1
|
Huynh P, Yang Y, Tian H, Wu T, Huang M, Tang J, Dai A, Cooper ME, Chai Z. Induced Genetic Deletion of Cell Division Autoantigen 1 in Adulthood Attenuates Diabetes-Associated Renal Fibrosis. Int J Mol Sci 2025; 26:2022. [PMID: 40076647 PMCID: PMC11900456 DOI: 10.3390/ijms26052022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell Division Autoantigen 1 (CDA1) has been shown to play a role in enhancing transforming growth factor beta (TGFβ) signaling, leading to fibrosis in diabetic kidney disease (DKD) using mouse strains with global CDA1 gene deletion. In these models, diabetes has been induced, leading to DKD in the absence of CDA1. It is still unknown whether inhibition of CDA1 activity after onset of diabetes in the presence of CDA1 can attenuate renal fibrosis in vivo. Thus, we examined the effect of inducing genetic deletion of CDA1 in adulthood in mice using a tamoxifen-activated estrogen receptor fused cyclization recombinase (ERCre)-Locus of cross-over in P1 (LoxP) system. Male mice at 6-8 weeks of age were rendered diabetic with streptozotocin (STZ) or injected with buffer alone to serve as non-diabetic controls. Five weeks later, genetic deletion of CDA1 was induced by tamoxifen administration in CDA1Flox/ERCre mice, with mice injected with vehicle to serve as CDA1 wildtype controls. Kidney tissues were analyzed 5 weeks after deletion of CDA1. Tamoxifen administration reduced CDA1 gene expression by ~80% in CDA1Flox/ERCre mice. Renal levels of phosphorylated Smad3 and expression of profibrotic genes as well as accumulation of extracellular matrix proteins (ECMs) such as collagens III and IV were increased in diabetic mice, and induced deletion of CDA1 led to attenuation of these parameters. Therefore, targeting CDA1 after onset of diabetes in mice where CDA1 was initially expressed is able to attenuate diabetes-associated renal injury, providing the impetus to target this pathway in order to reduce diabetic kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia; (P.H.); (Y.Y.); (H.T.); (T.W.); (M.H.); (J.T.); (A.D.); (M.E.C.)
| |
Collapse
|
2
|
Huang D, Zhao Q, Yang K, Lei J, Jing Y, Li H, Zhang C, Ma S, Sun S, Cai Y, Wang G, Qu J, Zhang W, Wang S, Liu GH. CRL2 APPBP2-mediated TSPYL2 degradation counteracts human mesenchymal stem cell senescence. SCIENCE CHINA. LIFE SCIENCES 2024; 67:460-474. [PMID: 38170390 DOI: 10.1007/s11427-023-2451-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 01/05/2024]
Abstract
Cullin-RING E3 ubiquitin ligases (CRLs), the largest family of multi-subunit E3 ubiquitin ligases in eukaryotic cells, represent core cellular machinery for executing protein degradation and maintaining proteostasis. Here, we asked what roles Cullin proteins play in human mesenchymal stem cell (hMSC) homeostasis and senescence. To this end, we conducted a comparative aging phenotype analysis by individually knocking down Cullin members in three senescence models: replicative senescent hMSCs, Hutchinson-Gilford Progeria Syndrome hMSCs, and Werner syndrome hMSCs. Among all family members, we found that CUL2 deficiency rendered hMSCs the most susceptible to senescence. To investigate CUL2-specific underlying mechanisms, we then applied CRISPR/Cas9-mediated gene editing technology to generate CUL2-deficient human embryonic stem cells (hESCs). When we differentiated these into hMSCs, we found that CUL2 deletion markedly accelerates hMSC senescence. Importantly, we identified that CUL2 targets and promotes ubiquitin proteasome-mediated degradation of TSPYL2 (a known negative regulator of proliferation) through the substrate receptor protein APPBP2, which in turn down-regulates one of the canonical aging marker-P21waf1/cip1, and thereby delays senescence. Our work provides important insights into how CRL2APPBP2-mediated TSPYL2 degradation counteracts hMSC senescence, providing a molecular basis for directing intervention strategies against aging and aging-related diseases.
Collapse
Affiliation(s)
- Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qian Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Kuan Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hongyu Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Zhang
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China.
| |
Collapse
|
3
|
Biosca-Brull J, Guardia-Escote L, Basaure P, Cabré M, Blanco J, Pérez-Fernández C, Sánchez-Santed F, Domingo JL, Colomina MT. Exposure to chlorpyrifos during pregnancy differentially affects social behavior and GABA signaling elements in an APOE- and sex-dependent manner in a transgenic mouse model. ENVIRONMENTAL RESEARCH 2023; 224:115461. [PMID: 36796608 DOI: 10.1016/j.envres.2023.115461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The massive use of chlorpyrifos (CPF) has been associated with an increased prevalence of neurodevelopmental disorders. Some previous studies have shown that prenatal, but not postnatal, CPF exposure causes social behavior deficits in mice depending on sex while others have found that in transgenic mice models carrying the human apolipoprotein E (APOE) ε3 and ε4 allele confer different vulnerabilities to either behavioral or metabolic disorders after CPF exposure. This study aims to evaluate, in both sexes, how prenatal CPF exposure and APOE genotype impact on social behavior and its relation to changes in GABAergic and glutamatergic systems. For this purpose, apoE3 and apoE4 transgenic mice were exposed through the diet to 0 or 1 mg/kg/day of CPF, between gestational day 12 and 18. A three-chamber test was used to assess social behavior on postnatal day (PND) 45. Then, mice were sacrificed, and hippocampal samples were analyzed to study the gene expression of GABAergic and glutamatergic elements. Results showed that prenatal exposure to CPF impaired social novelty preference and increased the expression of GABA-A α1 subunit in females of both genotypes. In addition, the expression of GAD1, the ionic cotransporter KCC2 and the GABA-A α2 and α5 subunits were increased in apoE3 mice, whereas CPF treatment only accentuated the expression of GAD1 and KCC2. Nevertheless, future research is needed to evaluate whether the influences detected in the GABAergic system are present and functionally relevant in adults and old mice.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Cristian Pérez-Fernández
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Reus, Spain.
| |
Collapse
|
4
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
5
|
Biosca-Brull J, Guardia-Escote L, Blanco J, Basaure P, Cabré M, Sánchez-Santed F, Domingo JL, Colomina MT. Prenatal, but not postnatal exposure to chlorpyrifos affects social behavior of mice and the excitatory-inhibitory balance in a sex-dependent manner. Food Chem Toxicol 2022; 169:113423. [PMID: 36113784 DOI: 10.1016/j.fct.2022.113423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
The balance between excitatory and inhibitory neurotransmitters is essential for proper brain development. An imbalance between these two systems has been associated with neurodevelopmental disorders. On the other hand, literature also associates the massive use of pesticides with the increase of these disorders, with a particular focus on chlorpyrifos (CPF) a world-wide used organophosphate pesticide. This study was aimed at assessing social autistic-like behaviors on mice pre or postnatally exposed to CPF (0 or 1 mg/kg/day), in both sexes. In prenatal exposure, C57BL/6J pregnant mice were exposed to CPF through the diet, between gestational days (GD) 12 and 18, while a positive control group for some autistic behaviors was exposed to valproic acid (VPA) on GD 12 and 13. To assess postnatal exposure, C57BL/6J mice were orally exposed to the vehicle (corn oil) or CPF, from postnatal days (PND) 10-15. Social behavior and gene expression analysis were assessed on PND 45. Results showed social alterations only in males prenatally treated. GABA system was upregulated in CPF-treated females, whereas an increase in both systems was observed in both treated males. These findings suggest that males are more sensitive to prenatal CPF exposure, favoring the sex bias observed in ASD.
Collapse
Affiliation(s)
- Judit Biosca-Brull
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| | - Laia Guardia-Escote
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain
| | - Jordi Blanco
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain; Universitat Rovira i Virgili, Department of Basic Medical Sciences, Reus, Spain
| | - Pia Basaure
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain
| | - Maria Cabré
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Fernando Sánchez-Santed
- Department of Psychology, Health Research Center (CEINSA), Almeria University, 04120, Almeria, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain
| | - Maria Teresa Colomina
- Universitat Rovira i Virgili, Research Group in Neurobehavior and Health (NEUROLAB), Tarragona, Spain; Universitat Rovira i Virgili, Department of Psychology and Research Center for Behavior Assessment (CRAMC), Tarragona, Spain; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health (TECNATOX), Reus, Spain.
| |
Collapse
|
6
|
Chen L, Wu J, Hu B, Liu C, Wang H. The Role of Cell Division Autoantigen 1 (CDA1) in Renal Fibrosis of Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651075. [PMID: 33997036 PMCID: PMC8102118 DOI: 10.1155/2021/6651075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
The common kidney disease diabetic nephropathy (DN) accounts for significant morbidity and mortality in patients with diabetes, and its effective diagnosis in incipient stages is still lacking. Renal fibrosis is the main pathological feature of DN. Cell division autoantigen 1 (CDA1), a phosphorylated protein encoded by TSPYL2 on the X chromosome, plays a fibrogenic role by modulating the transforming growth factor-β (TGF-β) signaling, but the exact mechanism remains unclear. TGF-β signaling has been recognized as the key factor in promoting the development and progression of DN. At present, strict control of blood sugar and blood pressure can significantly lower the development and progression of DN in the early stages, and many studies have shown that blocking TGF-β signaling can delay the progress of DN. However, TGF-β is a multifunctional cytokine. Its direct intervention may result in increased side effects. Therefore, the targeted intervention of CDA1 not only can block the TGF-β signaling pathway but also can reduce these side effects. In this article, we review the main physiological roles of CDA1, with particular attention to its effect and potential mechanism in the renal fibrosis of DN.
Collapse
Affiliation(s)
- LinLin Chen
- Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
- Medical School, China Three Gorges University, 8 Daxue Road, Yichang 443002, China
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Bin Hu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang 443002, China
| | - Changbai Liu
- Medical School, China Three Gorges University, 8 Daxue Road, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Yichang 443002, China
| | - Hu Wang
- Medical School, China Three Gorges University, 8 Daxue Road, Yichang 443002, China
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Peng L, Leung EHW, So J, Mak PHS, Lee CL, Tan H, Lee KF, Chan SY. TSPYL1 regulates steroidogenic gene expression and male factor fertility in mice. F&S SCIENCE 2020; 1:115-123. [PMID: 35559922 DOI: 10.1016/j.xfss.2020.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To determine the importance of testis-specific, Y-encoded-like 1 (TSPYL1) in survival and male factor fertility in mice. DESIGN Experimental prospective study. SETTING Research laboratories in a university medical faculty. ANIMALS We generated Tspyl1 knockout (KO) mouse lines by CRISPR/Cas9. The lines were maintained by pairing heterozygous mice to provide wild-type control and KO males for comparison. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Mendelian ratio, body and testis weight, histology, sperm motility, mating tests, pregnancy outcome, transcript levels of genes for testosterone production, and serum testosterone level. RESULT(S) A variable percentage of Tspyl1 KO mice survived beyond weaning depending on the genetic background. Growth around weaning was retarded in KO mice, but the testes-to-body weight ratio remained normal and complete spermatogenesis was revealed in testis histology. Sperm was collected from the cauda epididymis, and a significantly smaller percentage of sperm was progressively motile (22.3% ± 18.3%, n = 14 samples) compared with wild type (58.9% ± 11.5%, 11 samples). All 11 KO mice tested had defective mounting behavior. From 11 KO males paired with a total of 88 females, only one litter was born, compared with 53 litters sired by 11 age-matched wild-type males. Expression of Star, Cyp11a1, Cyp17a1, Hsd3b6, and Hsd17b3 in the KO testis was significantly reduced, while serum testosterone level was within the normal range. CONCLUSION(S) TSPYL1 is critical for survival and reproductive success in mice. TSPYL1 enhances the expression of key steroidogenic genes in the mouse testis.
Collapse
Affiliation(s)
- Lei Peng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Eva Hin Wa Leung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huiqi Tan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
8
|
Lau YFC, Li Y, Kido T. Battle of the sexes: contrasting roles of testis-specific protein Y-encoded (TSPY) and TSPX in human oncogenesis. Asian J Androl 2019; 21:260-269. [PMID: 29974883 PMCID: PMC6498724 DOI: 10.4103/aja.aja_43_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
The Y-located testis-specific protein Y-encoded (TSPY) and its X-homologue TSPX originated from the same ancestral gene, but act as a proto-oncogene and a tumor suppressor gene, respectively. TSPY has specialized in male-specific functions, while TSPX has assumed the functions of the ancestral gene. Both TSPY and TSPX harbor a conserved SET/NAP domain, but are divergent at flanking structures. Specifically, TSPX contains a C-terminal acidic domain, absent in TSPY. They possess contrasting properties, in which TSPY and TSPX, respectively, accelerate and arrest cell proliferation, stimulate and inhibit cyclin B-CDK1 phosphorylation activities, have no effect and promote proteosomal degradation of the viral HBx oncoprotein, and exacerbate and repress androgen receptor (AR) and constitutively active AR variant, such as AR-V7, gene transactivation. The inhibitory domain has been mapped to the carboxyl acidic domain in TSPX, truncation of which results in an abbreviated TSPX exerting positive actions as TSPY. Transposition of the acidic domain to the C-terminus of TSPY results in an inhibitory protein as intact TSPX. Hence, genomic mutations/aberrant splicing events could generate TSPX proteins with truncated acidic domain and oncogenic properties as those for TSPY. Further, TSPY is upregulated by AR and AR-V7 in ligand-dependent and ligand-independent manners, respectively, suggesting the existence of a positive feedback loop between a Y-located proto-oncogene and male sex hormone/receptors, thereby amplifying the respective male oncogenic actions in human cancers and diseases. TSPX counteracts such positive feedback loop. Hence, TSPY and TSPX are homologues on the sex chromosomes that function at the two extremes of the human oncogenic spectrum.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
9
|
Liu H, Peng L, So J, Tsang KH, Chong CH, Mak PHS, Chan KM, Chan SY. TSPYL2 Regulates the Expression of EZH2 Target Genes in Neurons. Mol Neurobiol 2018; 56:2640-2652. [PMID: 30051352 PMCID: PMC6459796 DOI: 10.1007/s12035-018-1238-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 01/07/2023]
Abstract
Testis-specific protein, Y-encoded-like 2 (TSPYL2) is an X-linked gene in the locus for several neurodevelopmental disorders. We have previously shown that Tspyl2 knockout mice had impaired learning and sensorimotor gating, and TSPYL2 facilitates the expression of Grin2a and Grin2b through interaction with CREB-binding protein. To identify other genes regulated by TSPYL2, here, we showed that Tspyl2 knockout mice had an increased level of H3K27 trimethylation (H3K27me3) in the hippocampus, and TSPYL2 interacted with the H3K27 methyltransferase enhancer of zeste 2 (EZH2). We performed chromatin immunoprecipitation (ChIP)-sequencing in primary hippocampal neurons and divided all Refseq genes by k-mean clustering into four clusters from highest level of H3K27me3 to unmarked. We confirmed that mutant neurons had an increased level of H3K27me3 in cluster 1 genes, which consist of known EZH2 target genes important in development. We detected significantly reduced expression of genes including Gbx2 and Prss16 from cluster 1 and Acvrl1, Bdnf, Egr3, Grin2c, and Igf1 from cluster 2 in the mutant. In support of a dynamic role of EZH2 in repressing marked synaptic genes, the specific EZH2 inhibitor GSK126 significantly upregulated, while the demethylase inhibitor GSKJ4 downregulated the expression of Egr3 and Grin2c. GSK126 also upregulated the expression of Bdnf in mutant primary neurons. Finally, ChIP showed that hemagglutinin-tagged TSPYL2 co-existed with EZH2 in target promoters in neuroblastoma cells. Taken together, our data suggest that TSPYL2 is recruited to promoters of specific EZH2 target genes in neurons, and enhances their expression for proper neuronal maturation and function.
Collapse
Affiliation(s)
- Hang Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Peng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ka Hing Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research and Development, Clinical Projects and Development, New B Innovation, Hong Kong, China
| | - Chi Ho Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, the City University of Hong Kong, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Li Y, Zhang DJ, Qiu Y, Kido T, Lau YFC. The Y-located proto-oncogene TSPY exacerbates and its X-homologue TSPX inhibits transactivation functions of androgen receptor and its constitutively active variants. Hum Mol Genet 2017; 26:901-912. [PMID: 28169398 PMCID: PMC6075507 DOI: 10.1093/hmg/ddx005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/05/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
The gonadoblastoma gene, testis-specific protein Y-encoded (TSPY), on the Y chromosome and its X-homologue, TSPX, are cell cycle regulators and function as a proto-oncogene and a tumor suppressor respectively in human oncogenesis. TSPY and TSPX competitively bind to the androgen receptor (AR) and AR variants, such as AR-V7, at their conserved SET/NAP domain, and exacerbate and repress the transactivation of the AR/AR-V7 target genes in ligand dependent and independent manners respectively. The inhibitory domain has been mapped to the carboxyl acidic domain of TSPX, truncation of which renders TSPX to be stimulatory while its transposition to the C-terminus of TSPY results in an inhibitory hybrid protein. TSPY and TSPX co-localize with the endogenous AR, in the presence of ligand, on the promoters and differentially regulate the expression of the endogenous AR target genes in the androgen-responsive LNCaP prostate cancer cells. Transcriptome analysis shows that TSPY and TSPX expressions differentially affect significant numbers of canonical pathways, upstream regulators and cellular functions. Significantly, among the common ones, TSPY activates and TSPX inhibits numerous growth-related and oncogenic canonical pathways and cellular functions in the respective cell populations. Hence, TSPY and TSPX exert opposing effects on the transactivation functions of AR and AR-Vs important for various physiological and disease processes sensitive to male sex hormone actions, thereby not only affecting the pathogenesis of male-specific prostate cancer but also likely contributing to sex differences in the health and diseases of man.
Collapse
Affiliation(s)
- Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Dong Ji Zhang
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yun Qiu
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center
- Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| |
Collapse
|
11
|
Li Q, Chan SY, Wong KK, Wei R, Leung YO, Ding AY, Hui TCK, Cheung C, Chua SE, Sham PC, Wu EX, McAlonan GM. Tspyl2 Loss-of-Function Causes Neurodevelopmental Brain and Behavior Abnormalities in Mice. Behav Genet 2016; 46:529-37. [PMID: 26826030 PMCID: PMC4886156 DOI: 10.1007/s10519-015-9777-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/09/2015] [Indexed: 01/04/2023]
Abstract
Testis specific protein, Y-encoded-like 2 (TSPYL2) regulates the expression of genes encoding glutamate receptors. Glutamate pathology is implicated in neurodevelopmental conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD) and schizophrenia. In line with this, a microduplication incorporating the TSPYL2 locus has been reported in people with ADHD. However, the role of Tspyl2 remains unclear. Therefore here we used a Tspyl2 loss-of-function mouse model to directly examine how this gene impacts upon behavior and brain anatomy. We hypothesized that Tspyl2 knockout (KO) would precipitate a phenotype relevant to neurodevelopmental conditions. In line with this prediction, we found that Tspyl2 KO mice were marginally more active, had significantly impaired prepulse inhibition, and were significantly more 'sensitive' to the dopamine agonist amphetamine. In addition, the lateral ventricles were significantly smaller in KO mice. These findings suggest that disrupting Tspyl2 gene expression leads to behavioral and brain morphological alterations that mirror a number of neurodevelopmental psychiatric traits.
Collapse
Affiliation(s)
- Qi Li
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong SAR, China
- HKU-SIRI, The University of Hong Kong, Hong Kong SAR, China
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Kwun K Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ran Wei
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Yu On Leung
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Abby Y Ding
- Medical Physics and Research Department, Hong Kong Sanatorium and Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Tomy C K Hui
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Charlton Cheung
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Siew E Chua
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong SAR, China
- Genome Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK.
| |
Collapse
|
12
|
Moey C, Hinze SJ, Brueton L, Morton J, McMullan DJ, Kamien B, Barnett CP, Brunetti-Pierri N, Nicholl J, Gecz J, Shoubridge C. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders. Eur J Hum Genet 2016; 24:373-80. [PMID: 26059843 PMCID: PMC4757771 DOI: 10.1038/ejhg.2015.123] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 01/06/2023] Open
Abstract
Copy number variations are a common cause of intellectual disability (ID). Determining the contribution of copy number variants (CNVs), particularly gains, to disease remains challenging. Here, we report four males with ID with sub-microscopic duplications at Xp11.2 and review the few cases with overlapping duplications reported to date. We established the extent of the duplicated regions in each case encompassing a minimum of three known disease genes TSPYL2, KDM5C and IQSEC2 with one case also duplicating the known disease gene HUWE1. Patients with a duplication encompassing TSPYL2, KDM5C and IQSEC2 without gains of nearby SMC1A and HUWE1 genes have not been reported thus far. All cases presented with ID and significant deficits of speech development. Some patients also manifested behavioral disturbances such as hyperactivity and attention-deficit/hyperactivity disorder. Lymphoblastic cell lines from patients show markedly elevated levels of TSPYL2, KDM5C and SMC1A, transcripts consistent with the extent of their CNVs. The duplicated region in our patients contains several genes known to escape X-inactivation, including KDM5C, IQSEC2 and SMC1A. In silico analysis of expression data in selected gene expression omnibus series indicates that dosage of these genes, especially IQSEC2, is similar in males and females despite the fact they escape from X-inactivation in females. Taken together, the data suggest that gains in Xp11.22 including IQSEC2 cause ID and are associated with hyperactivity and attention-deficit/hyperactivity disorder, and are likely to be dosage-sensitive in males.
Collapse
Affiliation(s)
- Ching Moey
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan J Hinze
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Louise Brueton
- Clinical Genetics unit, Birmingham Women's Hospital, Birmingham, UK
| | - Jenny Morton
- Clinical Genetics unit, Birmingham Women's Hospital, Birmingham, UK
| | | | | | | | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University, Napoli, Italy
- Telethon Institute of Genetics and Medicine, Napoli, Italy
| | | | - Jozef Gecz
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- Department of Paediatrics, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Liu C, Xu X, Gao J, Zhang T, Yang Z. Hydrogen Sulfide Prevents Synaptic Plasticity from VD-Induced Damage via Akt/GSK-3β Pathway and Notch Signaling Pathway in Rats. Mol Neurobiol 2015. [PMID: 26208699 PMCID: PMC4937100 DOI: 10.1007/s12035-015-9324-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our previous study has demonstrated that hydrogen sulfide (H2S) attenuates neuronal injury induced by vascular dementia (VD) in rats, but the mechanism is still poorly understood. In this study, we aimed to investigate whether the neuroprotection of H2S was associated with synaptic plasticity and try to interpret the potential underlying mechanisms. Adult male Wistar rats were suffered the ligation of bilateral common carotid arteries. At 24 h after surgery, rats were administered intraperitoneally with sodium hydrosulfide (NaHS, 5.6 mg·kg−1·day−1), a H2S donor, for 3 weeks in the VD+NaHS group and treated intraperitoneally with saline in the VD group respectively. Our results demonstrated that NaHS significantly decreased the level of glutamate. It obviously ameliorated cognitive flexibility as well as the spatial learning and memory abilities by Morris water maze. Moreover, NaHS significantly improved the long-term depression (LTD), and was able to elevate the expression of N-methyl-d-aspartate receptor subunit 2A, which plays a pivotal role in synaptic plasticity. Interestingly, NaHS decreased the phosphorylation of Akt, and it could maintain the activity of glycogen synthase kinase-3β (GSK-3β). Surprisingly, NaHS triggered the canonical Notch pathway by increasing expressions of Jagged-1 and Hes-1. These findings suggest that NaHS prevents synaptic plasticity from VD-induced damage partly via Akt/GSK-3β pathway and Notch signaling pathway. Hydrogen sulfide modulated the ratio of NMDAR 2A/2B and improved the synaptic plasticity via Akt/GSK-3β pathway and Notch signaling pathway in VD rats.![]()
Collapse
Affiliation(s)
- Chunhua Liu
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaxia Xu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jing Gao
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Tao Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhuo Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
14
|
Fang Y, Iu CYY, Lui CNP, Zou Y, Fung CKM, Li HW, Xi N, Yung KKL, Lai KWC. Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration. Sci Rep 2014; 4:7074. [PMID: 25399549 PMCID: PMC4233341 DOI: 10.1038/srep07074] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022] Open
Abstract
Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuqiang Fang
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | | | - Cathy N. P. Lui
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Yukai Zou
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | | | - Hung Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Xi
- Michigan State University, East Lansing, USA
| | - Ken K. L. Yung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - King W. C. Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
15
|
Kido T, Lau YFC. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells. Biochem Biophys Res Commun 2014; 446:206-11. [PMID: 24583132 DOI: 10.1016/j.bbrc.2014.02.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 01/14/2023]
Abstract
The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. It is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and Institute for Human Genetics, University of California, San Francisco, CA, USA.
| |
Collapse
|