB, U 1045, IHU Liryc, University of Bordeaux, F-33000 Bordeaux, France
| | - Daniel C. Sigg
- Medtronic, Cardiac Ablation Solutions, Minneapolis, MN 55105, USA
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Mondal N, Yadav KS, Dalal DC. Enhanced Drug Uptake on Application of Electroporation in a Single-Cell Model. J Membr Biol 2023; 256:243-255. [PMID: 36988647 DOI: 10.1007/s00232-023-00283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023]
Abstract
Electroporation method is a useful tool for delivering drugs into various diseased tissues in the human body. As a result of an applied electric field, drug particles enter the intracellular compartment through the temporarily permeabilized cell membrane. Consequently, electroporation method allows better penetration of the drug into the diseased tissue and improves treatment clinically. In this study, a more generalized model of drug transport in a single cell is proposed. The model is able to capture non-homogeneous drug transport in the cell due to non-uniform cell membrane permeabilization. Several numerical experiments are conducted to understand the effects of electric field and drug permeability on drug uptake into the cell. Through investigation, the appropriate electric field and drug permeability are identified, which lead to sufficient drug uptake into the cell. This model can be used by experimentalists to get information prior to conduct any experiment, and it may help reduce the number of actual experiments that might be conducted otherwise.
Collapse
|
16
|
Silkina MV, Kartseva AS, Ryabko AK, Marin MA, Romanenko YO, Kalmantaeva OV, Khlyntseva AE, Shemyakin IG, Dyatlov IA, Firstova VV. Optimization of Electrofusion Parameters for Producing Hybridomas Synthesizing Human Monoclonal Antibodies. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822090095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Chen H, Meng H, Chen Z, Wang T, Chen C, Zhu Y, Jin J. Size-Based Sorting and In Situ Clonal Expansion of Single Cells Using Microfluidics. BIOSENSORS 2022; 12:1100. [PMID: 36551067 PMCID: PMC9775143 DOI: 10.3390/bios12121100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Separation and clonal culture and growth kinetics analysis of target cells in a mixed population is critical for pathological research, disease diagnosis, and cell therapy. However, long-term culture with time-lapse imaging of the isolated cells for clonal analysis is still challenging. This paper reports a microfluidic device with four-level filtration channels and a pneumatic microvalve for size sorting and in situ clonal culture of single cells. The valve was on top of the filtration channels and used to direct fluid flow by membrane deformation during separation and long-term culture to avoid shear-induced cell deformation. Numerical simulations were performed to evaluate the influence of device parameters affecting the pressure drop across the filtration channels. Then, a droplet model was employed to evaluate the impact of cell viscosity, cell size, and channel width on the pressure drop inducing cell deformation. Experiments showed that filtration channels with a width of 7, 10, 13, or 17 μm successfully sorted K562 cells into four different size ranges at low driving pressure. The maximum efficiency of separating K562 cells from media and whole blood was 98.6% and 89.7%, respectively. Finally, the trapped single cells were cultured in situ for 4-7 days with time-lapse imaging to obtain the lineage trees and growth curves. Then, the time to the first division, variation of cell size before and after division, and cell fusion were investigated. This proved that cells at the G1 and G2 phases were of significantly distinct sizes. The microfluidic device for size sorting and clonal expansion will be of tremendous application potential in single-cell studies.
Collapse
Affiliation(s)
- Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Haixu Meng
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, Kowloon, City University of Hong Kong, Hong Kong, China
| | - Tong Wang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha 410013, China
| | - Yonggang Zhu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzen, Shenzhen 518055, China
| |
Collapse
|
18
|
Theoretical analysis for the fluctuation in the electric parameters of the electroporated cells before and during the electrofusion. Med Biol Eng Comput 2022; 60:3585-3600. [DOI: 10.1007/s11517-022-02683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
AbstractAn electric pulse with a sufficient amplitude can lead to electroporation of intracellular organelles. Also, the electric field can lead to electrofusion of the neighboring cells. In this paper, a finite element mathematical model was used to simulate the distribution, radius, and density of the pores. We simulated a mathematical model of the two neighbor cells to analyze the fluctuation in the electroporation parameters before the electrofusion under the ultra-shorted electric field pulse (i.e., impulse signal) for each cell separately and after the electrofusion under the ultra-shorted pulse. The analysis of the temporal and spatial distribution can lead to improving the mathematical models that are used to analyze both electroporation and electrofusion. The study combines the advantages of the nanosecond pulse to avoid the effect of the cell size on the electrofusion and the large-pore radius at the contact point between the cells.
Graphical abstract
Collapse
|
19
|
Vindiš T, Blažič A, Khayyat D, Potočnik T, Sachdev S, Rems L. Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics 2022; 14:pharmaceutics14091959. [PMID: 36145709 PMCID: PMC9506064 DOI: 10.3390/pharmaceutics14091959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gene electrotransfer is one of the main non-viral methods for intracellular delivery of plasmid DNA, wherein pulsed electric fields are used to transiently permeabilize the cell membrane, allowing enhanced transmembrane transport. By localizing the electric field over small portions of the cell membrane using nanostructured substrates, it is possible to increase considerably the gene electrotransfer efficiency while preserving cell viability. In this study, we expand the frontier of localized electroporation by designing an electrotransfer approach based on commercially available cell culture inserts with polyethylene-terephthalate (PET) porous substrate. We first use multiscale numerical modeling to determine the pulse parameters, substrate pore size, and other factors that are expected to result in successful gene electrotransfer. Based on the numerical results, we design a simple device combining an insert with substrate containing pores with 0.4 µm or 1.0 µm diameter, a multiwell plate, and a pair of wire electrodes. We test the device in three mammalian cell lines and obtain transfection efficiencies similar to those achieved with conventional bulk electroporation, but at better cell viability and with low-voltage pulses that do not require the use of expensive electroporators. Our combined theoretical and experimental analysis calls for further systematic studies that will investigate the influence of substrate pore size and porosity on gene electrotransfer efficiency and cell viability.
Collapse
Affiliation(s)
- Tina Vindiš
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Anja Blažič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Diaa Khayyat
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Institute for Multiphase Processes, Leibniz University Hannover, An der Universität 1, 30823 Garbsen, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625 Hannover, Germany
| | - Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Shaurya Sachdev
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Lea Rems
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
20
|
Wu M, Ke Q, Bi J, Li X, Huang S, Liu Z, Ge L. Substantially Improved Electrofusion Efficiency of Hybridoma Cells: Based on the Combination of Nanosecond and Microsecond Pulses. Bioengineering (Basel) 2022; 9:bioengineering9090450. [PMID: 36134996 PMCID: PMC9495357 DOI: 10.3390/bioengineering9090450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
As the initial antibody technology, the preparation of hybridoma cells has been widely used in discovering antibody drugs and is still in use. Various antibody drugs obtained through this technology have been approved for treating human diseases. However, the key to producing hybridoma cells is efficient cell fusion. High-voltage microsecond pulsed electric fields (μsHVPEFs) are currently one of the most common methods used for cell electrofusion. Nevertheless, the membrane potential induced by the external microsecond pulse is proportional to the diameter of the cell, making it difficult to fuse cells of different sizes. Although nanosecond pulsed electric fields (nsPEFs) can achieve the fusion of cells of different sizes, due to the limitation of pore size, deoxyribonucleic acid (DNA) cannot efficiently pass through the cell pores produced by nsPEFs. This directly causes the significant loss of the target gene and reduces the proportion of positive cells after fusion. To achieve an electric field environment independent of cell size and enable efficient cell fusion, we propose a combination of nanosecond pulsed electric fields and low-voltage microsecond pulsed electric fields (ns/μsLVPEFs) to balance the advantages and disadvantages of the two techniques. The results of fluorescence experiments and hybridoma culture experiments showed that after lymphocytes and myeloma cells were stimulated by a pulse (ns/μsLVPEF, μsHVPEF, and control), compared with μsHVPEF, applying ns/μsLVPEF at the same energy could increase the cell fusion efficiency by 1.5–3.0 times. Thus far, we have combined nanosecond and microsecond pulses and provided a practical solution that can significantly increase cell fusion efficiency. This efficient cell fusion method may contribute to the further development of hybridoma technology in electrofusion.
Collapse
Affiliation(s)
- Meng Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Qiang Ke
- Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
- School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906, USA
- Correspondence: (Q.K.); (Z.L.); (L.G.)
| | - Jinhao Bi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xinhao Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Correspondence: (Q.K.); (Z.L.); (L.G.)
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Correspondence: (Q.K.); (Z.L.); (L.G.)
| |
Collapse
|
21
|
Li Z, Xuan Y, Ghatak S, Guda PR, Roy S, Sen CK. Modeling the gene delivery process of the needle array-based tissue nanotransfection. NANO RESEARCH 2022; 15:3409-3421. [PMID: 36275042 PMCID: PMC9581438 DOI: 10.1007/s12274-021-3947-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 05/14/2023]
Abstract
Hollow needle array-based tissue nanotransfection (TNT) presents an in vivo transfection approach that directly translocate exogeneous genes to target tissues by using electric pulses. In this work, the gene delivery process of TNT was simulated and experimentally validated. We adopted the asymptotic method and cell-array-based model to investigate the electroporation behaviors of cells within the skin structure. The distribution of nonuniform electric field across the skin results in various electroporation behavior for each cell. Cells underneath the hollow microchannels of the needle exhibited the highest total pore numbers compared to others due to the stronger localized electric field. The percentage of electroporated cells within the skin structure, with pore radius over 10 nm, increases from 25% to 82% as the applied voltage increases from 100 to 150 V/mm. Furthermore, the gene delivery behavior across the skin tissue was investigated through the multilayer-stack-based model. The delivery distance increased nonlinearly as the applied voltage and pulse number increased, which mainly depends on the diffusion characteristics and electric conductivity of each layer. It was also found that the skin is required to be exfoliated prior to the TNT procedure to enhance the delivery depth. This work provides the foundation for transition from the study of murine skin to translation use in large animals and human settings.
Collapse
Affiliation(s)
- Zhigang Li
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yi Xuan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Birck Nanotechnology Center and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
22
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
23
|
Dielectric Dispersion Modulated Sensing of Yeast Suspension Electroporation. SENSORS 2022; 22:s22051811. [PMID: 35270958 PMCID: PMC8914882 DOI: 10.3390/s22051811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/12/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023]
Abstract
A specific pulsed electric field protocol can be used to induce electroporation. This is used in the food industry for yeast pasteurization, in laboratories for generic transfer and the medical field for cancer treatment. The sensing of electroporation can be done with simple ‘instantaneous’ voltage-current analysis. However, there are some intrinsic low-frequency phenomena superposing the electroporation current, such as electrode polarization. The biological media are non-homogeneous, giving them specific characterization in the broad frequency spectrum. For example, the cell barrier, i.e., cell membrane, causes so called β-dispersion in the frequency range of tens to thousands of kHz. Electroporation is a dynamic phenomenon characterized by altering the cell membrane permeability. In this work, we show that the impedance measurement at certain frequencies could be used to detect the occurrence of electroporation, i.e., dielectric dispersion modulated sensing. This approach may be used for the design and implementation of electroporation systems. Yeast suspension electroporation is simulated to show changes in the frequency spectrum. Moreover, the alteration depends on characteristics of the system. Three types of external buffers and their characteristics are evaluated.
Collapse
|
24
|
Zhang KS, Nadkarni AV, Paul R, Martin AM, Tang SKY. Microfluidic Surgery in Single Cells and Multicellular Systems. Chem Rev 2022; 122:7097-7141. [PMID: 35049287 DOI: 10.1021/acs.chemrev.1c00616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microscale surgery on single cells and small organisms has enabled major advances in fundamental biology and in engineering biological systems. Examples of applications range from wound healing and regeneration studies to the generation of hybridoma to produce monoclonal antibodies. Even today, these surgical operations are often performed manually, but they are labor intensive and lack reproducibility. Microfluidics has emerged as a powerful technology to control and manipulate cells and multicellular systems at the micro- and nanoscale with high precision. Here, we review the physical and chemical mechanisms of microscale surgery and the corresponding design principles, applications, and implementations in microfluidic systems. We consider four types of surgical operations: (1) sectioning, which splits a biological entity into multiple parts, (2) ablation, which destroys part of an entity, (3) biopsy, which extracts materials from within a living cell, and (4) fusion, which joins multiple entities into one. For each type of surgery, we summarize the motivating applications and the microfluidic devices developed. Throughout this review, we highlight existing challenges and opportunities. We hope that this review will inspire scientists and engineers to continue to explore and improve microfluidic surgical methods.
Collapse
Affiliation(s)
- Kevin S Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ambika V Nadkarni
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States.,Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, United States
| | - Rajorshi Paul
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Adrian M Martin
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
25
|
Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol 2021; 42:1143-1158. [PMID: 34743921 DOI: 10.1016/j.it.2021.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Monoclonal antibodies (mAbs) are often selected from antigen-specific single B cells derived from different hosts, which are notably short-lived in ex vivo culture conditions and hence, arduous to interrogate. The development of several new techniques and protocols has facilitated the isolation and retrieval of antibody-coding sequences of antigen-specific B cells by also leveraging miniaturization of reaction volumes. Alternatively, mAbs can be generated independently of antigen-specific B cells, comprising display technologies and, more recently, artificial intelligence-driven algorithms. Consequently, a considerable variety of techniques are used, raising the demand for better consolidation. In this review, we present and discuss the major techniques available to interrogate antigen-specific single B cells to isolate antigen-specific mAbs, including their main advantages and disadvantages.
Collapse
Affiliation(s)
- Alessandro Pedrioli
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
26
|
Huang B, Zhu L, Wei H, Shi H, Zhang D, Yuan H, Luan L, Zheng N, Xu S, Nawaz W, Hong Y, Wu X, Wu Z. Potent Neutralizing Humanized Antibody With Topical Therapeutic Potential Against HPV18-Related Cervical Cancer. Front Immunol 2021; 12:678318. [PMID: 34248960 PMCID: PMC8264373 DOI: 10.3389/fimmu.2021.678318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Cervical cancer caused by human papillomavirus (HPV) infections is the fourth most common cancer in women worldwide. Current prophylactic HPV vaccines have achieved promising success in preventing HPV infection. However, still 570,000 new cases were reported in 2018. The current primary treatment for the patient with cervical cancer is either surgery or chemoradiotherapy. Cervical cancer still lacks standard medical therapy. HPV18 induced cervical cancer has the worst prognosis and high mortality compared to other HPV infections. The development of HPV18 related with cervical malignancy requires the persistent infection of cervical-vaginal epithelium by HPV18 subtype, which can take years to transform the epithelium. This period of repeated infection provides a window for therapeutic intervention. Neutralizing antibodies formulated as topical agents that inhibit HPV18 infection should reduce the chance of cervical malignancy. We previously demonstrated that potent neutralizing anti-sera against HPV18 infection were induced by HPV18 viral like particle (VLP) generated in mammalian cells. We, therefore, isolated two potent neutralizing antibodies, 2A12 and 8H4, from over 3,810 hybridomas prepared from mice immunized with HPV18 VLP. 2A12 and 8H4 exhibited excellent potency, with 50% virus-inhibitory concentrations (IC50) of 0.4 and 0.9 ng/ml, respectively. Furthermore, 2A12 and 8H4 recognized distinct and non-overlapping quaternary epitopes and bound specifically with HPV18. Humanized 2A12 (Hu2A12) retained comparable neutralizing activity against HPV18 infection in various acidic pH settings and in hydrogel formulation with IC50 values of 0.04 to 0.77 ng/ml, indicating that Hu2A12 will be a promising candidate for clinical development as a topical vaginal biopharmaceutical agent against HPV18 infection.
Collapse
Affiliation(s)
- Bilian Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Linjing Zhu
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Hongxia Wei
- Department of Infection, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Haixia Shi
- Department of Antibody, Y-Clone Medical Science Co. Ltd., Suzhou, China
| | - Doudou Zhang
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Huanyun Yuan
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Linlin Luan
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Shijie Xu
- Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Waqas Nawaz
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Ying Hong
- Obstetrics and Gynecology Department, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xilin Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,Department of Antibody, Abrev Biotechnology Co., Ltd., Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China.,School of Life Sciences, Ningxia University, Yinchuan, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Vižintin A, Marković S, Ščančar J, Miklavčič D. Electroporation with nanosecond pulses and bleomycin or cisplatin results in efficient cell kill and low metal release from electrodes. Bioelectrochemistry 2021; 140:107798. [PMID: 33743336 DOI: 10.1016/j.bioelechem.2021.107798] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Nanosecond electric pulses have several potential advantages in electroporation-based procedures over the conventional micro- and millisecond pulses including low level of heating, reduced electrochemical reactions and reduced muscle contractions making them alluring for use in biomedicine and food industry. The aim of this study was to evaluate if nanosecond pulses can enhance the cytotoxicity of chemotherapeutics bleomycin and cisplatin in vitro and to quantify metal release from electrodes in comparison to 100 μs pulses commonly used in electrochemotherapy. The effects of nanosecond pulse parameters (voltage, pulse duration, number of pulses) on cell membrane permeabilization, resealing and on cell survival after electroporation only and after electrochemotherapy with bleomycin and cisplatin were evaluated on Chinese hamster ovary cells. Application of permeabilizing nanosecond pulses in combination with chemotherapeutics resulted in successful cell kill. Higher extracellular concentrations of bleomycin - but not cisplatin - were needed to achieve the same decrease in cell survival with nanosecond pulses as with eight 100 μs pulses, however, the tested bleomycin concentrations were still considerably lower compared to doses used in clinical practice. Decreasing the pulse duration from microseconds to nanoseconds and concomitantly increasing the amplitude to achieve the same biological effect resulted in reduced release of aluminum ions from electroporation cuvettes.
Collapse
Affiliation(s)
- Angelika Vižintin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Stefan Marković
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Jožef Stefan Institute, Department of Environmental Sciences, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
28
|
Graybill PM, Jana A, Kapania RK, Nain AS, Davalos RV. Single Cell Forces after Electroporation. ACS NANO 2021; 15:2554-2568. [PMID: 33236888 PMCID: PMC10949415 DOI: 10.1021/acsnano.0c07020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exogenous high-voltage pulses increase cell membrane permeability through a phenomenon known as electroporation. This process may also disrupt the cell cytoskeleton causing changes in cell contractility; however, the contractile signature of cell force after electroporation remains unknown. Here, single-cell forces post-electroporation are measured using suspended extracellular matrix-mimicking nanofibers that act as force sensors. Ten, 100 μs pulses are delivered at three voltage magnitudes (500, 1000, and 1500 V) and two directions (parallel and perpendicular to cell orientation), exposing glioblastoma cells to electric fields between 441 V cm-1 and 1366 V cm-1. Cytoskeletal-driven force loss and recovery post-electroporation involves three distinct stages. Low electric field magnitudes do not cause disruption, but higher fields nearly eliminate contractility 2-10 min post-electroporation as cells round following calcium-mediated retraction (stage 1). Following rounding, a majority of analyzed cells enter an unusual and unexpected biphasic stage (stage 2) characterized by increased contractility tens of minutes post-electroporation, followed by force relaxation. The biphasic stage is concurrent with actin disruption-driven blebbing. Finally, cells elongate and regain their pre-electroporation morphology and contractility in 1-3 h (stage 3). With increasing voltages applied perpendicular to cell orientation, we observe a significant drop in cell viability. Experiments with multiple healthy and cancerous cell lines demonstrate that contractile force is a more dynamic and sensitive metric than cell shape to electroporation. A mechanobiological understanding of cell contractility post-electroporation will deepen our understanding of the mechanisms that drive recovery and may have implications for molecular medicine, genetic engineering, and cellular biophysics.
Collapse
Affiliation(s)
- Philip M Graybill
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Aniket Jana
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Moraes JZ, Hamaguchi B, Braggion C, Speciale ER, Cesar FBV, Soares GDFDS, Osaki JH, Pereira TM, Aguiar RB. Hybridoma technology: is it still useful? CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:32-40. [PMID: 35492397 PMCID: PMC9040095 DOI: 10.1016/j.crimmu.2021.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
The isolation of single monoclonal antibodies (mAbs) against a given antigen was only possible with the introduction of the hybridoma technology, which is based on the fusion of specific B lymphocytes with myeloma cells. Since then, several mAbs were described for therapeutic, diagnostic, and research purposes. Despite being an old technique with low complexity, hybridoma-based strategies have limitations that include the low efficiency on B lymphocyte-myeloma cell fusion step, and the need to use experimental animals. In face of that, several methods have been developed to improve mAb generation, ranging from changes in hybridoma technique to the advent of completely new technologies, such as the antibody phage display and the single B cell antibody ones. In this review, we discuss the hybridoma technology along with emerging mAb isolation approaches, taking into account their advantages and limitations. Finally, we explore the usefulness of the hybridoma technology nowadays. Hybridoma technology is the most popular technique to obtain monoclonal antibodies. Hybridoma technology variants include B cell and stereospecific targeting protocols. Phage display and single B cell methods are hybridoma technology alternatives.
Collapse
|
30
|
Dermol-Černe J, Batista Napotnik T, Reberšek M, Miklavčič D. Short microsecond pulses achieve homogeneous electroporation of elongated biological cells irrespective of their orientation in electric field. Sci Rep 2020; 10:9149. [PMID: 32499601 PMCID: PMC7272635 DOI: 10.1038/s41598-020-65830-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
In gene electrotransfer and cardiac ablation with irreversible electroporation, treated muscle cells are typically of elongated shape and their orientation may vary. Orientation of cells in electric field has been reported to affect electroporation, and hence electrodes placement and pulse parameters choice in treatments for achieving homogeneous effect in tissue is important. We investigated how cell orientation influences electroporation with respect to different pulse durations (ns to ms range), both experimentally and numerically. Experimentally detected electroporation (evaluated separately for cells parallel and perpendicular to electric field) via Ca2+ uptake in H9c2 and AC16 cardiomyocytes was numerically modeled using the asymptotic pore equation. Results showed that cell orientation affects electroporation extent: using short, nanosecond pulses, cells perpendicular to electric field are significantly more electroporated than parallel (up to 100-times more pores formed), and with long, millisecond pulses, cells parallel to electric field are more electroporated than perpendicular (up to 1000-times more pores formed). In the range of a few microseconds, cells of both orientations were electroporated to the same extent. Using pulses of a few microseconds lends itself as a new possible strategy in achieving homogeneous electroporation in tissue with elongated cells of different orientation (e.g. electroporation-based cardiac ablation).
Collapse
Affiliation(s)
- Janja Dermol-Černe
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Matej Reberšek
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
31
|
Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C, Kumar R. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol 2020; 85:106639. [PMID: 32473573 PMCID: PMC7255167 DOI: 10.1016/j.intimp.2020.106639] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
The advancements in technology and manufacturing processes have allowed the development of new derivatives, biosimilar or advanced improved versions for approved antibodies each year for treatment regimen. There are more than 700 antibody-based molecules that are in different stages of phase I/II/ III clinical trials targeting new unique targets. To date, approximately more than 80 monoclonal antibodies (mAbs) have been approved. A total of 7 novel antibody therapeutics had been granted the first approval either in the United States or European Union in the year 2019, representing approximately 20% of the total number of approved drugs. Most of these licenced mAbs or their derivatives are either of hybridoma origin or their improvised engineered versions. Even with the recent development of high throughput mAb generation technologies, hybridoma is the most favoured method due to its indigenous nature to preserve natural cognate antibody pairing information and preserves innate functions of immune cells. The recent advent of antibody engineering technology has superseded the species level barriers and has shown success in isolation of hybridoma across phylogenetically distinct species. This has led to the isolation of monoclonal antibodies against human targets that are conserved and non-immunogenic in the rodent. In this review, we have discussed in detail about hybridoma technology, its expansion towards different animal species, the importance of antibodies isolated from different animal sources that are useful in biological applications, advantages, and limitations. This review also summarizes the challenges and recent progress associated with hybridoma development, and how it has been overcome in these years to provide new insights for the isolation of mAbs.
Collapse
Affiliation(s)
- Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
32
|
Graybill PM, Davalos RV. Cytoskeletal Disruption after Electroporation and Its Significance to Pulsed Electric Field Therapies. Cancers (Basel) 2020; 12:E1132. [PMID: 32366043 PMCID: PMC7281591 DOI: 10.3390/cancers12051132] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022] Open
Abstract
Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell-cell and cell-substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.
Collapse
Affiliation(s)
- Philip M. Graybill
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rafael V. Davalos
- BEMS Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA;
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Virginia Tech–Wake Forest University, School of Biomedical Engineering and Sciences, Blacksburg, VA 24061, USA
| |
Collapse
|
33
|
Geboers B, Scheffer HJ, Graybill PM, Ruarus AH, Nieuwenhuizen S, Puijk RS, van den Tol PM, Davalos RV, Rubinsky B, de Gruijl TD, Miklavčič D, Meijerink MR. High-Voltage Electrical Pulses in Oncology: Irreversible Electroporation, Electrochemotherapy, Gene Electrotransfer, Electrofusion, and Electroimmunotherapy. Radiology 2020; 295:254-272. [PMID: 32208094 DOI: 10.1148/radiol.2020192190] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review summarizes the use of high-voltage electrical pulses (HVEPs) in clinical oncology to treat solid tumors with irreversible electroporation (IRE) and electrochemotherapy (ECT). HVEPs increase the membrane permeability of cells, a phenomenon known as electroporation. Unlike alternative ablative therapies, electroporation does not affect the structural integrity of surrounding tissue, thereby enabling tumors in the vicinity of vital structures to be treated. IRE uses HVEPs to cause cell death by inducing membrane disruption, and it is primarily used as a radical ablative therapy in the treatment of soft-tissue tumors in the liver, kidney, prostate, and pancreas. ECT uses HVEPs to transiently increase membrane permeability, enhancing cellular cytotoxic drug uptake in tumors. IRE and ECT show immunogenic effects that could be augmented when combined with immunomodulatory drugs, a combination therapy the authors term electroimmunotherapy. Additional electroporation-based technologies that may reach clinical importance, such as gene electrotransfer, electrofusion, and electroimmunotherapy, are concisely reviewed. HVEPs represent a substantial advancement in cancer research, and continued improvement and implementation of these presented technologies will require close collaboration between engineers, interventional radiologists, medical oncologists, and immuno-oncologists.
Collapse
Affiliation(s)
- Bart Geboers
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Hester J Scheffer
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Philip M Graybill
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Alette H Ruarus
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Sanne Nieuwenhuizen
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Robbert S Puijk
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Petrousjka M van den Tol
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Rafael V Davalos
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Boris Rubinsky
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Tanja D de Gruijl
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Damijan Miklavčič
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| | - Martijn R Meijerink
- From the Departments of Radiology and Nuclear Medicine (B.G., H.J.S., A.H.R., S.N., R.S.P., M.R.M.), Surgery (P.M.v.d.T.), and Medical Oncology (T.D.d.G.), Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Va (P.M.G., R.V.D.); Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, Calif (B.R.); and Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia (D.M.)
| |
Collapse
|
34
|
Chiapperino MA, Mescia L, Bia P, Staresinic B, Cemazar M, Novickij V, Tabasnikov A, Smith S, Dermol-Cerne J, Miklavcic D. Experimental and Numerical Study of Electroporation Induced by Long Monopolar and Short Bipolar Pulses on Realistic 3D Irregularly Shaped Cells. IEEE Trans Biomed Eng 2020; 67:2781-2788. [PMID: 32011999 DOI: 10.1109/tbme.2020.2971138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this article, the reversible electroporation induced by rectangular long unipolar and short bipolar voltage pulses on 3D cells is studied. The cell geometry was reconstructed from 3D images of real cells obtained using the confocal microscopy technique. A numerical model based on the Maxwell and the asymptotic Smoluchowski equations has been developed to calculate the induced transmembrane voltage and pore density on the plasma membrane of real cells exposed to the pulsed electric field. Moreover, in the case of the high-frequency pulses, the dielectric dispersion of plasma membranes has been taken into account using the second-order Debye-based relationship. Several numerical simulations were performed and we obtained suitable agreement between the numerical and experimental results.
Collapse
|
35
|
Electroporation Modelling of Irregular Nucleated Cells Including Pore Radius Dynamics. ELECTRONICS 2019. [DOI: 10.3390/electronics8121477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When high-amplitude, short-duration electric pulses are applied to cells the permeability of their membranes is increased. From the biological point of view, the phenomenon is quite well understood, however, it is important to develop accurate numerical models to investigate the electroporation effectiveness in terms of electrical, geometrical and physical parameters. To this aim, in this paper, we illustrate a spatio–temporal, non-linear, and dispersive multiphysics approach to study the electroporation in irregularly nucleated shaped cells. The model couples the Maxwell equations with the partial differential equation describing the creation and closure of pores as well as the evolution of the pore size. The dispersive properties of biological media and the irregular geometries of the membranes have been described using the multi-relaxation Debye-based relationship and the Gielis superformula, respectively. Numerical simulations highlight the importance to include in the model the spatial and temporal evolution of the pore radius. In fact, the obtained numerical results show significant discrepancies between our model and the one in which the pore radius dynamics is negligible.
Collapse
|
36
|
He W, Huang L, Feng Y, Liang F, Ding W, Wang W. Highly integrated microfluidic device for cell pairing, fusion and culture. BIOMICROFLUIDICS 2019; 13:054109. [PMID: 31893009 PMCID: PMC6932852 DOI: 10.1063/1.5124705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/30/2019] [Indexed: 05/02/2023]
Abstract
In this study, we proposed a microfluidic device with compact structures integrating multiple modalities for cell capture, pairing, fusion, and culture. The microfluidic device is composed of upper and lower parts. The lower part configured with electrodes and capture wells is used for cell trapping/pairing/fusion, while the upper part configured with corresponding culture wells is used for cell culture. Dielectrophoresis is used to enable accurate cell trapping and pairing in capture wells. Moreover, the paired cells are fused flexibly by either electrical pulses or polyethylene glycol (PEG) buffer. The fused cells are then transferred to culture wells for on-chip culture simply by flipping the device. Using the device and HeLa cells, we demonstrated pairing efficiency of ∼78% and fusion efficiencies of ∼ 26% for electrical fusion or ∼ 21% for PEG fusion, and successful cell proliferation and migration after 72 h on-chip culture. We believe that this multifunction-integrated but structure-simplified microfluidic device would largely facilitate cell fusion oriented tasks.
Collapse
Affiliation(s)
- Weihua He
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wei Ding
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Chiapperino MA, Bia P, Caratelli D, Gielis J, Mescia L, Dermol‐Černe J, Miklavčič D. Nonlinear Dispersive Model of Electroporation for Irregular Nucleated Cells. Bioelectromagnetics 2019; 40:331-342. [DOI: 10.1002/bem.22197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/03/2019] [Indexed: 12/15/2022]
Affiliation(s)
| | - Pietro Bia
- Department of Design SolutionElettronica S.p.ARome Italy
| | - Diego Caratelli
- Antenna Division, the Antenna CompanyHigh Tech CampusEindhoven The Netherlands
| | - Johan Gielis
- Department of BioengineeringUniversity of AntwerpAntwerp Belgium
| | - Luciano Mescia
- Department of Electrical and Information EngineeringPolytechnic University of BariBari Italy
| | - Janja Dermol‐Černe
- Department of Biocybernetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana Slovenia
| | - Damijan Miklavčič
- Department of Biocybernetics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana Slovenia
| |
Collapse
|
38
|
Ke Q, Li C, Wu M, Ge L, Yao C, Yao C, Mi Y. Electrofusion by a bipolar pulsed electric field: Increased cell fusion efficiency for monoclonal antibody production. Bioelectrochemistry 2019; 127:171-179. [PMID: 30831355 DOI: 10.1016/j.bioelechem.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
The excessive cell death rate caused by electrofusion with unipolar pulses (UPs) has been a bottleneck to increasing cell fusion efficiency in monoclonal antibody technology. Several studies have confirmed that compared with UPs, bipolar pulses (BPs) with microsecond pulse widths can increase electropermeabilization while reducing cell death. Given these characteristics, BPs were used to increase cell fusion efficiency in this study. Cell staining and hybridoma culture experiments were performed using SP2/0 mouse myeloma cells and lymphocytes. Based on the equal energy principle, UPs and BPs were delivered to electrodes at a distance of 3.81 mm, with electric field intensities ranging from 2 kV/cm to 3 kV/cm and pulse duration of 40 μs for the UPs and 20-20 μs for the BPs. The results of cell staining experiments showed that cell fusion efficiency was 3-fold greater with BPs than with UPs. Similarly, the results of the hybridoma culture experiments showed that the hybridoma yields were 0.26‰ and 0.23‰ (2.5 kV/cm and 3 kV/cm, respectively) in the UP groups and increased to 0.46‰ and 0.35‰ in the BP groups. Taken together, the results show that the efficiency of heterologous cell fusion can be greatly increased if BPs are used instead of the commonly applied UPs. This study may provide a promising method for monoclonal antibody technology.
Collapse
Affiliation(s)
- Qiang Ke
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chengxiang Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Meng Wu
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, PR China
| | - Cheng Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Chenguo Yao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yan Mi
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
39
|
Kanduser M, Kokalj Imsirovic M, Usaj M. The Effect of Lipid Antioxidant α-Tocopherol on Cell Viability and Electrofusion Yield of B16-F1 Cells In Vitro. J Membr Biol 2019; 252:105-114. [DOI: 10.1007/s00232-019-00059-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
40
|
Valentinuzzi D, Simončič U, Uršič K, Vrankar M, Turk M, Jeraj R. Predicting tumour response to anti-PD-1 immunotherapy with computational modelling. ACTA ACUST UNITED AC 2019; 64:025017. [DOI: 10.1088/1361-6560/aaf96c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Dermol-Cerne J, Miklavcic D. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation. IEEE Trans Biomed Eng 2019; 65:458-468. [PMID: 29364121 DOI: 10.1109/tbme.2017.2773126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.
Collapse
|
42
|
Abstract
Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a space–time (x,y,t) multiphysics model based on quasi-static Maxwell’s equations and nonlinear Smoluchowski’s equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.
Collapse
|
43
|
Echeverri D, Romo J, Giraldo N, Atehortúa L. Microalgae protoplasts isolation and fusion for biotechnology research. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.80248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protoplasts are microbial or vegetable cells lacking a cell wall. These can be obtained from microalgae by an enzymatic hydrolysis process in the presence of an osmotic stabilizer. In general, protoplasts are experimentally useful in physiological, geneticand bio-chemical studies, so their acquisition and fusion will continue to be an active research area in modern biotechnology. The fusion of protoplasts in microalgae constitutes a tool for strain improvement because it allows both intra and interspecific genetic recombina-tion, resulting in organisms with new or improved characteristics of industrial interest. In this review we briefly describe themethod-ology for obtaining protoplasts, as well as fusion methods and the main applications of microalgal platforms.
Collapse
|
44
|
Vadakkan KI. A potential mechanism for first-person internal sensation of memory provides evidence for the relationship between learning and LTP induction. Behav Brain Res 2018; 360:16-35. [PMID: 30502355 DOI: 10.1016/j.bbr.2018.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Studies conducted to verify learning-induced changes anticipated from Hebb's postulate led to the finding of long-term potentiation (LTP). Even though several correlations have been found between behavioural markers of memory retrieval and LTP, it is not known how memories are retrieved using learning-induced changes. In this context, the following non-correlated findings between learning and LTP induction provide constraints for discovering the mechanism: 1) Requirement of high stimulus intensity for LTP induction in contrast to what is expected for a learning mechanism, 2) Delay of at least 20 to 30 s from stimulation to LTP induction, in contrast to mere milliseconds for associative learning, and 3) A sudden drop in peak-potentiated effect (short-term potentiation) that matches with short-lasting changes expected during working memory and occurs only at the time of delayed LTP induction. When memories are viewed as first-person internal sensations, a newly uncovered mechanism provides explanation for the relationship between memory and LTP. This work interconnects large number of findings from the fields of neuroscience and psychology and provides a further verifiable mechanism of learning.
Collapse
|
45
|
Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies. Biomed Microdevices 2018; 20:95. [DOI: 10.1007/s10544-018-0341-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Li C, Ke Q, Yao C, Yao C, Mi Y, Wu M, Ge L. Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research. IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING 2018; 66:1353-1360. [PMID: 30281431 DOI: 10.1109/tbme.2018.2872909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Unipolar pulses have been used in cell electrofusion over the last decades. However, the problem of high mortality with unipolar pulses has not been solved effectively. The cell fusion rate is restricted by cell mortality. By using the advantages of bipolar pulses which cause less cell damage, this paper attempts to use bipolar pulses to increase the cell fusion rate. METHODS the transmembrane voltage and pore density of cells subjected to unipolar/bipolar pulses were simulated in COMSOL software. In an experiment, two 40 μs unipolar and two 20-20 μs bipolar pulses with electric fields of 2, 2.5, and 3 kV/cm were applied to SP2/0 murine myeloma cells. To determine the cell fusion rate and cell mortality, cells were stained with Hoechst 33342 and propidium iodide. RESULTS the simulation in this paper showed that a high transmembrane voltage and a high pores density were concentrated only at the contact area of cells when bipolar pulses were used. The results of the cell staining experiment verified the simulation analysis. When bipolar pulses were applied, the cell mortality was significantly reduced. In addition, the cell fusion rate with bipolar pulses was almost two times higher than that with unipolar pulses. CONCLUSION for cell electrofusion, compared with unipolar pulses, bipolar pulses can not only reduce the cell mortality remarkably but also improve the cell fusion rate obviously. SIGNIFICANCE this paper introduces a novel way to increase the fusion rate of cells.
Collapse
|
47
|
Novickij V, Zinkevičienė A, Perminaitė E, Čėsna R, Lastauskienė E, Paškevičius A, Švedienė J, Markovskaja S, Novickij J, Girkontaitė I. Non-invasive nanosecond electroporation for biocontrol of surface infections: an in vivo study. Sci Rep 2018; 8:14516. [PMID: 30266920 PMCID: PMC6162327 DOI: 10.1038/s41598-018-32783-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive infections caused by drug-resistant bacteria are frequently responsible for fatal sepsis, morbidity and mortality rates. In this work, we propose a new methodology based on nanosecond high frequency electric field bursts, which enables successful eradication of bacteria in vivo. High frequency (15 kHz) 15–25 kV/cm 300–900 ns pulsing bursts were used separately and in combination with acetic acid (0.1–1%) to treat Pseudomonas aeruginosa in a murine model. Acetic acid 1% alone was effective resulting in almost 10-fold reduction of bacteria viability, however combination of nanosecond electric field and acetic acid 1% treatment was the most successful showing almost full eradication (0.01% survival compared to control) of the bacteria in the contaminated area. The short duration of the pulses (sub-microsecond) and high frequency (kHz range) of the burst enabled reduction of the muscle contractions to barely detectable level while the proposed applicators ensured predominantly topical treatment, without electroporation of deeper tissues. The results of our study have direct application for treatment of wounds and ulcers when chemical treatment is no longer effective.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Auksė Zinkevičienė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Emilija Perminaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Robertas Čėsna
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| | - Eglė Lastauskienė
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | | | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Vilnius, Lithuania
| | | | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
| |
Collapse
|
48
|
Davari A, Skinner M, Parker B. Cell electrofusion to improve efficacy and thermotolerance of the entomopathogenic fungus,
Beauveria bassiana. J Appl Microbiol 2018; 125:1482-1493. [DOI: 10.1111/jam.14031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- A. Davari
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| | - M. Skinner
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| | - B.L. Parker
- Entomology Research Laboratory University of Vermont Burlington VT 05405‐0105 USA
| |
Collapse
|
49
|
Li C, Ke Q, Yao C, Mi Y, Liu H, Lv Y, Yao C. Cell electrofusion based on nanosecond/microsecond pulsed electric fields. PLoS One 2018; 13:e0197167. [PMID: 29795594 PMCID: PMC5967737 DOI: 10.1371/journal.pone.0197167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Traditionally, microsecond pulsed electric field was widely used in cell electrofusion technology. However, it was difficult to fuse the cells with different sizes. Because the effect of electroporation based on microsecond pulses was greatly influenced by cell sizes. It had been reported that the differences between cell sizes can be ignored when cells were exposed to nanosecond pulses. However, pores induced by those short nanosecond pulses tended to be very small (0.9 nm) and the pores were more easy to recover. In this work, a finite element method was used to simulate the distribution, radius and density of the pores. The innovative idea of "cell electrofusion based on nanosecond/microsecond pulses" was proposed in order to combine the advantages of nanosecond pulses and microsecond pulses. The model consisted of two contact cells with different sizes. Three kinds of pulsed electric fields were made up of two 100-ns, 10-kV/cm pulses; two 10-μs, 1-kV/cm pulses; and a sequence of a 100-ns, 10-kV/cm pulse, followed by a 10-μs, 1-kV/cm pulse. Some obvious advantageous can be found when nanosecond/microsecond pulses were considered. The pore radius was large enough (70nm) and density was high (5×1013m-2) in the cell junction area. Moreover, pores in the non-contact area of the cell membrane were small (1-10 nm) and sparse (109-1012m-2). Areas where the transmembrane voltage was higher than 1V were only concentrated in the cell junction. The transmembrane voltage of other areas were at most 0.6V when we tested the rest of the cell membrane. Cell fusion efficiency can be improved remarkably because electroporation was concentrated in the cell contact area.
Collapse
Affiliation(s)
- Chengxiang Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Qiang Ke
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Yan Mi
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Hongmei Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Yanpeng Lv
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Cheng Yao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
50
|
Bahadori A, Moreno-Pescador G, Oddershede LB, Bendix PM. Remotely controlled fusion of selected vesicles and living cells: a key issue review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:032602. [PMID: 29369822 DOI: 10.1088/1361-6633/aa9966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Remote control over fusion of single cells and vesicles has a great potential in biological and chemical research allowing both transfer of genetic material between cells and transfer of molecular content between vesicles. Membrane fusion is a critical process in biology that facilitates molecular transport and mixing of cellular cytoplasms with potential formation of hybrid cells. Cells precisely regulate internal membrane fusions with the aid of specialized fusion complexes that physically provide the energy necessary for mediating fusion. Physical factors like membrane curvature, tension and temperature, affect biological membrane fusion by lowering the associated energy barrier. This has inspired the development of physical approaches to harness the fusion process at a single cell level by using remotely controlled electromagnetic fields to trigger membrane fusion. Here, we critically review various approaches, based on lasers or electric pulses, to control fusion between individual cells or between individual lipid vesicles and discuss their potential and limitations for present and future applications within biochemistry, biology and soft matter.
Collapse
Affiliation(s)
- Azra Bahadori
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|